1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 10 // 11 // This SMS implementation is a target-independent back-end pass. When enabled, 12 // the pass runs just prior to the register allocation pass, while the machine 13 // IR is in SSA form. If software pipelining is successful, then the original 14 // loop is replaced by the optimized loop. The optimized loop contains one or 15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 16 // the instructions cannot be scheduled in a given MII, we increase the MII by 17 // one and try again. 18 // 19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 20 // represent loop carried dependences in the DAG as order edges to the Phi 21 // nodes. We also perform several passes over the DAG to eliminate unnecessary 22 // edges that inhibit the ability to pipeline. The implementation uses the 23 // DFAPacketizer class to compute the minimum initiation interval and the check 24 // where an instruction may be inserted in the pipelined schedule. 25 // 26 // In order for the SMS pass to work, several target specific hooks need to be 27 // implemented to get information about the loop structure and to rewrite 28 // instructions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PriorityQueue.h" 37 #include "llvm/ADT/SetOperations.h" 38 #include "llvm/ADT/SetVector.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/ADT/iterator_range.h" 44 #include "llvm/Analysis/AliasAnalysis.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/CodeGen/DFAPacketizer.h" 48 #include "llvm/CodeGen/LiveIntervals.h" 49 #include "llvm/CodeGen/MachineBasicBlock.h" 50 #include "llvm/CodeGen/MachineDominators.h" 51 #include "llvm/CodeGen/MachineFunction.h" 52 #include "llvm/CodeGen/MachineFunctionPass.h" 53 #include "llvm/CodeGen/MachineInstr.h" 54 #include "llvm/CodeGen/MachineInstrBuilder.h" 55 #include "llvm/CodeGen/MachineLoopInfo.h" 56 #include "llvm/CodeGen/MachineMemOperand.h" 57 #include "llvm/CodeGen/MachineOperand.h" 58 #include "llvm/CodeGen/MachinePipeliner.h" 59 #include "llvm/CodeGen/MachineRegisterInfo.h" 60 #include "llvm/CodeGen/ModuloSchedule.h" 61 #include "llvm/CodeGen/RegisterPressure.h" 62 #include "llvm/CodeGen/ScheduleDAG.h" 63 #include "llvm/CodeGen/ScheduleDAGMutation.h" 64 #include "llvm/CodeGen/TargetOpcodes.h" 65 #include "llvm/CodeGen/TargetRegisterInfo.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/Config/llvm-config.h" 68 #include "llvm/IR/Attributes.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/MC/LaneBitmask.h" 72 #include "llvm/MC/MCInstrDesc.h" 73 #include "llvm/MC/MCInstrItineraries.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <deque> 86 #include <functional> 87 #include <iterator> 88 #include <map> 89 #include <memory> 90 #include <tuple> 91 #include <utility> 92 #include <vector> 93 94 using namespace llvm; 95 96 #define DEBUG_TYPE "pipeliner" 97 98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 99 STATISTIC(NumPipelined, "Number of loops software pipelined"); 100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 109 110 /// A command line option to turn software pipelining on or off. 111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 112 cl::ZeroOrMore, 113 cl::desc("Enable Software Pipelining")); 114 115 /// A command line option to enable SWP at -Os. 116 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 117 cl::desc("Enable SWP at Os."), cl::Hidden, 118 cl::init(false)); 119 120 /// A command line argument to limit minimum initial interval for pipelining. 121 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 122 cl::desc("Size limit for the MII."), 123 cl::Hidden, cl::init(27)); 124 125 /// A command line argument to limit the number of stages in the pipeline. 126 static cl::opt<int> 127 SwpMaxStages("pipeliner-max-stages", 128 cl::desc("Maximum stages allowed in the generated scheduled."), 129 cl::Hidden, cl::init(3)); 130 131 /// A command line option to disable the pruning of chain dependences due to 132 /// an unrelated Phi. 133 static cl::opt<bool> 134 SwpPruneDeps("pipeliner-prune-deps", 135 cl::desc("Prune dependences between unrelated Phi nodes."), 136 cl::Hidden, cl::init(true)); 137 138 /// A command line option to disable the pruning of loop carried order 139 /// dependences. 140 static cl::opt<bool> 141 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 142 cl::desc("Prune loop carried order dependences."), 143 cl::Hidden, cl::init(true)); 144 145 #ifndef NDEBUG 146 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 147 #endif 148 149 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 150 cl::ReallyHidden, cl::init(false), 151 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 152 153 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 154 cl::init(false)); 155 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 156 cl::init(false)); 157 158 static cl::opt<bool> EmitTestAnnotations( 159 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 160 cl::desc("Instead of emitting the pipelined code, annotate instructions " 161 "with the generated schedule for feeding into the " 162 "-modulo-schedule-test pass")); 163 164 static cl::opt<bool> ExperimentalCodeGen( 165 "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 166 cl::desc( 167 "Use the experimental peeling code generator for software pipelining")); 168 169 namespace llvm { 170 171 // A command line option to enable the CopyToPhi DAG mutation. 