xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachinePipeliner.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/CodeGen/MachinePipeliner.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/MapVector.h"
37 #include "llvm/ADT/PriorityQueue.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SetOperations.h"
40 #include "llvm/ADT/SetVector.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/SmallSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/iterator_range.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/CycleAnalysis.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/CodeGen/DFAPacketizer.h"
52 #include "llvm/CodeGen/LiveIntervals.h"
53 #include "llvm/CodeGen/MachineBasicBlock.h"
54 #include "llvm/CodeGen/MachineDominators.h"
55 #include "llvm/CodeGen/MachineFunction.h"
56 #include "llvm/CodeGen/MachineFunctionPass.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineLoopInfo.h"
60 #include "llvm/CodeGen/MachineMemOperand.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/ModuloSchedule.h"
64 #include "llvm/CodeGen/Register.h"
65 #include "llvm/CodeGen/RegisterClassInfo.h"
66 #include "llvm/CodeGen/RegisterPressure.h"
67 #include "llvm/CodeGen/ScheduleDAG.h"
68 #include "llvm/CodeGen/ScheduleDAGMutation.h"
69 #include "llvm/CodeGen/TargetInstrInfo.h"
70 #include "llvm/CodeGen/TargetOpcodes.h"
71 #include "llvm/CodeGen/TargetPassConfig.h"
72 #include "llvm/CodeGen/TargetRegisterInfo.h"
73 #include "llvm/CodeGen/TargetSubtargetInfo.h"
74 #include "llvm/Config/llvm-config.h"
75 #include "llvm/IR/Attributes.h"
76 #include "llvm/IR/Function.h"
77 #include "llvm/MC/LaneBitmask.h"
78 #include "llvm/MC/MCInstrDesc.h"
79 #include "llvm/MC/MCInstrItineraries.h"
80 #include "llvm/MC/MCRegisterInfo.h"
81 #include "llvm/Pass.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include <algorithm>
88 #include <cassert>
89 #include <climits>
90 #include <cstdint>
91 #include <deque>
92 #include <functional>
93 #include <iomanip>
94 #include <iterator>
95 #include <map>
96 #include <memory>
97 #include <sstream>
98 #include <tuple>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "pipeliner"
105 
106 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
107 STATISTIC(NumPipelined, "Number of loops software pipelined");
108 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
109 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
110 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
111 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
112 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
113 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
114 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
115 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
116 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
117 
118 /// A command line option to turn software pipelining on or off.
119 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
120                                cl::desc("Enable Software Pipelining"));
121 
122 /// A command line option to enable SWP at -Os.
123 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
124                                       cl::desc("Enable SWP at Os."), cl::Hidden,
125                                       cl::init(false));
126 
127 /// A command line argument to limit minimum initial interval for pipelining.
128 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
129                               cl::desc("Size limit for the MII."),
130                               cl::Hidden, cl::init(27));
131 
132 /// A command line argument to force pipeliner to use specified initial
133 /// interval.
134 static cl::opt<int> SwpForceII("pipeliner-force-ii",
135                                cl::desc("Force pipeliner to use specified II."),
136                                cl::Hidden, cl::init(-1));
137 
138 /// A command line argument to limit the number of stages in the pipeline.
139 static cl::opt<int>
140     SwpMaxStages("pipeliner-max-stages",
141                  cl::desc("Maximum stages allowed in the generated scheduled."),
142                  cl::Hidden, cl::init(3));
143 
144 /// A command line option to disable the pruning of chain dependences due to
145 /// an unrelated Phi.
146 static cl::opt<bool>
147     SwpPruneDeps("pipeliner-prune-deps",
148                  cl::desc("Prune dependences between unrelated Phi nodes."),
149                  cl::Hidden, cl::init(true));
150 
151 /// A command line option to disable the pruning of loop carried order
152 /// dependences.
153 static cl::opt<bool>
154     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
155                         cl::desc("Prune loop carried order dependences."),
156                         cl::Hidden, cl::init(true));
157 
158 #ifndef NDEBUG
159 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
160 #endif
161 
162 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
163                                      cl::ReallyHidden,
164                                      cl::desc("Ignore RecMII"));
165 
166 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
167                                     cl::init(false));
168 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
169                                       cl::init(false));
170 
171 static cl::opt<bool> EmitTestAnnotations(
172     "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
173     cl::desc("Instead of emitting the pipelined code, annotate instructions "
174              "with the generated schedule for feeding into the "
175              "-modulo-schedule-test pass"));
176 
177 static cl::opt<bool> ExperimentalCodeGen(
178     "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
179     cl::desc(
180         "Use the experimental peeling code generator for software pipelining"));
181 
182 static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range",
183                                      cl::desc("Range to search for II"),
184                                      cl::Hidden, cl::init(10));
185 
186 static cl::opt<bool>
187     LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false),
188                      cl::desc("Limit register pressure of scheduled loop"));
189 
190 static cl::opt<int>
191     RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden,
192                       cl::init(5),
193                       cl::desc("Margin representing the unused percentage of "
194                                "the register pressure limit"));
195 
196 static cl::opt<bool>
197     MVECodeGen("pipeliner-mve-cg", cl::Hidden, cl::init(false),
198                cl::desc("Use the MVE code generator for software pipelining"));
199 
200 namespace llvm {
201 
202 // A command line option to enable the CopyToPhi DAG mutation.
203 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
204                                  cl::init(true),
205                                  cl::desc("Enable CopyToPhi DAG Mutation"));
206 
207 /// A command line argument to force pipeliner to use specified issue
208 /// width.
209 cl::opt<int> SwpForceIssueWidth(
210     "pipeliner-force-issue-width",
211     cl::desc("Force pipeliner to use specified issue width."), cl::Hidden,
212     cl::init(-1));
213 
214 /// A command line argument to set the window scheduling option.
215 cl::opt<WindowSchedulingFlag> WindowSchedulingOption(
216     "window-sched", cl::Hidden, cl::init(WindowSchedulingFlag::WS_On),
217     cl::desc("Set how to use window scheduling algorithm."),
218     cl::values(clEnumValN(WindowSchedulingFlag::WS_Off, "off",
219                           "Turn off window algorithm."),
220                clEnumValN(WindowSchedulingFlag::WS_On, "on",
221                           "Use window algorithm after SMS algorithm fails."),
222                clEnumValN(WindowSchedulingFlag::WS_Force, "force",
223                           "Use window algorithm instead of SMS algorithm.")));
224 
225 } // end namespace llvm
226 
227 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
228 char MachinePipeliner::ID = 0;
229 #ifndef NDEBUG
230 int MachinePipeliner::NumTries = 0;
231 #endif
232 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
233 
234 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
235                       "Modulo Software Pipelining", false, false)
236 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
237 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
238 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
239 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
240 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
241                     "Modulo Software Pipelining", false, false)
242 
243 /// The "main" function for implementing Swing Modulo Scheduling.
244 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
245   if (skipFunction(mf.getFunction()))
246     return false;
247 
248   if (!EnableSWP)
249     return false;
250 
251   if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
252       !EnableSWPOptSize.getPosition())
253     return false;
254 
255   if (!mf.getSubtarget().enableMachinePipeliner())
256     return false;
257 
258   // Cannot pipeline loops without instruction itineraries if we are using
259   // DFA for the pipeliner.
260   if (mf.getSubtarget().useDFAforSMS() &&
261       (!mf.getSubtarget().getInstrItineraryData() ||
262        mf.getSubtarget().getInstrItineraryData()->isEmpty()))
263     return false;
264 
265   MF = &mf;
266   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
267   MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
268   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
269   TII = MF->getSubtarget().getInstrInfo();
270   RegClassInfo.runOnMachineFunction(*MF);
271 
272   for (const auto &L : *MLI)
273     scheduleLoop(*L);
274 
275   return false;
276 }
277 
278 /// Attempt to perform the SMS algorithm on the specified loop. This function is
279 /// the main entry point for the algorithm.  The function identifies candidate
280 /// loops, calculates the minimum initiation interval, and attempts to schedule
281 /// the loop.
282 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
283   bool Changed = false;
284   for (const auto &InnerLoop : L)
285     Changed |= scheduleLoop(*InnerLoop);
286 
287 #ifndef NDEBUG
288   // Stop trying after reaching the limit (if any).
289   int Limit = SwpLoopLimit;
290   if (Limit >= 0) {
291     if (NumTries >= SwpLoopLimit)
292       return Changed;
293     NumTries++;
294   }
295 #endif
296 
297   setPragmaPipelineOptions(L);
298   if (!canPipelineLoop(L)) {
299     LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
300     ORE->emit([&]() {
301       return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
302                                              L.getStartLoc(), L.getHeader())
303              << "Failed to pipeline loop";
304     });
305 
306     LI.LoopPipelinerInfo.reset();
307     return Changed;
308   }
309 
310   ++NumTrytoPipeline;
311   if (useSwingModuloScheduler())
312     Changed = swingModuloScheduler(L);
313 
314   if (useWindowScheduler(Changed))
315     Changed = runWindowScheduler(L);
316 
317   LI.LoopPipelinerInfo.reset();
318   return Changed;
319 }
320 
321 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
322   // Reset the pragma for the next loop in iteration.
323   disabledByPragma = false;
324   II_setByPragma = 0;
325 
326   MachineBasicBlock *LBLK = L.getTopBlock();
327 
328   if (LBLK == nullptr)
329     return;
330 
331   const BasicBlock *BBLK = LBLK->getBasicBlock();
332   if (BBLK == nullptr)
333     return;
334 
335   const Instruction *TI = BBLK->getTerminator();
336   if (TI == nullptr)
337     return;
338 
339   MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
340   if (LoopID == nullptr)
341     return;
342 
343   assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
344   assert(LoopID->getOperand(0) == LoopID && "invalid loop");
345 
346   for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
347     MDNode *MD = dyn_cast<MDNode>(MDO);
348 
349     if (MD == nullptr)
350       continue;
351 
352     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
353 
354     if (S == nullptr)
355       continue;
356 
357     if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
358       assert(MD->getNumOperands() == 2 &&
359              "Pipeline initiation interval hint metadata should have two operands.");
360       II_setByPragma =
361           mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
362       assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
363     } else if (S->getString() == "llvm.loop.pipeline.disable") {
364       disabledByPragma = true;
365     }
366   }
367 }
368 
369 /// Return true if the loop can be software pipelined.  The algorithm is
370 /// restricted to loops with a single basic block.  Make sure that the
371 /// branch in the loop can be analyzed.
372 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
373   if (L.getNumBlocks() != 1) {
374     ORE->emit([&]() {
375       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
376                                                L.getStartLoc(), L.getHeader())
377              << "Not a single basic block: "
378              << ore::NV("NumBlocks", L.getNumBlocks());
379     });
380     return false;
381   }
382 
383   if (disabledByPragma) {
384     ORE->emit([&]() {
385       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
386                                                L.getStartLoc(), L.getHeader())
387              << "Disabled by Pragma.";
388     });
389     return false;
390   }
391 
392   // Check if the branch can't be understood because we can't do pipelining
393   // if that's the case.
394   LI.TBB = nullptr;
395   LI.FBB = nullptr;
396   LI.BrCond.clear();
397   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
398     LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
399     NumFailBranch++;
400     ORE->emit([&]() {
401       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
402                                                L.getStartLoc(), L.getHeader())
403              << "The branch can't be understood";
404     });
405     return false;
406   }
407 
408   LI.LoopInductionVar = nullptr;
409   LI.LoopCompare = nullptr;
410   LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock());
411   if (!LI.LoopPipelinerInfo) {
412     LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
413     NumFailLoop++;
414     ORE->emit([&]() {
415       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
416                                                L.getStartLoc(), L.getHeader())
417              << "The loop structure is not supported";
418     });
419     return false;
420   }
421 
422   if (!L.getLoopPreheader()) {
423     LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
424     NumFailPreheader++;
425     ORE->emit([&]() {
426       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
427                                                L.getStartLoc(), L.getHeader())
428              << "No loop preheader found";
429     });
430     return false;
431   }
432 
433   // Remove any subregisters from inputs to phi nodes.
434   preprocessPhiNodes(*L.getHeader());
435   return true;
436 }
437 
438 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
439   MachineRegisterInfo &MRI = MF->getRegInfo();
440   SlotIndexes &Slots =
441       *getAnalysis<LiveIntervalsWrapperPass>().getLIS().getSlotIndexes();
442 
443   for (MachineInstr &PI : B.phis()) {
444     MachineOperand &DefOp = PI.getOperand(0);
445     assert(DefOp.getSubReg() == 0);
446     auto *RC = MRI.getRegClass(DefOp.getReg());
447 
448     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
449       MachineOperand &RegOp = PI.getOperand(i);
450       if (RegOp.getSubReg() == 0)
451         continue;
452 
453       // If the operand uses a subregister, replace it with a new register
454       // without subregisters, and generate a copy to the new register.
455       Register NewReg = MRI.createVirtualRegister(RC);
456       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
457       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
458       const DebugLoc &DL = PredB.findDebugLoc(At);
459       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
460                     .addReg(RegOp.getReg(), getRegState(RegOp),
461                             RegOp.getSubReg());
462       Slots.insertMachineInstrInMaps(*Copy);
463       RegOp.setReg(NewReg);
464       RegOp.setSubReg(0);
465     }
466   }
467 }
468 
469 /// The SMS algorithm consists of the following main steps:
470 /// 1. Computation and analysis of the dependence graph.
471 /// 2. Ordering of the nodes (instructions).
472 /// 3. Attempt to Schedule the loop.
473 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
474   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
475 
476   SwingSchedulerDAG SMS(
477       *this, L, getAnalysis<LiveIntervalsWrapperPass>().getLIS(), RegClassInfo,
478       II_setByPragma, LI.LoopPipelinerInfo.get());
479 
480   MachineBasicBlock *MBB = L.getHeader();
481   // The kernel should not include any terminator instructions.  These
482   // will be added back later.
483   SMS.startBlock(MBB);
484 
485   // Compute the number of 'real' instructions in the basic block by
486   // ignoring terminators.
487   unsigned size = MBB->size();
488   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
489                                    E = MBB->instr_end();
490        I != E; ++I, --size)
491     ;
492 
493   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
494   SMS.schedule();
495   SMS.exitRegion();
496 
497   SMS.finishBlock();
498   return SMS.hasNewSchedule();
499 }
500 
501 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
502   AU.addRequired<AAResultsWrapperPass>();
503   AU.addPreserved<AAResultsWrapperPass>();
504   AU.addRequired<MachineLoopInfoWrapperPass>();
505   AU.addRequired<MachineDominatorTreeWrapperPass>();
506   AU.addRequired<LiveIntervalsWrapperPass>();
507   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
508   AU.addRequired<TargetPassConfig>();
509   MachineFunctionPass::getAnalysisUsage(AU);
510 }
511 
512 bool MachinePipeliner::runWindowScheduler(MachineLoop &L) {
513   MachineSchedContext Context;
514   Context.MF = MF;
515   Context.MLI = MLI;
516   Context.MDT = MDT;
517   Context.PassConfig = &getAnalysis<TargetPassConfig>();
518   Context.AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
519   Context.LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
520   Context.RegClassInfo->runOnMachineFunction(*MF);
521   WindowScheduler WS(&Context, L);
522   return WS.run();
523 }
524 
525 bool MachinePipeliner::useSwingModuloScheduler() {
526   // SwingModuloScheduler does not work when WindowScheduler is forced.
527   return WindowSchedulingOption != WindowSchedulingFlag::WS_Force;
528 }
529 
530 bool MachinePipeliner::useWindowScheduler(bool Changed) {
531   // WindowScheduler does not work for following cases:
532   // 1. when it is off.
533   // 2. when SwingModuloScheduler is successfully scheduled.
534   // 3. when pragma II is enabled.
535   if (II_setByPragma) {
536     LLVM_DEBUG(dbgs() << "Window scheduling is disabled when "
537                          "llvm.loop.pipeline.initiationinterval is set.\n");
538     return false;
539   }
540 
541   return WindowSchedulingOption == WindowSchedulingFlag::WS_Force ||
542          (WindowSchedulingOption == WindowSchedulingFlag::WS_On && !Changed);
543 }
544 
545 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
546   if (SwpForceII > 0)
547     MII = SwpForceII;
548   else if (II_setByPragma > 0)
549     MII = II_setByPragma;
550   else
551     MII = std::max(ResMII, RecMII);
552 }
553 
554 void SwingSchedulerDAG::setMAX_II() {
555   if (SwpForceII > 0)
556     MAX_II = SwpForceII;
557   else if (II_setByPragma > 0)
558     MAX_II = II_setByPragma;
559   else
560     MAX_II = MII + SwpIISearchRange;
561 }
562 
563 /// We override the schedule function in ScheduleDAGInstrs to implement the
564 /// scheduling part of the Swing Modulo Scheduling algorithm.
