1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/CodeGen/MachinePipeliner.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/BitVector.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/PriorityQueue.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SetOperations.h" 40 #include "llvm/ADT/SetVector.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/SmallSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/iterator_range.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/CycleAnalysis.h" 48 #include "llvm/Analysis/MemoryLocation.h" 49 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/CodeGen/DFAPacketizer.h" 52 #include "llvm/CodeGen/LiveIntervals.h" 53 #include "llvm/CodeGen/MachineBasicBlock.h" 54 #include "llvm/CodeGen/MachineDominators.h" 55 #include "llvm/CodeGen/MachineFunction.h" 56 #include "llvm/CodeGen/MachineFunctionPass.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineLoopInfo.h" 60 #include "llvm/CodeGen/MachineMemOperand.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/ModuloSchedule.h" 64 #include "llvm/CodeGen/Register.h" 65 #include "llvm/CodeGen/RegisterClassInfo.h" 66 #include "llvm/CodeGen/RegisterPressure.h" 67 #include "llvm/CodeGen/ScheduleDAG.h" 68 #include "llvm/CodeGen/ScheduleDAGMutation.h" 69 #include "llvm/CodeGen/TargetInstrInfo.h" 70 #include "llvm/CodeGen/TargetOpcodes.h" 71 #include "llvm/CodeGen/TargetRegisterInfo.h" 72 #include "llvm/CodeGen/TargetSubtargetInfo.h" 73 #include "llvm/Config/llvm-config.h" 74 #include "llvm/IR/Attributes.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/MC/LaneBitmask.h" 77 #include "llvm/MC/MCInstrDesc.h" 78 #include "llvm/MC/MCInstrItineraries.h" 79 #include "llvm/MC/MCRegisterInfo.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include <algorithm> 87 #include <cassert> 88 #include <climits> 89 #include <cstdint> 90 #include <deque> 91 #include <functional> 92 #include <iomanip> 93 #include <iterator> 94 #include <map> 95 #include <memory> 96 #include <sstream> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 103 #define DEBUG_TYPE "pipeliner" 104 105 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 106 STATISTIC(NumPipelined, "Number of loops software pipelined"); 107 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 108 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 109 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 110 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 111 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 112 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 113 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 114 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 115 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 116 117 /// A command line option to turn software pipelining on or off. 118 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 119 cl::desc("Enable Software Pipelining")); 120 121 /// A command line option to enable SWP at -Os. 122 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 123 cl::desc("Enable SWP at Os."), cl::Hidden, 124 cl::init(false)); 125 126 /// A command line argument to limit minimum initial interval for pipelining. 127 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 128 cl::desc("Size limit for the MII."), 129 cl::Hidden, cl::init(27)); 130 131 /// A command line argument to force pipeliner to use specified initial 132 /// interval. 133 static cl::opt<int> SwpForceII("pipeliner-force-ii", 134 cl::desc("Force pipeliner to use specified II."), 135 cl::Hidden, cl::init(-1)); 136 137 /// A command line argument to limit the number of stages in the pipeline. 138 static cl::opt<int> 139 SwpMaxStages("pipeliner-max-stages", 140 cl::desc("Maximum stages allowed in the generated scheduled."), 141 cl::Hidden, cl::init(3)); 142 143 /// A command line option to disable the pruning of chain dependences due to 144 /// an unrelated Phi. 145 static cl::opt<bool> 146 SwpPruneDeps("pipeliner-prune-deps", 147 cl::desc("Prune dependences between unrelated Phi nodes."), 148 cl::Hidden, cl::init(true)); 149 150 /// A command line option to disable the pruning of loop carried order 151 /// dependences. 152 static cl::opt<bool> 153 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 154 cl::desc("Prune loop carried order dependences."), 155 cl::Hidden, cl::init(true)); 156 157 #ifndef NDEBUG 158 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 159 #endif 160 161 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 162 cl::ReallyHidden, 163 cl::desc("Ignore RecMII")); 164 165 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 166 cl::init(false)); 167 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 168 cl::init(false)); 169 170 static cl::opt<bool> EmitTestAnnotations( 171 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 172 cl::desc("Instead of emitting the pipelined code, annotate instructions " 173 "with the generated schedule for feeding into the " 174 "-modulo-schedule-test pass")); 175 176 static cl::opt<bool> ExperimentalCodeGen( 177 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 178 cl::desc( 179 "Use the experimental peeling code generator for software pipelining")); 180 181 static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range", 182 cl::desc("Range to search for II"), 183 cl::Hidden, cl::init(10)); 184 185 static cl::opt<bool> 186 LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false), 187 cl::desc("Limit register pressure of scheduled loop")); 188 189 static cl::opt<int> 190 RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden, 191 cl::init(5), 192 cl::desc("Margin representing the unused percentage of " 193 "the register pressure limit")); 194 195 namespace llvm { 196 197 // A command line option to enable the CopyToPhi DAG mutation. 198 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 199 cl::init(true), 200 cl::desc("Enable CopyToPhi DAG Mutation")); 201 202 /// A command line argument to force pipeliner to use specified issue 203 /// width. 204 cl::opt<int> SwpForceIssueWidth( 205 "pipeliner-force-issue-width", 206 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, 207 cl::init(-1)); 208 209 } // end namespace llvm 210 211 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 212 char MachinePipeliner::ID = 0; 213 #ifndef NDEBUG 214 int MachinePipeliner::NumTries = 0; 215 #endif 216 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 217 218 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 219 "Modulo Software Pipelining", false, false) 220 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 221 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 222 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 223 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 224 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 225 "Modulo Software Pipelining", false, false) 226 227 /// The "main" function for implementing Swing Modulo Scheduling. 228 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 229 if (skipFunction(mf.getFunction())) 230 return false; 231 232 if (!EnableSWP) 233 return false; 234 235 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 236 !EnableSWPOptSize.getPosition()) 237 return false; 238 239 if (!mf.getSubtarget().enableMachinePipeliner()) 240 return false; 241 242 // Cannot pipeline loops without instruction itineraries if we are using 243 // DFA for the pipeliner. 244 if (mf.getSubtarget().useDFAforSMS() && 245 (!mf.getSubtarget().getInstrItineraryData() || 246 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 247 return false; 248 249 MF = &mf; 250 MLI = &getAnalysis<MachineLoopInfo>(); 251 MDT = &getAnalysis<MachineDominatorTree>(); 252 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 253 TII = MF->getSubtarget().getInstrInfo(); 254 RegClassInfo.runOnMachineFunction(*MF); 255 256 for (const auto &L : *MLI) 257 scheduleLoop(*L); 258 259 return false; 260 } 261 262 /// Attempt to perform the SMS algorithm on the specified loop. This function is 263 /// the main entry point for the algorithm. The function identifies candidate 264 /// loops, calculates the minimum initiation interval, and attempts to schedule 265 /// the loop. 266 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 267 bool Changed = false; 268 for (const auto &InnerLoop : L) 269 Changed |= scheduleLoop(*InnerLoop); 270 271 #ifndef NDEBUG 272 // Stop trying after reaching the limit (if any). 273 int Limit = SwpLoopLimit; 274 if (Limit >= 0) { 275 if (NumTries >= SwpLoopLimit) 276 return Changed; 277 NumTries++; 278 } 279 #endif 280 281 setPragmaPipelineOptions(L); 282 if (!canPipelineLoop(L)) { 283 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 284 ORE->emit([&]() { 285 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 286 L.getStartLoc(), L.getHeader()) 287 << "Failed to pipeline loop"; 288 }); 289 290 LI.LoopPipelinerInfo.reset(); 291 return Changed; 292 } 293 294 ++NumTrytoPipeline; 295 296 Changed = swingModuloScheduler(L); 297 298 LI.LoopPipelinerInfo.reset(); 299 return Changed; 300 } 301 302 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 303 // Reset the pragma for the next loop in iteration. 304 disabledByPragma = false; 305 II_setByPragma = 0; 306 307 MachineBasicBlock *LBLK = L.getTopBlock(); 308 309 if (LBLK == nullptr) 310 return; 311 312 const BasicBlock *BBLK = LBLK->getBasicBlock(); 313 if (BBLK == nullptr) 314 return; 315 316 const Instruction *TI = BBLK->getTerminator(); 317 if (TI == nullptr) 318 return; 319 320 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 321 if (LoopID == nullptr) 322 return; 323 324 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 325 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 326 327 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 328 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 329 330 if (MD == nullptr) 331 continue; 332 333 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 334 335 if (S == nullptr) 336 continue; 337 338 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 339 assert(MD->getNumOperands() == 2 && 340 "Pipeline initiation interval hint metadata should have two operands."); 341 II_setByPragma = 342 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 343 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 344 } else if (S->getString() == "llvm.loop.pipeline.disable") { 345 disabledByPragma = true; 346 } 347 } 348 } 349 350 /// Return true if the loop can be software pipelined. The algorithm is 351 /// restricted to loops with a single basic block. Make sure that the 352 /// branch in the loop can be analyzed. 353 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 354 if (L.getNumBlocks() != 1) { 355 ORE->emit([&]() { 356 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 357 L.getStartLoc(), L.getHeader()) 358 << "Not a single basic block: " 359 << ore::NV("NumBlocks", L.getNumBlocks()); 360 }); 361 return false; 362 } 363 364 if (disabledByPragma) { 365 ORE->emit([&]() { 366 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 367 L.getStartLoc(), L.getHeader()) 368 << "Disabled by Pragma."; 369 }); 370 return false; 371 } 372 373 // Check if the branch can't be understood because we can't do pipelining 374 // if that's the case. 375 LI.TBB = nullptr; 376 LI.FBB = nullptr; 377 LI.BrCond.clear(); 378 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 379 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 380 NumFailBranch++; 381 ORE->emit([&]() { 382 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 383 L.getStartLoc(), L.getHeader()) 384 << "The branch can't be understood"; 385 }); 386 return false; 387 } 388 389 LI.LoopInductionVar = nullptr; 390 LI.LoopCompare = nullptr; 391 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 392 if (!LI.LoopPipelinerInfo) { 393 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 394 NumFailLoop++; 395 ORE->emit([&]() { 396 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 397 L.getStartLoc(), L.getHeader()) 398 << "The loop structure is not supported"; 399 }); 400 return false; 401 } 402 403 if (!L.getLoopPreheader()) { 404 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 405 NumFailPreheader++; 406 ORE->emit([&]() { 407 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 408 L.getStartLoc(), L.getHeader()) 409 << "No loop preheader found"; 410 }); 411 return false; 412 } 413 414 // Remove any subregisters from inputs to phi nodes. 415 preprocessPhiNodes(*L.getHeader()); 416 return true; 417 } 418 419 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 420 MachineRegisterInfo &MRI = MF->getRegInfo(); 421 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 422 423 for (MachineInstr &PI : B.phis()) { 424 MachineOperand &DefOp = PI.getOperand(0); 425 assert(DefOp.getSubReg() == 0); 426 auto *RC = MRI.getRegClass(DefOp.getReg()); 427 428 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 429 MachineOperand &RegOp = PI.getOperand(i); 430 if (RegOp.getSubReg() == 0) 431 continue; 432 433 // If the operand uses a subregister, replace it with a new register 434 // without subregisters, and generate a copy to the new register. 435 Register NewReg = MRI.createVirtualRegister(RC); 436 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 437 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 438 const DebugLoc &DL = PredB.findDebugLoc(At); 439 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 440 .addReg(RegOp.getReg(), getRegState(RegOp), 441 RegOp.getSubReg()); 442 Slots.insertMachineInstrInMaps(*Copy); 443 RegOp.setReg(NewReg); 444 RegOp.setSubReg(0); 445 } 446 } 447 } 448 449 /// The SMS algorithm consists of the following main steps: 450 /// 1. Computation and analysis of the dependence graph. 451 /// 2. Ordering of the nodes (instructions). 452 /// 3. Attempt to Schedule the loop. 453 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 454 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 455 456 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 457 II_setByPragma, LI.LoopPipelinerInfo.get()); 458 459 MachineBasicBlock *MBB = L.getHeader(); 460 // The kernel should not include any terminator instructions. These 461 // will be added back later. 462 SMS.startBlock(MBB); 463 464 // Compute the number of 'real' instructions in the basic block by 465 // ignoring terminators. 466 unsigned size = MBB->size(); 467 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 468 E = MBB->instr_end(); 469 I != E; ++I, --size) 470 ; 471 472 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 473 SMS.schedule(); 474 SMS.exitRegion(); 475 476 SMS.finishBlock(); 477 return SMS.hasNewSchedule(); 478 } 479 480 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 481 AU.addRequired<AAResultsWrapperPass>(); 482 AU.addPreserved<AAResultsWrapperPass>(); 483 AU.addRequired<MachineLoopInfo>(); 484 AU.addRequired<MachineDominatorTree>(); 485 AU.addRequired<LiveIntervals>(); 486 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 487 MachineFunctionPass::getAnalysisUsage(AU); 488 } 489 490 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 491 if (SwpForceII > 0) 492 MII = SwpForceII; 493 else if (II_setByPragma > 0) 494 MII = II_setByPragma; 495 else 496 MII = std::max(ResMII, RecMII); 497 } 498 499 void SwingSchedulerDAG::setMAX_II() { 500 if (SwpForceII > 0) 501 MAX_II = SwpForceII; 502 else if (II_setByPragma > 0) 503 MAX_II = II_setByPragma; 504 else 505 MAX_II = MII + SwpIISearchRange; 506 } 507 508 /// We override the schedule function in ScheduleDAGInstrs to implement the 509 /// scheduling part of the Swing Modulo Scheduling algorithm. 