172 cl::opt<bool> 173 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 174 cl::init(true), cl::ZeroOrMore, 175 cl::desc("Enable CopyToPhi DAG Mutation")); 176 177 } // end namespace llvm 178 179 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 180 char MachinePipeliner::ID = 0; 181 #ifndef NDEBUG 182 int MachinePipeliner::NumTries = 0; 183 #endif 184 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 185 186 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 187 "Modulo Software Pipelining", false, false) 188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 190 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 191 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 192 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 193 "Modulo Software Pipelining", false, false) 194 195 /// The "main" function for implementing Swing Modulo Scheduling. 196 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 197 if (skipFunction(mf.getFunction())) 198 return false; 199 200 if (!EnableSWP) 201 return false; 202 203 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 204 !EnableSWPOptSize.getPosition()) 205 return false; 206 207 if (!mf.getSubtarget().enableMachinePipeliner()) 208 return false; 209 210 // Cannot pipeline loops without instruction itineraries if we are using 211 // DFA for the pipeliner. 212 if (mf.getSubtarget().useDFAforSMS() && 213 (!mf.getSubtarget().getInstrItineraryData() || 214 mf.getSubtarget().getInstrItineraryData()->isEmpty())) 215 return false; 216 217 MF = &mf; 218 MLI = &getAnalysis<MachineLoopInfo>(); 219 MDT = &getAnalysis<MachineDominatorTree>(); 220 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 221 TII = MF->getSubtarget().getInstrInfo(); 222 RegClassInfo.runOnMachineFunction(*MF); 223 224 for (auto &L : *MLI) 225 scheduleLoop(*L); 226 227 return false; 228 } 229 230 /// Attempt to perform the SMS algorithm on the specified loop. This function is 231 /// the main entry point for the algorithm. The function identifies candidate 232 /// loops, calculates the minimum initiation interval, and attempts to schedule 233 /// the loop. 234 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 235 bool Changed = false; 236 for (auto &InnerLoop : L) 237 Changed |= scheduleLoop(*InnerLoop); 238 239 #ifndef NDEBUG 240 // Stop trying after reaching the limit (if any). 241 int Limit = SwpLoopLimit; 242 if (Limit >= 0) { 243 if (NumTries >= SwpLoopLimit) 244 return Changed; 245 NumTries++; 246 } 247 #endif 248 249 setPragmaPipelineOptions(L); 250 if (!canPipelineLoop(L)) { 251 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 252 ORE->emit([&]() { 253 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 254 L.getStartLoc(), L.getHeader()) 255 << "Failed to pipeline loop"; 256 }); 257 258 return Changed; 259 } 260 261 ++NumTrytoPipeline; 262 263 Changed = swingModuloScheduler(L); 264 265 return Changed; 266 } 267 268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 269 // Reset the pragma for the next loop in iteration. 270 disabledByPragma = false; 271 II_setByPragma = 0; 272 273 MachineBasicBlock *LBLK = L.getTopBlock(); 274 275 if (LBLK == nullptr) 276 return; 277 278 const BasicBlock *BBLK = LBLK->getBasicBlock(); 279 if (BBLK == nullptr) 280 return; 281 282 const Instruction *TI = BBLK->getTerminator(); 283 if (TI == nullptr) 284 return; 285 286 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 287 if (LoopID == nullptr) 288 return; 289 290 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 291 assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 292 293 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 294 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 295 296 if (MD == nullptr) 297 continue; 298 299 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 300 301 if (S == nullptr) 302 continue; 303 304 if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 305 assert(MD->getNumOperands() == 2 && 306 "Pipeline initiation interval hint metadata should have two operands."); 307 II_setByPragma = 308 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 309 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 310 } else if (S->getString() == "llvm.loop.pipeline.disable") { 311 disabledByPragma = true; 312 } 313 } 314 } 315 316 /// Return true if the loop can be software pipelined. The algorithm is 317 /// restricted to loops with a single basic block. Make sure that the 318 /// branch in the loop can be analyzed. 319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 320 if (L.getNumBlocks() != 1) { 321 ORE->emit([&]() { 322 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 323 L.getStartLoc(), L.getHeader()) 324 << "Not a single basic block: " 325 << ore::NV("NumBlocks", L.getNumBlocks()); 326 }); 327 return false; 328 } 329 330 if (disabledByPragma) { 331 ORE->emit([&]() { 332 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 333 L.getStartLoc(), L.getHeader()) 334 << "Disabled by Pragma."; 335 }); 336 return false; 337 } 338 339 // Check if the branch can't be understood because we can't do pipelining 340 // if that's the case. 341 LI.TBB = nullptr; 342 LI.FBB = nullptr; 343 LI.BrCond.clear(); 344 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 345 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 346 NumFailBranch++; 347 ORE->emit([&]() { 348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 349 L.getStartLoc(), L.getHeader()) 