565 void SwingSchedulerDAG::schedule() {
566   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
567   buildSchedGraph(AA);
568   addLoopCarriedDependences(AA);
569   updatePhiDependences();
570   Topo.InitDAGTopologicalSorting();
571   changeDependences();
572   postProcessDAG();
573   LLVM_DEBUG(dump());
574 
575   NodeSetType NodeSets;
576   findCircuits(NodeSets);
577   NodeSetType Circuits = NodeSets;
578 
579   // Calculate the MII.
580   unsigned ResMII = calculateResMII();
581   unsigned RecMII = calculateRecMII(NodeSets);
582 
583   fuseRecs(NodeSets);
584 
585   // This flag is used for testing and can cause correctness problems.
586   if (SwpIgnoreRecMII)
587     RecMII = 0;
588 
589   setMII(ResMII, RecMII);
590   setMAX_II();
591 
592   LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
593                     << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
594 
595   // Can't schedule a loop without a valid MII.
596   if (MII == 0) {
597     LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
598     NumFailZeroMII++;
599     Pass.ORE->emit([&]() {
600       return MachineOptimizationRemarkAnalysis(
601                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
602              << "Invalid Minimal Initiation Interval: 0";
603     });
604     return;
605   }
606 
607   // Don't pipeline large loops.
608   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
609     LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
610                       << ", we don't pipeline large loops\n");
611     NumFailLargeMaxMII++;
612     Pass.ORE->emit([&]() {
613       return MachineOptimizationRemarkAnalysis(
614                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
615              << "Minimal Initiation Interval too large: "
616              << ore::NV("MII", (int)MII) << " > "
617              << ore::NV("SwpMaxMii", SwpMaxMii) << "."
618              << "Refer to -pipeliner-max-mii.";
619     });
620     return;
621   }
622 
623   computeNodeFunctions(NodeSets);
624 
625   registerPressureFilter(NodeSets);
626 
627   colocateNodeSets(NodeSets);
628 
629   checkNodeSets(NodeSets);
630 
631   LLVM_DEBUG({
632     for (auto &I : NodeSets) {
633       dbgs() << "  Rec NodeSet ";
634       I.dump();
635     }
636   });
637 
638   llvm::stable_sort(NodeSets, std::greater<NodeSet>());
639 
640   groupRemainingNodes(NodeSets);
641 
642   removeDuplicateNodes(NodeSets);
643 
644   LLVM_DEBUG({
645     for (auto &I : NodeSets) {
646       dbgs() << "  NodeSet ";
647       I.dump();
648     }
649   });
650 
651   computeNodeOrder(NodeSets);
652 
653   // check for node order issues
654   checkValidNodeOrder(Circuits);
655 
656   SMSchedule Schedule(Pass.MF, this);
657   Scheduled = schedulePipeline(Schedule);
658 
659   if (!Scheduled){
660     LLVM_DEBUG(dbgs() << "No schedule found, return\n");
661     NumFailNoSchedule++;
662     Pass.ORE->emit([&]() {
663       return MachineOptimizationRemarkAnalysis(
664                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
665              << "Unable to find schedule";
666     });
667     return;
668   }
669 
670   unsigned numStages = Schedule.getMaxStageCount();
671   // No need to generate pipeline if there are no overlapped iterations.
672   if (numStages == 0) {
673     LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
674     NumFailZeroStage++;
675     Pass.ORE->emit([&]() {
676       return MachineOptimizationRemarkAnalysis(
677                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
678              << "No need to pipeline - no overlapped iterations in schedule.";
679     });
680     return;
681   }
682   // Check that the maximum stage count is less than user-defined limit.
683   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
684     LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
685                       << " : too many stages, abort\n");
686     NumFailLargeMaxStage++;
687     Pass.ORE->emit([&]() {
688       return MachineOptimizationRemarkAnalysis(
689                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
690              << "Too many stages in schedule: "
691              << ore::NV("numStages", (int)numStages) << " > "
692              << ore::NV("SwpMaxStages", SwpMaxStages)
693              << ". Refer to -pipeliner-max-stages.";
694     });
695     return;
696   }
697 
698   Pass.ORE->emit([&]() {
699     return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
700                                      Loop.getHeader())
701            << "Pipelined succesfully!";
702   });
703 
704   // Generate the schedule as a ModuloSchedule.
705   DenseMap<MachineInstr *, int> Cycles, Stages;
706   std::vector<MachineInstr *> OrderedInsts;
707   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
708        ++Cycle) {
709     for (SUnit *SU : Schedule.getInstructions(Cycle)) {
710       OrderedInsts.push_back(SU->getInstr());
711       Cycles[SU->getInstr()] = Cycle;
712       Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
713     }
714   }
715   DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
716   for (auto &KV : NewMIs) {
717     Cycles[KV.first] = Cycles[KV.second];
718     Stages[KV.first] = Stages[KV.second];
719     NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
720   }
721 
722   ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
723                     std::move(Stages));
724   if (EmitTestAnnotations) {
725     assert(NewInstrChanges.empty() &&
726            "Cannot serialize a schedule with InstrChanges!");
727     ModuloScheduleTestAnnotater MSTI(MF, MS);
728     MSTI.annotate();
729     return;
730   }
731   // The experimental code generator can't work if there are InstChanges.
732   if (ExperimentalCodeGen && NewInstrChanges.empty()) {
733     PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
734     MSE.expand();
735   } else if (MVECodeGen && NewInstrChanges.empty() &&
736              LoopPipelinerInfo->isMVEExpanderSupported() &&
737              ModuloScheduleExpanderMVE::canApply(Loop)) {
738     ModuloScheduleExpanderMVE MSE(MF, MS, LIS);
739     MSE.expand();
740   } else {
741     ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
742     MSE.expand();
743     MSE.cleanup();
744   }
745   ++NumPipelined;
746 }
747 
748 /// Clean up after the software pipeliner runs.
749 void SwingSchedulerDAG::finishBlock() {
750   for (auto &KV : NewMIs)
751     MF.deleteMachineInstr(KV.second);
752   NewMIs.clear();
753 
754   // Call the superclass.
755   ScheduleDAGInstrs::finishBlock();
756 }
757 
758 /// Return the register values for  the operands of a Phi instruction.
759 /// This function assume the instruction is a Phi.
760 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
761                        unsigned &InitVal, unsigned &LoopVal) {
762   assert(Phi.isPHI() && "Expecting a Phi.");
763 
764   InitVal = 0;
765   LoopVal = 0;
766   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
767     if (Phi.getOperand(i + 1).getMBB() != Loop)
768       InitVal = Phi.getOperand(i).getReg();
769     else
770       LoopVal = Phi.getOperand(i).getReg();
771 
772   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
773 }
774 
775 /// Return the Phi register value that comes the loop block.
776 static unsigned getLoopPhiReg(const MachineInstr &Phi,
777                               const MachineBasicBlock *LoopBB) {
778   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
779     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
780       return Phi.getOperand(i).getReg();
781   return 0;
782 }
783 
784 /// Return true if SUb can be reached from SUa following the chain edges.
785 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
786   SmallPtrSet<SUnit *, 8> Visited;
787   SmallVector<SUnit *, 8> Worklist;
788   Worklist.push_back(SUa);
789   while (!Worklist.empty()) {
790     const SUnit *SU = Worklist.pop_back_val();
791     for (const auto &SI : SU->Succs) {
792       SUnit *SuccSU = SI.getSUnit();
793       if (SI.getKind() == SDep::Order) {
794         if (Visited.count(SuccSU))
795           continue;
796         if (SuccSU == SUb)
797           return true;
798         Worklist.push_back(SuccSU);
799         Visited.insert(SuccSU);
800       }
801     }
802   }
803   return false;
804 }
805 
806 /// Return true if the instruction causes a chain between memory
807 /// references before and after it.
808 static bool isDependenceBarrier(MachineInstr &MI) {
809   return MI.isCall() || MI.mayRaiseFPException() ||
810          MI.hasUnmodeledSideEffects() ||
811          (MI.hasOrderedMemoryRef() &&
812           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad()));
813 }
814 
815 /// Return the underlying objects for the memory references of an instruction.
816 /// This function calls the code in ValueTracking, but first checks that the
817 /// instruction has a memory operand.
818 static void getUnderlyingObjects(const MachineInstr *MI,
819                                  SmallVectorImpl<const Value *> &Objs) {
820   if (!MI->hasOneMemOperand())
821     return;
822   MachineMemOperand *MM = *MI->memoperands_begin();
823   if (!MM->getValue())
824     return;
825   getUnderlyingObjects(MM->getValue(), Objs);
826   for (const Value *V : Objs) {
827     if (!isIdentifiedObject(V)) {
828       Objs.clear();
829       return;
830     }
831   }
832 }
833 
834 /// Add a chain edge between a load and store if the store can be an
835 /// alias of the load on a subsequent iteration, i.e., a loop carried
836 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
837 /// but that code doesn't create loop carried dependences.
838 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
839   MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
840   Value *UnknownValue =
841     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
842   for (auto &SU : SUnits) {
843     MachineInstr &MI = *SU.getInstr();
844     if (isDependenceBarrier(MI))
845       PendingLoads.clear();
846     else if (MI.mayLoad()) {
847       SmallVector<const Value *, 4> Objs;
848       ::getUnderlyingObjects(&MI, Objs);
849       if (Objs.empty())
850         Objs.push_back(UnknownValue);
851       for (const auto *V : Objs) {
852         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
853         SUs.push_back(&SU);
854       }
855     } else if (MI.mayStore()) {
856       SmallVector<const Value *, 4> Objs;
857       ::getUnderlyingObjects(&MI, Objs);
858       if (Objs.empty())
859         Objs.push_back(UnknownValue);
860       for (const auto *V : Objs) {
861         MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
862             PendingLoads.find(V);
863         if (I == PendingLoads.end())
864           continue;
865         for (auto *Load : I->second) {
866           if (isSuccOrder(Load, &SU))
867             continue;
868           MachineInstr &LdMI = *Load->getInstr();
869           // First, perform the cheaper check that compares the base register.
870           // If they are the same and the load offset is less than the store
871           // offset, then mark the dependence as loop carried potentially.
872           const MachineOperand *BaseOp1, *BaseOp2;
873           int64_t Offset1, Offset2;
874           bool Offset1IsScalable, Offset2IsScalable;
875           if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
876                                            Offset1IsScalable, TRI) &&
877               TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
878                                            Offset2IsScalable, TRI)) {
879             if (BaseOp1->isIdenticalTo(*BaseOp2) &&
880                 Offset1IsScalable == Offset2IsScalable &&
881                 (int)Offset1 < (int)Offset2) {
882               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
883                      "What happened to the chain edge?");
884               SDep Dep(Load, SDep::Barrier);
885               Dep.setLatency(1);
886               SU.addPred(Dep);
887               continue;
888             }
889           }
890           // Second, the more expensive check that uses alias analysis on the
891           // base registers. If they alias, and the load offset is less than
892           // the store offset, the mark the dependence as loop carried.
893           if (!AA) {
894             SDep Dep(Load, SDep::Barrier);
895             Dep.setLatency(1);
896             SU.addPred(Dep);
897             continue;
898           }
899           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
900           MachineMemOperand *MMO2 = *MI.memoperands_begin();
901           if (!MMO1->getValue() || !MMO2->getValue()) {
902             SDep Dep(Load, SDep::Barrier);
903             Dep.setLatency(1);
904             SU.addPred(Dep);
905             continue;
906           }
907           if (MMO1->getValue() == MMO2->getValue() &&
908               MMO1->getOffset() <= MMO2->getOffset()) {
909             SDep Dep(Load, SDep::Barrier);
910             Dep.setLatency(1);
911             SU.addPred(Dep);
912             continue;
913           }
914           if (!AA->isNoAlias(
915                   MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
916                   MemoryLocation::getAfter(MMO2->getValue(),
917                                            MMO2->getAAInfo()))) {
918             SDep Dep(Load, SDep::Barrier);
919             Dep.setLatency(1);
920             SU.addPred(Dep);
921           }
922         }
923       }
924     }
925   }
926 }
927 
928 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
929 /// processes dependences for PHIs. This function adds true dependences
930 /// from a PHI to a use, and a loop carried dependence from the use to the
931 /// PHI. The loop carried dependence is represented as an anti dependence
932 /// edge. This function also removes chain dependences between unrelated
933 /// PHIs.
934 void SwingSchedulerDAG::updatePhiDependences() {
935   SmallVector<SDep, 4> RemoveDeps;
936   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
937 
938   // Iterate over each DAG node.
939   for (SUnit &I : SUnits) {
940     RemoveDeps.clear();
941     // Set to true if the instruction has an operand defined by a Phi.
942     unsigned HasPhiUse = 0;
943     unsigned HasPhiDef = 0;
944     MachineInstr *MI = I.getInstr();
945     // Iterate over each operand, and we process the definitions.
946     for (const MachineOperand &MO : MI->operands()) {
947       if (!MO.isReg())
948         continue;
949       Register Reg = MO.getReg();
950       if (MO.isDef()) {
951         // If the register is used by a Phi, then create an anti dependence.
952         for (MachineRegisterInfo::use_instr_iterator
953                  UI = MRI.use_instr_begin(Reg),
954                  UE = MRI.use_instr_end();
955              UI != UE; ++UI) {
956           MachineInstr *UseMI = &*UI;
957           SUnit *SU = getSUnit(UseMI);
958           if (SU != nullptr && UseMI->isPHI()) {
959             if (!MI->isPHI()) {
960               SDep Dep(SU, SDep::Anti, Reg);
961               Dep.setLatency(1);
962               I.addPred(Dep);
963             } else {
964               HasPhiDef = Reg;
965               // Add a chain edge to a dependent Phi that isn't an existing
966               // predecessor.
967               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
968                 I.addPred(SDep(SU, SDep::Barrier));
969             }
970           }
971         }
972       } else if (MO.isUse()) {
973         // If the register is defined by a Phi, then create a true dependence.
974         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
975         if (DefMI == nullptr)
976           continue;
977         SUnit *SU = getSUnit(DefMI);
978         if (SU != nullptr && DefMI->isPHI()) {
979           if (!MI->isPHI()) {
980             SDep Dep(SU, SDep::Data, Reg);
981             Dep.setLatency(0);
982             ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep,
983                                      &SchedModel);
984             I.addPred(Dep);
985           } else {
986             HasPhiUse = Reg;
987             // Add a chain edge to a dependent Phi that isn't an existing
988             // predecessor.
989             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
990               I.addPred(SDep(SU, SDep::Barrier));
991           }
992         }
993       }
994     }
995     // Remove order dependences from an unrelated Phi.
996     if (!SwpPruneDeps)
997       continue;
998     for (auto &PI : I.Preds) {
999       MachineInstr *PMI = PI.getSUnit()->getInstr();
1000       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1001         if (I.getInstr()->isPHI()) {
1002           if (PMI->getOperand(0).getReg() == HasPhiUse)
1003             continue;
1004           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1005             continue;
1006         }
1007         RemoveDeps.push_back(PI);
1008       }
1009     }
1010     for (const SDep &D : RemoveDeps)
1011       I.removePred(D);
1012   }
1013 }
1014 
1015 /// Iterate over each DAG node and see if we can change any dependences
1016 /// in order to reduce the recurrence MII.
1017 void SwingSchedulerDAG::changeDependences() {
1018   // See if an instruction can use a value from the previous iteration.
1019   // If so, we update the base and offset of the instruction and change
1020   // the dependences.
1021   for (SUnit &I : SUnits) {
1022     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1023     int64_t NewOffset = 0;
1024     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1025                                NewOffset))
1026       continue;
1027 
1028     // Get the MI and SUnit for the instruction that defines the original base.