510 void SwingSchedulerDAG::schedule() { 511 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 512 buildSchedGraph(AA); 513 addLoopCarriedDependences(AA); 514 updatePhiDependences(); 515 Topo.InitDAGTopologicalSorting(); 516 changeDependences(); 517 postProcessDAG(); 518 LLVM_DEBUG(dump()); 519 520 NodeSetType NodeSets; 521 findCircuits(NodeSets); 522 NodeSetType Circuits = NodeSets; 523 524 // Calculate the MII. 525 unsigned ResMII = calculateResMII(); 526 unsigned RecMII = calculateRecMII(NodeSets); 527 528 fuseRecs(NodeSets); 529 530 // This flag is used for testing and can cause correctness problems. 531 if (SwpIgnoreRecMII) 532 RecMII = 0; 533 534 setMII(ResMII, RecMII); 535 setMAX_II(); 536 537 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 538 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 539 540 // Can't schedule a loop without a valid MII. 541 if (MII == 0) { 542 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 543 NumFailZeroMII++; 544 Pass.ORE->emit([&]() { 545 return MachineOptimizationRemarkAnalysis( 546 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 547 << "Invalid Minimal Initiation Interval: 0"; 548 }); 549 return; 550 } 551 552 // Don't pipeline large loops. 553 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 554 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 555 << ", we don't pipeline large loops\n"); 556 NumFailLargeMaxMII++; 557 Pass.ORE->emit([&]() { 558 return MachineOptimizationRemarkAnalysis( 559 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 560 << "Minimal Initiation Interval too large: " 561 << ore::NV("MII", (int)MII) << " > " 562 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 563 << "Refer to -pipeliner-max-mii."; 564 }); 565 return; 566 } 567 568 computeNodeFunctions(NodeSets); 569 570 registerPressureFilter(NodeSets); 571 572 colocateNodeSets(NodeSets); 573 574 checkNodeSets(NodeSets); 575 576 LLVM_DEBUG({ 577 for (auto &I : NodeSets) { 578 dbgs() << " Rec NodeSet "; 579 I.dump(); 580 } 581 }); 582 583 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 584 585 groupRemainingNodes(NodeSets); 586 587 removeDuplicateNodes(NodeSets); 588 589 LLVM_DEBUG({ 590 for (auto &I : NodeSets) { 591 dbgs() << " NodeSet "; 592 I.dump(); 593 } 594 }); 595 596 computeNodeOrder(NodeSets); 597 598 // check for node order issues 599 checkValidNodeOrder(Circuits); 600 601 SMSchedule Schedule(Pass.MF, this); 602 Scheduled = schedulePipeline(Schedule); 603 604 if (!Scheduled){ 605 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 606 NumFailNoSchedule++; 607 Pass.ORE->emit([&]() { 608 return MachineOptimizationRemarkAnalysis( 609 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 610 << "Unable to find schedule"; 611 }); 612 return; 613 } 614 615 unsigned numStages = Schedule.getMaxStageCount(); 616 // No need to generate pipeline if there are no overlapped iterations. 617 if (numStages == 0) { 618 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 619 NumFailZeroStage++; 620 Pass.ORE->emit([&]() { 621 return MachineOptimizationRemarkAnalysis( 622 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 623 << "No need to pipeline - no overlapped iterations in schedule."; 624 }); 625 return; 626 } 627 // Check that the maximum stage count is less than user-defined limit. 628 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 629 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 630 << " : too many stages, abort\n"); 631 NumFailLargeMaxStage++; 632 Pass.ORE->emit([&]() { 633 return MachineOptimizationRemarkAnalysis( 634 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 635 << "Too many stages in schedule: " 636 << ore::NV("numStages", (int)numStages) << " > " 637 << ore::NV("SwpMaxStages", SwpMaxStages) 638 << ". Refer to -pipeliner-max-stages."; 639 }); 640 return; 641 } 642 643 Pass.ORE->emit([&]() { 644 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 645 Loop.getHeader()) 646 << "Pipelined succesfully!"; 647 }); 648 649 // Generate the schedule as a ModuloSchedule. 650 DenseMap<MachineInstr *, int> Cycles, Stages; 651 std::vector<MachineInstr *> OrderedInsts; 652 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 653 ++Cycle) { 654 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 655 OrderedInsts.push_back(SU->getInstr()); 656 Cycles[SU->getInstr()] = Cycle; 657 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 658 } 659 } 660 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 661 for (auto &KV : NewMIs) { 662 Cycles[KV.first] = Cycles[KV.second]; 663 Stages[KV.first] = Stages[KV.second]; 664 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 665 } 666 667 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 668 std::move(Stages)); 669 if (EmitTestAnnotations) { 670 assert(NewInstrChanges.empty() && 671 "Cannot serialize a schedule with InstrChanges!"); 672 ModuloScheduleTestAnnotater MSTI(MF, MS); 673 MSTI.annotate(); 674 return; 675 } 676 // The experimental code generator can't work if there are InstChanges. 677 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 678 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 679 MSE.expand(); 680 } else { 681 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 682 MSE.expand(); 683 MSE.cleanup(); 684 } 685 ++NumPipelined; 686 } 687 688 /// Clean up after the software pipeliner runs. 689 void SwingSchedulerDAG::finishBlock() { 690 for (auto &KV : NewMIs) 691 MF.deleteMachineInstr(KV.second); 692 NewMIs.clear(); 693 694 // Call the superclass. 695 ScheduleDAGInstrs::finishBlock(); 696 } 697 698 /// Return the register values for the operands of a Phi instruction. 699 /// This function assume the instruction is a Phi. 700 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 701 unsigned &InitVal, unsigned &LoopVal) { 702 assert(Phi.isPHI() && "Expecting a Phi."); 703 704 InitVal = 0; 705 LoopVal = 0; 706 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 707 if (Phi.getOperand(i + 1).getMBB() != Loop) 708 InitVal = Phi.getOperand(i).getReg(); 709 else 710 LoopVal = Phi.getOperand(i).getReg(); 711 712 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 713 } 714 715 /// Return the Phi register value that comes the loop block. 716 static unsigned getLoopPhiReg(const MachineInstr &Phi, 717 const MachineBasicBlock *LoopBB) { 718 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 719 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 720 return Phi.getOperand(i).getReg(); 721 return 0; 722 } 723 724 /// Return true if SUb can be reached from SUa following the chain edges. 725 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 726 SmallPtrSet<SUnit *, 8> Visited; 727 SmallVector<SUnit *, 8> Worklist; 728 Worklist.push_back(SUa); 729 while (!Worklist.empty()) { 730 const SUnit *SU = Worklist.pop_back_val(); 731 for (const auto &SI : SU->Succs) { 732 SUnit *SuccSU = SI.getSUnit(); 733 if (SI.getKind() == SDep::Order) { 734 if (Visited.count(SuccSU)) 735 continue; 736 if (SuccSU == SUb) 737 return true; 738 Worklist.push_back(SuccSU); 739 Visited.insert(SuccSU); 740 } 741 } 742 } 743 return false; 744 } 745 746 /// Return true if the instruction causes a chain between memory 747 /// references before and after it. 748 static bool isDependenceBarrier(MachineInstr &MI) { 749 return MI.isCall() || MI.mayRaiseFPException() || 750 MI.hasUnmodeledSideEffects() || 751 (MI.hasOrderedMemoryRef() && 752 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); 753 } 754 755 /// Return the underlying objects for the memory references of an instruction. 756 /// This function calls the code in ValueTracking, but first checks that the 757 /// instruction has a memory operand. 758 static void getUnderlyingObjects(const MachineInstr *MI, 759 SmallVectorImpl<const Value *> &Objs) { 760 if (!MI->hasOneMemOperand()) 761 return; 762 MachineMemOperand *MM = *MI->memoperands_begin(); 763 if (!MM->getValue()) 764 return; 765 getUnderlyingObjects(MM->getValue(), Objs); 766 for (const Value *V : Objs) { 767 if (!isIdentifiedObject(V)) { 768 Objs.clear(); 769 return; 770 } 771 Objs.push_back(V); 772 } 773 } 774 775 /// Add a chain edge between a load and store if the store can be an 776 /// alias of the load on a subsequent iteration, i.e., a loop carried 777 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 778 /// but that code doesn't create loop carried dependences. 779 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 780 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 781 Value *UnknownValue = 782 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 783 for (auto &SU : SUnits) { 784 MachineInstr &MI = *SU.getInstr(); 785 if (isDependenceBarrier(MI)) 786 PendingLoads.clear(); 787 else if (MI.mayLoad()) { 788 SmallVector<const Value *, 4> Objs; 789 ::getUnderlyingObjects(&MI, Objs); 790 if (Objs.empty()) 791 Objs.push_back(UnknownValue); 792 for (const auto *V : Objs) { 793 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 794 SUs.push_back(&SU); 795 } 796 } else if (MI.mayStore()) { 797 SmallVector<const Value *, 4> Objs; 798 ::getUnderlyingObjects(&MI, Objs); 799 if (Objs.empty()) 800 Objs.push_back(UnknownValue); 801 for (const auto *V : Objs) { 802 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 803 PendingLoads.find(V); 804 if (I == PendingLoads.end()) 805 continue; 806 for (auto *Load : I->second) { 807 if (isSuccOrder(Load, &SU)) 808 continue; 809 MachineInstr &LdMI = *Load->getInstr(); 810 // First, perform the cheaper check that compares the base register. 811 // If they are the same and the load offset is less than the store 812 // offset, then mark the dependence as loop carried potentially. 813 const MachineOperand *BaseOp1, *BaseOp2; 814 int64_t Offset1, Offset2; 815 bool Offset1IsScalable, Offset2IsScalable; 816 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 817 Offset1IsScalable, TRI) && 818 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 819 Offset2IsScalable, TRI)) { 820 if (BaseOp1->isIdenticalTo(*BaseOp2) && 821 Offset1IsScalable == Offset2IsScalable && 822 (int)Offset1 < (int)Offset2) { 823 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 824 "What happened to the chain edge?"); 825 SDep Dep(Load, SDep::Barrier); 826 Dep.setLatency(1); 827 SU.addPred(Dep); 828 continue; 829 } 830 } 831 // Second, the more expensive check that uses alias analysis on the 832 // base registers. If they alias, and the load offset is less than 833 // the store offset, the mark the dependence as loop carried. 834 if (!AA) { 835 SDep Dep(Load, SDep::Barrier); 836 Dep.setLatency(1); 837 SU.addPred(Dep); 838 continue; 839 } 840 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 841 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 842 if (!MMO1->getValue() || !MMO2->getValue()) { 843 SDep Dep(Load, SDep::Barrier); 844 Dep.setLatency(1); 845 SU.addPred(Dep); 846 continue; 847 } 848 if (MMO1->getValue() == MMO2->getValue() && 849 MMO1->getOffset() <= MMO2->getOffset()) { 850 SDep Dep(Load, SDep::Barrier); 851 Dep.setLatency(1); 852 SU.addPred(Dep); 853 continue; 854 } 855 if (!AA->isNoAlias( 856 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 857 MemoryLocation::getAfter(MMO2->getValue(), 858 MMO2->getAAInfo()))) { 859 SDep Dep(Load, SDep::Barrier); 860 Dep.setLatency(1); 861 SU.addPred(Dep); 862 } 863 } 864 } 865 } 866 } 867 } 868 869 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 870 /// processes dependences for PHIs. This function adds true dependences 871 /// from a PHI to a use, and a loop carried dependence from the use to the 872 /// PHI. The loop carried dependence is represented as an anti dependence 873 /// edge. This function also removes chain dependences between unrelated 874 /// PHIs. 875 void SwingSchedulerDAG::updatePhiDependences() { 876 SmallVector<SDep, 4> RemoveDeps; 877 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 878 879 // Iterate over each DAG node. 880 for (SUnit &I : SUnits) { 881 RemoveDeps.clear(); 882 // Set to true if the instruction has an operand defined by a Phi. 883 unsigned HasPhiUse = 0; 884 unsigned HasPhiDef = 0; 885 MachineInstr *MI = I.getInstr(); 886 // Iterate over each operand, and we process the definitions. 887 for (const MachineOperand &MO : MI->operands()) { 888 if (!MO.isReg()) 889 continue; 890 Register Reg = MO.getReg(); 891 if (MO.isDef()) { 892 // If the register is used by a Phi, then create an anti dependence. 893 for (MachineRegisterInfo::use_instr_iterator 894 UI = MRI.use_instr_begin(Reg), 895 UE = MRI.use_instr_end(); 896 UI != UE; ++UI) { 897 MachineInstr *UseMI = &*UI; 898 SUnit *SU = getSUnit(UseMI); 899 if (SU != nullptr && UseMI->isPHI()) { 900 if (!MI->isPHI()) { 901 SDep Dep(SU, SDep::Anti, Reg); 902 Dep.setLatency(1); 903 I.addPred(Dep); 904 } else { 905 HasPhiDef = Reg; 906 // Add a chain edge to a dependent Phi that isn't an existing 907 // predecessor. 908 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 909 I.addPred(SDep(SU, SDep::Barrier)); 910 } 911 } 912 } 913 } else if (MO.isUse()) { 914 // If the register is defined by a Phi, then create a true dependence. 915 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 916 if (DefMI == nullptr) 917 continue; 918 SUnit *SU = getSUnit(DefMI); 919 if (SU != nullptr && DefMI->isPHI()) { 920 if (!MI->isPHI()) { 921 SDep Dep(SU, SDep::Data, Reg); 922 Dep.setLatency(0); 923 ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep); 924 I.addPred(Dep); 925 } else { 926 HasPhiUse = Reg; 927 // Add a chain edge to a dependent Phi that isn't an existing 928 // predecessor. 929 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 930 I.addPred(SDep(SU, SDep::Barrier)); 931 } 932 } 933 } 934 } 935 // Remove order dependences from an unrelated Phi. 936 if (!SwpPruneDeps) 937 continue; 938 for (auto &PI : I.Preds) { 939 MachineInstr *PMI = PI.getSUnit()->getInstr(); 940 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 941 if (I.getInstr()->isPHI()) { 942 if (PMI->getOperand(0).getReg() == HasPhiUse) 943 continue; 944 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 945 continue; 946 } 947 RemoveDeps.push_back(PI); 948 } 949 } 950 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 951 I.removePred(RemoveDeps[i]); 952 } 953 } 954 955 /// Iterate over each DAG node and see if we can change any dependences 956 /// in order to reduce the recurrence MII. 957 void SwingSchedulerDAG::changeDependences() { 958 // See if an instruction can use a value from the previous iteration. 959 // If so, we update the base and offset of the instruction and change 960 // the dependences. 961 for (SUnit &I : SUnits) { 962 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 963 int64_t NewOffset = 0; 964 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 965 NewOffset)) 966 continue; 967 968 // Get the MI and SUnit for the instruction that defines the original base. 969 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 970 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 971 if (!DefMI) 972 continue; 973 SUnit *DefSU = getSUnit(DefMI); 974 if (!DefSU) 975 continue; 976 // Get the MI and SUnit for the instruction that defins the new base. 977 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 978 if (!LastMI) 979 continue; 980 SUnit *LastSU = getSUnit(LastMI); 981 if (!LastSU) 982 continue; 983 984 if (Topo.IsReachable(&I, LastSU)) 985 continue; 986 987 // Remove the dependence. The value now depends on a prior iteration. 988 SmallVector<SDep, 4> Deps; 989 for (const SDep &P : I.Preds) 990 if (P.getSUnit() == DefSU) 991 Deps.push_back(P); 992 for (int i = 0, e = Deps.size(); i != e; i++) { 993 Topo.RemovePred(&I, Deps[i].getSUnit()); 994 I.removePred(Deps[i]); 995 } 996 // Remove the chain dependence between the instructions. 