350 << "The branch can't be understood"; 351 }); 352 return false; 353 } 354 355 LI.LoopInductionVar = nullptr; 356 LI.LoopCompare = nullptr; 357 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { 358 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 359 NumFailLoop++; 360 ORE->emit([&]() { 361 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 362 L.getStartLoc(), L.getHeader()) 363 << "The loop structure is not supported"; 364 }); 365 return false; 366 } 367 368 if (!L.getLoopPreheader()) { 369 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 370 NumFailPreheader++; 371 ORE->emit([&]() { 372 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 373 L.getStartLoc(), L.getHeader()) 374 << "No loop preheader found"; 375 }); 376 return false; 377 } 378 379 // Remove any subregisters from inputs to phi nodes. 380 preprocessPhiNodes(*L.getHeader()); 381 return true; 382 } 383 384 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 385 MachineRegisterInfo &MRI = MF->getRegInfo(); 386 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); 387 388 for (MachineInstr &PI : B.phis()) { 389 MachineOperand &DefOp = PI.getOperand(0); 390 assert(DefOp.getSubReg() == 0); 391 auto *RC = MRI.getRegClass(DefOp.getReg()); 392 393 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 394 MachineOperand &RegOp = PI.getOperand(i); 395 if (RegOp.getSubReg() == 0) 396 continue; 397 398 // If the operand uses a subregister, replace it with a new register 399 // without subregisters, and generate a copy to the new register. 400 Register NewReg = MRI.createVirtualRegister(RC); 401 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 402 MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 403 const DebugLoc &DL = PredB.findDebugLoc(At); 404 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 405 .addReg(RegOp.getReg(), getRegState(RegOp), 406 RegOp.getSubReg()); 407 Slots.insertMachineInstrInMaps(*Copy); 408 RegOp.setReg(NewReg); 409 RegOp.setSubReg(0); 410 } 411 } 412 } 413 414 /// The SMS algorithm consists of the following main steps: 415 /// 1. Computation and analysis of the dependence graph. 416 /// 2. Ordering of the nodes (instructions). 417 /// 3. Attempt to Schedule the loop. 418 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 419 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 420 421 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, 422 II_setByPragma); 423 424 MachineBasicBlock *MBB = L.getHeader(); 425 // The kernel should not include any terminator instructions. These 426 // will be added back later. 427 SMS.startBlock(MBB); 428 429 // Compute the number of 'real' instructions in the basic block by 430 // ignoring terminators. 431 unsigned size = MBB->size(); 432 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 433 E = MBB->instr_end(); 434 I != E; ++I, --size) 435 ; 436 437 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 438 SMS.schedule(); 439 SMS.exitRegion(); 440 441 SMS.finishBlock(); 442 return SMS.hasNewSchedule(); 443 } 444 445 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 446 AU.addRequired<AAResultsWrapperPass>(); 447 AU.addPreserved<AAResultsWrapperPass>(); 448 AU.addRequired<MachineLoopInfo>(); 449 AU.addRequired<MachineDominatorTree>(); 450 AU.addRequired<LiveIntervals>(); 451 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 452 MachineFunctionPass::getAnalysisUsage(AU); 453 } 454 455 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 456 if (II_setByPragma > 0) 457 MII = II_setByPragma; 458 else 459 MII = std::max(ResMII, RecMII); 460 } 461 462 void SwingSchedulerDAG::setMAX_II() { 463 if (II_setByPragma > 0) 464 MAX_II = II_setByPragma; 465 else 466 MAX_II = MII + 10; 467 } 468 469 /// We override the schedule function in ScheduleDAGInstrs to implement the 470 /// scheduling part of the Swing Modulo Scheduling algorithm. 471 void SwingSchedulerDAG::schedule() { 472 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 473 buildSchedGraph(AA); 474 addLoopCarriedDependences(AA); 475 updatePhiDependences(); 476 Topo.InitDAGTopologicalSorting(); 477 changeDependences(); 478 postprocessDAG(); 479 LLVM_DEBUG(dump()); 480 481 NodeSetType NodeSets; 482 findCircuits(NodeSets); 483 NodeSetType Circuits = NodeSets; 484 485 // Calculate the MII. 486 unsigned ResMII = calculateResMII(); 487 unsigned RecMII = calculateRecMII(NodeSets); 488 489 fuseRecs(NodeSets); 490 491 // This flag is used for testing and can cause correctness problems. 492 if (SwpIgnoreRecMII) 493 RecMII = 0; 494 495 setMII(ResMII, RecMII); 496 setMAX_II(); 497 498 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 499 << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 500 501 // Can't schedule a loop without a valid MII. 502 if (MII == 0) { 503 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 504 NumFailZeroMII++; 505 Pass.ORE->emit([&]() { 506 return MachineOptimizationRemarkAnalysis( 507 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 508 << "Invalid Minimal Initiation Interval: 0"; 509 }); 510 return; 511 } 512 513 // Don't pipeline large loops. 514 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 515 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 516 << ", we don't pipleline large loops\n"); 517 NumFailLargeMaxMII++; 518 Pass.ORE->emit([&]() { 519 return MachineOptimizationRemarkAnalysis( 520 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 521 << "Minimal Initiation Interval too large: " 522 << ore::NV("MII", (int)MII) << " > " 523 << ore::NV("SwpMaxMii", SwpMaxMii) << "." 