1029     Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1030     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1031     if (!DefMI)
1032       continue;
1033     SUnit *DefSU = getSUnit(DefMI);
1034     if (!DefSU)
1035       continue;
1036     // Get the MI and SUnit for the instruction that defins the new base.
1037     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1038     if (!LastMI)
1039       continue;
1040     SUnit *LastSU = getSUnit(LastMI);
1041     if (!LastSU)
1042       continue;
1043 
1044     if (Topo.IsReachable(&I, LastSU))
1045       continue;
1046 
1047     // Remove the dependence. The value now depends on a prior iteration.
1048     SmallVector<SDep, 4> Deps;
1049     for (const SDep &P : I.Preds)
1050       if (P.getSUnit() == DefSU)
1051         Deps.push_back(P);
1052     for (const SDep &D : Deps) {
1053       Topo.RemovePred(&I, D.getSUnit());
1054       I.removePred(D);
1055     }
1056     // Remove the chain dependence between the instructions.
1057     Deps.clear();
1058     for (auto &P : LastSU->Preds)
1059       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1060         Deps.push_back(P);
1061     for (const SDep &D : Deps) {
1062       Topo.RemovePred(LastSU, D.getSUnit());
1063       LastSU->removePred(D);
1064     }
1065 
1066     // Add a dependence between the new instruction and the instruction
1067     // that defines the new base.
1068     SDep Dep(&I, SDep::Anti, NewBase);
1069     Topo.AddPred(LastSU, &I);
1070     LastSU->addPred(Dep);
1071 
1072     // Remember the base and offset information so that we can update the
1073     // instruction during code generation.
1074     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1075   }
1076 }
1077 
1078 /// Create an instruction stream that represents a single iteration and stage of
1079 /// each instruction. This function differs from SMSchedule::finalizeSchedule in
1080 /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this
1081 /// function is an approximation of SMSchedule::finalizeSchedule with all
1082 /// non-const operations removed.
1083 static void computeScheduledInsts(const SwingSchedulerDAG *SSD,
1084                                   SMSchedule &Schedule,
1085                                   std::vector<MachineInstr *> &OrderedInsts,
1086                                   DenseMap<MachineInstr *, unsigned> &Stages) {
1087   DenseMap<int, std::deque<SUnit *>> Instrs;
1088 
1089   // Move all instructions to the first stage from the later stages.
1090   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
1091        ++Cycle) {
1092     for (int Stage = 0, LastStage = Schedule.getMaxStageCount();
1093          Stage <= LastStage; ++Stage) {
1094       for (SUnit *SU : llvm::reverse(Schedule.getInstructions(
1095                Cycle + Stage * Schedule.getInitiationInterval()))) {
1096         Instrs[Cycle].push_front(SU);
1097       }
1098     }
1099   }
1100 
1101   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
1102        ++Cycle) {
1103     std::deque<SUnit *> &CycleInstrs = Instrs[Cycle];
1104     CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs);
1105     for (SUnit *SU : CycleInstrs) {
1106       MachineInstr *MI = SU->getInstr();
1107       OrderedInsts.push_back(MI);
1108       Stages[MI] = Schedule.stageScheduled(SU);
1109     }
1110   }
1111 }
1112 
1113 namespace {
1114 
1115 // FuncUnitSorter - Comparison operator used to sort instructions by
1116 // the number of functional unit choices.
1117 struct FuncUnitSorter {
1118   const InstrItineraryData *InstrItins;
1119   const MCSubtargetInfo *STI;
1120   DenseMap<InstrStage::FuncUnits, unsigned> Resources;
1121 
1122   FuncUnitSorter(const TargetSubtargetInfo &TSI)
1123       : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
1124 
1125   // Compute the number of functional unit alternatives needed
1126   // at each stage, and take the minimum value. We prioritize the
1127   // instructions by the least number of choices first.
1128   unsigned minFuncUnits(const MachineInstr *Inst,
1129                         InstrStage::FuncUnits &F) const {
1130     unsigned SchedClass = Inst->getDesc().getSchedClass();
1131     unsigned min = UINT_MAX;
1132     if (InstrItins && !InstrItins->isEmpty()) {
1133       for (const InstrStage &IS :
1134            make_range(InstrItins->beginStage(SchedClass),
1135                       InstrItins->endStage(SchedClass))) {
1136         InstrStage::FuncUnits funcUnits = IS.getUnits();
1137         unsigned numAlternatives = llvm::popcount(funcUnits);
1138         if (numAlternatives < min) {
1139           min = numAlternatives;
1140           F = funcUnits;
1141         }
1142       }
1143       return min;
1144     }
1145     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1146       const MCSchedClassDesc *SCDesc =
1147           STI->getSchedModel().getSchedClassDesc(SchedClass);
1148       if (!SCDesc->isValid())
1149         // No valid Schedule Class Desc for schedClass, should be
1150         // Pseudo/PostRAPseudo
1151         return min;
1152 
1153       for (const MCWriteProcResEntry &PRE :
1154            make_range(STI->getWriteProcResBegin(SCDesc),
1155                       STI->getWriteProcResEnd(SCDesc))) {
1156         if (!PRE.ReleaseAtCycle)
1157           continue;
1158         const MCProcResourceDesc *ProcResource =
1159             STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1160         unsigned NumUnits = ProcResource->NumUnits;
1161         if (NumUnits < min) {
1162           min = NumUnits;
1163           F = PRE.ProcResourceIdx;
1164         }
1165       }
1166       return min;
1167     }
1168     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1169   }
1170 
1171   // Compute the critical resources needed by the instruction. This
1172   // function records the functional units needed by instructions that
1173   // must use only one functional unit. We use this as a tie breaker
1174   // for computing the resource MII. The instrutions that require
1175   // the same, highly used, functional unit have high priority.
1176   void calcCriticalResources(MachineInstr &MI) {
1177     unsigned SchedClass = MI.getDesc().getSchedClass();
1178     if (InstrItins && !InstrItins->isEmpty()) {
1179       for (const InstrStage &IS :
1180            make_range(InstrItins->beginStage(SchedClass),
1181                       InstrItins->endStage(SchedClass))) {
1182         InstrStage::FuncUnits FuncUnits = IS.getUnits();
1183         if (llvm::popcount(FuncUnits) == 1)
1184           Resources[FuncUnits]++;
1185       }
1186       return;
1187     }
1188     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1189       const MCSchedClassDesc *SCDesc =
1190           STI->getSchedModel().getSchedClassDesc(SchedClass);
1191       if (!SCDesc->isValid())
1192         // No valid Schedule Class Desc for schedClass, should be
1193         // Pseudo/PostRAPseudo
1194         return;
1195 
1196       for (const MCWriteProcResEntry &PRE :
1197            make_range(STI->getWriteProcResBegin(SCDesc),
1198                       STI->getWriteProcResEnd(SCDesc))) {
1199         if (!PRE.ReleaseAtCycle)
1200           continue;
1201         Resources[PRE.ProcResourceIdx]++;
1202       }
1203       return;
1204     }
1205     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1206   }
1207 
1208   /// Return true if IS1 has less priority than IS2.
1209   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1210     InstrStage::FuncUnits F1 = 0, F2 = 0;
1211     unsigned MFUs1 = minFuncUnits(IS1, F1);
1212     unsigned MFUs2 = minFuncUnits(IS2, F2);
1213     if (MFUs1 == MFUs2)
1214       return Resources.lookup(F1) < Resources.lookup(F2);
1215     return MFUs1 > MFUs2;
1216   }
1217 };
1218 
1219 /// Calculate the maximum register pressure of the scheduled instructions stream
1220 class HighRegisterPressureDetector {
1221   MachineBasicBlock *OrigMBB;
1222   const MachineFunction &MF;
1223   const MachineRegisterInfo &MRI;
1224   const TargetRegisterInfo *TRI;
1225 
1226   const unsigned PSetNum;
1227 
1228   // Indexed by PSet ID
1229   // InitSetPressure takes into account the register pressure of live-in
1230   // registers. It's not depend on how the loop is scheduled, so it's enough to
1231   // calculate them once at the beginning.
1232   std::vector<unsigned> InitSetPressure;
1233 
1234   // Indexed by PSet ID
1235   // Upper limit for each register pressure set
1236   std::vector<unsigned> PressureSetLimit;
1237 
1238   DenseMap<MachineInstr *, RegisterOperands> ROMap;
1239 
1240   using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>;
1241 
1242 public:
1243   using OrderedInstsTy = std::vector<MachineInstr *>;
1244   using Instr2StageTy = DenseMap<MachineInstr *, unsigned>;
1245 
1246 private:
1247   static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) {
1248     if (Pressures.size() == 0) {
1249       dbgs() << "[]";
1250     } else {
1251       char Prefix = '[';
1252       for (unsigned P : Pressures) {
1253         dbgs() << Prefix << P;
1254         Prefix = ' ';
1255       }
1256       dbgs() << ']';
1257     }
1258   }
1259 
1260   void dumpPSet(Register Reg) const {
1261     dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet=";
1262     for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid();
1263          ++PSetIter) {
1264       dbgs() << *PSetIter << ' ';
1265     }
1266     dbgs() << '\n';
1267   }
1268 
1269   void increaseRegisterPressure(std::vector<unsigned> &Pressure,
1270                                 Register Reg) const {
1271     auto PSetIter = MRI.getPressureSets(Reg);
1272     unsigned Weight = PSetIter.getWeight();
1273     for (; PSetIter.isValid(); ++PSetIter)
1274       Pressure[*PSetIter] += Weight;
1275   }
1276 
1277   void decreaseRegisterPressure(std::vector<unsigned> &Pressure,
1278                                 Register Reg) const {
1279     auto PSetIter = MRI.getPressureSets(Reg);
1280     unsigned Weight = PSetIter.getWeight();
1281     for (; PSetIter.isValid(); ++PSetIter) {
1282       auto &P = Pressure[*PSetIter];
1283       assert(P >= Weight &&
1284              "register pressure must be greater than or equal weight");
1285       P -= Weight;
1286     }
1287   }
1288 
1289   // Return true if Reg is fixed one, for example, stack pointer
1290   bool isFixedRegister(Register Reg) const {
1291     return Reg.isPhysical() && TRI->isFixedRegister(MF, Reg.asMCReg());
1292   }
1293 
1294   bool isDefinedInThisLoop(Register Reg) const {
1295     return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB;
1296   }
1297 
1298   // Search for live-in variables. They are factored into the register pressure
1299   // from the begining. Live-in variables used by every iteration should be
1300   // considered as alive throughout the loop. For example, the variable `c` in
1301   // following code. \code
1302   //   int c = ...;
1303   //   for (int i = 0; i < n; i++)
1304   //     a[i] += b[i] + c;
1305   // \endcode
1306   void computeLiveIn() {
1307     DenseSet<Register> Used;
1308     for (auto &MI : *OrigMBB) {
1309       if (MI.isDebugInstr())
1310         continue;
1311       for (auto &Use : ROMap[&MI].Uses) {
1312         auto Reg = Use.RegUnit;
1313         // Ignore the variable that appears only on one side of phi instruction
1314         // because it's used only at the first iteration.
1315         if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB))
1316           continue;
1317         if (isFixedRegister(Reg))
1318           continue;
1319         if (isDefinedInThisLoop(Reg))
1320           continue;
1321         Used.insert(Reg);
1322       }
1323     }
1324 
1325     for (auto LiveIn : Used)
1326       increaseRegisterPressure(InitSetPressure, LiveIn);
1327   }
1328 
1329   // Calculate the upper limit of each pressure set
1330   void computePressureSetLimit(const RegisterClassInfo &RCI) {
1331     for (unsigned PSet = 0; PSet < PSetNum; PSet++)
1332       PressureSetLimit[PSet] = TRI->getRegPressureSetLimit(MF, PSet);
1333 
1334     // We assume fixed registers, such as stack pointer, are already in use.
1335     // Therefore subtracting the weight of the fixed registers from the limit of
1336     // each pressure set in advance.
1337     SmallDenseSet<Register, 8> FixedRegs;
1338     for (const TargetRegisterClass *TRC : TRI->regclasses()) {
1339       for (const MCPhysReg Reg : *TRC)
1340         if (isFixedRegister(Reg))
1341           FixedRegs.insert(Reg);
1342     }
1343 
1344     LLVM_DEBUG({
1345       for (auto Reg : FixedRegs) {
1346         dbgs() << printReg(Reg, TRI, 0, &MRI) << ": [";
1347         const int *Sets = TRI->getRegUnitPressureSets(Reg);
1348         for (; *Sets != -1; Sets++) {
1349           dbgs() << TRI->getRegPressureSetName(*Sets) << ", ";
1350         }
1351         dbgs() << "]\n";
1352       }
1353     });
1354 
1355     for (auto Reg : FixedRegs) {
1356       LLVM_DEBUG(dbgs() << "fixed register: " << printReg(Reg, TRI, 0, &MRI)
1357                         << "\n");
1358       auto PSetIter = MRI.getPressureSets(Reg);
1359       unsigned Weight = PSetIter.getWeight();
1360       for (; PSetIter.isValid(); ++PSetIter) {
1361         unsigned &Limit = PressureSetLimit[*PSetIter];
1362         assert(Limit >= Weight &&
1363                "register pressure limit must be greater than or equal weight");
1364         Limit -= Weight;
1365         LLVM_DEBUG(dbgs() << "PSet=" << *PSetIter << " Limit=" << Limit
1366                           << " (decreased by " << Weight << ")\n");
1367       }
1368     }
1369   }
1370 
1371   // There are two patterns of last-use.
1372   //   - by an instruction of the current iteration
1373   //   - by a phi instruction of the next iteration (loop carried value)
1374   //
1375   // Furthermore, following two groups of instructions are executed
1376   // simultaneously
1377   //   - next iteration's phi instructions in i-th stage
1378   //   - current iteration's instructions in i+1-th stage
1379   //
1380   // This function calculates the last-use of each register while taking into
1381   // account the above two patterns.
1382   Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts,
1383                                    Instr2StageTy &Stages) const {
1384     // We treat virtual registers that are defined and used in this loop.
1385     // Following virtual register will be ignored
1386     //   - live-in one
1387     //   - defined but not used in the loop (potentially live-out)
1388     DenseSet<Register> TargetRegs;
1389     const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) {
1390       if (isDefinedInThisLoop(Reg))
1391         TargetRegs.insert(Reg);
1392     };
1393     for (MachineInstr *MI : OrderedInsts) {
1394       if (MI->isPHI()) {
1395         Register Reg = getLoopPhiReg(*MI, OrigMBB);
1396         UpdateTargetRegs(Reg);
1397       } else {
1398         for (auto &Use : ROMap.find(MI)->getSecond().Uses)
1399           UpdateTargetRegs(Use.RegUnit);
1400       }
1401     }
1402 
1403     const auto InstrScore = [&Stages](MachineInstr *MI) {
1404       return Stages[MI] + MI->isPHI();
1405     };
1406 
1407     DenseMap<Register, MachineInstr *> LastUseMI;
1408     for (MachineInstr *MI : llvm::reverse(OrderedInsts)) {
1409       for (auto &Use : ROMap.find(MI)->getSecond().Uses) {
1410         auto Reg = Use.RegUnit;
1411         if (!TargetRegs.contains(Reg))
1412           continue;
1413         auto Ite = LastUseMI.find(Reg);
1414         if (Ite == LastUseMI.end()) {
1415           LastUseMI[Reg] = MI;
1416         } else {
1417           MachineInstr *Orig = Ite->second;
1418           MachineInstr *New = MI;
1419           if (InstrScore(Orig) < InstrScore(New))
1420             LastUseMI[Reg] = New;
1421         }
1422       }
1423     }
1424 
1425     Instr2LastUsesTy LastUses;
1426     for (auto &Entry : LastUseMI)
1427       LastUses[Entry.second].insert(Entry.first);
1428     return LastUses;
1429   }
1430 
1431   // Compute the maximum register pressure of the kernel. We'll simulate #Stage
1432   // iterations and check the register pressure at the point where all stages
1433   // overlapping.
1434   //
1435   // An example of unrolled loop where #Stage is 4..