997 Deps.clear(); 998 for (auto &P : LastSU->Preds) 999 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1000 Deps.push_back(P); 1001 for (int i = 0, e = Deps.size(); i != e; i++) { 1002 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1003 LastSU->removePred(Deps[i]); 1004 } 1005 1006 // Add a dependence between the new instruction and the instruction 1007 // that defines the new base. 1008 SDep Dep(&I, SDep::Anti, NewBase); 1009 Topo.AddPred(LastSU, &I); 1010 LastSU->addPred(Dep); 1011 1012 // Remember the base and offset information so that we can update the 1013 // instruction during code generation. 1014 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1015 } 1016 } 1017 1018 /// Create an instruction stream that represents a single iteration and stage of 1019 /// each instruction. This function differs from SMSchedule::finalizeSchedule in 1020 /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this 1021 /// function is an approximation of SMSchedule::finalizeSchedule with all 1022 /// non-const operations removed. 1023 static void computeScheduledInsts(const SwingSchedulerDAG *SSD, 1024 SMSchedule &Schedule, 1025 std::vector<MachineInstr *> &OrderedInsts, 1026 DenseMap<MachineInstr *, unsigned> &Stages) { 1027 DenseMap<int, std::deque<SUnit *>> Instrs; 1028 1029 // Move all instructions to the first stage from the later stages. 1030 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1031 ++Cycle) { 1032 for (int Stage = 0, LastStage = Schedule.getMaxStageCount(); 1033 Stage <= LastStage; ++Stage) { 1034 for (SUnit *SU : llvm::reverse(Schedule.getInstructions( 1035 Cycle + Stage * Schedule.getInitiationInterval()))) { 1036 Instrs[Cycle].push_front(SU); 1037 } 1038 } 1039 } 1040 1041 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 1042 ++Cycle) { 1043 std::deque<SUnit *> &CycleInstrs = Instrs[Cycle]; 1044 CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs); 1045 for (SUnit *SU : CycleInstrs) { 1046 MachineInstr *MI = SU->getInstr(); 1047 OrderedInsts.push_back(MI); 1048 Stages[MI] = Schedule.stageScheduled(SU); 1049 } 1050 } 1051 } 1052 1053 namespace { 1054 1055 // FuncUnitSorter - Comparison operator used to sort instructions by 1056 // the number of functional unit choices. 1057 struct FuncUnitSorter { 1058 const InstrItineraryData *InstrItins; 1059 const MCSubtargetInfo *STI; 1060 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 1061 1062 FuncUnitSorter(const TargetSubtargetInfo &TSI) 1063 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 1064 1065 // Compute the number of functional unit alternatives needed 1066 // at each stage, and take the minimum value. We prioritize the 1067 // instructions by the least number of choices first. 1068 unsigned minFuncUnits(const MachineInstr *Inst, 1069 InstrStage::FuncUnits &F) const { 1070 unsigned SchedClass = Inst->getDesc().getSchedClass(); 1071 unsigned min = UINT_MAX; 1072 if (InstrItins && !InstrItins->isEmpty()) { 1073 for (const InstrStage &IS : 1074 make_range(InstrItins->beginStage(SchedClass), 1075 InstrItins->endStage(SchedClass))) { 1076 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1077 unsigned numAlternatives = llvm::popcount(funcUnits); 1078 if (numAlternatives < min) { 1079 min = numAlternatives; 1080 F = funcUnits; 1081 } 1082 } 1083 return min; 1084 } 1085 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1086 const MCSchedClassDesc *SCDesc = 1087 STI->getSchedModel().getSchedClassDesc(SchedClass); 1088 if (!SCDesc->isValid()) 1089 // No valid Schedule Class Desc for schedClass, should be 1090 // Pseudo/PostRAPseudo 1091 return min; 1092 1093 for (const MCWriteProcResEntry &PRE : 1094 make_range(STI->getWriteProcResBegin(SCDesc), 1095 STI->getWriteProcResEnd(SCDesc))) { 1096 if (!PRE.ReleaseAtCycle) 1097 continue; 1098 const MCProcResourceDesc *ProcResource = 1099 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1100 unsigned NumUnits = ProcResource->NumUnits; 1101 if (NumUnits < min) { 1102 min = NumUnits; 1103 F = PRE.ProcResourceIdx; 1104 } 1105 } 1106 return min; 1107 } 1108 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1109 } 1110 1111 // Compute the critical resources needed by the instruction. This 1112 // function records the functional units needed by instructions that 1113 // must use only one functional unit. We use this as a tie breaker 1114 // for computing the resource MII. The instrutions that require 1115 // the same, highly used, functional unit have high priority. 1116 void calcCriticalResources(MachineInstr &MI) { 1117 unsigned SchedClass = MI.getDesc().getSchedClass(); 1118 if (InstrItins && !InstrItins->isEmpty()) { 1119 for (const InstrStage &IS : 1120 make_range(InstrItins->beginStage(SchedClass), 1121 InstrItins->endStage(SchedClass))) { 1122 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1123 if (llvm::popcount(FuncUnits) == 1) 1124 Resources[FuncUnits]++; 1125 } 1126 return; 1127 } 1128 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1129 const MCSchedClassDesc *SCDesc = 1130 STI->getSchedModel().getSchedClassDesc(SchedClass); 1131 if (!SCDesc->isValid()) 1132 // No valid Schedule Class Desc for schedClass, should be 1133 // Pseudo/PostRAPseudo 1134 return; 1135 1136 for (const MCWriteProcResEntry &PRE : 1137 make_range(STI->getWriteProcResBegin(SCDesc), 1138 STI->getWriteProcResEnd(SCDesc))) { 1139 if (!PRE.ReleaseAtCycle) 1140 continue; 1141 Resources[PRE.ProcResourceIdx]++; 1142 } 1143 return; 1144 } 1145 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1146 } 1147 1148 /// Return true if IS1 has less priority than IS2. 1149 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1150 InstrStage::FuncUnits F1 = 0, F2 = 0; 1151 unsigned MFUs1 = minFuncUnits(IS1, F1); 1152 unsigned MFUs2 = minFuncUnits(IS2, F2); 1153 if (MFUs1 == MFUs2) 1154 return Resources.lookup(F1) < Resources.lookup(F2); 1155 return MFUs1 > MFUs2; 1156 } 1157 }; 1158 1159 /// Calculate the maximum register pressure of the scheduled instructions stream 1160 class HighRegisterPressureDetector { 1161 MachineBasicBlock *OrigMBB; 1162 const MachineFunction &MF; 1163 const MachineRegisterInfo &MRI; 1164 const TargetRegisterInfo *TRI; 1165 1166 const unsigned PSetNum; 1167 1168 // Indexed by PSet ID 1169 // InitSetPressure takes into account the register pressure of live-in 1170 // registers. It's not depend on how the loop is scheduled, so it's enough to 1171 // calculate them once at the beginning. 1172 std::vector<unsigned> InitSetPressure; 1173 1174 // Indexed by PSet ID 1175 // Upper limit for each register pressure set 1176 std::vector<unsigned> PressureSetLimit; 1177 1178 DenseMap<MachineInstr *, RegisterOperands> ROMap; 1179 1180 using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>; 1181 1182 public: 1183 using OrderedInstsTy = std::vector<MachineInstr *>; 1184 using Instr2StageTy = DenseMap<MachineInstr *, unsigned>; 1185 1186 private: 1187 static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) { 1188 if (Pressures.size() == 0) { 1189 dbgs() << "[]"; 1190 } else { 1191 char Prefix = '['; 1192 for (unsigned P : Pressures) { 1193 dbgs() << Prefix << P; 1194 Prefix = ' '; 1195 } 1196 dbgs() << ']'; 1197 } 1198 } 1199 1200 void dumpPSet(Register Reg) const { 1201 dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet="; 1202 for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid(); 1203 ++PSetIter) { 1204 dbgs() << *PSetIter << ' '; 1205 } 1206 dbgs() << '\n'; 1207 } 1208 1209 void increaseRegisterPressure(std::vector<unsigned> &Pressure, 1210 Register Reg) const { 1211 auto PSetIter = MRI.getPressureSets(Reg); 1212 unsigned Weight = PSetIter.getWeight(); 1213 for (; PSetIter.isValid(); ++PSetIter) 1214 Pressure[*PSetIter] += Weight; 1215 } 1216 1217 void decreaseRegisterPressure(std::vector<unsigned> &Pressure, 1218 Register Reg) const { 1219 auto PSetIter = MRI.getPressureSets(Reg); 1220 unsigned Weight = PSetIter.getWeight(); 1221 for (; PSetIter.isValid(); ++PSetIter) { 1222 auto &P = Pressure[*PSetIter]; 1223 assert(P >= Weight && 1224 "register pressure must be greater than or equal weight"); 1225 P -= Weight; 1226 } 1227 } 1228 1229 // Return true if Reg is fixed one, for example, stack pointer 1230 bool isFixedRegister(Register Reg) const { 1231 return Reg.isPhysical() && TRI->isFixedRegister(MF, Reg.asMCReg()); 1232 } 1233 1234 bool isDefinedInThisLoop(Register Reg) const { 1235 return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB; 1236 } 1237 1238 // Search for live-in variables. They are factored into the register pressure 1239 // from the begining. Live-in variables used by every iteration should be 1240 // considered as alive throughout the loop. For example, the variable `c` in 1241 // following code. \code 1242 // int c = ...; 1243 // for (int i = 0; i < n; i++) 1244 // a[i] += b[i] + c; 1245 // \endcode 1246 void computeLiveIn() { 1247 DenseSet<Register> Used; 1248 for (auto &MI : *OrigMBB) { 1249 if (MI.isDebugInstr()) 1250 continue; 1251 for (auto Use : ROMap[&MI].Uses) { 1252 auto Reg = Use.RegUnit; 1253 // Ignore the variable that appears only on one side of phi instruction 1254 // because it's used only at the first iteration. 1255 if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB)) 1256 continue; 1257 if (isFixedRegister(Reg)) 1258 continue; 1259 if (isDefinedInThisLoop(Reg)) 1260 continue; 1261 Used.insert(Reg); 1262 } 1263 } 1264 1265 for (auto LiveIn : Used) 1266 increaseRegisterPressure(InitSetPressure, LiveIn); 1267 } 1268 1269 // Calculate the upper limit of each pressure set 1270 void computePressureSetLimit(const RegisterClassInfo &RCI) { 1271 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1272 PressureSetLimit[PSet] = RCI.getRegPressureSetLimit(PSet); 1273 1274 // We assume fixed registers, such as stack pointer, are already in use. 1275 // Therefore subtracting the weight of the fixed registers from the limit of 1276 // each pressure set in advance. 1277 SmallDenseSet<Register, 8> FixedRegs; 1278 for (const TargetRegisterClass *TRC : TRI->regclasses()) { 1279 for (const MCPhysReg Reg : *TRC) 1280 if (isFixedRegister(Reg)) 1281 FixedRegs.insert(Reg); 1282 } 1283 1284 LLVM_DEBUG({ 1285 for (auto Reg : FixedRegs) { 1286 dbgs() << printReg(Reg, TRI, 0, &MRI) << ": ["; 1287 const int *Sets = TRI->getRegUnitPressureSets(Reg); 1288 for (; *Sets != -1; Sets++) { 1289 dbgs() << TRI->getRegPressureSetName(*Sets) << ", "; 1290 } 1291 dbgs() << "]\n"; 1292 } 1293 }); 1294 1295 for (auto Reg : FixedRegs) { 1296 LLVM_DEBUG(dbgs() << "fixed register: " << printReg(Reg, TRI, 0, &MRI) 1297 << "\n"); 1298 auto PSetIter = MRI.getPressureSets(Reg); 1299 unsigned Weight = PSetIter.getWeight(); 1300 for (; PSetIter.isValid(); ++PSetIter) { 1301 unsigned &Limit = PressureSetLimit[*PSetIter]; 1302 assert(Limit >= Weight && 1303 "register pressure limit must be greater than or equal weight"); 1304 Limit -= Weight; 1305 LLVM_DEBUG(dbgs() << "PSet=" << *PSetIter << " Limit=" << Limit 1306 << " (decreased by " << Weight << ")\n"); 1307 } 1308 } 1309 } 1310 1311 // There are two patterns of last-use. 1312 // - by an instruction of the current iteration 1313 // - by a phi instruction of the next iteration (loop carried value) 1314 // 1315 // Furthermore, following two groups of instructions are executed 1316 // simultaneously 1317 // - next iteration's phi instructions in i-th stage 1318 // - current iteration's instructions in i+1-th stage 1319 // 1320 // This function calculates the last-use of each register while taking into 1321 // account the above two patterns. 1322 Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts, 1323 Instr2StageTy &Stages) const { 1324 // We treat virtual registers that are defined and used in this loop. 1325 // Following virtual register will be ignored 1326 // - live-in one 1327 // - defined but not used in the loop (potentially live-out) 1328 DenseSet<Register> TargetRegs; 1329 const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) { 1330 if (isDefinedInThisLoop(Reg)) 1331 TargetRegs.insert(Reg); 1332 }; 1333 for (MachineInstr *MI : OrderedInsts) { 1334 if (MI->isPHI()) { 1335 Register Reg = getLoopPhiReg(*MI, OrigMBB); 1336 UpdateTargetRegs(Reg); 1337 } else { 1338 for (auto Use : ROMap.find(MI)->getSecond().Uses) 1339 UpdateTargetRegs(Use.RegUnit); 1340 } 1341 } 1342 1343 const auto InstrScore = [&Stages](MachineInstr *MI) { 1344 return Stages[MI] + MI->isPHI(); 1345 }; 1346 1347 DenseMap<Register, MachineInstr *> LastUseMI; 1348 for (MachineInstr *MI : llvm::reverse(OrderedInsts)) { 1349 for (auto Use : ROMap.find(MI)->getSecond().Uses) { 1350 auto Reg = Use.RegUnit; 1351 if (!TargetRegs.contains(Reg)) 1352 continue; 1353 auto Ite = LastUseMI.find(Reg); 1354 if (Ite == LastUseMI.end()) { 1355 LastUseMI[Reg] = MI; 1356 } else { 1357 MachineInstr *Orig = Ite->second; 1358 MachineInstr *New = MI; 1359 if (InstrScore(Orig) < InstrScore(New)) 1360 LastUseMI[Reg] = New; 1361 } 1362 } 1363 } 1364 1365 Instr2LastUsesTy LastUses; 1366 for (auto &Entry : LastUseMI) 1367 LastUses[Entry.second].insert(Entry.first); 1368 return LastUses; 1369 } 1370 1371 // Compute the maximum register pressure of the kernel. We'll simulate #Stage 1372 // iterations and check the register pressure at the point where all stages 1373 // overlapping. 1374 // 1375 // An example of unrolled loop where #Stage is 4.. 1376 // Iter i+0 i+1 i+2 i+3 1377 // ------------------------ 1378 // Stage 0 1379 // Stage 1 0 1380 // Stage 2 1 0 1381 // Stage 3 2 1 0 <- All stages overlap 1382 // 1383 std::vector<unsigned> 1384 computeMaxSetPressure(const OrderedInstsTy &OrderedInsts, 1385 Instr2StageTy &Stages, 1386 const unsigned StageCount) const { 1387 using RegSetTy = SmallDenseSet<Register, 16>; 1388 1389 // Indexed by #Iter. To treat "local" variables of each stage separately, we 1390 // manage the liveness of the registers independently by iterations. 1391 SmallVector<RegSetTy> LiveRegSets(StageCount); 1392 1393 auto CurSetPressure = InitSetPressure; 1394 auto MaxSetPressure = InitSetPressure; 1395 auto LastUses = computeLastUses(OrderedInsts, Stages); 1396 1397 LLVM_DEBUG({ 1398 dbgs() << "Ordered instructions:\n"; 1399 for (MachineInstr *MI : OrderedInsts) { 1400 dbgs() << "Stage " << Stages[MI] << ": "; 1401 MI->dump(); 1402 } 1403 }); 1404 1405 const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet, 1406 Register Reg) { 1407 if (!Reg.isValid() || isFixedRegister(Reg)) 1408 return; 1409 1410 bool Inserted = RegSet.insert(Reg).second; 1411 if (!Inserted) 1412 return; 1413 1414 LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1415 increaseRegisterPressure(CurSetPressure, Reg); 1416 LLVM_DEBUG(dumpPSet(Reg)); 1417 }; 1418 1419 const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet, 1420 Register Reg) { 1421 if (!Reg.isValid() || isFixedRegister(Reg)) 1422 return; 1423 1424 // live-in register 1425 if (!RegSet.contains(Reg)) 1426 return; 1427 1428 LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n"); 1429 RegSet.erase(Reg); 1430 decreaseRegisterPressure(CurSetPressure, Reg); 1431 LLVM_DEBUG(dumpPSet(Reg)); 1432 }; 1433 1434 for (unsigned I = 0; I < StageCount; I++) { 1435 for (MachineInstr *MI : OrderedInsts) { 1436 const auto Stage = Stages[MI]; 1437 if (I < Stage) 1438 continue; 1439 1440 const unsigned Iter = I - Stage; 1441 1442 for (auto Def : ROMap.find(MI)->getSecond().Defs) 1443 InsertReg(LiveRegSets[Iter], Def.RegUnit); 1444 1445 for (auto LastUse : LastUses[MI]) { 1446 if (MI->isPHI()) { 1447 if (Iter != 0) 1448 EraseReg(LiveRegSets[Iter - 1], LastUse); 1449 } else { 1450 EraseReg(LiveRegSets[Iter], LastUse); 1451 } 1452 } 1453 1454 for (unsigned PSet = 0; PSet < PSetNum; PSet++) 1455 MaxSetPressure[PSet] = 1456 std::max(MaxSetPressure[PSet], CurSetPressure[PSet]); 1457 1458 LLVM_DEBUG({ 1459 dbgs() << "CurSetPressure="; 1460 dumpRegisterPressures(CurSetPressure); 1461 dbgs() << " iter=" << Iter << " stage=" << Stage << ":"; 1462 MI->dump(); 1463 }); 1464 } 1465 } 1466 1467 return MaxSetPressure; 1468 } 1469 1470 public: 1471 HighRegisterPressureDetector(MachineBasicBlock *OrigMBB, 1472 const MachineFunction &MF) 1473 : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()), 1474 TRI(MF.getSubtarget().getRegisterInfo()), 1475 PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0), 1476 PressureSetLimit(PSetNum, 0) {} 1477 1478 // Used to calculate register pressure, which is independent of loop 1479 // scheduling. 