524 << "Refer to -pipeliner-max-mii."; 525 }); 526 return; 527 } 528 529 computeNodeFunctions(NodeSets); 530 531 registerPressureFilter(NodeSets); 532 533 colocateNodeSets(NodeSets); 534 535 checkNodeSets(NodeSets); 536 537 LLVM_DEBUG({ 538 for (auto &I : NodeSets) { 539 dbgs() << " Rec NodeSet "; 540 I.dump(); 541 } 542 }); 543 544 llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 545 546 groupRemainingNodes(NodeSets); 547 548 removeDuplicateNodes(NodeSets); 549 550 LLVM_DEBUG({ 551 for (auto &I : NodeSets) { 552 dbgs() << " NodeSet "; 553 I.dump(); 554 } 555 }); 556 557 computeNodeOrder(NodeSets); 558 559 // check for node order issues 560 checkValidNodeOrder(Circuits); 561 562 SMSchedule Schedule(Pass.MF); 563 Scheduled = schedulePipeline(Schedule); 564 565 if (!Scheduled){ 566 LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 567 NumFailNoSchedule++; 568 Pass.ORE->emit([&]() { 569 return MachineOptimizationRemarkAnalysis( 570 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 571 << "Unable to find schedule"; 572 }); 573 return; 574 } 575 576 unsigned numStages = Schedule.getMaxStageCount(); 577 // No need to generate pipeline if there are no overlapped iterations. 578 if (numStages == 0) { 579 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 580 NumFailZeroStage++; 581 Pass.ORE->emit([&]() { 582 return MachineOptimizationRemarkAnalysis( 583 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 584 << "No need to pipeline - no overlapped iterations in schedule."; 585 }); 586 return; 587 } 588 // Check that the maximum stage count is less than user-defined limit. 589 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 590 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 591 << " : too many stages, abort\n"); 592 NumFailLargeMaxStage++; 593 Pass.ORE->emit([&]() { 594 return MachineOptimizationRemarkAnalysis( 595 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 596 << "Too many stages in schedule: " 597 << ore::NV("numStages", (int)numStages) << " > " 598 << ore::NV("SwpMaxStages", SwpMaxStages) 599 << ". Refer to -pipeliner-max-stages."; 600 }); 601 return; 602 } 603 604 Pass.ORE->emit([&]() { 605 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 606 Loop.getHeader()) 607 << "Pipelined succesfully!"; 608 }); 609 610 // Generate the schedule as a ModuloSchedule. 611 DenseMap<MachineInstr *, int> Cycles, Stages; 612 std::vector<MachineInstr *> OrderedInsts; 613 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 614 ++Cycle) { 615 for (SUnit *SU : Schedule.getInstructions(Cycle)) { 616 OrderedInsts.push_back(SU->getInstr()); 617 Cycles[SU->getInstr()] = Cycle; 618 Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 619 } 620 } 621 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 622 for (auto &KV : NewMIs) { 623 Cycles[KV.first] = Cycles[KV.second]; 624 Stages[KV.first] = Stages[KV.second]; 625 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 626 } 627 628 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 629 std::move(Stages)); 630 if (EmitTestAnnotations) { 631 assert(NewInstrChanges.empty() && 632 "Cannot serialize a schedule with InstrChanges!"); 633 ModuloScheduleTestAnnotater MSTI(MF, MS); 634 MSTI.annotate(); 635 return; 636 } 637 // The experimental code generator can't work if there are InstChanges. 638 if (ExperimentalCodeGen && NewInstrChanges.empty()) { 639 PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 640 MSE.expand(); 641 } else { 642 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 643 MSE.expand(); 644 MSE.cleanup(); 645 } 646 ++NumPipelined; 647 } 648 649 /// Clean up after the software pipeliner runs. 650 void SwingSchedulerDAG::finishBlock() { 651 for (auto &KV : NewMIs) 652 MF.deleteMachineInstr(KV.second); 653 NewMIs.clear(); 654 655 // Call the superclass. 656 ScheduleDAGInstrs::finishBlock(); 657 } 658 659 /// Return the register values for the operands of a Phi instruction. 660 /// This function assume the instruction is a Phi. 661 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 662 unsigned &InitVal, unsigned &LoopVal) { 663 assert(Phi.isPHI() && "Expecting a Phi."); 664 665 InitVal = 0; 666 LoopVal = 0; 667 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 668 if (Phi.getOperand(i + 1).getMBB() != Loop) 669 InitVal = Phi.getOperand(i).getReg(); 670 else 671 LoopVal = Phi.getOperand(i).getReg(); 672 673 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 674 } 675 676 /// Return the Phi register value that comes the loop block. 677 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 678 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 679 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 680 return Phi.getOperand(i).getReg(); 681 return 0; 682 } 683 684 /// Return true if SUb can be reached from SUa following the chain edges. 