1436   // Iter   i+0 i+1 i+2 i+3
1437   // ------------------------
1438   // Stage   0
1439   // Stage   1   0
1440   // Stage   2   1   0
1441   // Stage   3   2   1   0  <- All stages overlap
1442   //
1443   std::vector<unsigned>
1444   computeMaxSetPressure(const OrderedInstsTy &OrderedInsts,
1445                         Instr2StageTy &Stages,
1446                         const unsigned StageCount) const {
1447     using RegSetTy = SmallDenseSet<Register, 16>;
1448 
1449     // Indexed by #Iter. To treat "local" variables of each stage separately, we
1450     // manage the liveness of the registers independently by iterations.
1451     SmallVector<RegSetTy> LiveRegSets(StageCount);
1452 
1453     auto CurSetPressure = InitSetPressure;
1454     auto MaxSetPressure = InitSetPressure;
1455     auto LastUses = computeLastUses(OrderedInsts, Stages);
1456 
1457     LLVM_DEBUG({
1458       dbgs() << "Ordered instructions:\n";
1459       for (MachineInstr *MI : OrderedInsts) {
1460         dbgs() << "Stage " << Stages[MI] << ": ";
1461         MI->dump();
1462       }
1463     });
1464 
1465     const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet,
1466                                                    Register Reg) {
1467       if (!Reg.isValid() || isFixedRegister(Reg))
1468         return;
1469 
1470       bool Inserted = RegSet.insert(Reg).second;
1471       if (!Inserted)
1472         return;
1473 
1474       LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n");
1475       increaseRegisterPressure(CurSetPressure, Reg);
1476       LLVM_DEBUG(dumpPSet(Reg));
1477     };
1478 
1479     const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet,
1480                                                   Register Reg) {
1481       if (!Reg.isValid() || isFixedRegister(Reg))
1482         return;
1483 
1484       // live-in register
1485       if (!RegSet.contains(Reg))
1486         return;
1487 
1488       LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n");
1489       RegSet.erase(Reg);
1490       decreaseRegisterPressure(CurSetPressure, Reg);
1491       LLVM_DEBUG(dumpPSet(Reg));
1492     };
1493 
1494     for (unsigned I = 0; I < StageCount; I++) {
1495       for (MachineInstr *MI : OrderedInsts) {
1496         const auto Stage = Stages[MI];
1497         if (I < Stage)
1498           continue;
1499 
1500         const unsigned Iter = I - Stage;
1501 
1502         for (auto &Def : ROMap.find(MI)->getSecond().Defs)
1503           InsertReg(LiveRegSets[Iter], Def.RegUnit);
1504 
1505         for (auto LastUse : LastUses[MI]) {
1506           if (MI->isPHI()) {
1507             if (Iter != 0)
1508               EraseReg(LiveRegSets[Iter - 1], LastUse);
1509           } else {
1510             EraseReg(LiveRegSets[Iter], LastUse);
1511           }
1512         }
1513 
1514         for (unsigned PSet = 0; PSet < PSetNum; PSet++)
1515           MaxSetPressure[PSet] =
1516               std::max(MaxSetPressure[PSet], CurSetPressure[PSet]);
1517 
1518         LLVM_DEBUG({
1519           dbgs() << "CurSetPressure=";
1520           dumpRegisterPressures(CurSetPressure);
1521           dbgs() << " iter=" << Iter << " stage=" << Stage << ":";
1522           MI->dump();
1523         });
1524       }
1525     }
1526 
1527     return MaxSetPressure;
1528   }
1529 
1530 public:
1531   HighRegisterPressureDetector(MachineBasicBlock *OrigMBB,
1532                                const MachineFunction &MF)
1533       : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()),
1534         TRI(MF.getSubtarget().getRegisterInfo()),
1535         PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0),
1536         PressureSetLimit(PSetNum, 0) {}
1537 
1538   // Used to calculate register pressure, which is independent of loop
1539   // scheduling.
1540   void init(const RegisterClassInfo &RCI) {
1541     for (MachineInstr &MI : *OrigMBB) {
1542       if (MI.isDebugInstr())
1543         continue;
1544       ROMap[&MI].collect(MI, *TRI, MRI, false, true);
1545     }
1546 
1547     computeLiveIn();
1548     computePressureSetLimit(RCI);
1549   }
1550 
1551   // Calculate the maximum register pressures of the loop and check if they
1552   // exceed the limit
1553   bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule,
1554               const unsigned MaxStage) const {
1555     assert(0 <= RegPressureMargin && RegPressureMargin <= 100 &&
1556            "the percentage of the margin must be between 0 to 100");
1557 
1558     OrderedInstsTy OrderedInsts;
1559     Instr2StageTy Stages;
1560     computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages);
1561     const auto MaxSetPressure =
1562         computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1);
1563 
1564     LLVM_DEBUG({
1565       dbgs() << "Dump MaxSetPressure:\n";
1566       for (unsigned I = 0; I < MaxSetPressure.size(); I++) {
1567         dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]);
1568       }
1569       dbgs() << '\n';
1570     });
1571 
1572     for (unsigned PSet = 0; PSet < PSetNum; PSet++) {
1573       unsigned Limit = PressureSetLimit[PSet];
1574       unsigned Margin = Limit * RegPressureMargin / 100;
1575       LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit
1576                         << " Margin=" << Margin << "\n");
1577       if (Limit < MaxSetPressure[PSet] + Margin) {
1578         LLVM_DEBUG(
1579             dbgs()
1580             << "Rejected the schedule because of too high register pressure\n");
1581         return true;
1582       }
1583     }
1584     return false;
1585   }
1586 };
1587 
1588 } // end anonymous namespace
1589 
1590 /// Calculate the resource constrained minimum initiation interval for the
1591 /// specified loop. We use the DFA to model the resources needed for
1592 /// each instruction, and we ignore dependences. A different DFA is created
1593 /// for each cycle that is required. When adding a new instruction, we attempt
1594 /// to add it to each existing DFA, until a legal space is found. If the
1595 /// instruction cannot be reserved in an existing DFA, we create a new one.
1596 unsigned SwingSchedulerDAG::calculateResMII() {
1597   LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1598   ResourceManager RM(&MF.getSubtarget(), this);
1599   return RM.calculateResMII();
1600 }
1601 
1602 /// Calculate the recurrence-constrainted minimum initiation interval.
1603 /// Iterate over each circuit.  Compute the delay(c) and distance(c)
1604 /// for each circuit. The II needs to satisfy the inequality
1605 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1606 /// II that satisfies the inequality, and the RecMII is the maximum
1607 /// of those values.
1608 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1609   unsigned RecMII = 0;
1610 
1611   for (NodeSet &Nodes : NodeSets) {
1612     if (Nodes.empty())
1613       continue;
1614 
1615     unsigned Delay = Nodes.getLatency();
1616     unsigned Distance = 1;
1617 
1618     // ii = ceil(delay / distance)
1619     unsigned CurMII = (Delay + Distance - 1) / Distance;
1620     Nodes.setRecMII(CurMII);
1621     if (CurMII > RecMII)
1622       RecMII = CurMII;
1623   }
1624 
1625   return RecMII;
1626 }
1627 
1628 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1629 /// but we do this to find the circuits, and then change them back.
1630 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1631   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1632   for (SUnit &SU : SUnits) {
1633     for (SDep &Pred : SU.Preds)
1634       if (Pred.getKind() == SDep::Anti)
1635         DepsAdded.push_back(std::make_pair(&SU, Pred));
1636   }
1637   for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1638     // Remove this anti dependency and add one in the reverse direction.
1639     SUnit *SU = P.first;
1640     SDep &D = P.second;
1641     SUnit *TargetSU = D.getSUnit();
1642     unsigned Reg = D.getReg();
1643     unsigned Lat = D.getLatency();
1644     SU->removePred(D);
1645     SDep Dep(SU, SDep::Anti, Reg);
1646     Dep.setLatency(Lat);
1647     TargetSU->addPred(Dep);
1648   }
1649 }
1650 
1651 /// Create the adjacency structure of the nodes in the graph.
1652 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1653     SwingSchedulerDAG *DAG) {
1654   BitVector Added(SUnits.size());
1655   DenseMap<int, int> OutputDeps;
1656   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1657     Added.reset();
1658     // Add any successor to the adjacency matrix and exclude duplicates.
1659     for (auto &SI : SUnits[i].Succs) {
1660       // Only create a back-edge on the first and last nodes of a dependence
1661       // chain. This records any chains and adds them later.
1662       if (SI.getKind() == SDep::Output) {
1663         int N = SI.getSUnit()->NodeNum;
1664         int BackEdge = i;
1665         auto Dep = OutputDeps.find(BackEdge);
1666         if (Dep != OutputDeps.end()) {
1667           BackEdge = Dep->second;
1668           OutputDeps.erase(Dep);
1669         }
1670         OutputDeps[N] = BackEdge;
1671       }
1672       // Do not process a boundary node, an artificial node.
1673       // A back-edge is processed only if it goes to a Phi.
1674       if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1675           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1676         continue;
1677       int N = SI.getSUnit()->NodeNum;
1678       if (!Added.test(N)) {
1679         AdjK[i].push_back(N);
1680         Added.set(N);
1681       }
1682     }
1683     // A chain edge between a store and a load is treated as a back-edge in the
1684     // adjacency matrix.
1685     for (auto &PI : SUnits[i].Preds) {
1686       if (!SUnits[i].getInstr()->mayStore() ||
1687           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1688         continue;
1689       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1690         int N = PI.getSUnit()->NodeNum;
1691         if (!Added.test(N)) {
1692           AdjK[i].push_back(N);
1693           Added.set(N);
1694         }
1695       }
1696     }
1697   }
1698   // Add back-edges in the adjacency matrix for the output dependences.
1699   for (auto &OD : OutputDeps)
1700     if (!Added.test(OD.second)) {
1701       AdjK[OD.first].push_back(OD.second);
1702       Added.set(OD.second);
1703     }
1704 }
1705 
1706 /// Identify an elementary circuit in the dependence graph starting at the
1707 /// specified node.
1708 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1709                                           bool HasBackedge) {
1710   SUnit *SV = &SUnits[V];
1711   bool F = false;
1712   Stack.insert(SV);
1713   Blocked.set(V);
1714 
1715   for (auto W : AdjK[V]) {
1716     if (NumPaths > MaxPaths)
1717       break;
1718     if (W < S)
1719       continue;
1720     if (W == S) {
1721       if (!HasBackedge)
1722         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1723       F = true;
1724       ++NumPaths;
1725       break;
1726     } else if (!Blocked.test(W)) {
1727       if (circuit(W, S, NodeSets,
1728                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1729         F = true;
1730     }
1731   }
1732 
1733   if (F)
1734     unblock(V);
1735   else {
1736     for (auto W : AdjK[V]) {
1737       if (W < S)
1738         continue;
1739       B[W].insert(SV);
1740     }
1741   }
1742   Stack.pop_back();
1743   return F;
1744 }
1745 
1746 /// Unblock a node in the circuit finding algorithm.
1747 void SwingSchedulerDAG::Circuits::unblock(int U) {
1748   Blocked.reset(U);
1749   SmallPtrSet<SUnit *, 4> &BU = B[U];
1750   while (!BU.empty()) {
1751     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1752     assert(SI != BU.end() && "Invalid B set.");
1753     SUnit *W = *SI;
1754     BU.erase(W);
1755     if (Blocked.test(W->NodeNum))
1756       unblock(W->NodeNum);
1757   }
1758 }
1759 
1760 /// Identify all the elementary circuits in the dependence graph using
1761 /// Johnson's circuit algorithm.
1762 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1763   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1764   // but we do this to find the circuits, and then change them back.
1765   swapAntiDependences(SUnits);
1766 
1767   Circuits Cir(SUnits, Topo);
1768   // Create the adjacency structure.
1769   Cir.createAdjacencyStructure(this);
1770   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1771     Cir.reset();
1772     Cir.circuit(i, i, NodeSets);
1773   }
1774 
1775   // Change the dependences back so that we've created a DAG again.
1776   swapAntiDependences(SUnits);
1777 }
1778 
1779 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1780 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1781 // additional copies that are needed across iterations. An artificial dependence
1782 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1783 
1784 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1785 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1786 // PHI-------True-Dep------> USEOfPhi
1787 
1788 // The mutation creates
1789 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1790 
1791 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1792 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1793 // late  to avoid additional copies across iterations. The possible scheduling
1794 // order would be
1795 // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE.
1796 
1797 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1798   for (SUnit &SU : DAG->SUnits) {
1799     // Find the COPY/REG_SEQUENCE instruction.
1800     if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1801       continue;
1802 
1803     // Record the loop carried PHIs.
1804     SmallVector<SUnit *, 4> PHISUs;
1805     // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1806     SmallVector<SUnit *, 4> SrcSUs;
1807 
1808     for (auto &Dep : SU.Preds) {
1809       SUnit *TmpSU = Dep.getSUnit();
1810       MachineInstr *TmpMI = TmpSU->getInstr();
1811       SDep::Kind DepKind = Dep.getKind();
1812       // Save the loop carried PHI.
1813       if (DepKind == SDep::Anti && TmpMI->isPHI())
1814         PHISUs.push_back(TmpSU);
1815       // Save the source of COPY/REG_SEQUENCE.
1816       // If the source has no pre-decessors, we will end up creating cycles.
1817       else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1818         SrcSUs.push_back(TmpSU);
1819     }
1820 
1821     if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1822       continue;
1823 
1824     // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1825     // SUnit to the container.
1826     SmallVector<SUnit *, 8> UseSUs;
1827     // Do not use iterator based loop here as we are updating the container.
1828     for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1829       for (auto &Dep : PHISUs[Index]->Succs) {
1830         if (Dep.getKind() != SDep::Data)
1831           continue;
1832 
1833         SUnit *TmpSU = Dep.getSUnit();
1834         MachineInstr *TmpMI = TmpSU->getInstr();
1835         if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1836           PHISUs.push_back(TmpSU);
1837           continue;
1838         }
1839         UseSUs.push_back(TmpSU);
1840       }
1841     }
1842 
1843     if (UseSUs.size() == 0)
1844       continue;
1845 
1846     SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1847     // Add the artificial dependencies if it does not form a cycle.
1848     for (auto *I : UseSUs) {
1849       for (auto *Src : SrcSUs) {
1850         if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1851           Src->addPred(SDep(I, SDep::Artificial));
1852           SDAG->Topo.AddPred(Src, I);
1853         }
1854       }
1855     }
1856   }
1857 }
1858 
1859 /// Return true for DAG nodes that we ignore when computing the cost functions.
1860 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1861 /// in the calculation of the ASAP, ALAP, etc functions.
1862 static bool ignoreDependence(const SDep &D, bool isPred) {
1863   if (D.isArtificial() || D.getSUnit()->isBoundaryNode())
1864     return true;
1865   return D.getKind() == SDep::Anti && isPred;
1866 }
1867 
1868 /// Compute several functions need to order the nodes for scheduling.
1869 ///  ASAP - Earliest time to schedule a node.
1870 ///  ALAP - Latest time to schedule a node.
1871 ///  MOV - Mobility function, difference between ALAP and ASAP.
1872 ///  D - Depth of each node.
1873 ///  H - Height of each node.
1874 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1875   ScheduleInfo.resize(SUnits.size());
1876 
1877   LLVM_DEBUG({
1878     for (int I : Topo) {
1879       const SUnit &SU = SUnits[I];
1880       dumpNode(SU);
1881     }
1882   });
1883 
1884   int maxASAP = 0;
1885   // Compute ASAP and ZeroLatencyDepth.
1886   for (int I : Topo) {
1887     int asap = 0;
1888     int zeroLatencyDepth = 0;
1889     SUnit *SU = &SUnits[I];
1890     for (const SDep &P : SU->Preds) {
1891       SUnit *pred = P.getSUnit();
1892       if (P.getLatency() == 0)
1893         zeroLatencyDepth =
1894             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1895       if (ignoreDependence(P, true))
1896         continue;
1897       asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() -
1898                                   getDistance(pred, SU, P) * MII));
1899     }
1900     maxASAP = std::max(maxASAP, asap);
1901     ScheduleInfo[I].ASAP = asap;
1902     ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1903   }
1904 
1905   // Compute ALAP, ZeroLatencyHeight, and MOV.