1480 void init(const RegisterClassInfo &RCI) { 1481 for (MachineInstr &MI : *OrigMBB) { 1482 if (MI.isDebugInstr()) 1483 continue; 1484 ROMap[&MI].collect(MI, *TRI, MRI, false, true); 1485 } 1486 1487 computeLiveIn(); 1488 computePressureSetLimit(RCI); 1489 } 1490 1491 // Calculate the maximum register pressures of the loop and check if they 1492 // exceed the limit 1493 bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, 1494 const unsigned MaxStage) const { 1495 assert(0 <= RegPressureMargin && RegPressureMargin <= 100 && 1496 "the percentage of the margin must be between 0 to 100"); 1497 1498 OrderedInstsTy OrderedInsts; 1499 Instr2StageTy Stages; 1500 computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages); 1501 const auto MaxSetPressure = 1502 computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1); 1503 1504 LLVM_DEBUG({ 1505 dbgs() << "Dump MaxSetPressure:\n"; 1506 for (unsigned I = 0; I < MaxSetPressure.size(); I++) { 1507 dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]); 1508 } 1509 dbgs() << '\n'; 1510 }); 1511 1512 for (unsigned PSet = 0; PSet < PSetNum; PSet++) { 1513 unsigned Limit = PressureSetLimit[PSet]; 1514 unsigned Margin = Limit * RegPressureMargin / 100; 1515 LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit 1516 << " Margin=" << Margin << "\n"); 1517 if (Limit < MaxSetPressure[PSet] + Margin) { 1518 LLVM_DEBUG( 1519 dbgs() 1520 << "Rejected the schedule because of too high register pressure\n"); 1521 return true; 1522 } 1523 } 1524 return false; 1525 } 1526 }; 1527 1528 } // end anonymous namespace 1529 1530 /// Calculate the resource constrained minimum initiation interval for the 1531 /// specified loop. We use the DFA to model the resources needed for 1532 /// each instruction, and we ignore dependences. A different DFA is created 1533 /// for each cycle that is required. When adding a new instruction, we attempt 1534 /// to add it to each existing DFA, until a legal space is found. If the 1535 /// instruction cannot be reserved in an existing DFA, we create a new one. 1536 unsigned SwingSchedulerDAG::calculateResMII() { 1537 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1538 ResourceManager RM(&MF.getSubtarget(), this); 1539 return RM.calculateResMII(); 1540 } 1541 1542 /// Calculate the recurrence-constrainted minimum initiation interval. 1543 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1544 /// for each circuit. The II needs to satisfy the inequality 1545 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1546 /// II that satisfies the inequality, and the RecMII is the maximum 1547 /// of those values. 1548 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1549 unsigned RecMII = 0; 1550 1551 for (NodeSet &Nodes : NodeSets) { 1552 if (Nodes.empty()) 1553 continue; 1554 1555 unsigned Delay = Nodes.getLatency(); 1556 unsigned Distance = 1; 1557 1558 // ii = ceil(delay / distance) 1559 unsigned CurMII = (Delay + Distance - 1) / Distance; 1560 Nodes.setRecMII(CurMII); 1561 if (CurMII > RecMII) 1562 RecMII = CurMII; 1563 } 1564 1565 return RecMII; 1566 } 1567 1568 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1569 /// but we do this to find the circuits, and then change them back. 1570 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1571 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1572 for (SUnit &SU : SUnits) { 1573 for (SDep &Pred : SU.Preds) 1574 if (Pred.getKind() == SDep::Anti) 1575 DepsAdded.push_back(std::make_pair(&SU, Pred)); 1576 } 1577 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1578 // Remove this anti dependency and add one in the reverse direction. 1579 SUnit *SU = P.first; 1580 SDep &D = P.second; 1581 SUnit *TargetSU = D.getSUnit(); 1582 unsigned Reg = D.getReg(); 1583 unsigned Lat = D.getLatency(); 1584 SU->removePred(D); 1585 SDep Dep(SU, SDep::Anti, Reg); 1586 Dep.setLatency(Lat); 1587 TargetSU->addPred(Dep); 1588 } 1589 } 1590 1591 /// Create the adjacency structure of the nodes in the graph. 1592 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1593 SwingSchedulerDAG *DAG) { 1594 BitVector Added(SUnits.size()); 1595 DenseMap<int, int> OutputDeps; 1596 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1597 Added.reset(); 1598 // Add any successor to the adjacency matrix and exclude duplicates. 1599 for (auto &SI : SUnits[i].Succs) { 1600 // Only create a back-edge on the first and last nodes of a dependence 1601 // chain. This records any chains and adds them later. 1602 if (SI.getKind() == SDep::Output) { 1603 int N = SI.getSUnit()->NodeNum; 1604 int BackEdge = i; 1605 auto Dep = OutputDeps.find(BackEdge); 1606 if (Dep != OutputDeps.end()) { 1607 BackEdge = Dep->second; 1608 OutputDeps.erase(Dep); 1609 } 1610 OutputDeps[N] = BackEdge; 1611 } 1612 // Do not process a boundary node, an artificial node. 1613 // A back-edge is processed only if it goes to a Phi. 1614 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1615 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1616 continue; 1617 int N = SI.getSUnit()->NodeNum; 1618 if (!Added.test(N)) { 1619 AdjK[i].push_back(N); 1620 Added.set(N); 1621 } 1622 } 1623 // A chain edge between a store and a load is treated as a back-edge in the 1624 // adjacency matrix. 1625 for (auto &PI : SUnits[i].Preds) { 1626 if (!SUnits[i].getInstr()->mayStore() || 1627 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1628 continue; 1629 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1630 int N = PI.getSUnit()->NodeNum; 1631 if (!Added.test(N)) { 1632 AdjK[i].push_back(N); 1633 Added.set(N); 1634 } 1635 } 1636 } 1637 } 1638 // Add back-edges in the adjacency matrix for the output dependences. 1639 for (auto &OD : OutputDeps) 1640 if (!Added.test(OD.second)) { 1641 AdjK[OD.first].push_back(OD.second); 1642 Added.set(OD.second); 1643 } 1644 } 1645 1646 /// Identify an elementary circuit in the dependence graph starting at the 1647 /// specified node. 1648 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1649 bool HasBackedge) { 1650 SUnit *SV = &SUnits[V]; 1651 bool F = false; 1652 Stack.insert(SV); 1653 Blocked.set(V); 1654 1655 for (auto W : AdjK[V]) { 1656 if (NumPaths > MaxPaths) 1657 break; 1658 if (W < S) 1659 continue; 1660 if (W == S) { 1661 if (!HasBackedge) 1662 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1663 F = true; 1664 ++NumPaths; 1665 break; 1666 } else if (!Blocked.test(W)) { 1667 if (circuit(W, S, NodeSets, 1668 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1669 F = true; 1670 } 1671 } 1672 1673 if (F) 1674 unblock(V); 1675 else { 1676 for (auto W : AdjK[V]) { 1677 if (W < S) 1678 continue; 1679 B[W].insert(SV); 1680 } 1681 } 1682 Stack.pop_back(); 1683 return F; 1684 } 1685 1686 /// Unblock a node in the circuit finding algorithm. 1687 void SwingSchedulerDAG::Circuits::unblock(int U) { 1688 Blocked.reset(U); 1689 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1690 while (!BU.empty()) { 1691 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1692 assert(SI != BU.end() && "Invalid B set."); 1693 SUnit *W = *SI; 1694 BU.erase(W); 1695 if (Blocked.test(W->NodeNum)) 1696 unblock(W->NodeNum); 1697 } 1698 } 1699 1700 /// Identify all the elementary circuits in the dependence graph using 1701 /// Johnson's circuit algorithm. 1702 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1703 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1704 // but we do this to find the circuits, and then change them back. 1705 swapAntiDependences(SUnits); 1706 1707 Circuits Cir(SUnits, Topo); 1708 // Create the adjacency structure. 1709 Cir.createAdjacencyStructure(this); 1710 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1711 Cir.reset(); 1712 Cir.circuit(i, i, NodeSets); 1713 } 1714 1715 // Change the dependences back so that we've created a DAG again. 1716 swapAntiDependences(SUnits); 1717 } 1718 1719 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1720 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1721 // additional copies that are needed across iterations. An artificial dependence 1722 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1723 1724 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1725 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1726 // PHI-------True-Dep------> USEOfPhi 1727 1728 // The mutation creates 1729 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1730 1731 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1732 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1733 // late to avoid additional copies across iterations. The possible scheduling 1734 // order would be 1735 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1736 1737 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1738 for (SUnit &SU : DAG->SUnits) { 1739 // Find the COPY/REG_SEQUENCE instruction. 1740 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1741 continue; 1742 1743 // Record the loop carried PHIs. 1744 SmallVector<SUnit *, 4> PHISUs; 1745 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1746 SmallVector<SUnit *, 4> SrcSUs; 1747 1748 for (auto &Dep : SU.Preds) { 1749 SUnit *TmpSU = Dep.getSUnit(); 1750 MachineInstr *TmpMI = TmpSU->getInstr(); 1751 SDep::Kind DepKind = Dep.getKind(); 1752 // Save the loop carried PHI. 1753 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1754 PHISUs.push_back(TmpSU); 1755 // Save the source of COPY/REG_SEQUENCE. 1756 // If the source has no pre-decessors, we will end up creating cycles. 1757 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1758 SrcSUs.push_back(TmpSU); 1759 } 1760 1761 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1762 continue; 1763 1764 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1765 // SUnit to the container. 1766 SmallVector<SUnit *, 8> UseSUs; 1767 // Do not use iterator based loop here as we are updating the container. 1768 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1769 for (auto &Dep : PHISUs[Index]->Succs) { 1770 if (Dep.getKind() != SDep::Data) 1771 continue; 1772 1773 SUnit *TmpSU = Dep.getSUnit(); 1774 MachineInstr *TmpMI = TmpSU->getInstr(); 1775 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1776 PHISUs.push_back(TmpSU); 1777 continue; 1778 } 1779 UseSUs.push_back(TmpSU); 1780 } 1781 } 1782 1783 if (UseSUs.size() == 0) 1784 continue; 1785 1786 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1787 // Add the artificial dependencies if it does not form a cycle. 1788 for (auto *I : UseSUs) { 1789 for (auto *Src : SrcSUs) { 1790 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1791 Src->addPred(SDep(I, SDep::Artificial)); 1792 SDAG->Topo.AddPred(Src, I); 1793 } 1794 } 1795 } 1796 } 1797 } 1798 1799 /// Return true for DAG nodes that we ignore when computing the cost functions. 1800 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1801 /// in the calculation of the ASAP, ALAP, etc functions. 1802 static bool ignoreDependence(const SDep &D, bool isPred) { 1803 if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) 1804 return true; 1805 return D.getKind() == SDep::Anti && isPred; 1806 } 1807 1808 /// Compute several functions need to order the nodes for scheduling. 1809 /// ASAP - Earliest time to schedule a node. 1810 /// ALAP - Latest time to schedule a node. 1811 /// MOV - Mobility function, difference between ALAP and ASAP. 1812 /// D - Depth of each node. 1813 /// H - Height of each node. 1814 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1815 ScheduleInfo.resize(SUnits.size()); 1816 1817 LLVM_DEBUG({ 1818 for (int I : Topo) { 1819 const SUnit &SU = SUnits[I]; 1820 dumpNode(SU); 1821 } 1822 }); 1823 1824 int maxASAP = 0; 1825 // Compute ASAP and ZeroLatencyDepth. 1826 for (int I : Topo) { 1827 int asap = 0; 1828 int zeroLatencyDepth = 0; 1829 SUnit *SU = &SUnits[I]; 1830 for (const SDep &P : SU->Preds) { 1831 SUnit *pred = P.getSUnit(); 1832 if (P.getLatency() == 0) 1833 zeroLatencyDepth = 1834 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1835 if (ignoreDependence(P, true)) 1836 continue; 1837 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1838 getDistance(pred, SU, P) * MII)); 1839 } 1840 maxASAP = std::max(maxASAP, asap); 1841 ScheduleInfo[I].ASAP = asap; 1842 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1843 } 1844 1845 // Compute ALAP, ZeroLatencyHeight, and MOV. 1846 for (int I : llvm::reverse(Topo)) { 1847 int alap = maxASAP; 1848 int zeroLatencyHeight = 0; 1849 SUnit *SU = &SUnits[I]; 1850 for (const SDep &S : SU->Succs) { 1851 SUnit *succ = S.getSUnit(); 1852 if (succ->isBoundaryNode()) 1853 continue; 1854 if (S.getLatency() == 0) 1855 zeroLatencyHeight = 1856 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1857 if (ignoreDependence(S, true)) 1858 continue; 1859 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 1860 getDistance(SU, succ, S) * MII)); 1861 } 1862 1863 ScheduleInfo[I].ALAP = alap; 1864 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1865 } 1866 1867 // After computing the node functions, compute the summary for each node set. 1868 for (NodeSet &I : NodeSets) 1869 I.computeNodeSetInfo(this); 1870 1871 LLVM_DEBUG({ 1872 for (unsigned i = 0; i < SUnits.size(); i++) { 1873 dbgs() << "\tNode " << i << ":\n"; 1874 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1875 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1876 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1877 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1878 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1879 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1880 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1881 } 1882 }); 1883 } 1884 1885 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1886 /// as the predecessors of the elements of NodeOrder that are not also in 1887 /// NodeOrder. 1888 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1889 SmallSetVector<SUnit *, 8> &Preds, 1890 const NodeSet *S = nullptr) { 1891 Preds.clear(); 1892 for (const SUnit *SU : NodeOrder) { 1893 for (const SDep &Pred : SU->Preds) { 1894 if (S && S->count(Pred.getSUnit()) == 0) 1895 continue; 1896 if (ignoreDependence(Pred, true)) 1897 continue; 1898 if (NodeOrder.count(Pred.getSUnit()) == 0) 1899 Preds.insert(Pred.getSUnit()); 1900 } 1901 // Back-edges are predecessors with an anti-dependence. 1902 for (const SDep &Succ : SU->Succs) { 1903 if (Succ.getKind() != SDep::Anti) 1904 continue; 1905 if (S && S->count(Succ.getSUnit()) == 0) 1906 continue; 1907 if (NodeOrder.count(Succ.getSUnit()) == 0) 1908 Preds.insert(Succ.getSUnit()); 1909 } 1910 } 1911 return !Preds.empty(); 1912 } 1913 1914 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1915 /// as the successors of the elements of NodeOrder that are not also in 1916 /// NodeOrder. 