685 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 686 SmallPtrSet<SUnit *, 8> Visited; 687 SmallVector<SUnit *, 8> Worklist; 688 Worklist.push_back(SUa); 689 while (!Worklist.empty()) { 690 const SUnit *SU = Worklist.pop_back_val(); 691 for (auto &SI : SU->Succs) { 692 SUnit *SuccSU = SI.getSUnit(); 693 if (SI.getKind() == SDep::Order) { 694 if (Visited.count(SuccSU)) 695 continue; 696 if (SuccSU == SUb) 697 return true; 698 Worklist.push_back(SuccSU); 699 Visited.insert(SuccSU); 700 } 701 } 702 } 703 return false; 704 } 705 706 /// Return true if the instruction causes a chain between memory 707 /// references before and after it. 708 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 709 return MI.isCall() || MI.mayRaiseFPException() || 710 MI.hasUnmodeledSideEffects() || 711 (MI.hasOrderedMemoryRef() && 712 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); 713 } 714 715 /// Return the underlying objects for the memory references of an instruction. 716 /// This function calls the code in ValueTracking, but first checks that the 717 /// instruction has a memory operand. 718 static void getUnderlyingObjects(const MachineInstr *MI, 719 SmallVectorImpl<const Value *> &Objs) { 720 if (!MI->hasOneMemOperand()) 721 return; 722 MachineMemOperand *MM = *MI->memoperands_begin(); 723 if (!MM->getValue()) 724 return; 725 getUnderlyingObjects(MM->getValue(), Objs); 726 for (const Value *V : Objs) { 727 if (!isIdentifiedObject(V)) { 728 Objs.clear(); 729 return; 730 } 731 Objs.push_back(V); 732 } 733 } 734 735 /// Add a chain edge between a load and store if the store can be an 736 /// alias of the load on a subsequent iteration, i.e., a loop carried 737 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 738 /// but that code doesn't create loop carried dependences. 739 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 740 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 741 Value *UnknownValue = 742 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 743 for (auto &SU : SUnits) { 744 MachineInstr &MI = *SU.getInstr(); 745 if (isDependenceBarrier(MI, AA)) 746 PendingLoads.clear(); 747 else if (MI.mayLoad()) { 748 SmallVector<const Value *, 4> Objs; 749 ::getUnderlyingObjects(&MI, Objs); 750 if (Objs.empty()) 751 Objs.push_back(UnknownValue); 752 for (auto V : Objs) { 753 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 754 SUs.push_back(&SU); 755 } 756 } else if (MI.mayStore()) { 757 SmallVector<const Value *, 4> Objs; 758 ::getUnderlyingObjects(&MI, Objs); 759 if (Objs.empty()) 760 Objs.push_back(UnknownValue); 761 for (auto V : Objs) { 762 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 763 PendingLoads.find(V); 764 if (I == PendingLoads.end()) 765 continue; 766 for (auto Load : I->second) { 767 if (isSuccOrder(Load, &SU)) 768 continue; 769 MachineInstr &LdMI = *Load->getInstr(); 770 // First, perform the cheaper check that compares the base register. 771 // If they are the same and the load offset is less than the store 772 // offset, then mark the dependence as loop carried potentially. 773 const MachineOperand *BaseOp1, *BaseOp2; 774 int64_t Offset1, Offset2; 775 bool Offset1IsScalable, Offset2IsScalable; 776 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 777 Offset1IsScalable, TRI) && 778 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 779 Offset2IsScalable, TRI)) { 780 if (BaseOp1->isIdenticalTo(*BaseOp2) && 781 Offset1IsScalable == Offset2IsScalable && 782 (int)Offset1 < (int)Offset2) { 783 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 784 "What happened to the chain edge?"); 785 SDep Dep(Load, SDep::Barrier); 786 Dep.setLatency(1); 787 SU.addPred(Dep); 788 continue; 789 } 790 } 791 // Second, the more expensive check that uses alias analysis on the 792 // base registers. If they alias, and the load offset is less than 793 // the store offset, the mark the dependence as loop carried. 794 if (!AA) { 795 SDep Dep(Load, SDep::Barrier); 796 Dep.setLatency(1); 797 SU.addPred(Dep); 798 continue; 799 } 800 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 801 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 802 if (!MMO1->getValue() || !MMO2->getValue()) { 803 SDep Dep(Load, SDep::Barrier); 804 Dep.setLatency(1); 805 SU.addPred(Dep); 806 continue; 807 } 808 if (MMO1->getValue() == MMO2->getValue() && 809 MMO1->getOffset() <= MMO2->getOffset()) { 810 SDep Dep(Load, SDep::Barrier); 811 Dep.setLatency(1); 812 SU.addPred(Dep); 813 continue; 814 } 815 if (!AA->isNoAlias( 816 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 817 MemoryLocation::getAfter(MMO2->getValue(), 818 MMO2->getAAInfo()))) { 819 SDep Dep(Load, SDep::Barrier); 820 Dep.setLatency(1); 821 SU.addPred(Dep); 822 } 823 } 824 } 825 } 826 } 827 } 828 829 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 830 /// processes dependences for PHIs. This function adds true dependences 831 /// from a PHI to a use, and a loop carried dependence from the use to the 832 /// PHI. The loop carried dependence is represented as an anti dependence 833 /// edge. This function also removes chain dependences between unrelated 834 /// PHIs. 835 void SwingSchedulerDAG::updatePhiDependences() { 836 SmallVector<SDep, 4> RemoveDeps; 837 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 838 839 // Iterate over each DAG node. 840 for (SUnit &I : SUnits) { 841 RemoveDeps.clear(); 842 // Set to true if the instruction has an operand defined by a Phi. 843 unsigned HasPhiUse = 0; 844 unsigned HasPhiDef = 0; 845 MachineInstr *MI = I.getInstr(); 846 // Iterate over each operand, and we process the definitions. 847 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 848 MOE = MI->operands_end(); 849 MOI != MOE; ++MOI) { 850 if (!MOI->isReg()) 851 continue; 852 Register Reg = MOI->getReg(); 853 if (MOI->isDef()) { 854 // If the register is used by a Phi, then create an anti dependence. 