1906   for (int I : llvm::reverse(Topo)) {
1907     int alap = maxASAP;
1908     int zeroLatencyHeight = 0;
1909     SUnit *SU = &SUnits[I];
1910     for (const SDep &S : SU->Succs) {
1911       SUnit *succ = S.getSUnit();
1912       if (succ->isBoundaryNode())
1913         continue;
1914       if (S.getLatency() == 0)
1915         zeroLatencyHeight =
1916             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1917       if (ignoreDependence(S, true))
1918         continue;
1919       alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() +
1920                                   getDistance(SU, succ, S) * MII));
1921     }
1922 
1923     ScheduleInfo[I].ALAP = alap;
1924     ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1925   }
1926 
1927   // After computing the node functions, compute the summary for each node set.
1928   for (NodeSet &I : NodeSets)
1929     I.computeNodeSetInfo(this);
1930 
1931   LLVM_DEBUG({
1932     for (unsigned i = 0; i < SUnits.size(); i++) {
1933       dbgs() << "\tNode " << i << ":\n";
1934       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
1935       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
1936       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
1937       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
1938       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
1939       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1940       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1941     }
1942   });
1943 }
1944 
1945 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1946 /// as the predecessors of the elements of NodeOrder that are not also in
1947 /// NodeOrder.
1948 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1949                    SmallSetVector<SUnit *, 8> &Preds,
1950                    const NodeSet *S = nullptr) {
1951   Preds.clear();
1952   for (const SUnit *SU : NodeOrder) {
1953     for (const SDep &Pred : SU->Preds) {
1954       if (S && S->count(Pred.getSUnit()) == 0)
1955         continue;
1956       if (ignoreDependence(Pred, true))
1957         continue;
1958       if (NodeOrder.count(Pred.getSUnit()) == 0)
1959         Preds.insert(Pred.getSUnit());
1960     }
1961     // Back-edges are predecessors with an anti-dependence.
1962     for (const SDep &Succ : SU->Succs) {
1963       if (Succ.getKind() != SDep::Anti)
1964         continue;
1965       if (S && S->count(Succ.getSUnit()) == 0)
1966         continue;
1967       if (NodeOrder.count(Succ.getSUnit()) == 0)
1968         Preds.insert(Succ.getSUnit());
1969     }
1970   }
1971   return !Preds.empty();
1972 }
1973 
1974 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1975 /// as the successors of the elements of NodeOrder that are not also in
1976 /// NodeOrder.
1977 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1978                    SmallSetVector<SUnit *, 8> &Succs,
1979                    const NodeSet *S = nullptr) {
1980   Succs.clear();
1981   for (const SUnit *SU : NodeOrder) {
1982     for (const SDep &Succ : SU->Succs) {
1983       if (S && S->count(Succ.getSUnit()) == 0)
1984         continue;
1985       if (ignoreDependence(Succ, false))
1986         continue;
1987       if (NodeOrder.count(Succ.getSUnit()) == 0)
1988         Succs.insert(Succ.getSUnit());
1989     }
1990     for (const SDep &Pred : SU->Preds) {
1991       if (Pred.getKind() != SDep::Anti)
1992         continue;
1993       if (S && S->count(Pred.getSUnit()) == 0)
1994         continue;
1995       if (NodeOrder.count(Pred.getSUnit()) == 0)
1996         Succs.insert(Pred.getSUnit());
1997     }
1998   }
1999   return !Succs.empty();
2000 }
2001 
2002 /// Return true if there is a path from the specified node to any of the nodes
2003 /// in DestNodes. Keep track and return the nodes in any path.
2004 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
2005                         SetVector<SUnit *> &DestNodes,
2006                         SetVector<SUnit *> &Exclude,
2007                         SmallPtrSet<SUnit *, 8> &Visited) {
2008   if (Cur->isBoundaryNode())
2009     return false;
2010   if (Exclude.contains(Cur))
2011     return false;
2012   if (DestNodes.contains(Cur))
2013     return true;
2014   if (!Visited.insert(Cur).second)
2015     return Path.contains(Cur);
2016   bool FoundPath = false;
2017   for (auto &SI : Cur->Succs)
2018     if (!ignoreDependence(SI, false))
2019       FoundPath |=
2020           computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
2021   for (auto &PI : Cur->Preds)
2022     if (PI.getKind() == SDep::Anti)
2023       FoundPath |=
2024           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
2025   if (FoundPath)
2026     Path.insert(Cur);
2027   return FoundPath;
2028 }
2029 
2030 /// Compute the live-out registers for the instructions in a node-set.
2031 /// The live-out registers are those that are defined in the node-set,
2032 /// but not used. Except for use operands of Phis.
2033 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
2034                             NodeSet &NS) {
2035   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2036   MachineRegisterInfo &MRI = MF.getRegInfo();
2037   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
2038   SmallSet<unsigned, 4> Uses;
2039   for (SUnit *SU : NS) {
2040     const MachineInstr *MI = SU->getInstr();
2041     if (MI->isPHI())
2042       continue;
2043     for (const MachineOperand &MO : MI->all_uses()) {
2044       Register Reg = MO.getReg();
2045       if (Reg.isVirtual())
2046         Uses.insert(Reg);
2047       else if (MRI.isAllocatable(Reg))
2048         for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
2049           Uses.insert(Unit);
2050     }
2051   }
2052   for (SUnit *SU : NS)
2053     for (const MachineOperand &MO : SU->getInstr()->all_defs())
2054       if (!MO.isDead()) {
2055         Register Reg = MO.getReg();
2056         if (Reg.isVirtual()) {
2057           if (!Uses.count(Reg))
2058             LiveOutRegs.push_back(RegisterMaskPair(Reg,
2059                                                    LaneBitmask::getNone()));
2060         } else if (MRI.isAllocatable(Reg)) {
2061           for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
2062             if (!Uses.count(Unit))
2063               LiveOutRegs.push_back(
2064                   RegisterMaskPair(Unit, LaneBitmask::getNone()));
2065         }
2066       }
2067   RPTracker.addLiveRegs(LiveOutRegs);
2068 }
2069 
2070 /// A heuristic to filter nodes in recurrent node-sets if the register
2071 /// pressure of a set is too high.
2072 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
2073   for (auto &NS : NodeSets) {
2074     // Skip small node-sets since they won't cause register pressure problems.
2075     if (NS.size() <= 2)
2076       continue;
2077     IntervalPressure RecRegPressure;
2078     RegPressureTracker RecRPTracker(RecRegPressure);
2079     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
2080     computeLiveOuts(MF, RecRPTracker, NS);
2081     RecRPTracker.closeBottom();
2082 
2083     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
2084     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
2085       return A->NodeNum > B->NodeNum;
2086     });
2087 
2088     for (auto &SU : SUnits) {
2089       // Since we're computing the register pressure for a subset of the
2090       // instructions in a block, we need to set the tracker for each
2091       // instruction in the node-set. The tracker is set to the instruction
2092       // just after the one we're interested in.
2093       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
2094       RecRPTracker.setPos(std::next(CurInstI));
2095 
2096       RegPressureDelta RPDelta;
2097       ArrayRef<PressureChange> CriticalPSets;
2098       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
2099                                              CriticalPSets,
2100                                              RecRegPressure.MaxSetPressure);
2101       if (RPDelta.Excess.isValid()) {
2102         LLVM_DEBUG(
2103             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
2104                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
2105                    << ":" << RPDelta.Excess.getUnitInc() << "\n");
2106         NS.setExceedPressure(SU);
2107         break;
2108       }
2109       RecRPTracker.recede();
2110     }
2111   }
2112 }
2113 
2114 /// A heuristic to colocate node sets that have the same set of
2115 /// successors.
2116 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
2117   unsigned Colocate = 0;
2118   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
2119     NodeSet &N1 = NodeSets[i];
2120     SmallSetVector<SUnit *, 8> S1;
2121     if (N1.empty() || !succ_L(N1, S1))
2122       continue;
2123     for (int j = i + 1; j < e; ++j) {
2124       NodeSet &N2 = NodeSets[j];
2125       if (N1.compareRecMII(N2) != 0)
2126         continue;
2127       SmallSetVector<SUnit *, 8> S2;
2128       if (N2.empty() || !succ_L(N2, S2))
2129         continue;
2130       if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
2131         N1.setColocate(++Colocate);
2132         N2.setColocate(Colocate);
2133         break;
2134       }
2135     }
2136   }
2137 }
2138 
2139 /// Check if the existing node-sets are profitable. If not, then ignore the
2140 /// recurrent node-sets, and attempt to schedule all nodes together. This is
2141 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
2142 /// then it's best to try to schedule all instructions together instead of
2143 /// starting with the recurrent node-sets.
2144 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
2145   // Look for loops with a large MII.
2146   if (MII < 17)
2147     return;
2148   // Check if the node-set contains only a simple add recurrence.
2149   for (auto &NS : NodeSets) {
2150     if (NS.getRecMII() > 2)
2151       return;
2152     if (NS.getMaxDepth() > MII)
2153       return;
2154   }
2155   NodeSets.clear();
2156   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
2157 }
2158 
2159 /// Add the nodes that do not belong to a recurrence set into groups
2160 /// based upon connected components.
2161 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
2162   SetVector<SUnit *> NodesAdded;
2163   SmallPtrSet<SUnit *, 8> Visited;
2164   // Add the nodes that are on a path between the previous node sets and
2165   // the current node set.
2166   for (NodeSet &I : NodeSets) {
2167     SmallSetVector<SUnit *, 8> N;
2168     // Add the nodes from the current node set to the previous node set.
2169     if (succ_L(I, N)) {
2170       SetVector<SUnit *> Path;
2171       for (SUnit *NI : N) {
2172         Visited.clear();
2173         computePath(NI, Path, NodesAdded, I, Visited);
2174       }
2175       if (!Path.empty())
2176         I.insert(Path.begin(), Path.end());
2177     }
2178     // Add the nodes from the previous node set to the current node set.
2179     N.clear();
2180     if (succ_L(NodesAdded, N)) {
2181       SetVector<SUnit *> Path;
2182       for (SUnit *NI : N) {
2183         Visited.clear();
2184         computePath(NI, Path, I, NodesAdded, Visited);
2185       }
2186       if (!Path.empty())
2187         I.insert(Path.begin(), Path.end());
2188     }
2189     NodesAdded.insert(I.begin(), I.end());
2190   }
2191 
2192   // Create a new node set with the connected nodes of any successor of a node
2193   // in a recurrent set.
2194   NodeSet NewSet;
2195   SmallSetVector<SUnit *, 8> N;
2196   if (succ_L(NodesAdded, N))
2197     for (SUnit *I : N)
2198       addConnectedNodes(I, NewSet, NodesAdded);
2199   if (!NewSet.empty())
2200     NodeSets.push_back(NewSet);
2201 
2202   // Create a new node set with the connected nodes of any predecessor of a node
2203   // in a recurrent set.
2204   NewSet.clear();
2205   if (pred_L(NodesAdded, N))
2206     for (SUnit *I : N)
2207       addConnectedNodes(I, NewSet, NodesAdded);
2208   if (!NewSet.empty())
2209     NodeSets.push_back(NewSet);
2210 
2211   // Create new nodes sets with the connected nodes any remaining node that
2212   // has no predecessor.
2213   for (SUnit &SU : SUnits) {
2214     if (NodesAdded.count(&SU) == 0) {
2215       NewSet.clear();
2216       addConnectedNodes(&SU, NewSet, NodesAdded);
2217       if (!NewSet.empty())
2218         NodeSets.push_back(NewSet);
2219     }
2220   }
2221 }
2222 
2223 /// Add the node to the set, and add all of its connected nodes to the set.
2224 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
2225                                           SetVector<SUnit *> &NodesAdded) {
2226   NewSet.insert(SU);
2227   NodesAdded.insert(SU);
2228   for (auto &SI : SU->Succs) {
2229     SUnit *Successor = SI.getSUnit();
2230     if (!SI.isArtificial() && !Successor->isBoundaryNode() &&
2231         NodesAdded.count(Successor) == 0)
2232       addConnectedNodes(Successor, NewSet, NodesAdded);
2233   }
2234   for (auto &PI : SU->Preds) {
2235     SUnit *Predecessor = PI.getSUnit();
2236     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
2237       addConnectedNodes(Predecessor, NewSet, NodesAdded);
2238   }
2239 }
2240 
2241 /// Return true if Set1 contains elements in Set2. The elements in common
2242 /// are returned in a different container.
2243 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
2244                         SmallSetVector<SUnit *, 8> &Result) {
2245   Result.clear();
2246   for (SUnit *SU : Set1) {
2247     if (Set2.count(SU) != 0)
2248       Result.insert(SU);
2249   }
2250   return !Result.empty();
2251 }
2252 
2253 /// Merge the recurrence node sets that have the same initial node.
2254 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
2255   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2256        ++I) {
2257     NodeSet &NI = *I;
2258     for (NodeSetType::iterator J = I + 1; J != E;) {
2259       NodeSet &NJ = *J;
2260       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
2261         if (NJ.compareRecMII(NI) > 0)
2262           NI.setRecMII(NJ.getRecMII());
2263         for (SUnit *SU : *J)
2264           I->insert(SU);
2265         NodeSets.erase(J);
2266         E = NodeSets.end();
2267       } else {
2268         ++J;
2269       }
2270     }
2271   }
2272 }
2273 
2274 /// Remove nodes that have been scheduled in previous NodeSets.
2275 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
2276   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
2277        ++I)
2278     for (NodeSetType::iterator J = I + 1; J != E;) {
2279       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
2280 
2281       if (J->empty()) {
2282         NodeSets.erase(J);
2283         E = NodeSets.end();
2284       } else {
2285         ++J;
2286       }
2287     }
2288 }
2289 
2290 /// Compute an ordered list of the dependence graph nodes, which
2291 /// indicates the order that the nodes will be scheduled.  This is a
2292 /// two-level algorithm. First, a partial order is created, which
2293 /// consists of a list of sets ordered from highest to lowest priority.
2294 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2295   SmallSetVector<SUnit *, 8> R;
2296   NodeOrder.clear();
2297 
2298   for (auto &Nodes : NodeSets) {
2299     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2300     OrderKind Order;
2301     SmallSetVector<SUnit *, 8> N;
2302     if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
2303       R.insert(N.begin(), N.end());
2304       Order = BottomUp;
2305       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
2306     } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
2307       R.insert(N.begin(), N.end());
2308       Order = TopDown;
2309       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
2310     } else if (isIntersect(N, Nodes, R)) {
2311       // If some of the successors are in the existing node-set, then use the
2312       // top-down ordering.
2313       Order = TopDown;
2314       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
2315     } else if (NodeSets.size() == 1) {
2316       for (const auto &N : Nodes)
2317         if (N->Succs.size() == 0)
2318           R.insert(N);
2319       Order = BottomUp;
2320       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
2321     } else {
2322       // Find the node with the highest ASAP.
2323       SUnit *maxASAP = nullptr;
2324       for (SUnit *SU : Nodes) {
2325         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
2326             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
2327           maxASAP = SU;
2328       }
2329       R.insert(maxASAP);
2330       Order = BottomUp;
2331       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
2332     }
2333 
2334     while (!R.empty()) {
2335       if (Order == TopDown) {
2336         // Choose the node with the maximum height.  If more than one, choose
2337         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
2338         // choose the node with the lowest MOV.
2339         while (!R.empty()) {
2340           SUnit *maxHeight = nullptr;
2341           for (SUnit *I : R) {
2342             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
2343               maxHeight = I;
2344             else if (getHeight(I) == getHeight(maxHeight) &&
2345                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
2346               maxHeight = I;
2347             else if (getHeight(I) == getHeight(maxHeight) &&
2348                      getZeroLatencyHeight(I) ==
2349                          getZeroLatencyHeight(maxHeight) &&
2350                      getMOV(I) < getMOV(maxHeight))
2351               maxHeight = I;
2352           }
2353           NodeOrder.insert(maxHeight);
2354           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
2355           R.remove(maxHeight);
2356           for (const auto &I : maxHeight->Succs) {
2357             if (Nodes.count(I.getSUnit()) == 0)
2358               continue;
2359             if (NodeOrder.contains(I.getSUnit()))
2360               continue;
2361             if (ignoreDependence(I, false))
2362               continue;
2363             R.insert(I.getSUnit());
2364           }
2365           // Back-edges are predecessors with an anti-dependence.