1917 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1918 SmallSetVector<SUnit *, 8> &Succs, 1919 const NodeSet *S = nullptr) { 1920 Succs.clear(); 1921 for (const SUnit *SU : NodeOrder) { 1922 for (const SDep &Succ : SU->Succs) { 1923 if (S && S->count(Succ.getSUnit()) == 0) 1924 continue; 1925 if (ignoreDependence(Succ, false)) 1926 continue; 1927 if (NodeOrder.count(Succ.getSUnit()) == 0) 1928 Succs.insert(Succ.getSUnit()); 1929 } 1930 for (const SDep &Pred : SU->Preds) { 1931 if (Pred.getKind() != SDep::Anti) 1932 continue; 1933 if (S && S->count(Pred.getSUnit()) == 0) 1934 continue; 1935 if (NodeOrder.count(Pred.getSUnit()) == 0) 1936 Succs.insert(Pred.getSUnit()); 1937 } 1938 } 1939 return !Succs.empty(); 1940 } 1941 1942 /// Return true if there is a path from the specified node to any of the nodes 1943 /// in DestNodes. Keep track and return the nodes in any path. 1944 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1945 SetVector<SUnit *> &DestNodes, 1946 SetVector<SUnit *> &Exclude, 1947 SmallPtrSet<SUnit *, 8> &Visited) { 1948 if (Cur->isBoundaryNode()) 1949 return false; 1950 if (Exclude.contains(Cur)) 1951 return false; 1952 if (DestNodes.contains(Cur)) 1953 return true; 1954 if (!Visited.insert(Cur).second) 1955 return Path.contains(Cur); 1956 bool FoundPath = false; 1957 for (auto &SI : Cur->Succs) 1958 if (!ignoreDependence(SI, false)) 1959 FoundPath |= 1960 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1961 for (auto &PI : Cur->Preds) 1962 if (PI.getKind() == SDep::Anti) 1963 FoundPath |= 1964 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1965 if (FoundPath) 1966 Path.insert(Cur); 1967 return FoundPath; 1968 } 1969 1970 /// Compute the live-out registers for the instructions in a node-set. 1971 /// The live-out registers are those that are defined in the node-set, 1972 /// but not used. Except for use operands of Phis. 1973 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1974 NodeSet &NS) { 1975 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1976 MachineRegisterInfo &MRI = MF.getRegInfo(); 1977 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1978 SmallSet<unsigned, 4> Uses; 1979 for (SUnit *SU : NS) { 1980 const MachineInstr *MI = SU->getInstr(); 1981 if (MI->isPHI()) 1982 continue; 1983 for (const MachineOperand &MO : MI->all_uses()) { 1984 Register Reg = MO.getReg(); 1985 if (Reg.isVirtual()) 1986 Uses.insert(Reg); 1987 else if (MRI.isAllocatable(Reg)) 1988 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 1989 Uses.insert(Unit); 1990 } 1991 } 1992 for (SUnit *SU : NS) 1993 for (const MachineOperand &MO : SU->getInstr()->all_defs()) 1994 if (!MO.isDead()) { 1995 Register Reg = MO.getReg(); 1996 if (Reg.isVirtual()) { 1997 if (!Uses.count(Reg)) 1998 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1999 LaneBitmask::getNone())); 2000 } else if (MRI.isAllocatable(Reg)) { 2001 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 2002 if (!Uses.count(Unit)) 2003 LiveOutRegs.push_back( 2004 RegisterMaskPair(Unit, LaneBitmask::getNone())); 2005 } 2006 } 2007 RPTracker.addLiveRegs(LiveOutRegs); 2008 } 2009 2010 /// A heuristic to filter nodes in recurrent node-sets if the register 2011 /// pressure of a set is too high. 2012 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 2013 for (auto &NS : NodeSets) { 2014 // Skip small node-sets since they won't cause register pressure problems. 2015 if (NS.size() <= 2) 2016 continue; 2017 IntervalPressure RecRegPressure; 2018 RegPressureTracker RecRPTracker(RecRegPressure); 2019 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 2020 computeLiveOuts(MF, RecRPTracker, NS); 2021 RecRPTracker.closeBottom(); 2022 2023 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 2024 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 2025 return A->NodeNum > B->NodeNum; 2026 }); 2027 2028 for (auto &SU : SUnits) { 2029 // Since we're computing the register pressure for a subset of the 2030 // instructions in a block, we need to set the tracker for each 2031 // instruction in the node-set. The tracker is set to the instruction 2032 // just after the one we're interested in. 2033 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 2034 RecRPTracker.setPos(std::next(CurInstI)); 2035 2036 RegPressureDelta RPDelta; 2037 ArrayRef<PressureChange> CriticalPSets; 2038 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 2039 CriticalPSets, 2040 RecRegPressure.MaxSetPressure); 2041 if (RPDelta.Excess.isValid()) { 2042 LLVM_DEBUG( 2043 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 2044 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 2045 << ":" << RPDelta.Excess.getUnitInc() << "\n"); 2046 NS.setExceedPressure(SU); 2047 break; 2048 } 2049 RecRPTracker.recede(); 2050 } 2051 } 2052 } 2053 2054 /// A heuristic to colocate node sets that have the same set of 2055 /// successors. 2056 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 2057 unsigned Colocate = 0; 2058 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 2059 NodeSet &N1 = NodeSets[i]; 2060 SmallSetVector<SUnit *, 8> S1; 2061 if (N1.empty() || !succ_L(N1, S1)) 2062 continue; 2063 for (int j = i + 1; j < e; ++j) { 2064 NodeSet &N2 = NodeSets[j]; 2065 if (N1.compareRecMII(N2) != 0) 2066 continue; 2067 SmallSetVector<SUnit *, 8> S2; 2068 if (N2.empty() || !succ_L(N2, S2)) 2069 continue; 2070 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 2071 N1.setColocate(++Colocate); 2072 N2.setColocate(Colocate); 2073 break; 2074 } 2075 } 2076 } 2077 } 2078 2079 /// Check if the existing node-sets are profitable. If not, then ignore the 2080 /// recurrent node-sets, and attempt to schedule all nodes together. This is 2081 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 2082 /// then it's best to try to schedule all instructions together instead of 2083 /// starting with the recurrent node-sets. 2084 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 2085 // Look for loops with a large MII. 2086 if (MII < 17) 2087 return; 2088 // Check if the node-set contains only a simple add recurrence. 2089 for (auto &NS : NodeSets) { 2090 if (NS.getRecMII() > 2) 2091 return; 2092 if (NS.getMaxDepth() > MII) 2093 return; 2094 } 2095 NodeSets.clear(); 2096 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 2097 } 2098 2099 /// Add the nodes that do not belong to a recurrence set into groups 2100 /// based upon connected components. 2101 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 2102 SetVector<SUnit *> NodesAdded; 2103 SmallPtrSet<SUnit *, 8> Visited; 2104 // Add the nodes that are on a path between the previous node sets and 2105 // the current node set. 2106 for (NodeSet &I : NodeSets) { 2107 SmallSetVector<SUnit *, 8> N; 2108 // Add the nodes from the current node set to the previous node set. 2109 if (succ_L(I, N)) { 2110 SetVector<SUnit *> Path; 2111 for (SUnit *NI : N) { 2112 Visited.clear(); 2113 computePath(NI, Path, NodesAdded, I, Visited); 2114 } 2115 if (!Path.empty()) 2116 I.insert(Path.begin(), Path.end()); 2117 } 2118 // Add the nodes from the previous node set to the current node set. 2119 N.clear(); 2120 if (succ_L(NodesAdded, N)) { 2121 SetVector<SUnit *> Path; 2122 for (SUnit *NI : N) { 2123 Visited.clear(); 2124 computePath(NI, Path, I, NodesAdded, Visited); 2125 } 2126 if (!Path.empty()) 2127 I.insert(Path.begin(), Path.end()); 2128 } 2129 NodesAdded.insert(I.begin(), I.end()); 2130 } 2131 2132 // Create a new node set with the connected nodes of any successor of a node 2133 // in a recurrent set. 2134 NodeSet NewSet; 2135 SmallSetVector<SUnit *, 8> N; 2136 if (succ_L(NodesAdded, N)) 2137 for (SUnit *I : N) 2138 addConnectedNodes(I, NewSet, NodesAdded); 2139 if (!NewSet.empty()) 2140 NodeSets.push_back(NewSet); 2141 2142 // Create a new node set with the connected nodes of any predecessor of a node 2143 // in a recurrent set. 2144 NewSet.clear(); 2145 if (pred_L(NodesAdded, N)) 2146 for (SUnit *I : N) 2147 addConnectedNodes(I, NewSet, NodesAdded); 2148 if (!NewSet.empty()) 2149 NodeSets.push_back(NewSet); 2150 2151 // Create new nodes sets with the connected nodes any remaining node that 2152 // has no predecessor. 2153 for (SUnit &SU : SUnits) { 2154 if (NodesAdded.count(&SU) == 0) { 2155 NewSet.clear(); 2156 addConnectedNodes(&SU, NewSet, NodesAdded); 2157 if (!NewSet.empty()) 2158 NodeSets.push_back(NewSet); 2159 } 2160 } 2161 } 2162 2163 /// Add the node to the set, and add all of its connected nodes to the set. 2164 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 2165 SetVector<SUnit *> &NodesAdded) { 2166 NewSet.insert(SU); 2167 NodesAdded.insert(SU); 2168 for (auto &SI : SU->Succs) { 2169 SUnit *Successor = SI.getSUnit(); 2170 if (!SI.isArtificial() && !Successor->isBoundaryNode() && 2171 NodesAdded.count(Successor) == 0) 2172 addConnectedNodes(Successor, NewSet, NodesAdded); 2173 } 2174 for (auto &PI : SU->Preds) { 2175 SUnit *Predecessor = PI.getSUnit(); 2176 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 2177 addConnectedNodes(Predecessor, NewSet, NodesAdded); 2178 } 2179 } 2180 2181 /// Return true if Set1 contains elements in Set2. The elements in common 2182 /// are returned in a different container. 2183 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 2184 SmallSetVector<SUnit *, 8> &Result) { 2185 Result.clear(); 2186 for (SUnit *SU : Set1) { 2187 if (Set2.count(SU) != 0) 2188 Result.insert(SU); 2189 } 2190 return !Result.empty(); 2191 } 2192 2193 /// Merge the recurrence node sets that have the same initial node. 2194 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 2195 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2196 ++I) { 2197 NodeSet &NI = *I; 2198 for (NodeSetType::iterator J = I + 1; J != E;) { 2199 NodeSet &NJ = *J; 2200 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 2201 if (NJ.compareRecMII(NI) > 0) 2202 NI.setRecMII(NJ.getRecMII()); 2203 for (SUnit *SU : *J) 2204 I->insert(SU); 2205 NodeSets.erase(J); 2206 E = NodeSets.end(); 2207 } else { 2208 ++J; 2209 } 2210 } 2211 } 2212 } 2213 2214 /// Remove nodes that have been scheduled in previous NodeSets. 2215 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 2216 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 2217 ++I) 2218 for (NodeSetType::iterator J = I + 1; J != E;) { 2219 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 2220 2221 if (J->empty()) { 2222 NodeSets.erase(J); 2223 E = NodeSets.end(); 2224 } else { 2225 ++J; 2226 } 2227 } 2228 } 2229 2230 /// Compute an ordered list of the dependence graph nodes, which 2231 /// indicates the order that the nodes will be scheduled. This is a 2232 /// two-level algorithm. First, a partial order is created, which 2233 /// consists of a list of sets ordered from highest to lowest priority. 2234 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 2235 SmallSetVector<SUnit *, 8> R; 2236 NodeOrder.clear(); 2237 2238 for (auto &Nodes : NodeSets) { 2239 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 2240 OrderKind Order; 2241 SmallSetVector<SUnit *, 8> N; 2242 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2243 R.insert(N.begin(), N.end()); 2244 Order = BottomUp; 2245 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 2246 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 2247 R.insert(N.begin(), N.end()); 2248 Order = TopDown; 2249 LLVM_DEBUG(dbgs() << " Top down (succs) "); 2250 } else if (isIntersect(N, Nodes, R)) { 2251 // If some of the successors are in the existing node-set, then use the 2252 // top-down ordering. 2253 Order = TopDown; 2254 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 2255 } else if (NodeSets.size() == 1) { 2256 for (const auto &N : Nodes) 2257 if (N->Succs.size() == 0) 2258 R.insert(N); 2259 Order = BottomUp; 2260 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 2261 } else { 2262 // Find the node with the highest ASAP. 2263 SUnit *maxASAP = nullptr; 2264 for (SUnit *SU : Nodes) { 2265 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 2266 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 2267 maxASAP = SU; 2268 } 2269 R.insert(maxASAP); 2270 Order = BottomUp; 2271 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 2272 } 2273 2274 while (!R.empty()) { 2275 if (Order == TopDown) { 2276 // Choose the node with the maximum height. If more than one, choose 2277 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 2278 // choose the node with the lowest MOV. 2279 while (!R.empty()) { 2280 SUnit *maxHeight = nullptr; 2281 for (SUnit *I : R) { 2282 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 2283 maxHeight = I; 2284 else if (getHeight(I) == getHeight(maxHeight) && 2285 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 2286 maxHeight = I; 2287 else if (getHeight(I) == getHeight(maxHeight) && 2288 getZeroLatencyHeight(I) == 2289 getZeroLatencyHeight(maxHeight) && 2290 getMOV(I) < getMOV(maxHeight)) 2291 maxHeight = I; 2292 } 2293 NodeOrder.insert(maxHeight); 2294 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 2295 R.remove(maxHeight); 2296 for (const auto &I : maxHeight->Succs) { 2297 if (Nodes.count(I.getSUnit()) == 0) 2298 continue; 2299 if (NodeOrder.contains(I.getSUnit())) 2300 continue; 2301 if (ignoreDependence(I, false)) 2302 continue; 2303 R.insert(I.getSUnit()); 2304 } 2305 // Back-edges are predecessors with an anti-dependence. 2306 for (const auto &I : maxHeight->Preds) { 2307 if (I.getKind() != SDep::Anti) 2308 continue; 2309 if (Nodes.count(I.getSUnit()) == 0) 2310 continue; 2311 if (NodeOrder.contains(I.getSUnit())) 2312 continue; 2313 R.insert(I.getSUnit()); 2314 } 2315 } 2316 Order = BottomUp; 2317 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 2318 SmallSetVector<SUnit *, 8> N; 2319 if (pred_L(NodeOrder, N, &Nodes)) 2320 R.insert(N.begin(), N.end()); 2321 } else { 2322 // Choose the node with the maximum depth. If more than one, choose 2323 // the node with the maximum ZeroLatencyDepth. If still more than one, 2324 // choose the node with the lowest MOV. 2325 while (!R.empty()) { 2326 SUnit *maxDepth = nullptr; 2327 for (SUnit *I : R) { 2328 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 2329 maxDepth = I; 2330 else if (getDepth(I) == getDepth(maxDepth) && 2331 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 2332 maxDepth = I; 2333 else if (getDepth(I) == getDepth(maxDepth) && 2334 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 2335 getMOV(I) < getMOV(maxDepth)) 2336 maxDepth = I; 2337 } 2338 NodeOrder.insert(maxDepth); 2339 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 2340 R.remove(maxDepth); 2341 if (Nodes.isExceedSU(maxDepth)) { 2342 Order = TopDown; 2343 R.clear(); 2344 R.insert(Nodes.getNode(0)); 2345 break; 2346 } 2347 for (const auto &I : maxDepth->Preds) { 2348 if (Nodes.count(I.getSUnit()) == 0) 2349 continue; 2350 if (NodeOrder.contains(I.getSUnit())) 2351 continue; 2352 R.insert(I.getSUnit()); 2353 } 2354 // Back-edges are predecessors with an anti-dependence. 2355 for (const auto &I : maxDepth->Succs) { 2356 if (I.getKind() != SDep::Anti) 2357 continue; 2358 if (Nodes.count(I.getSUnit()) == 0) 2359 continue; 2360 if (NodeOrder.contains(I.getSUnit())) 2361 continue; 2362 R.insert(I.getSUnit()); 2363 } 2364 } 2365 Order = TopDown; 2366 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 2367 SmallSetVector<SUnit *, 8> N; 2368 if (succ_L(NodeOrder, N, &Nodes)) 2369 R.insert(N.begin(), N.end()); 2370 } 2371 } 2372 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 2373 } 2374 2375 LLVM_DEBUG({ 2376 dbgs() << "Node order: "; 2377 for (SUnit *I : NodeOrder) 2378 dbgs() << " " << I->NodeNum << " "; 2379 dbgs() << "\n"; 2380 }); 2381 } 2382 2383 /// Process the nodes in the computed order and create the pipelined schedule 2384 /// of the instructions, if possible. Return true if a schedule is found. 2385 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2386 2387 if (NodeOrder.empty()){ 2388 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2389 return false; 2390 } 2391 2392 bool scheduleFound = false; 2393 std::unique_ptr<HighRegisterPressureDetector> HRPDetector; 2394 if (LimitRegPressure) { 2395 HRPDetector = 2396 std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF); 2397 HRPDetector->init(RegClassInfo); 2398 } 2399 // Keep increasing II until a valid schedule is found. 