855 for (MachineRegisterInfo::use_instr_iterator 856 UI = MRI.use_instr_begin(Reg), 857 UE = MRI.use_instr_end(); 858 UI != UE; ++UI) { 859 MachineInstr *UseMI = &*UI; 860 SUnit *SU = getSUnit(UseMI); 861 if (SU != nullptr && UseMI->isPHI()) { 862 if (!MI->isPHI()) { 863 SDep Dep(SU, SDep::Anti, Reg); 864 Dep.setLatency(1); 865 I.addPred(Dep); 866 } else { 867 HasPhiDef = Reg; 868 // Add a chain edge to a dependent Phi that isn't an existing 869 // predecessor. 870 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 871 I.addPred(SDep(SU, SDep::Barrier)); 872 } 873 } 874 } 875 } else if (MOI->isUse()) { 876 // If the register is defined by a Phi, then create a true dependence. 877 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 878 if (DefMI == nullptr) 879 continue; 880 SUnit *SU = getSUnit(DefMI); 881 if (SU != nullptr && DefMI->isPHI()) { 882 if (!MI->isPHI()) { 883 SDep Dep(SU, SDep::Data, Reg); 884 Dep.setLatency(0); 885 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep); 886 I.addPred(Dep); 887 } else { 888 HasPhiUse = Reg; 889 // Add a chain edge to a dependent Phi that isn't an existing 890 // predecessor. 891 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 892 I.addPred(SDep(SU, SDep::Barrier)); 893 } 894 } 895 } 896 } 897 // Remove order dependences from an unrelated Phi. 898 if (!SwpPruneDeps) 899 continue; 900 for (auto &PI : I.Preds) { 901 MachineInstr *PMI = PI.getSUnit()->getInstr(); 902 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 903 if (I.getInstr()->isPHI()) { 904 if (PMI->getOperand(0).getReg() == HasPhiUse) 905 continue; 906 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 907 continue; 908 } 909 RemoveDeps.push_back(PI); 910 } 911 } 912 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 913 I.removePred(RemoveDeps[i]); 914 } 915 } 916 917 /// Iterate over each DAG node and see if we can change any dependences 918 /// in order to reduce the recurrence MII. 919 void SwingSchedulerDAG::changeDependences() { 920 // See if an instruction can use a value from the previous iteration. 921 // If so, we update the base and offset of the instruction and change 922 // the dependences. 923 for (SUnit &I : SUnits) { 924 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 925 int64_t NewOffset = 0; 926 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 927 NewOffset)) 928 continue; 929 930 // Get the MI and SUnit for the instruction that defines the original base. 931 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 932 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 933 if (!DefMI) 934 continue; 935 SUnit *DefSU = getSUnit(DefMI); 936 if (!DefSU) 937 continue; 938 // Get the MI and SUnit for the instruction that defins the new base. 939 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 940 if (!LastMI) 941 continue; 942 SUnit *LastSU = getSUnit(LastMI); 943 if (!LastSU) 944 continue; 945 946 if (Topo.IsReachable(&I, LastSU)) 947 continue; 948 949 // Remove the dependence. The value now depends on a prior iteration. 950 SmallVector<SDep, 4> Deps; 951 for (const SDep &P : I.Preds) 952 if (P.getSUnit() == DefSU) 953 Deps.push_back(P); 954 for (int i = 0, e = Deps.size(); i != e; i++) { 955 Topo.RemovePred(&I, Deps[i].getSUnit()); 956 I.removePred(Deps[i]); 957 } 958 // Remove the chain dependence between the instructions. 959 Deps.clear(); 960 for (auto &P : LastSU->Preds) 961 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 962 Deps.push_back(P); 963 for (int i = 0, e = Deps.size(); i != e; i++) { 964 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 965 LastSU->removePred(Deps[i]); 966 } 967 968 // Add a dependence between the new instruction and the instruction 969 // that defines the new base. 970 SDep Dep(&I, SDep::Anti, NewBase); 971 Topo.AddPred(LastSU, &I); 972 LastSU->addPred(Dep); 973 974 // Remember the base and offset information so that we can update the 975 // instruction during code generation. 976 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 977 } 978 } 979 980 namespace { 981 982 // FuncUnitSorter - Comparison operator used to sort instructions by 983 // the number of functional unit choices. 984 struct FuncUnitSorter { 985 const InstrItineraryData *InstrItins; 986 const MCSubtargetInfo *STI; 987 DenseMap<InstrStage::FuncUnits, unsigned> Resources; 988 989 FuncUnitSorter(const TargetSubtargetInfo &TSI) 990 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 991 992 // Compute the number of functional unit alternatives needed 993 // at each stage, and take the minimum value. We prioritize the 994 // instructions by the least number of choices first. 995 unsigned minFuncUnits(const MachineInstr *Inst, 996 InstrStage::FuncUnits &F) const { 997 unsigned SchedClass = Inst->getDesc().getSchedClass(); 998 unsigned min = UINT_MAX; 999 if (InstrItins && !InstrItins->isEmpty()) { 1000 for (const InstrStage &IS : 1001 make_range(InstrItins->beginStage(SchedClass), 1002 InstrItins->endStage(SchedClass))) { 1003 InstrStage::FuncUnits funcUnits = IS.getUnits(); 1004 unsigned numAlternatives = countPopulation(funcUnits); 1005 if (numAlternatives < min) { 1006 min = numAlternatives; 1007 F = funcUnits; 1008 } 1009 } 1010 return min; 1011 } 1012 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1013 const MCSchedClassDesc *SCDesc = 1014 STI->getSchedModel().getSchedClassDesc(SchedClass); 1015 if (!SCDesc->isValid()) 1016 // No valid Schedule Class Desc for