2366           for (const auto &I : maxHeight->Preds) {
2367             if (I.getKind() != SDep::Anti)
2368               continue;
2369             if (Nodes.count(I.getSUnit()) == 0)
2370               continue;
2371             if (NodeOrder.contains(I.getSUnit()))
2372               continue;
2373             R.insert(I.getSUnit());
2374           }
2375         }
2376         Order = BottomUp;
2377         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
2378         SmallSetVector<SUnit *, 8> N;
2379         if (pred_L(NodeOrder, N, &Nodes))
2380           R.insert(N.begin(), N.end());
2381       } else {
2382         // Choose the node with the maximum depth.  If more than one, choose
2383         // the node with the maximum ZeroLatencyDepth. If still more than one,
2384         // choose the node with the lowest MOV.
2385         while (!R.empty()) {
2386           SUnit *maxDepth = nullptr;
2387           for (SUnit *I : R) {
2388             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
2389               maxDepth = I;
2390             else if (getDepth(I) == getDepth(maxDepth) &&
2391                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
2392               maxDepth = I;
2393             else if (getDepth(I) == getDepth(maxDepth) &&
2394                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
2395                      getMOV(I) < getMOV(maxDepth))
2396               maxDepth = I;
2397           }
2398           NodeOrder.insert(maxDepth);
2399           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
2400           R.remove(maxDepth);
2401           if (Nodes.isExceedSU(maxDepth)) {
2402             Order = TopDown;
2403             R.clear();
2404             R.insert(Nodes.getNode(0));
2405             break;
2406           }
2407           for (const auto &I : maxDepth->Preds) {
2408             if (Nodes.count(I.getSUnit()) == 0)
2409               continue;
2410             if (NodeOrder.contains(I.getSUnit()))
2411               continue;
2412             R.insert(I.getSUnit());
2413           }
2414           // Back-edges are predecessors with an anti-dependence.
2415           for (const auto &I : maxDepth->Succs) {
2416             if (I.getKind() != SDep::Anti)
2417               continue;
2418             if (Nodes.count(I.getSUnit()) == 0)
2419               continue;
2420             if (NodeOrder.contains(I.getSUnit()))
2421               continue;
2422             R.insert(I.getSUnit());
2423           }
2424         }
2425         Order = TopDown;
2426         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
2427         SmallSetVector<SUnit *, 8> N;
2428         if (succ_L(NodeOrder, N, &Nodes))
2429           R.insert(N.begin(), N.end());
2430       }
2431     }
2432     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2433   }
2434 
2435   LLVM_DEBUG({
2436     dbgs() << "Node order: ";
2437     for (SUnit *I : NodeOrder)
2438       dbgs() << " " << I->NodeNum << " ";
2439     dbgs() << "\n";
2440   });
2441 }
2442 
2443 /// Process the nodes in the computed order and create the pipelined schedule
2444 /// of the instructions, if possible. Return true if a schedule is found.
2445 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2446 
2447   if (NodeOrder.empty()){
2448     LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2449     return false;
2450   }
2451 
2452   bool scheduleFound = false;
2453   std::unique_ptr<HighRegisterPressureDetector> HRPDetector;
2454   if (LimitRegPressure) {
2455     HRPDetector =
2456         std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF);
2457     HRPDetector->init(RegClassInfo);
2458   }
2459   // Keep increasing II until a valid schedule is found.
2460   for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
2461     Schedule.reset();
2462     Schedule.setInitiationInterval(II);
2463     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2464 
2465     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2466     SetVector<SUnit *>::iterator NE = NodeOrder.end();
2467     do {
2468       SUnit *SU = *NI;
2469 
2470       // Compute the schedule time for the instruction, which is based
2471       // upon the scheduled time for any predecessors/successors.
2472       int EarlyStart = INT_MIN;
2473       int LateStart = INT_MAX;
2474       Schedule.computeStart(SU, &EarlyStart, &LateStart, II, this);
2475       LLVM_DEBUG({
2476         dbgs() << "\n";
2477         dbgs() << "Inst (" << SU->NodeNum << ") ";
2478         SU->getInstr()->dump();
2479         dbgs() << "\n";
2480       });
2481       LLVM_DEBUG(
2482           dbgs() << format("\tes: %8x ls: %8x\n", EarlyStart, LateStart));
2483 
2484       if (EarlyStart > LateStart)
2485         scheduleFound = false;
2486       else if (EarlyStart != INT_MIN && LateStart == INT_MAX)
2487         scheduleFound =
2488             Schedule.insert(SU, EarlyStart, EarlyStart + (int)II - 1, II);
2489       else if (EarlyStart == INT_MIN && LateStart != INT_MAX)
2490         scheduleFound =
2491             Schedule.insert(SU, LateStart, LateStart - (int)II + 1, II);
2492       else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2493         LateStart = std::min(LateStart, EarlyStart + (int)II - 1);
2494         // When scheduling a Phi it is better to start at the late cycle and
2495         // go backwards. The default order may insert the Phi too far away
2496         // from its first dependence.
2497         // Also, do backward search when all scheduled predecessors are
2498         // loop-carried output/order dependencies. Empirically, there are also
2499         // cases where scheduling becomes possible with backward search.
2500         if (SU->getInstr()->isPHI() ||
2501             Schedule.onlyHasLoopCarriedOutputOrOrderPreds(SU, this))
2502           scheduleFound = Schedule.insert(SU, LateStart, EarlyStart, II);
2503         else
2504           scheduleFound = Schedule.insert(SU, EarlyStart, LateStart, II);
2505       } else {
2506         int FirstCycle = Schedule.getFirstCycle();
2507         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2508                                         FirstCycle + getASAP(SU) + II - 1, II);
2509       }
2510 
2511       // Even if we find a schedule, make sure the schedule doesn't exceed the
2512       // allowable number of stages. We keep trying if this happens.
2513       if (scheduleFound)
2514         if (SwpMaxStages > -1 &&
2515             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2516           scheduleFound = false;
2517 
2518       LLVM_DEBUG({
2519         if (!scheduleFound)
2520           dbgs() << "\tCan't schedule\n";
2521       });
2522     } while (++NI != NE && scheduleFound);
2523 
2524     // If a schedule is found, ensure non-pipelined instructions are in stage 0
2525     if (scheduleFound)
2526       scheduleFound =
2527           Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo);
2528 
2529     // If a schedule is found, check if it is a valid schedule too.
2530     if (scheduleFound)
2531       scheduleFound = Schedule.isValidSchedule(this);
2532 
2533     // If a schedule was found and the option is enabled, check if the schedule
2534     // might generate additional register spills/fills.
2535     if (scheduleFound && LimitRegPressure)
2536       scheduleFound =
2537           !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount());
2538   }
2539 
2540   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2541                     << " (II=" << Schedule.getInitiationInterval()
2542                     << ")\n");
2543 
2544   if (scheduleFound) {
2545     scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule);
2546     if (!scheduleFound)
2547       LLVM_DEBUG(dbgs() << "Target rejected schedule\n");
2548   }
2549 
2550   if (scheduleFound) {
2551     Schedule.finalizeSchedule(this);
2552     Pass.ORE->emit([&]() {
2553       return MachineOptimizationRemarkAnalysis(
2554                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2555              << "Schedule found with Initiation Interval: "
2556              << ore::NV("II", Schedule.getInitiationInterval())
2557              << ", MaxStageCount: "
2558              << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2559     });
2560   } else
2561     Schedule.reset();
2562 
2563   return scheduleFound && Schedule.getMaxStageCount() > 0;
2564 }
2565 
2566 /// Return true if we can compute the amount the instruction changes
2567 /// during each iteration. Set Delta to the amount of the change.
2568 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2569   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2570   const MachineOperand *BaseOp;
2571   int64_t Offset;
2572   bool OffsetIsScalable;
2573   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2574     return false;
2575 
2576   // FIXME: This algorithm assumes instructions have fixed-size offsets.
2577   if (OffsetIsScalable)
2578     return false;
2579 
2580   if (!BaseOp->isReg())
2581     return false;
2582 
2583   Register BaseReg = BaseOp->getReg();
2584 
2585   MachineRegisterInfo &MRI = MF.getRegInfo();
2586   // Check if there is a Phi. If so, get the definition in the loop.
2587   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2588   if (BaseDef && BaseDef->isPHI()) {
2589     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2590     BaseDef = MRI.getVRegDef(BaseReg);
2591   }
2592   if (!BaseDef)
2593     return false;
2594 
2595   int D = 0;
2596   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2597     return false;
2598 
2599   Delta = D;
2600   return true;
2601 }
2602 
2603 /// Check if we can change the instruction to use an offset value from the
2604 /// previous iteration. If so, return true and set the base and offset values
2605 /// so that we can rewrite the load, if necessary.
2606 ///   v1 = Phi(v0, v3)
2607 ///   v2 = load v1, 0
2608 ///   v3 = post_store v1, 4, x
2609 /// This function enables the load to be rewritten as v2 = load v3, 4.
2610 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2611                                               unsigned &BasePos,
2612                                               unsigned &OffsetPos,
2613                                               unsigned &NewBase,
2614                                               int64_t &Offset) {
2615   // Get the load instruction.
2616   if (TII->isPostIncrement(*MI))
2617     return false;
2618   unsigned BasePosLd, OffsetPosLd;
2619   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2620     return false;
2621   Register BaseReg = MI->getOperand(BasePosLd).getReg();
2622 
2623   // Look for the Phi instruction.
2624   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2625   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2626   if (!Phi || !Phi->isPHI())
2627     return false;
2628   // Get the register defined in the loop block.
2629   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2630   if (!PrevReg)
2631     return false;
2632 
2633   // Check for the post-increment load/store instruction.
2634   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2635   if (!PrevDef || PrevDef == MI)
2636     return false;
2637 
2638   if (!TII->isPostIncrement(*PrevDef))
2639     return false;
2640 
2641   unsigned BasePos1 = 0, OffsetPos1 = 0;
2642   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2643     return false;
2644 
2645   // Make sure that the instructions do not access the same memory location in
2646   // the next iteration.
2647   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2648   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2649   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2650   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2651   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2652   MF.deleteMachineInstr(NewMI);
2653   if (!Disjoint)
2654     return false;
2655 
2656   // Set the return value once we determine that we return true.
2657   BasePos = BasePosLd;
2658   OffsetPos = OffsetPosLd;
2659   NewBase = PrevReg;
2660   Offset = StoreOffset;
2661   return true;
2662 }
2663 
2664 /// Apply changes to the instruction if needed. The changes are need
2665 /// to improve the scheduling and depend up on the final schedule.
2666 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2667                                          SMSchedule &Schedule) {
2668   SUnit *SU = getSUnit(MI);
2669   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2670       InstrChanges.find(SU);
2671   if (It != InstrChanges.end()) {
2672     std::pair<unsigned, int64_t> RegAndOffset = It->second;
2673     unsigned BasePos, OffsetPos;
2674     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2675       return;
2676     Register BaseReg = MI->getOperand(BasePos).getReg();
2677     MachineInstr *LoopDef = findDefInLoop(BaseReg);
2678     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2679     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2680     int BaseStageNum = Schedule.stageScheduled(SU);
2681     int BaseCycleNum = Schedule.cycleScheduled(SU);
2682     if (BaseStageNum < DefStageNum) {
2683       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2684       int OffsetDiff = DefStageNum - BaseStageNum;
2685       if (DefCycleNum < BaseCycleNum) {
2686         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2687         if (OffsetDiff > 0)
2688           --OffsetDiff;
2689       }
2690       int64_t NewOffset =
2691           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2692       NewMI->getOperand(OffsetPos).setImm(NewOffset);
2693       SU->setInstr(NewMI);
2694       MISUnitMap[NewMI] = SU;
2695       NewMIs[MI] = NewMI;
2696     }
2697   }
2698 }
2699 
2700 /// Return the instruction in the loop that defines the register.
2701 /// If the definition is a Phi, then follow the Phi operand to
2702 /// the instruction in the loop.
2703 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2704   SmallPtrSet<MachineInstr *, 8> Visited;
2705   MachineInstr *Def = MRI.getVRegDef(Reg);
2706   while (Def->isPHI()) {
2707     if (!Visited.insert(Def).second)
2708       break;
2709     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2710       if (Def->getOperand(i + 1).getMBB() == BB) {
2711         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2712         break;
2713       }
2714   }
2715   return Def;
2716 }
2717 
2718 /// Return true for an order or output dependence that is loop carried
2719 /// potentially. A dependence is loop carried if the destination defines a value
2720 /// that may be used or defined by the source in a subsequent iteration.
2721 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2722                                          bool isSucc) {
2723   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2724       Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode())
2725     return false;
2726 
2727   if (!SwpPruneLoopCarried)
2728     return true;
2729 
2730   if (Dep.getKind() == SDep::Output)
2731     return true;
2732 
2733   MachineInstr *SI = Source->getInstr();
2734   MachineInstr *DI = Dep.getSUnit()->getInstr();
2735   if (!isSucc)
2736     std::swap(SI, DI);
2737   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2738 
2739   // Assume ordered loads and stores may have a loop carried dependence.
2740   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2741       SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2742       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2743     return true;
2744 
2745   if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore())
2746     return false;
2747 
2748   // The conservative assumption is that a dependence between memory operations
2749   // may be loop carried. The following code checks when it can be proved that
2750   // there is no loop carried dependence.
2751   unsigned DeltaS, DeltaD;
2752   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2753     return true;
2754 
2755   const MachineOperand *BaseOpS, *BaseOpD;
2756   int64_t OffsetS, OffsetD;
2757   bool OffsetSIsScalable, OffsetDIsScalable;
2758   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2759   if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2760                                     TRI) ||
2761       !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2762                                     TRI))
2763     return true;
2764 
2765   assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2766          "Expected offsets to be byte offsets");
2767 
2768   MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg());
2769   MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg());
2770   if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI())
2771     return true;
2772 
2773   unsigned InitValS = 0;
2774   unsigned LoopValS = 0;
2775   unsigned InitValD = 0;
2776   unsigned LoopValD = 0;
2777   getPhiRegs(*DefS, BB, InitValS, LoopValS);
2778   getPhiRegs(*DefD, BB, InitValD, LoopValD);
2779   MachineInstr *InitDefS = MRI.getVRegDef(InitValS);
2780   MachineInstr *InitDefD = MRI.getVRegDef(InitValD);
2781 
2782   if (!InitDefS->isIdenticalTo(*InitDefD))
2783     return true;
2784 
2785   // Check that the base register is incremented by a constant value for each
2786   // iteration.
2787   MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS);
2788   int D = 0;
2789   if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D))
2790     return true;
2791 
2792   LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize();
2793   LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize();
2794 
2795   // This is the main test, which checks the offset values and the loop
2796   // increment value to determine if the accesses may be loop carried.
2797   if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue())
2798     return true;
2799 
2800   if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() ||
2801       DeltaD < AccessSizeD.getValue())
2802     return true;
2803 
2804   return (OffsetS + (int64_t)AccessSizeS.getValue() <
2805           OffsetD + (int64_t)AccessSizeD.getValue());
2806 }
2807 
2808 void SwingSchedulerDAG::postProcessDAG() {
2809   for (auto &M : Mutations)
2810     M->apply(this);
2811 }
2812 
2813 /// Try to schedule the node at the specified StartCycle and continue
2814 /// until the node is schedule or the EndCycle is reached.  This function
2815 /// returns true if the node is scheduled.  This routine may search either
2816 /// forward or backward for a place to insert the instruction based upon
2817 /// the relative values of StartCycle and EndCycle.
2818 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2819   bool forward = true;
2820   LLVM_DEBUG({
2821     dbgs() << "Trying to insert node between " << StartCycle << " and "
2822            << EndCycle << " II: " << II << "\n";
2823   });
2824   if (StartCycle > EndCycle)
2825     forward = false;
2826 
2827   // The terminating condition depends on the direction.
2828   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2829   for (int curCycle = StartCycle; curCycle != termCycle;
2830        forward ? ++curCycle : --curCycle) {
2831 
2832     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2833         ProcItinResources.canReserveResources(*SU, curCycle)) {
2834       LLVM_DEBUG({
2835         dbgs() << "\tinsert at cycle " << curCycle << " ";
2836         SU->getInstr()->dump();
2837       });
2838 
2839       if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
2840         ProcItinResources.reserveResources(*SU, curCycle);
2841       ScheduledInstrs[curCycle].push_back(SU);
2842       InstrToCycle.insert(std::make_pair(SU, curCycle));
2843       if (curCycle > LastCycle)
2844         LastCycle = curCycle;
2845       if (curCycle < FirstCycle)
2846         FirstCycle = curCycle;
2847       return true;
2848     }
2849     LLVM_DEBUG({
2850       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2851       SU->getInstr()->dump();
2852     });
2853   }
2854   return false;
2855 }
2856 
2857 // Return the cycle of the earliest scheduled instruction in the chain.