2400 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2401 Schedule.reset(); 2402 Schedule.setInitiationInterval(II); 2403 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2404 2405 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2406 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2407 do { 2408 SUnit *SU = *NI; 2409 2410 // Compute the schedule time for the instruction, which is based 2411 // upon the scheduled time for any predecessors/successors. 2412 int EarlyStart = INT_MIN; 2413 int LateStart = INT_MAX; 2414 // These values are set when the size of the schedule window is limited 2415 // due to chain dependences. 2416 int SchedEnd = INT_MAX; 2417 int SchedStart = INT_MIN; 2418 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2419 II, this); 2420 LLVM_DEBUG({ 2421 dbgs() << "\n"; 2422 dbgs() << "Inst (" << SU->NodeNum << ") "; 2423 SU->getInstr()->dump(); 2424 dbgs() << "\n"; 2425 }); 2426 LLVM_DEBUG({ 2427 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2428 LateStart, SchedEnd, SchedStart); 2429 }); 2430 2431 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2432 SchedStart > LateStart) 2433 scheduleFound = false; 2434 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2435 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2436 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2437 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2438 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2439 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2440 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2441 SchedEnd = 2442 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2443 // When scheduling a Phi it is better to start at the late cycle and go 2444 // backwards. The default order may insert the Phi too far away from 2445 // its first dependence. 2446 if (SU->getInstr()->isPHI()) 2447 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2448 else 2449 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2450 } else { 2451 int FirstCycle = Schedule.getFirstCycle(); 2452 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2453 FirstCycle + getASAP(SU) + II - 1, II); 2454 } 2455 // Even if we find a schedule, make sure the schedule doesn't exceed the 2456 // allowable number of stages. We keep trying if this happens. 2457 if (scheduleFound) 2458 if (SwpMaxStages > -1 && 2459 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2460 scheduleFound = false; 2461 2462 LLVM_DEBUG({ 2463 if (!scheduleFound) 2464 dbgs() << "\tCan't schedule\n"; 2465 }); 2466 } while (++NI != NE && scheduleFound); 2467 2468 // If a schedule is found, ensure non-pipelined instructions are in stage 0 2469 if (scheduleFound) 2470 scheduleFound = 2471 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 2472 2473 // If a schedule is found, check if it is a valid schedule too. 2474 if (scheduleFound) 2475 scheduleFound = Schedule.isValidSchedule(this); 2476 2477 // If a schedule was found and the option is enabled, check if the schedule 2478 // might generate additional register spills/fills. 2479 if (scheduleFound && LimitRegPressure) 2480 scheduleFound = 2481 !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount()); 2482 } 2483 2484 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2485 << " (II=" << Schedule.getInitiationInterval() 2486 << ")\n"); 2487 2488 if (scheduleFound) { 2489 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); 2490 if (!scheduleFound) 2491 LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); 2492 } 2493 2494 if (scheduleFound) { 2495 Schedule.finalizeSchedule(this); 2496 Pass.ORE->emit([&]() { 2497 return MachineOptimizationRemarkAnalysis( 2498 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2499 << "Schedule found with Initiation Interval: " 2500 << ore::NV("II", Schedule.getInitiationInterval()) 2501 << ", MaxStageCount: " 2502 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2503 }); 2504 } else 2505 Schedule.reset(); 2506 2507 return scheduleFound && Schedule.getMaxStageCount() > 0; 2508 } 2509 2510 /// Return true if we can compute the amount the instruction changes 2511 /// during each iteration. Set Delta to the amount of the change. 2512 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2513 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2514 const MachineOperand *BaseOp; 2515 int64_t Offset; 2516 bool OffsetIsScalable; 2517 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2518 return false; 2519 2520 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2521 if (OffsetIsScalable) 2522 return false; 2523 2524 if (!BaseOp->isReg()) 2525 return false; 2526 2527 Register BaseReg = BaseOp->getReg(); 2528 2529 MachineRegisterInfo &MRI = MF.getRegInfo(); 2530 // Check if there is a Phi. If so, get the definition in the loop. 2531 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2532 if (BaseDef && BaseDef->isPHI()) { 2533 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2534 BaseDef = MRI.getVRegDef(BaseReg); 2535 } 2536 if (!BaseDef) 2537 return false; 2538 2539 int D = 0; 2540 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2541 return false; 2542 2543 Delta = D; 2544 return true; 2545 } 2546 2547 /// Check if we can change the instruction to use an offset value from the 2548 /// previous iteration. If so, return true and set the base and offset values 2549 /// so that we can rewrite the load, if necessary. 2550 /// v1 = Phi(v0, v3) 2551 /// v2 = load v1, 0 2552 /// v3 = post_store v1, 4, x 2553 /// This function enables the load to be rewritten as v2 = load v3, 4. 2554 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2555 unsigned &BasePos, 2556 unsigned &OffsetPos, 2557 unsigned &NewBase, 2558 int64_t &Offset) { 2559 // Get the load instruction. 2560 if (TII->isPostIncrement(*MI)) 2561 return false; 2562 unsigned BasePosLd, OffsetPosLd; 2563 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2564 return false; 2565 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2566 2567 // Look for the Phi instruction. 2568 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2569 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2570 if (!Phi || !Phi->isPHI()) 2571 return false; 2572 // Get the register defined in the loop block. 2573 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2574 if (!PrevReg) 2575 return false; 2576 2577 // Check for the post-increment load/store instruction. 2578 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2579 if (!PrevDef || PrevDef == MI) 2580 return false; 2581 2582 if (!TII->isPostIncrement(*PrevDef)) 2583 return false; 2584 2585 unsigned BasePos1 = 0, OffsetPos1 = 0; 2586 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2587 return false; 2588 2589 // Make sure that the instructions do not access the same memory location in 2590 // the next iteration. 2591 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2592 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2593 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2594 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2595 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2596 MF.deleteMachineInstr(NewMI); 2597 if (!Disjoint) 2598 return false; 2599 2600 // Set the return value once we determine that we return true. 2601 BasePos = BasePosLd; 2602 OffsetPos = OffsetPosLd; 2603 NewBase = PrevReg; 2604 Offset = StoreOffset; 2605 return true; 2606 } 2607 2608 /// Apply changes to the instruction if needed. The changes are need 2609 /// to improve the scheduling and depend up on the final schedule. 2610 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2611 SMSchedule &Schedule) { 2612 SUnit *SU = getSUnit(MI); 2613 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2614 InstrChanges.find(SU); 2615 if (It != InstrChanges.end()) { 2616 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2617 unsigned BasePos, OffsetPos; 2618 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2619 return; 2620 Register BaseReg = MI->getOperand(BasePos).getReg(); 2621 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2622 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2623 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2624 int BaseStageNum = Schedule.stageScheduled(SU); 2625 int BaseCycleNum = Schedule.cycleScheduled(SU); 2626 if (BaseStageNum < DefStageNum) { 2627 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2628 int OffsetDiff = DefStageNum - BaseStageNum; 2629 if (DefCycleNum < BaseCycleNum) { 2630 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2631 if (OffsetDiff > 0) 2632 --OffsetDiff; 2633 } 2634 int64_t NewOffset = 2635 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2636 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2637 SU->setInstr(NewMI); 2638 MISUnitMap[NewMI] = SU; 2639 NewMIs[MI] = NewMI; 2640 } 2641 } 2642 } 2643 2644 /// Return the instruction in the loop that defines the register. 2645 /// If the definition is a Phi, then follow the Phi operand to 2646 /// the instruction in the loop. 2647 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2648 SmallPtrSet<MachineInstr *, 8> Visited; 2649 MachineInstr *Def = MRI.getVRegDef(Reg); 2650 while (Def->isPHI()) { 2651 if (!Visited.insert(Def).second) 2652 break; 2653 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2654 if (Def->getOperand(i + 1).getMBB() == BB) { 2655 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2656 break; 2657 } 2658 } 2659 return Def; 2660 } 2661 2662 /// Return true for an order or output dependence that is loop carried 2663 /// potentially. A dependence is loop carried if the destination defines a value 2664 /// that may be used or defined by the source in a subsequent iteration. 2665 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2666 bool isSucc) { 2667 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2668 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) 2669 return false; 2670 2671 if (!SwpPruneLoopCarried) 2672 return true; 2673 2674 if (Dep.getKind() == SDep::Output) 2675 return true; 2676 2677 MachineInstr *SI = Source->getInstr(); 2678 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2679 if (!isSucc) 2680 std::swap(SI, DI); 2681 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2682 2683 // Assume ordered loads and stores may have a loop carried dependence. 2684 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2685 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2686 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2687 return true; 2688 2689 if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) 2690 return false; 2691 2692 // The conservative assumption is that a dependence between memory operations 2693 // may be loop carried. The following code checks when it can be proved that 2694 // there is no loop carried dependence. 2695 unsigned DeltaS, DeltaD; 2696 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2697 return true; 2698 2699 const MachineOperand *BaseOpS, *BaseOpD; 2700 int64_t OffsetS, OffsetD; 2701 bool OffsetSIsScalable, OffsetDIsScalable; 2702 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2703 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2704 TRI) || 2705 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2706 TRI)) 2707 return true; 2708 2709 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2710 "Expected offsets to be byte offsets"); 2711 2712 MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); 2713 MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); 2714 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) 2715 return true; 2716 2717 unsigned InitValS = 0; 2718 unsigned LoopValS = 0; 2719 unsigned InitValD = 0; 2720 unsigned LoopValD = 0; 2721 getPhiRegs(*DefS, BB, InitValS, LoopValS); 2722 getPhiRegs(*DefD, BB, InitValD, LoopValD); 2723 MachineInstr *InitDefS = MRI.getVRegDef(InitValS); 2724 MachineInstr *InitDefD = MRI.getVRegDef(InitValD); 2725 2726 if (!InitDefS->isIdenticalTo(*InitDefD)) 2727 return true; 2728 2729 // Check that the base register is incremented by a constant value for each 2730 // iteration. 2731 MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); 2732 int D = 0; 2733 if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) 2734 return true; 2735 2736 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2737 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2738 2739 // This is the main test, which checks the offset values and the loop 2740 // increment value to determine if the accesses may be loop carried. 2741 if (AccessSizeS == MemoryLocation::UnknownSize || 2742 AccessSizeD == MemoryLocation::UnknownSize) 2743 return true; 2744 2745 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2746 return true; 2747 2748 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2749 } 2750 2751 void SwingSchedulerDAG::postProcessDAG() { 2752 for (auto &M : Mutations) 2753 M->apply(this); 2754 } 2755 2756 /// Try to schedule the node at the specified StartCycle and continue 2757 /// until the node is schedule or the EndCycle is reached. This function 2758 /// returns true if the node is scheduled. This routine may search either 2759 /// forward or backward for a place to insert the instruction based upon 2760 /// the relative values of StartCycle and EndCycle. 2761 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2762 bool forward = true; 2763 LLVM_DEBUG({ 2764 dbgs() << "Trying to insert node between " << StartCycle << " and " 2765 << EndCycle << " II: " << II << "\n"; 2766 }); 2767 if (StartCycle > EndCycle) 2768 forward = false; 2769 2770 // The terminating condition depends on the direction. 2771 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2772 for (int curCycle = StartCycle; curCycle != termCycle; 2773 forward ? ++curCycle : --curCycle) { 2774 2775 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2776 ProcItinResources.canReserveResources(*SU, curCycle)) { 2777 LLVM_DEBUG({ 2778 dbgs() << "\tinsert at cycle " << curCycle << " "; 2779 SU->getInstr()->dump(); 2780 }); 2781 2782 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 2783 ProcItinResources.reserveResources(*SU, curCycle); 2784 ScheduledInstrs[curCycle].push_back(SU); 2785 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2786 if (curCycle > LastCycle) 2787 LastCycle = curCycle; 2788 if (curCycle < FirstCycle) 2789 FirstCycle = curCycle; 2790 return true; 2791 } 2792 LLVM_DEBUG({ 2793 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2794 SU->getInstr()->dump(); 2795 }); 2796 } 2797 return false; 2798 } 2799 2800 // Return the cycle of the earliest scheduled instruction in the chain. 2801 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2802 SmallPtrSet<SUnit *, 8> Visited; 2803 SmallVector<SDep, 8> Worklist; 2804 Worklist.push_back(Dep); 2805 int EarlyCycle = INT_MAX; 2806 while (!Worklist.empty()) { 2807 const SDep &Cur = Worklist.pop_back_val(); 2808 SUnit *PrevSU = Cur.getSUnit(); 2809 if (Visited.count(PrevSU)) 2810 continue; 2811 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2812 if (it == InstrToCycle.end()) 2813 continue; 2814 EarlyCycle = std::min(EarlyCycle, it->second); 2815 for (const auto &PI : PrevSU->Preds) 2816 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2817 Worklist.push_back(PI); 2818 Visited.insert(PrevSU); 2819 } 2820 return EarlyCycle; 2821 } 2822 2823 // Return the cycle of the latest scheduled instruction in the chain. 