schedClass, should be 1017 // Pseudo/PostRAPseudo 1018 return min; 1019 1020 for (const MCWriteProcResEntry &PRE : 1021 make_range(STI->getWriteProcResBegin(SCDesc), 1022 STI->getWriteProcResEnd(SCDesc))) { 1023 if (!PRE.Cycles) 1024 continue; 1025 const MCProcResourceDesc *ProcResource = 1026 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 1027 unsigned NumUnits = ProcResource->NumUnits; 1028 if (NumUnits < min) { 1029 min = NumUnits; 1030 F = PRE.ProcResourceIdx; 1031 } 1032 } 1033 return min; 1034 } 1035 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1036 } 1037 1038 // Compute the critical resources needed by the instruction. This 1039 // function records the functional units needed by instructions that 1040 // must use only one functional unit. We use this as a tie breaker 1041 // for computing the resource MII. The instrutions that require 1042 // the same, highly used, functional unit have high priority. 1043 void calcCriticalResources(MachineInstr &MI) { 1044 unsigned SchedClass = MI.getDesc().getSchedClass(); 1045 if (InstrItins && !InstrItins->isEmpty()) { 1046 for (const InstrStage &IS : 1047 make_range(InstrItins->beginStage(SchedClass), 1048 InstrItins->endStage(SchedClass))) { 1049 InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1050 if (countPopulation(FuncUnits) == 1) 1051 Resources[FuncUnits]++; 1052 } 1053 return; 1054 } 1055 if (STI && STI->getSchedModel().hasInstrSchedModel()) { 1056 const MCSchedClassDesc *SCDesc = 1057 STI->getSchedModel().getSchedClassDesc(SchedClass); 1058 if (!SCDesc->isValid()) 1059 // No valid Schedule Class Desc for schedClass, should be 1060 // Pseudo/PostRAPseudo 1061 return; 1062 1063 for (const MCWriteProcResEntry &PRE : 1064 make_range(STI->getWriteProcResBegin(SCDesc), 1065 STI->getWriteProcResEnd(SCDesc))) { 1066 if (!PRE.Cycles) 1067 continue; 1068 Resources[PRE.ProcResourceIdx]++; 1069 } 1070 return; 1071 } 1072 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 1073 } 1074 1075 /// Return true if IS1 has less priority than IS2. 1076 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1077 InstrStage::FuncUnits F1 = 0, F2 = 0; 1078 unsigned MFUs1 = minFuncUnits(IS1, F1); 1079 unsigned MFUs2 = minFuncUnits(IS2, F2); 1080 if (MFUs1 == MFUs2) 1081 return Resources.lookup(F1) < Resources.lookup(F2); 1082 return MFUs1 > MFUs2; 1083 } 1084 }; 1085 1086 } // end anonymous namespace 1087 1088 /// Calculate the resource constrained minimum initiation interval for the 1089 /// specified loop. We use the DFA to model the resources needed for 1090 /// each instruction, and we ignore dependences. A different DFA is created 1091 /// for each cycle that is required. When adding a new instruction, we attempt 1092 /// to add it to each existing DFA, until a legal space is found. If the 1093 /// instruction cannot be reserved in an existing DFA, we create a new one. 1094 unsigned SwingSchedulerDAG::calculateResMII() { 1095 1096 LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1097 SmallVector<ResourceManager*, 8> Resources; 1098 MachineBasicBlock *MBB = Loop.getHeader(); 1099 Resources.push_back(new ResourceManager(&MF.getSubtarget())); 1100 1101 // Sort the instructions by the number of available choices for scheduling, 1102 // least to most. Use the number of critical resources as the tie breaker. 1103 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); 1104 for (MachineInstr &MI : 1105 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator())) 1106 FUS.calcCriticalResources(MI); 1107 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1108 FuncUnitOrder(FUS); 1109 1110 for (MachineInstr &MI : 1111 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator())) 1112 FuncUnitOrder.push(&MI); 1113 1114 while (!FuncUnitOrder.empty()) { 1115 MachineInstr *MI = FuncUnitOrder.top(); 1116 FuncUnitOrder.pop(); 1117 if (TII->isZeroCost(MI->getOpcode())) 1118 continue; 1119 // Attempt to reserve the instruction in an existing DFA. At least one 1120 // DFA is needed for each cycle. 1121 unsigned NumCycles = getSUnit(MI)->Latency; 1122 unsigned ReservedCycles = 0; 1123 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); 1124 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); 1125 LLVM_DEBUG({ 1126 dbgs() << "Trying to reserve resource for " << NumCycles 1127 << " cycles for \n"; 1128 MI->dump(); 1129 }); 1130 for (unsigned C = 0; C < NumCycles; ++C) 1131 while (RI != RE) { 1132 if ((*RI)->canReserveResources(*MI)) { 1133 (*RI)->reserveResources(*MI); 1134 ++ReservedCycles; 1135 break; 1136 } 1137 RI++; 1138 } 1139 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 1140 << ", NumCycles:" << NumCycles << "\n"); 1141 // Add new DFAs, if needed, to reserve resources. 1142 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1143 LLVM_DEBUG(if (SwpDebugResource) dbgs() 1144 << "NewResource created to reserve resources" 1145 << "\n"); 1146 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); 1147 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1148 NewResource->reserveResources(*MI); 1149 Resources.push_back(NewResource); 1150 } 1151 } 1152 int Resmii = Resources.size(); 1153 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 1154 // Delete the memory for each of the DFAs that were created earlier. 1155 for (ResourceManager *RI : Resources) { 1156 ResourceManager *D = RI; 1157 delete D; 1158 } 1159 Resources.clear(); 1160 return Resmii; 1161 } 1162 1163 /// Calculate the recurrence-constrainted minimum initiation interval. 