2858 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2859   SmallPtrSet<SUnit *, 8> Visited;
2860   SmallVector<SDep, 8> Worklist;
2861   Worklist.push_back(Dep);
2862   int EarlyCycle = INT_MAX;
2863   while (!Worklist.empty()) {
2864     const SDep &Cur = Worklist.pop_back_val();
2865     SUnit *PrevSU = Cur.getSUnit();
2866     if (Visited.count(PrevSU))
2867       continue;
2868     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2869     if (it == InstrToCycle.end())
2870       continue;
2871     EarlyCycle = std::min(EarlyCycle, it->second);
2872     for (const auto &PI : PrevSU->Preds)
2873       if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2874         Worklist.push_back(PI);
2875     Visited.insert(PrevSU);
2876   }
2877   return EarlyCycle;
2878 }
2879 
2880 // Return the cycle of the latest scheduled instruction in the chain.
2881 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2882   SmallPtrSet<SUnit *, 8> Visited;
2883   SmallVector<SDep, 8> Worklist;
2884   Worklist.push_back(Dep);
2885   int LateCycle = INT_MIN;
2886   while (!Worklist.empty()) {
2887     const SDep &Cur = Worklist.pop_back_val();
2888     SUnit *SuccSU = Cur.getSUnit();
2889     if (Visited.count(SuccSU) || SuccSU->isBoundaryNode())
2890       continue;
2891     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2892     if (it == InstrToCycle.end())
2893       continue;
2894     LateCycle = std::max(LateCycle, it->second);
2895     for (const auto &SI : SuccSU->Succs)
2896       if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2897         Worklist.push_back(SI);
2898     Visited.insert(SuccSU);
2899   }
2900   return LateCycle;
2901 }
2902 
2903 /// If an instruction has a use that spans multiple iterations, then
2904 /// return true. These instructions are characterized by having a back-ege
2905 /// to a Phi, which contains a reference to another Phi.
2906 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2907   for (auto &P : SU->Preds)
2908     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2909       for (auto &S : P.getSUnit()->Succs)
2910         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2911           return P.getSUnit();
2912   return nullptr;
2913 }
2914 
2915 /// Compute the scheduling start slot for the instruction.  The start slot
2916 /// depends on any predecessor or successor nodes scheduled already.
2917 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2918                               int II, SwingSchedulerDAG *DAG) {
2919   // Iterate over each instruction that has been scheduled already.  The start
2920   // slot computation depends on whether the previously scheduled instruction
2921   // is a predecessor or successor of the specified instruction.
2922   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2923 
2924     // Iterate over each instruction in the current cycle.
2925     for (SUnit *I : getInstructions(cycle)) {
2926       // Because we're processing a DAG for the dependences, we recognize
2927       // the back-edge in recurrences by anti dependences.
2928       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2929         const SDep &Dep = SU->Preds[i];
2930         if (Dep.getSUnit() == I) {
2931           if (!DAG->isBackedge(SU, Dep)) {
2932             int EarlyStart = cycle + Dep.getLatency() -
2933                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2934             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2935             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2936               int End = earliestCycleInChain(Dep) + (II - 1);
2937               *MinLateStart = std::min(*MinLateStart, End);
2938             }
2939           } else {
2940             int LateStart = cycle - Dep.getLatency() +
2941                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2942             *MinLateStart = std::min(*MinLateStart, LateStart);
2943           }
2944         }
2945         // For instruction that requires multiple iterations, make sure that
2946         // the dependent instruction is not scheduled past the definition.
2947         SUnit *BE = multipleIterations(I, DAG);
2948         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2949             !SU->isPred(I))
2950           *MinLateStart = std::min(*MinLateStart, cycle);
2951       }
2952       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2953         if (SU->Succs[i].getSUnit() == I) {
2954           const SDep &Dep = SU->Succs[i];
2955           if (!DAG->isBackedge(SU, Dep)) {
2956             int LateStart = cycle - Dep.getLatency() +
2957                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2958             *MinLateStart = std::min(*MinLateStart, LateStart);
2959             if (DAG->isLoopCarriedDep(SU, Dep)) {
2960               int Start = latestCycleInChain(Dep) + 1 - II;
2961               *MaxEarlyStart = std::max(*MaxEarlyStart, Start);
2962             }
2963           } else {
2964             int EarlyStart = cycle + Dep.getLatency() -
2965                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2966             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2967           }
2968         }
2969       }
2970     }
2971   }
2972 }
2973 
2974 /// Order the instructions within a cycle so that the definitions occur
2975 /// before the uses. Returns true if the instruction is added to the start
2976 /// of the list, or false if added to the end.
2977 void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU,
2978                                  std::deque<SUnit *> &Insts) const {
2979   MachineInstr *MI = SU->getInstr();
2980   bool OrderBeforeUse = false;
2981   bool OrderAfterDef = false;
2982   bool OrderBeforeDef = false;
2983   unsigned MoveDef = 0;
2984   unsigned MoveUse = 0;
2985   int StageInst1 = stageScheduled(SU);
2986 
2987   unsigned Pos = 0;
2988   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2989        ++I, ++Pos) {
2990     for (MachineOperand &MO : MI->operands()) {
2991       if (!MO.isReg() || !MO.getReg().isVirtual())
2992         continue;
2993 
2994       Register Reg = MO.getReg();
2995       unsigned BasePos, OffsetPos;
2996       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2997         if (MI->getOperand(BasePos).getReg() == Reg)
2998           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2999             Reg = NewReg;
3000       bool Reads, Writes;
3001       std::tie(Reads, Writes) =
3002           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3003       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3004         OrderBeforeUse = true;
3005         if (MoveUse == 0)
3006           MoveUse = Pos;
3007       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3008         // Add the instruction after the scheduled instruction.
3009         OrderAfterDef = true;
3010         MoveDef = Pos;
3011       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3012         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3013           OrderBeforeUse = true;
3014           if (MoveUse == 0)
3015             MoveUse = Pos;
3016         } else {
3017           OrderAfterDef = true;
3018           MoveDef = Pos;
3019         }
3020       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3021         OrderBeforeUse = true;
3022         if (MoveUse == 0)
3023           MoveUse = Pos;
3024         if (MoveUse != 0) {
3025           OrderAfterDef = true;
3026           MoveDef = Pos - 1;
3027         }
3028       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3029         // Add the instruction before the scheduled instruction.
3030         OrderBeforeUse = true;
3031         if (MoveUse == 0)
3032           MoveUse = Pos;
3033       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3034                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3035         if (MoveUse == 0) {
3036           OrderBeforeDef = true;
3037           MoveUse = Pos;
3038         }
3039       }
3040     }
3041     // Check for order dependences between instructions. Make sure the source
3042     // is ordered before the destination.
3043     for (auto &S : SU->Succs) {
3044       if (S.getSUnit() != *I)
3045         continue;
3046       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3047         OrderBeforeUse = true;
3048         if (Pos < MoveUse)
3049           MoveUse = Pos;
3050       }
3051       // We did not handle HW dependences in previous for loop,
3052       // and we normally set Latency = 0 for Anti deps,
3053       // so may have nodes in same cycle with Anti denpendent on HW regs.
3054       else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
3055         OrderBeforeUse = true;
3056         if ((MoveUse == 0) || (Pos < MoveUse))
3057           MoveUse = Pos;
3058       }
3059     }
3060     for (auto &P : SU->Preds) {
3061       if (P.getSUnit() != *I)
3062         continue;
3063       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3064         OrderAfterDef = true;
3065         MoveDef = Pos;
3066       }
3067     }
3068   }
3069 
3070   // A circular dependence.
3071   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3072     OrderBeforeUse = false;
3073 
3074   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3075   // to a loop-carried dependence.
3076   if (OrderBeforeDef)
3077     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3078 
3079   // The uncommon case when the instruction order needs to be updated because
3080   // there is both a use and def.
3081   if (OrderBeforeUse && OrderAfterDef) {
3082     SUnit *UseSU = Insts.at(MoveUse);
3083     SUnit *DefSU = Insts.at(MoveDef);
3084     if (MoveUse > MoveDef) {
3085       Insts.erase(Insts.begin() + MoveUse);
3086       Insts.erase(Insts.begin() + MoveDef);
3087     } else {
3088       Insts.erase(Insts.begin() + MoveDef);
3089       Insts.erase(Insts.begin() + MoveUse);
3090     }
3091     orderDependence(SSD, UseSU, Insts);
3092     orderDependence(SSD, SU, Insts);
3093     orderDependence(SSD, DefSU, Insts);
3094     return;
3095   }
3096   // Put the new instruction first if there is a use in the list. Otherwise,
3097   // put it at the end of the list.
3098   if (OrderBeforeUse)
3099     Insts.push_front(SU);
3100   else
3101     Insts.push_back(SU);
3102 }
3103 
3104 /// Return true if the scheduled Phi has a loop carried operand.
3105 bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD,
3106                                MachineInstr &Phi) const {
3107   if (!Phi.isPHI())
3108     return false;
3109   assert(Phi.isPHI() && "Expecting a Phi.");
3110   SUnit *DefSU = SSD->getSUnit(&Phi);
3111   unsigned DefCycle = cycleScheduled(DefSU);
3112   int DefStage = stageScheduled(DefSU);
3113 
3114   unsigned InitVal = 0;
3115   unsigned LoopVal = 0;
3116   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3117   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3118   if (!UseSU)
3119     return true;
3120   if (UseSU->getInstr()->isPHI())
3121     return true;
3122   unsigned LoopCycle = cycleScheduled(UseSU);
3123   int LoopStage = stageScheduled(UseSU);
3124   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
3125 }
3126 
3127 /// Return true if the instruction is a definition that is loop carried
3128 /// and defines the use on the next iteration.
3129 ///        v1 = phi(v2, v3)
3130 ///  (Def) v3 = op v1
3131 ///  (MO)   = v1
3132 /// If MO appears before Def, then v1 and v3 may get assigned to the same
3133 /// register.
3134 bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD,
3135                                        MachineInstr *Def,
3136                                        MachineOperand &MO) const {
3137   if (!MO.isReg())
3138     return false;
3139   if (Def->isPHI())
3140     return false;
3141   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3142   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3143     return false;
3144   if (!isLoopCarried(SSD, *Phi))
3145     return false;
3146   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3147   for (MachineOperand &DMO : Def->all_defs()) {
3148     if (DMO.getReg() == LoopReg)
3149       return true;
3150   }
3151   return false;
3152 }
3153 
3154 /// Return true if all scheduled predecessors are loop-carried output/order
3155 /// dependencies.
3156 bool SMSchedule::onlyHasLoopCarriedOutputOrOrderPreds(
3157     SUnit *SU, SwingSchedulerDAG *DAG) const {
3158   for (const SDep &Pred : SU->Preds)
3159     if (InstrToCycle.count(Pred.getSUnit()) && !DAG->isBackedge(SU, Pred))
3160       return false;
3161   for (const SDep &Succ : SU->Succs)
3162     if (InstrToCycle.count(Succ.getSUnit()) && DAG->isBackedge(SU, Succ))
3163       return false;
3164   return true;
3165 }
3166 
3167 /// Determine transitive dependences of unpipelineable instructions
3168 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes(
3169     SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
3170   SmallSet<SUnit *, 8> DoNotPipeline;
3171   SmallVector<SUnit *, 8> Worklist;
3172 
3173   for (auto &SU : SSD->SUnits)
3174     if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr()))
3175       Worklist.push_back(&SU);
3176 
3177   while (!Worklist.empty()) {
3178     auto SU = Worklist.pop_back_val();
3179     if (DoNotPipeline.count(SU))
3180       continue;
3181     LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n");
3182     DoNotPipeline.insert(SU);
3183     for (auto &Dep : SU->Preds)
3184       Worklist.push_back(Dep.getSUnit());
3185     if (SU->getInstr()->isPHI())
3186       for (auto &Dep : SU->Succs)
3187         if (Dep.getKind() == SDep::Anti)
3188           Worklist.push_back(Dep.getSUnit());
3189   }
3190   return DoNotPipeline;
3191 }
3192 
3193 // Determine all instructions upon which any unpipelineable instruction depends
3194 // and ensure that they are in stage 0.  If unable to do so, return false.
3195 bool SMSchedule::normalizeNonPipelinedInstructions(
3196     SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
3197   SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI);
3198 
3199   int NewLastCycle = INT_MIN;
3200   for (SUnit &SU : SSD->SUnits) {
3201     if (!SU.isInstr())
3202       continue;
3203     if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) {
3204       NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]);
3205       continue;
3206     }
3207 
3208     // Put the non-pipelined instruction as early as possible in the schedule
3209     int NewCycle = getFirstCycle();
3210     for (auto &Dep : SU.Preds)
3211       NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle);
3212 
3213     int OldCycle = InstrToCycle[&SU];
3214     if (OldCycle != NewCycle) {
3215       InstrToCycle[&SU] = NewCycle;
3216       auto &OldS = getInstructions(OldCycle);
3217       llvm::erase(OldS, &SU);
3218       getInstructions(NewCycle).emplace_back(&SU);
3219       LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum
3220                         << ") is not pipelined; moving from cycle " << OldCycle
3221                         << " to " << NewCycle << " Instr:" << *SU.getInstr());
3222     }
3223     NewLastCycle = std::max(NewLastCycle, NewCycle);
3224   }
3225   LastCycle = NewLastCycle;
3226   return true;
3227 }
3228 
3229 // Check if the generated schedule is valid. This function checks if
3230 // an instruction that uses a physical register is scheduled in a
3231 // different stage than the definition. The pipeliner does not handle
3232 // physical register values that may cross a basic block boundary.
3233 // Furthermore, if a physical def/use pair is assigned to the same
3234 // cycle, orderDependence does not guarantee def/use ordering, so that
3235 // case should be considered invalid.  (The test checks for both
3236 // earlier and same-cycle use to be more robust.)
3237 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3238   for (SUnit &SU : SSD->SUnits) {
3239     if (!SU.hasPhysRegDefs)
3240       continue;
3241     int StageDef = stageScheduled(&SU);
3242     int CycleDef = InstrToCycle[&SU];
3243     assert(StageDef != -1 && "Instruction should have been scheduled.");
3244     for (auto &SI : SU.Succs)
3245       if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode())
3246         if (Register::isPhysicalRegister(SI.getReg())) {
3247           if (stageScheduled(SI.getSUnit()) != StageDef)
3248             return false;
3249           if (InstrToCycle[SI.getSUnit()] <= CycleDef)
3250             return false;
3251         }
3252   }
3253   return true;
3254 }
3255 
3256 /// A property of the node order in swing-modulo-scheduling is
3257 /// that for nodes outside circuits the following holds:
3258 /// none of them is scheduled after both a successor and a
3259 /// predecessor.
3260 /// The method below checks whether the property is met.
3261 /// If not, debug information is printed and statistics information updated.
3262 /// Note that we do not use an assert statement.
3263 /// The reason is that although an invalid node oder may prevent
3264 /// the pipeliner from finding a pipelined schedule for arbitrary II,
3265 /// it does not lead to the generation of incorrect code.
3266 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3267 
3268   // a sorted vector that maps each SUnit to its index in the NodeOrder
3269   typedef std::pair<SUnit *, unsigned> UnitIndex;
3270   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3271 
3272   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3273     Indices.push_back(std::make_pair(NodeOrder[i], i));
3274 
3275   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3276     return std::get<0>(i1) < std::get<0>(i2);
3277   };
3278 
3279   // sort, so that we can perform a binary search
3280   llvm::sort(Indices, CompareKey);
3281 
3282   bool Valid = true;
3283   (void)Valid;
3284   // for each SUnit in the NodeOrder, check whether
3285   // it appears after both a successor and a predecessor
3286   // of the SUnit. If this is the case, and the SUnit
3287   // is not part of circuit, then the NodeOrder is not
3288   // valid.