2824 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2825 SmallPtrSet<SUnit *, 8> Visited; 2826 SmallVector<SDep, 8> Worklist; 2827 Worklist.push_back(Dep); 2828 int LateCycle = INT_MIN; 2829 while (!Worklist.empty()) { 2830 const SDep &Cur = Worklist.pop_back_val(); 2831 SUnit *SuccSU = Cur.getSUnit(); 2832 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 2833 continue; 2834 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2835 if (it == InstrToCycle.end()) 2836 continue; 2837 LateCycle = std::max(LateCycle, it->second); 2838 for (const auto &SI : SuccSU->Succs) 2839 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2840 Worklist.push_back(SI); 2841 Visited.insert(SuccSU); 2842 } 2843 return LateCycle; 2844 } 2845 2846 /// If an instruction has a use that spans multiple iterations, then 2847 /// return true. These instructions are characterized by having a back-ege 2848 /// to a Phi, which contains a reference to another Phi. 2849 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2850 for (auto &P : SU->Preds) 2851 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2852 for (auto &S : P.getSUnit()->Succs) 2853 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2854 return P.getSUnit(); 2855 return nullptr; 2856 } 2857 2858 /// Compute the scheduling start slot for the instruction. The start slot 2859 /// depends on any predecessor or successor nodes scheduled already. 2860 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2861 int *MinEnd, int *MaxStart, int II, 2862 SwingSchedulerDAG *DAG) { 2863 // Iterate over each instruction that has been scheduled already. The start 2864 // slot computation depends on whether the previously scheduled instruction 2865 // is a predecessor or successor of the specified instruction. 2866 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2867 2868 // Iterate over each instruction in the current cycle. 2869 for (SUnit *I : getInstructions(cycle)) { 2870 // Because we're processing a DAG for the dependences, we recognize 2871 // the back-edge in recurrences by anti dependences. 2872 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2873 const SDep &Dep = SU->Preds[i]; 2874 if (Dep.getSUnit() == I) { 2875 if (!DAG->isBackedge(SU, Dep)) { 2876 int EarlyStart = cycle + Dep.getLatency() - 2877 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2878 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2879 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2880 int End = earliestCycleInChain(Dep) + (II - 1); 2881 *MinEnd = std::min(*MinEnd, End); 2882 } 2883 } else { 2884 int LateStart = cycle - Dep.getLatency() + 2885 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2886 *MinLateStart = std::min(*MinLateStart, LateStart); 2887 } 2888 } 2889 // For instruction that requires multiple iterations, make sure that 2890 // the dependent instruction is not scheduled past the definition. 2891 SUnit *BE = multipleIterations(I, DAG); 2892 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2893 !SU->isPred(I)) 2894 *MinLateStart = std::min(*MinLateStart, cycle); 2895 } 2896 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2897 if (SU->Succs[i].getSUnit() == I) { 2898 const SDep &Dep = SU->Succs[i]; 2899 if (!DAG->isBackedge(SU, Dep)) { 2900 int LateStart = cycle - Dep.getLatency() + 2901 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2902 *MinLateStart = std::min(*MinLateStart, LateStart); 2903 if (DAG->isLoopCarriedDep(SU, Dep)) { 2904 int Start = latestCycleInChain(Dep) + 1 - II; 2905 *MaxStart = std::max(*MaxStart, Start); 2906 } 2907 } else { 2908 int EarlyStart = cycle + Dep.getLatency() - 2909 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2910 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2911 } 2912 } 2913 } 2914 } 2915 } 2916 } 2917 2918 /// Order the instructions within a cycle so that the definitions occur 2919 /// before the uses. Returns true if the instruction is added to the start 2920 /// of the list, or false if added to the end. 2921 void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, 2922 std::deque<SUnit *> &Insts) const { 2923 MachineInstr *MI = SU->getInstr(); 2924 bool OrderBeforeUse = false; 2925 bool OrderAfterDef = false; 2926 bool OrderBeforeDef = false; 2927 unsigned MoveDef = 0; 2928 unsigned MoveUse = 0; 2929 int StageInst1 = stageScheduled(SU); 2930 2931 unsigned Pos = 0; 2932 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2933 ++I, ++Pos) { 2934 for (MachineOperand &MO : MI->operands()) { 2935 if (!MO.isReg() || !MO.getReg().isVirtual()) 2936 continue; 2937 2938 Register Reg = MO.getReg(); 2939 unsigned BasePos, OffsetPos; 2940 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2941 if (MI->getOperand(BasePos).getReg() == Reg) 2942 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2943 Reg = NewReg; 2944 bool Reads, Writes; 2945 std::tie(Reads, Writes) = 2946 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2947 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2948 OrderBeforeUse = true; 2949 if (MoveUse == 0) 2950 MoveUse = Pos; 2951 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2952 // Add the instruction after the scheduled instruction. 2953 OrderAfterDef = true; 2954 MoveDef = Pos; 2955 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2956 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2957 OrderBeforeUse = true; 2958 if (MoveUse == 0) 2959 MoveUse = Pos; 2960 } else { 2961 OrderAfterDef = true; 2962 MoveDef = Pos; 2963 } 2964 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2965 OrderBeforeUse = true; 2966 if (MoveUse == 0) 2967 MoveUse = Pos; 2968 if (MoveUse != 0) { 2969 OrderAfterDef = true; 2970 MoveDef = Pos - 1; 2971 } 2972 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2973 // Add the instruction before the scheduled instruction. 2974 OrderBeforeUse = true; 2975 if (MoveUse == 0) 2976 MoveUse = Pos; 2977 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2978 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2979 if (MoveUse == 0) { 2980 OrderBeforeDef = true; 2981 MoveUse = Pos; 2982 } 2983 } 2984 } 2985 // Check for order dependences between instructions. Make sure the source 2986 // is ordered before the destination. 2987 for (auto &S : SU->Succs) { 2988 if (S.getSUnit() != *I) 2989 continue; 2990 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2991 OrderBeforeUse = true; 2992 if (Pos < MoveUse) 2993 MoveUse = Pos; 2994 } 2995 // We did not handle HW dependences in previous for loop, 2996 // and we normally set Latency = 0 for Anti deps, 2997 // so may have nodes in same cycle with Anti denpendent on HW regs. 2998 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2999 OrderBeforeUse = true; 3000 if ((MoveUse == 0) || (Pos < MoveUse)) 3001 MoveUse = Pos; 3002 } 3003 } 3004 for (auto &P : SU->Preds) { 3005 if (P.getSUnit() != *I) 3006 continue; 3007 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 3008 OrderAfterDef = true; 3009 MoveDef = Pos; 3010 } 3011 } 3012 } 3013 3014 // A circular dependence. 3015 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3016 OrderBeforeUse = false; 3017 3018 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3019 // to a loop-carried dependence. 3020 if (OrderBeforeDef) 3021 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3022 3023 // The uncommon case when the instruction order needs to be updated because 3024 // there is both a use and def. 3025 if (OrderBeforeUse && OrderAfterDef) { 3026 SUnit *UseSU = Insts.at(MoveUse); 3027 SUnit *DefSU = Insts.at(MoveDef); 3028 if (MoveUse > MoveDef) { 3029 Insts.erase(Insts.begin() + MoveUse); 3030 Insts.erase(Insts.begin() + MoveDef); 3031 } else { 3032 Insts.erase(Insts.begin() + MoveDef); 3033 Insts.erase(Insts.begin() + MoveUse); 3034 } 3035 orderDependence(SSD, UseSU, Insts); 3036 orderDependence(SSD, SU, Insts); 3037 orderDependence(SSD, DefSU, Insts); 3038 return; 3039 } 3040 // Put the new instruction first if there is a use in the list. Otherwise, 3041 // put it at the end of the list. 3042 if (OrderBeforeUse) 3043 Insts.push_front(SU); 3044 else 3045 Insts.push_back(SU); 3046 } 3047 3048 /// Return true if the scheduled Phi has a loop carried operand. 3049 bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD, 3050 MachineInstr &Phi) const { 3051 if (!Phi.isPHI()) 3052 return false; 3053 assert(Phi.isPHI() && "Expecting a Phi."); 3054 SUnit *DefSU = SSD->getSUnit(&Phi); 3055 unsigned DefCycle = cycleScheduled(DefSU); 3056 int DefStage = stageScheduled(DefSU); 3057 3058 unsigned InitVal = 0; 3059 unsigned LoopVal = 0; 3060 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3061 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3062 if (!UseSU) 3063 return true; 3064 if (UseSU->getInstr()->isPHI()) 3065 return true; 3066 unsigned LoopCycle = cycleScheduled(UseSU); 3067 int LoopStage = stageScheduled(UseSU); 3068 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 3069 } 3070 3071 /// Return true if the instruction is a definition that is loop carried 3072 /// and defines the use on the next iteration. 3073 /// v1 = phi(v2, v3) 3074 /// (Def) v3 = op v1 3075 /// (MO) = v1 3076 /// If MO appears before Def, then v1 and v3 may get assigned to the same 3077 /// register. 3078 bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, 3079 MachineInstr *Def, 3080 MachineOperand &MO) const { 3081 if (!MO.isReg()) 3082 return false; 3083 if (Def->isPHI()) 3084 return false; 3085 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3086 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3087 return false; 3088 if (!isLoopCarried(SSD, *Phi)) 3089 return false; 3090 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3091 for (MachineOperand &DMO : Def->all_defs()) { 3092 if (DMO.getReg() == LoopReg) 3093 return true; 3094 } 3095 return false; 3096 } 3097 3098 /// Determine transitive dependences of unpipelineable instructions 3099 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 3100 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3101 SmallSet<SUnit *, 8> DoNotPipeline; 3102 SmallVector<SUnit *, 8> Worklist; 3103 3104 for (auto &SU : SSD->SUnits) 3105 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 3106 Worklist.push_back(&SU); 3107 3108 while (!Worklist.empty()) { 3109 auto SU = Worklist.pop_back_val(); 3110 if (DoNotPipeline.count(SU)) 3111 continue; 3112 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 3113 DoNotPipeline.insert(SU); 3114 for (auto &Dep : SU->Preds) 3115 Worklist.push_back(Dep.getSUnit()); 3116 if (SU->getInstr()->isPHI()) 3117 for (auto &Dep : SU->Succs) 3118 if (Dep.getKind() == SDep::Anti) 3119 Worklist.push_back(Dep.getSUnit()); 3120 } 3121 return DoNotPipeline; 3122 } 3123 3124 // Determine all instructions upon which any unpipelineable instruction depends 3125 // and ensure that they are in stage 0. If unable to do so, return false. 3126 bool SMSchedule::normalizeNonPipelinedInstructions( 3127 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 3128 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 3129 3130 int NewLastCycle = INT_MIN; 3131 for (SUnit &SU : SSD->SUnits) { 3132 if (!SU.isInstr()) 3133 continue; 3134 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 3135 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 3136 continue; 3137 } 3138 3139 // Put the non-pipelined instruction as early as possible in the schedule 3140 int NewCycle = getFirstCycle(); 3141 for (auto &Dep : SU.Preds) 3142 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); 3143 3144 int OldCycle = InstrToCycle[&SU]; 3145 if (OldCycle != NewCycle) { 3146 InstrToCycle[&SU] = NewCycle; 3147 auto &OldS = getInstructions(OldCycle); 3148 llvm::erase(OldS, &SU); 3149 getInstructions(NewCycle).emplace_back(&SU); 3150 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 3151 << ") is not pipelined; moving from cycle " << OldCycle 3152 << " to " << NewCycle << " Instr:" << *SU.getInstr()); 3153 } 3154 NewLastCycle = std::max(NewLastCycle, NewCycle); 3155 } 3156 LastCycle = NewLastCycle; 3157 return true; 3158 } 3159 3160 // Check if the generated schedule is valid. This function checks if 3161 // an instruction that uses a physical register is scheduled in a 3162 // different stage than the definition. The pipeliner does not handle 3163 // physical register values that may cross a basic block boundary. 3164 // Furthermore, if a physical def/use pair is assigned to the same 3165 // cycle, orderDependence does not guarantee def/use ordering, so that 3166 // case should be considered invalid. (The test checks for both 3167 // earlier and same-cycle use to be more robust.) 3168 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3169 for (SUnit &SU : SSD->SUnits) { 3170 if (!SU.hasPhysRegDefs) 3171 continue; 3172 int StageDef = stageScheduled(&SU); 3173 int CycleDef = InstrToCycle[&SU]; 3174 assert(StageDef != -1 && "Instruction should have been scheduled."); 3175 for (auto &SI : SU.Succs) 3176 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) 3177 if (Register::isPhysicalRegister(SI.getReg())) { 3178 if (stageScheduled(SI.getSUnit()) != StageDef) 3179 return false; 3180 if (InstrToCycle[SI.getSUnit()] <= CycleDef) 3181 return false; 3182 } 3183 } 3184 return true; 3185 } 3186 3187 /// A property of the node order in swing-modulo-scheduling is 3188 /// that for nodes outside circuits the following holds: 3189 /// none of them is scheduled after both a successor and a 3190 /// predecessor. 3191 /// The method below checks whether the property is met. 3192 /// If not, debug information is printed and statistics information updated. 3193 /// Note that we do not use an assert statement. 3194 /// The reason is that although an invalid node oder may prevent 3195 /// the pipeliner from finding a pipelined schedule for arbitrary II, 3196 /// it does not lead to the generation of incorrect code. 3197 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 3198 3199 // a sorted vector that maps each SUnit to its index in the NodeOrder 3200 typedef std::pair<SUnit *, unsigned> UnitIndex; 3201 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 3202 3203 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 3204 Indices.push_back(std::make_pair(NodeOrder[i], i)); 3205 3206 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 3207 return std::get<0>(i1) < std::get<0>(i2); 3208 }; 3209 3210 // sort, so that we can perform a binary search 3211 llvm::sort(Indices, CompareKey); 3212 3213 bool Valid = true; 3214 (void)Valid; 3215 // for each SUnit in the NodeOrder, check whether 3216 // it appears after both a successor and a predecessor 3217 // of the SUnit. If this is the case, and the SUnit 3218 // is not part of circuit, then the NodeOrder is not 3219 // valid. 3220 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 3221 SUnit *SU = NodeOrder[i]; 3222 unsigned Index = i; 3223 3224 bool PredBefore = false; 3225 bool SuccBefore = false; 3226 3227 SUnit *Succ; 3228 SUnit *Pred; 3229 (void)Succ; 3230 (void)Pred; 3231 3232 for (SDep &PredEdge : SU->Preds) { 3233 SUnit *PredSU = PredEdge.getSUnit(); 3234 unsigned PredIndex = std::get<1>( 3235 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 3236 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 3237 PredBefore = true; 3238 Pred = PredSU; 3239 break; 3240 } 3241 } 3242 3243 for (SDep &SuccEdge : SU->Succs) { 3244 SUnit *SuccSU = SuccEdge.getSUnit(); 3245 // Do not process a boundary node, it was not included in NodeOrder, 3246 // hence not in Indices either, call to std::lower_bound() below will 3247 // return Indices.end(). 3248 if (SuccSU->isBoundaryNode()) 3249 continue; 3250 unsigned SuccIndex = std::get<1>( 3251 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 3252 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 3253 SuccBefore = true; 3254 Succ = SuccSU; 3255 break; 3256 } 3257 } 3258 3259 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 3260 // instructions in circuits are allowed to be scheduled 3261 // after both a successor and predecessor. 3262 bool InCircuit = llvm::any_of( 3263 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 3264 if (InCircuit) 3265 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 3266 else { 3267 Valid = false; 3268 NumNodeOrderIssues++; 3269 LLVM_DEBUG(dbgs() << "Predecessor ";); 3270 } 3271 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 3272 << " are scheduled before node " << SU->NodeNum 3273 << "\n";); 3274 } 3275 } 3276 3277 LLVM_DEBUG({ 3278 if (!Valid) 3279 dbgs() << "Invalid node order found!\n"; 3280 }); 3281 } 3282 3283 /// Attempt to fix the degenerate cases when the instruction serialization 3284 /// causes the register lifetimes to overlap. For example, 3285 /// p' = store_pi(p, b) 3286 /// = load p, offset 3287 /// In this case p and p' overlap, which means that two registers are needed. 3288 /// Instead, this function changes the load to use p' and updates the offset. 3289 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 3290 unsigned OverlapReg = 0; 3291 unsigned NewBaseReg = 0; 3292 for (SUnit *SU : Instrs) { 3293 MachineInstr *MI = SU->getInstr(); 3294 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3295 const MachineOperand &MO = MI->getOperand(i); 3296 // Look for an instruction that uses p. The instruction occurs in the 3297 // same cycle but occurs later in the serialized order. 3298 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 3299 // Check that the instruction appears in the InstrChanges structure, 3300 // which contains instructions that can have the offset updated. 3301 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3302 InstrChanges.find(SU); 3303 if (It != InstrChanges.end()) { 3304 unsigned BasePos, OffsetPos; 3305 // Update the base register and adjust the offset. 3306 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 3307 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3308 NewMI->getOperand(BasePos).setReg(NewBaseReg); 3309 int64_t NewOffset = 3310 MI->getOperand(OffsetPos).getImm() - It->second.second; 3311 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3312 SU->setInstr(NewMI); 3313 MISUnitMap[NewMI] = SU; 3314 NewMIs[MI] = NewMI; 3315 } 3316 } 3317 OverlapReg = 0; 3318 NewBaseReg = 0; 3319 break; 3320 } 3321 // Look for an instruction of the form p' = op(p), which uses and defines 3322 // two virtual registers that get allocated to the same physical register. 3323 unsigned TiedUseIdx = 0; 3324 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 3325 // OverlapReg is p in the example above. 3326 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 3327 // NewBaseReg is p' in the example above. 3328 NewBaseReg = MI->getOperand(i).getReg(); 3329 break; 3330 } 3331 } 3332 } 3333 } 3334 3335 std::deque<SUnit *> 3336 SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD, 3337 const std::deque<SUnit *> &Instrs) const { 3338 std::deque<SUnit *> NewOrderPhi; 3339 for (SUnit *SU : Instrs) { 3340 if (SU->getInstr()->isPHI()) 3341 NewOrderPhi.push_back(SU); 3342 } 3343 std::deque<SUnit *> NewOrderI; 3344 for (SUnit *SU : Instrs) { 3345 if (!SU->getInstr()->isPHI()) 3346 orderDependence(SSD, SU, NewOrderI); 3347 } 3348 llvm::append_range(NewOrderPhi, NewOrderI); 3349 return NewOrderPhi; 3350 } 3351 3352 /// After the schedule has been formed, call this function to combine 3353 /// the instructions from the different stages/cycles. That is, this 3354 /// function creates a schedule that represents a single iteration. 3355 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3356 // Move all instructions to the first stage from later stages. 3357 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3358 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3359 ++stage) { 3360 std::deque<SUnit *> &cycleInstrs = 3361 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3362 for (SUnit *SU : llvm::reverse(cycleInstrs)) 3363 ScheduledInstrs[cycle].push_front(SU); 3364 } 3365 } 3366 3367 // Erase all the elements in the later stages. Only one iteration should 3368 // remain in the scheduled list, and it contains all the instructions. 3369 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3370 ScheduledInstrs.erase(cycle); 3371 3372 // Change the registers in instruction as specified in the InstrChanges 3373 // map. We need to use the new registers to create the correct order. 3374 for (const SUnit &SU : SSD->SUnits) 3375 SSD->applyInstrChange(SU.getInstr(), *this); 3376 3377 // Reorder the instructions in each cycle to fix and improve the 3378 // generated code. 3379 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3380 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3381 cycleInstrs = reorderInstructions(SSD, cycleInstrs); 3382 SSD->fixupRegisterOverlaps(cycleInstrs); 3383 } 3384 3385 LLVM_DEBUG(dump();); 3386 } 3387 3388 void NodeSet::print(raw_ostream &os) const { 3389 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 3390 << " depth " << MaxDepth << " col " << Colocate << "\n"; 3391 for (const auto &I : Nodes) 3392 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 3393 os << "\n"; 3394 } 3395 3396 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3397 /// Print the schedule information to the given output. 3398 void SMSchedule::print(raw_ostream &os) const { 3399 // Iterate over each cycle. 3400 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3401 // Iterate over each instruction in the cycle. 3402 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3403 for (SUnit *CI : cycleInstrs->second) { 3404 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3405 os << "(" << CI->NodeNum << ") "; 3406 CI->getInstr()->print(os); 3407 os << "\n"; 3408 } 3409 } 3410 } 3411 3412 /// Utility function used for debugging to print the schedule. 3413 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 3414 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 3415 3416 void ResourceManager::dumpMRT() const { 3417 LLVM_DEBUG({ 3418 if (UseDFA) 3419 return; 3420 std::stringstream SS; 3421 SS << "MRT:\n"; 3422 SS << std::setw(4) << "Slot"; 3423 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3424 SS << std::setw(3) << I; 3425 SS << std::setw(7) << "#Mops" 3426 << "\n"; 3427 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3428 SS << std::setw(4) << Slot; 3429 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3430 SS << std::setw(3) << MRT[Slot][I]; 3431 SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; 3432 } 3433 dbgs() << SS.str(); 3434 }); 3435 } 3436 #endif 3437 3438 void ResourceManager::initProcResourceVectors( 3439 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 3440 unsigned ProcResourceID = 0; 3441 3442 // We currently limit the resource kinds to 64 and below so that we can use 3443 // uint64_t for Masks 3444 assert(SM.getNumProcResourceKinds() < 64 && 3445 "Too many kinds of resources, unsupported"); 3446 // Create a unique bitmask for every processor resource unit. 3447 // Skip resource at index 0, since it always references 'InvalidUnit'. 3448 Masks.resize(SM.getNumProcResourceKinds()); 3449 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3450 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3451 if (Desc.SubUnitsIdxBegin) 3452 continue; 3453 Masks[I] = 1ULL << ProcResourceID; 3454 ProcResourceID++; 3455 } 3456 // Create a unique bitmask for every processor resource group. 3457 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3458 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 3459 if (!Desc.SubUnitsIdxBegin) 3460 continue; 3461 Masks[I] = 1ULL << ProcResourceID; 3462 for (unsigned U = 0; U < Desc.NumUnits; ++U) 3463 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 3464 ProcResourceID++; 3465 } 3466 LLVM_DEBUG({ 3467 if (SwpShowResMask) { 3468 dbgs() << "ProcResourceDesc:\n"; 3469 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3470 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 3471 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 3472 ProcResource->Name, I, Masks[I], 3473 ProcResource->NumUnits); 3474 } 3475 dbgs() << " -----------------\n"; 3476 } 3477 }); 3478 } 3479 3480 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { 3481 LLVM_DEBUG({ 3482 if (SwpDebugResource) 3483 dbgs() << "canReserveResources:\n"; 3484 }); 3485 if (UseDFA) 3486 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3487 ->canReserveResources(&SU.getInstr()->getDesc()); 3488 3489 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3490 if (!SCDesc->isValid()) { 3491 LLVM_DEBUG({ 3492 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3493 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3494 }); 3495 return true; 3496 } 3497 3498 reserveResources(SCDesc, Cycle); 3499 bool Result = !isOverbooked(); 3500 unreserveResources(SCDesc, Cycle); 3501 3502 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";); 3503 return Result; 3504 } 3505 3506 void ResourceManager::reserveResources(SUnit &SU, int Cycle) { 3507 LLVM_DEBUG({ 3508 if (SwpDebugResource) 3509 dbgs() << "reserveResources:\n"; 3510 }); 3511 if (UseDFA) 3512 return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3513 ->reserveResources(&SU.getInstr()->getDesc()); 3514 3515 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3516 if (!SCDesc->isValid()) { 3517 LLVM_DEBUG({ 3518 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3519 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 3520 }); 3521 return; 3522 } 3523 3524 reserveResources(SCDesc, Cycle); 3525 3526 LLVM_DEBUG({ 3527 if (SwpDebugResource) { 3528 dumpMRT(); 3529 dbgs() << "reserveResources: done!\n\n"; 3530 } 3531 }); 3532 } 3533 3534 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, 3535 int Cycle) { 3536 assert(!UseDFA); 3537 for (const MCWriteProcResEntry &PRE : make_range( 3538 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3539 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3540 ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3541 3542 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3543 ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3544 } 3545 3546 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, 3547 int Cycle) { 3548 assert(!UseDFA); 3549 for (const MCWriteProcResEntry &PRE : make_range( 3550 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 3551 for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3552 --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3553 3554 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3555 --NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3556 } 3557 3558 bool ResourceManager::isOverbooked() const { 3559 assert(!UseDFA); 3560 for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3561 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3562 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3563 if (MRT[Slot][I] > Desc->NumUnits) 3564 return true; 3565 } 3566 if (NumScheduledMops[Slot] > IssueWidth) 3567 return true; 3568 } 3569 return false; 3570 } 3571 3572 int ResourceManager::calculateResMIIDFA() const { 3573 assert(UseDFA); 3574 3575 // Sort the instructions by the number of available choices for scheduling, 3576 // least to most. Use the number of critical resources as the tie breaker. 3577 FuncUnitSorter FUS = FuncUnitSorter(*ST); 3578 for (SUnit &SU : DAG->SUnits) 3579 FUS.calcCriticalResources(*SU.getInstr()); 3580 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 3581 FuncUnitOrder(FUS); 3582 3583 for (SUnit &SU : DAG->SUnits) 3584 FuncUnitOrder.push(SU.getInstr()); 3585 3586 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; 3587 Resources.push_back( 3588 std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); 3589 3590 while (!FuncUnitOrder.empty()) { 3591 MachineInstr *MI = FuncUnitOrder.top(); 3592 FuncUnitOrder.pop(); 3593 if (TII->isZeroCost(MI->getOpcode())) 3594 continue; 3595 3596 // Attempt to reserve the instruction in an existing DFA. At least one 3597 // DFA is needed for each cycle. 3598 unsigned NumCycles = DAG->getSUnit(MI)->Latency; 3599 unsigned ReservedCycles = 0; 3600 auto *RI = Resources.begin(); 3601 auto *RE = Resources.end(); 3602 LLVM_DEBUG({ 3603 dbgs() << "Trying to reserve resource for " << NumCycles 3604 << " cycles for \n"; 3605 MI->dump(); 3606 }); 3607 for (unsigned C = 0; C < NumCycles; ++C) 3608 while (RI != RE) { 3609 if ((*RI)->canReserveResources(*MI)) { 3610 (*RI)->reserveResources(*MI); 3611 ++ReservedCycles; 3612 break; 3613 } 3614 RI++; 3615 } 3616 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 3617 << ", NumCycles:" << NumCycles << "\n"); 3618 // Add new DFAs, if needed, to reserve resources. 3619 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 3620 LLVM_DEBUG(if (SwpDebugResource) dbgs() 3621 << "NewResource created to reserve resources" 3622 << "\n"); 3623 auto *NewResource = TII->CreateTargetScheduleState(*ST); 3624 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 3625 NewResource->reserveResources(*MI); 3626 Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); 3627 } 3628 } 3629 3630 int Resmii = Resources.size(); 3631 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 3632 return Resmii; 3633 } 3634 3635 int ResourceManager::calculateResMII() const { 3636 if (UseDFA) 3637 return calculateResMIIDFA(); 3638 3639 // Count each resource consumption and divide it by the number of units. 3640 // ResMII is the max value among them. 3641 3642 int NumMops = 0; 3643 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); 3644 for (SUnit &SU : DAG->SUnits) { 3645 if (TII->isZeroCost(SU.getInstr()->getOpcode())) 3646 continue; 3647 3648 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3649 if (!SCDesc->isValid()) 3650 continue; 3651 3652 LLVM_DEBUG({ 3653 if (SwpDebugResource) { 3654 DAG->dumpNode(SU); 3655 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" 3656 << " WriteProcRes: "; 3657 } 3658 }); 3659 NumMops += SCDesc->NumMicroOps; 3660 for (const MCWriteProcResEntry &PRE : 3661 make_range(STI->getWriteProcResBegin(SCDesc), 3662 STI->getWriteProcResEnd(SCDesc))) { 3663 LLVM_DEBUG({ 3664 if (SwpDebugResource) { 3665 const MCProcResourceDesc *Desc = 3666 SM.getProcResource(PRE.ProcResourceIdx); 3667 dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; 3668 } 3669 }); 3670 ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; 3671 } 3672 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); 3673 } 3674 3675 int Result = (NumMops + IssueWidth - 1) / IssueWidth; 3676 LLVM_DEBUG({ 3677 if (SwpDebugResource) 3678 dbgs() << "#Mops: " << NumMops << ", " 3679 << "IssueWidth: " << IssueWidth << ", " 3680 << "Cycles: " << Result << "\n"; 3681 }); 3682 3683 LLVM_DEBUG({ 3684 if (SwpDebugResource) { 3685 std::stringstream SS; 3686 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) 3687 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" 3688 << "\n"; 3689 dbgs() << SS.str(); 3690 } 3691 }); 3692 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3693 const MCProcResourceDesc *Desc = SM.getProcResource(I); 3694 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; 3695 LLVM_DEBUG({ 3696 if (SwpDebugResource) { 3697 std::stringstream SS; 3698 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) 3699 << Desc->NumUnits << std::setw(10) << ResourceCount[I] 3700 << std::setw(10) << Cycles << "\n"; 3701 dbgs() << SS.str(); 3702 } 3703 }); 3704 if (Cycles > Result) 3705 Result = Cycles; 3706 } 3707 return Result; 3708 } 3709 3710 void ResourceManager::init(int II) { 3711 InitiationInterval = II; 3712 DFAResources.clear(); 3713 DFAResources.resize(II); 3714 for (auto &I : DFAResources) 3715 I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); 3716 MRT.clear(); 3717 MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); 3718 NumScheduledMops.clear(); 3719 NumScheduledMops.resize(II); 3720 } 3721