3289   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3290     SUnit *SU = NodeOrder[i];
3291     unsigned Index = i;
3292 
3293     bool PredBefore = false;
3294     bool SuccBefore = false;
3295 
3296     SUnit *Succ;
3297     SUnit *Pred;
3298     (void)Succ;
3299     (void)Pred;
3300 
3301     for (SDep &PredEdge : SU->Preds) {
3302       SUnit *PredSU = PredEdge.getSUnit();
3303       unsigned PredIndex = std::get<1>(
3304           *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
3305       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
3306         PredBefore = true;
3307         Pred = PredSU;
3308         break;
3309       }
3310     }
3311 
3312     for (SDep &SuccEdge : SU->Succs) {
3313       SUnit *SuccSU = SuccEdge.getSUnit();
3314       // Do not process a boundary node, it was not included in NodeOrder,
3315       // hence not in Indices either, call to std::lower_bound() below will
3316       // return Indices.end().
3317       if (SuccSU->isBoundaryNode())
3318         continue;
3319       unsigned SuccIndex = std::get<1>(
3320           *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
3321       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
3322         SuccBefore = true;
3323         Succ = SuccSU;
3324         break;
3325       }
3326     }
3327 
3328     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
3329       // instructions in circuits are allowed to be scheduled
3330       // after both a successor and predecessor.
3331       bool InCircuit = llvm::any_of(
3332           Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
3333       if (InCircuit)
3334         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
3335       else {
3336         Valid = false;
3337         NumNodeOrderIssues++;
3338         LLVM_DEBUG(dbgs() << "Predecessor ";);
3339       }
3340       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
3341                         << " are scheduled before node " << SU->NodeNum
3342                         << "\n";);
3343     }
3344   }
3345 
3346   LLVM_DEBUG({
3347     if (!Valid)
3348       dbgs() << "Invalid node order found!\n";
3349   });
3350 }
3351 
3352 /// Attempt to fix the degenerate cases when the instruction serialization
3353 /// causes the register lifetimes to overlap. For example,
3354 ///   p' = store_pi(p, b)
3355 ///      = load p, offset
3356 /// In this case p and p' overlap, which means that two registers are needed.
3357 /// Instead, this function changes the load to use p' and updates the offset.
3358 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
3359   unsigned OverlapReg = 0;
3360   unsigned NewBaseReg = 0;
3361   for (SUnit *SU : Instrs) {
3362     MachineInstr *MI = SU->getInstr();
3363     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3364       const MachineOperand &MO = MI->getOperand(i);
3365       // Look for an instruction that uses p. The instruction occurs in the
3366       // same cycle but occurs later in the serialized order.
3367       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
3368         // Check that the instruction appears in the InstrChanges structure,
3369         // which contains instructions that can have the offset updated.
3370         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3371           InstrChanges.find(SU);
3372         if (It != InstrChanges.end()) {
3373           unsigned BasePos, OffsetPos;
3374           // Update the base register and adjust the offset.
3375           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
3376             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3377             NewMI->getOperand(BasePos).setReg(NewBaseReg);
3378             int64_t NewOffset =
3379                 MI->getOperand(OffsetPos).getImm() - It->second.second;
3380             NewMI->getOperand(OffsetPos).setImm(NewOffset);
3381             SU->setInstr(NewMI);
3382             MISUnitMap[NewMI] = SU;
3383             NewMIs[MI] = NewMI;
3384           }
3385         }
3386         OverlapReg = 0;
3387         NewBaseReg = 0;
3388         break;
3389       }
3390       // Look for an instruction of the form p' = op(p), which uses and defines
3391       // two virtual registers that get allocated to the same physical register.
3392       unsigned TiedUseIdx = 0;
3393       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
3394         // OverlapReg is p in the example above.
3395         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
3396         // NewBaseReg is p' in the example above.
3397         NewBaseReg = MI->getOperand(i).getReg();
3398         break;
3399       }
3400     }
3401   }
3402 }
3403 
3404 std::deque<SUnit *>
3405 SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD,
3406                                 const std::deque<SUnit *> &Instrs) const {
3407   std::deque<SUnit *> NewOrderPhi;
3408   for (SUnit *SU : Instrs) {
3409     if (SU->getInstr()->isPHI())
3410       NewOrderPhi.push_back(SU);
3411   }
3412   std::deque<SUnit *> NewOrderI;
3413   for (SUnit *SU : Instrs) {
3414     if (!SU->getInstr()->isPHI())
3415       orderDependence(SSD, SU, NewOrderI);
3416   }
3417   llvm::append_range(NewOrderPhi, NewOrderI);
3418   return NewOrderPhi;
3419 }
3420 
3421 /// After the schedule has been formed, call this function to combine
3422 /// the instructions from the different stages/cycles.  That is, this
3423 /// function creates a schedule that represents a single iteration.
3424 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3425   // Move all instructions to the first stage from later stages.
3426   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3427     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3428          ++stage) {
3429       std::deque<SUnit *> &cycleInstrs =
3430           ScheduledInstrs[cycle + (stage * InitiationInterval)];
3431       for (SUnit *SU : llvm::reverse(cycleInstrs))
3432         ScheduledInstrs[cycle].push_front(SU);
3433     }
3434   }
3435 
3436   // Erase all the elements in the later stages. Only one iteration should
3437   // remain in the scheduled list, and it contains all the instructions.
3438   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3439     ScheduledInstrs.erase(cycle);
3440 
3441   // Change the registers in instruction as specified in the InstrChanges
3442   // map. We need to use the new registers to create the correct order.
3443   for (const SUnit &SU : SSD->SUnits)
3444     SSD->applyInstrChange(SU.getInstr(), *this);
3445 
3446   // Reorder the instructions in each cycle to fix and improve the
3447   // generated code.
3448   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3449     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3450     cycleInstrs = reorderInstructions(SSD, cycleInstrs);
3451     SSD->fixupRegisterOverlaps(cycleInstrs);
3452   }
3453 
3454   LLVM_DEBUG(dump(););
3455 }
3456 
3457 void NodeSet::print(raw_ostream &os) const {
3458   os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
3459      << " depth " << MaxDepth << " col " << Colocate << "\n";
3460   for (const auto &I : Nodes)
3461     os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
3462   os << "\n";
3463 }
3464 
3465 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3466 /// Print the schedule information to the given output.
3467 void SMSchedule::print(raw_ostream &os) const {
3468   // Iterate over each cycle.
3469   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3470     // Iterate over each instruction in the cycle.
3471     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3472     for (SUnit *CI : cycleInstrs->second) {
3473       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3474       os << "(" << CI->NodeNum << ") ";
3475       CI->getInstr()->print(os);
3476       os << "\n";
3477     }
3478   }
3479 }
3480 
3481 /// Utility function used for debugging to print the schedule.
3482 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
3483 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
3484 
3485 void ResourceManager::dumpMRT() const {
3486   LLVM_DEBUG({
3487     if (UseDFA)
3488       return;
3489     std::stringstream SS;
3490     SS << "MRT:\n";
3491     SS << std::setw(4) << "Slot";
3492     for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
3493       SS << std::setw(3) << I;
3494     SS << std::setw(7) << "#Mops"
3495        << "\n";
3496     for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
3497       SS << std::setw(4) << Slot;
3498       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
3499         SS << std::setw(3) << MRT[Slot][I];
3500       SS << std::setw(7) << NumScheduledMops[Slot] << "\n";
3501     }
3502     dbgs() << SS.str();
3503   });
3504 }
3505 #endif
3506 
3507 void ResourceManager::initProcResourceVectors(
3508     const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
3509   unsigned ProcResourceID = 0;
3510 
3511   // We currently limit the resource kinds to 64 and below so that we can use
3512   // uint64_t for Masks
3513   assert(SM.getNumProcResourceKinds() < 64 &&
3514          "Too many kinds of resources, unsupported");
3515   // Create a unique bitmask for every processor resource unit.
3516   // Skip resource at index 0, since it always references 'InvalidUnit'.
3517   Masks.resize(SM.getNumProcResourceKinds());
3518   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3519     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3520     if (Desc.SubUnitsIdxBegin)
3521       continue;
3522     Masks[I] = 1ULL << ProcResourceID;
3523     ProcResourceID++;
3524   }
3525   // Create a unique bitmask for every processor resource group.
3526   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3527     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3528     if (!Desc.SubUnitsIdxBegin)
3529       continue;
3530     Masks[I] = 1ULL << ProcResourceID;
3531     for (unsigned U = 0; U < Desc.NumUnits; ++U)
3532       Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3533     ProcResourceID++;
3534   }
3535   LLVM_DEBUG({
3536     if (SwpShowResMask) {
3537       dbgs() << "ProcResourceDesc:\n";
3538       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3539         const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3540         dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3541                          ProcResource->Name, I, Masks[I],
3542                          ProcResource->NumUnits);
3543       }
3544       dbgs() << " -----------------\n";
3545     }
3546   });
3547 }
3548 
3549 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) {
3550   LLVM_DEBUG({
3551     if (SwpDebugResource)
3552       dbgs() << "canReserveResources:\n";
3553   });
3554   if (UseDFA)
3555     return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3556         ->canReserveResources(&SU.getInstr()->getDesc());
3557 
3558   const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3559   if (!SCDesc->isValid()) {
3560     LLVM_DEBUG({
3561       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3562       dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3563     });
3564     return true;
3565   }
3566 
3567   reserveResources(SCDesc, Cycle);
3568   bool Result = !isOverbooked();
3569   unreserveResources(SCDesc, Cycle);
3570 
3571   LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";);
3572   return Result;
3573 }
3574 
3575 void ResourceManager::reserveResources(SUnit &SU, int Cycle) {
3576   LLVM_DEBUG({
3577     if (SwpDebugResource)
3578       dbgs() << "reserveResources:\n";
3579   });
3580   if (UseDFA)
3581     return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3582         ->reserveResources(&SU.getInstr()->getDesc());
3583 
3584   const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3585   if (!SCDesc->isValid()) {
3586     LLVM_DEBUG({
3587       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3588       dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3589     });
3590     return;
3591   }
3592 
3593   reserveResources(SCDesc, Cycle);
3594 
3595   LLVM_DEBUG({
3596     if (SwpDebugResource) {
3597       dumpMRT();
3598       dbgs() << "reserveResources: done!\n\n";
3599     }
3600   });
3601 }
3602 
3603 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc,
3604                                        int Cycle) {
3605   assert(!UseDFA);
3606   for (const MCWriteProcResEntry &PRE : make_range(
3607            STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3608     for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C)
3609       ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3610 
3611   for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3612     ++NumScheduledMops[positiveModulo(C, InitiationInterval)];
3613 }
3614 
3615 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc,
3616                                          int Cycle) {
3617   assert(!UseDFA);
3618   for (const MCWriteProcResEntry &PRE : make_range(
3619            STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3620     for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C)
3621       --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3622 
3623   for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3624     --NumScheduledMops[positiveModulo(C, InitiationInterval)];
3625 }
3626 
3627 bool ResourceManager::isOverbooked() const {
3628   assert(!UseDFA);
3629   for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
3630     for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3631       const MCProcResourceDesc *Desc = SM.getProcResource(I);
3632       if (MRT[Slot][I] > Desc->NumUnits)
3633         return true;
3634     }
3635     if (NumScheduledMops[Slot] > IssueWidth)
3636       return true;
3637   }
3638   return false;
3639 }
3640 
3641 int ResourceManager::calculateResMIIDFA() const {
3642   assert(UseDFA);
3643 
3644   // Sort the instructions by the number of available choices for scheduling,
3645   // least to most. Use the number of critical resources as the tie breaker.
3646   FuncUnitSorter FUS = FuncUnitSorter(*ST);
3647   for (SUnit &SU : DAG->SUnits)
3648     FUS.calcCriticalResources(*SU.getInstr());
3649   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
3650       FuncUnitOrder(FUS);
3651 
3652   for (SUnit &SU : DAG->SUnits)
3653     FuncUnitOrder.push(SU.getInstr());
3654 
3655   SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources;
3656   Resources.push_back(
3657       std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST)));
3658 
3659   while (!FuncUnitOrder.empty()) {
3660     MachineInstr *MI = FuncUnitOrder.top();
3661     FuncUnitOrder.pop();
3662     if (TII->isZeroCost(MI->getOpcode()))
3663       continue;
3664 
3665     // Attempt to reserve the instruction in an existing DFA. At least one
3666     // DFA is needed for each cycle.
3667     unsigned NumCycles = DAG->getSUnit(MI)->Latency;
3668     unsigned ReservedCycles = 0;
3669     auto *RI = Resources.begin();
3670     auto *RE = Resources.end();
3671     LLVM_DEBUG({
3672       dbgs() << "Trying to reserve resource for " << NumCycles
3673              << " cycles for \n";
3674       MI->dump();
3675     });
3676     for (unsigned C = 0; C < NumCycles; ++C)
3677       while (RI != RE) {
3678         if ((*RI)->canReserveResources(*MI)) {
3679           (*RI)->reserveResources(*MI);
3680           ++ReservedCycles;
3681           break;
3682         }
3683         RI++;
3684       }
3685     LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
3686                       << ", NumCycles:" << NumCycles << "\n");
3687     // Add new DFAs, if needed, to reserve resources.
3688     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
3689       LLVM_DEBUG(if (SwpDebugResource) dbgs()
3690                  << "NewResource created to reserve resources"
3691                  << "\n");
3692       auto *NewResource = TII->CreateTargetScheduleState(*ST);
3693       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
3694       NewResource->reserveResources(*MI);
3695       Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource));
3696     }
3697   }
3698 
3699   int Resmii = Resources.size();
3700   LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
3701   return Resmii;
3702 }
3703 
3704 int ResourceManager::calculateResMII() const {
3705   if (UseDFA)
3706     return calculateResMIIDFA();
3707 
3708   // Count each resource consumption and divide it by the number of units.
3709   // ResMII is the max value among them.
3710 
3711   int NumMops = 0;
3712   SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds());
3713   for (SUnit &SU : DAG->SUnits) {
3714     if (TII->isZeroCost(SU.getInstr()->getOpcode()))
3715       continue;
3716 
3717     const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3718     if (!SCDesc->isValid())
3719       continue;
3720 
3721     LLVM_DEBUG({
3722       if (SwpDebugResource) {
3723         DAG->dumpNode(SU);
3724         dbgs() << "  #Mops: " << SCDesc->NumMicroOps << "\n"
3725                << "  WriteProcRes: ";
3726       }
3727     });
3728     NumMops += SCDesc->NumMicroOps;
3729     for (const MCWriteProcResEntry &PRE :
3730          make_range(STI->getWriteProcResBegin(SCDesc),
3731                     STI->getWriteProcResEnd(SCDesc))) {
3732       LLVM_DEBUG({
3733         if (SwpDebugResource) {
3734           const MCProcResourceDesc *Desc =
3735               SM.getProcResource(PRE.ProcResourceIdx);
3736           dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", ";
3737         }
3738       });
3739       ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle;
3740     }
3741     LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n");
3742   }
3743 
3744   int Result = (NumMops + IssueWidth - 1) / IssueWidth;
3745   LLVM_DEBUG({
3746     if (SwpDebugResource)
3747       dbgs() << "#Mops: " << NumMops << ", "
3748              << "IssueWidth: " << IssueWidth << ", "
3749              << "Cycles: " << Result << "\n";
3750   });
3751 
3752   LLVM_DEBUG({
3753     if (SwpDebugResource) {
3754       std::stringstream SS;
3755       SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10)
3756          << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles"
3757          << "\n";
3758       dbgs() << SS.str();
3759     }
3760   });
3761   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3762     const MCProcResourceDesc *Desc = SM.getProcResource(I);
3763     int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits;
3764     LLVM_DEBUG({
3765       if (SwpDebugResource) {
3766         std::stringstream SS;
3767         SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10)
3768            << Desc->NumUnits << std::setw(10) << ResourceCount[I]
3769            << std::setw(10) << Cycles << "\n";
3770         dbgs() << SS.str();
3771       }
3772     });
3773     if (Cycles > Result)
3774       Result = Cycles;
3775   }
3776   return Result;
3777 }
3778 
3779 void ResourceManager::init(int II) {
3780   InitiationInterval = II;
3781   DFAResources.clear();
3782   DFAResources.resize(II);
3783   for (auto &I : DFAResources)
3784     I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST));
3785   MRT.clear();
3786   MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds()));
3787   NumScheduledMops.clear();
3788   NumScheduledMops.resize(II);
3789 }
3790