1164 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1165 /// for each circuit. The II needs to satisfy the inequality 1166 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1167 /// II that satisfies the inequality, and the RecMII is the maximum 1168 /// of those values. 1169 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1170 unsigned RecMII = 0; 1171 1172 for (NodeSet &Nodes : NodeSets) { 1173 if (Nodes.empty()) 1174 continue; 1175 1176 unsigned Delay = Nodes.getLatency(); 1177 unsigned Distance = 1; 1178 1179 // ii = ceil(delay / distance) 1180 unsigned CurMII = (Delay + Distance - 1) / Distance; 1181 Nodes.setRecMII(CurMII); 1182 if (CurMII > RecMII) 1183 RecMII = CurMII; 1184 } 1185 1186 return RecMII; 1187 } 1188 1189 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1190 /// but we do this to find the circuits, and then change them back. 1191 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1192 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1193 for (SUnit &SU : SUnits) { 1194 for (SDep &Pred : SU.Preds) 1195 if (Pred.getKind() == SDep::Anti) 1196 DepsAdded.push_back(std::make_pair(&SU, Pred)); 1197 } 1198 for (std::pair<SUnit *, SDep> &P : DepsAdded) { 1199 // Remove this anti dependency and add one in the reverse direction. 1200 SUnit *SU = P.first; 1201 SDep &D = P.second; 1202 SUnit *TargetSU = D.getSUnit(); 1203 unsigned Reg = D.getReg(); 1204 unsigned Lat = D.getLatency(); 1205 SU->removePred(D); 1206 SDep Dep(SU, SDep::Anti, Reg); 1207 Dep.setLatency(Lat); 1208 TargetSU->addPred(Dep); 1209 } 1210 } 1211 1212 /// Create the adjacency structure of the nodes in the graph. 1213 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1214 SwingSchedulerDAG *DAG) { 1215 BitVector Added(SUnits.size()); 1216 DenseMap<int, int> OutputDeps; 1217 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1218 Added.reset(); 1219 // Add any successor to the adjacency matrix and exclude duplicates. 1220 for (auto &SI : SUnits[i].Succs) { 1221 // Only create a back-edge on the first and last nodes of a dependence 1222 // chain. This records any chains and adds them later. 1223 if (SI.getKind() == SDep::Output) { 1224 int N = SI.getSUnit()->NodeNum; 1225 int BackEdge = i; 1226 auto Dep = OutputDeps.find(BackEdge); 1227 if (Dep != OutputDeps.end()) { 1228 BackEdge = Dep->second; 1229 OutputDeps.erase(Dep); 1230 } 1231 OutputDeps[N] = BackEdge; 1232 } 1233 // Do not process a boundary node, an artificial node. 1234 // A back-edge is processed only if it goes to a Phi. 1235 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 1236 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1237 continue; 1238 int N = SI.getSUnit()->NodeNum; 1239 if (!Added.test(N)) { 1240 AdjK[i].push_back(N); 1241 Added.set(N); 1242 } 1243 } 1244 // A chain edge between a store and a load is treated as a back-edge in the 1245 // adjacency matrix. 1246 for (auto &PI : SUnits[i].Preds) { 1247 if (!SUnits[i].getInstr()->mayStore() || 1248 !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 1249 continue; 1250 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1251 int N = PI.getSUnit()->NodeNum; 1252 if (!Added.test(N)) { 1253 AdjK[i].push_back(N); 1254 Added.set(N); 1255 } 1256 } 1257 } 1258 } 1259 // Add back-edges in the adjacency matrix for the output dependences. 1260 for (auto &OD : OutputDeps) 1261 if (!Added.test(OD.second)) { 1262 AdjK[OD.first].push_back(OD.second); 1263 Added.set(OD.second); 1264 } 1265 } 1266 1267 /// Identify an elementary circuit in the dependence graph starting at the 1268 /// specified node. 1269 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1270 bool HasBackedge) { 1271 SUnit *SV = &SUnits[V]; 1272 bool F = false; 1273 Stack.insert(SV); 1274 Blocked.set(V); 1275 1276 for (auto W : AdjK[V]) { 1277 if (NumPaths > MaxPaths) 1278 break; 1279 if (W < S) 1280 continue; 1281 if (W == S) { 1282 if (!HasBackedge) 1283 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1284 F = true; 1285 ++NumPaths; 1286 break; 1287 } else if (!Blocked.test(W)) { 1288 if (circuit(W, S, NodeSets, 1289 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 1290 F = true; 1291 } 1292 } 1293 1294 if (F) 1295 unblock(V); 1296 else { 1297 for (auto W : AdjK[V]) { 1298 if (W < S) 1299 continue; 1300 if (B[W].count(SV) == 0) 1301 B[W].insert(SV); 1302 } 1303 } 1304 Stack.pop_back(); 1305 return F; 1306 } 1307 1308 /// Unblock a node in the circuit finding algorithm. 1309 void SwingSchedulerDAG::Circuits::unblock(int U) { 1310 Blocked.reset(U); 1311 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1312 while (!BU.empty()) { 1313 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1314 assert(SI != BU.end() && "Invalid B set."); 1315 SUnit *W = *SI; 1316 BU.erase(W); 1317 if (Blocked.test(W->NodeNum)) 1318 unblock(W->NodeNum); 1319 } 1320 } 1321 1322 /// Identify all the elementary circuits in the dependence graph using 1323 /// Johnson's circuit algorithm. 1324 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1325 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1326 // but we do this to find the circuits, and then change them back. 1327 swapAntiDependences(SUnits); 1328 1329 Circuits Cir(SUnits, Topo); 1330 // Create the adjacency structure. 1331 Cir.createAdjacencyStructure(this); 1332 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1333 Cir.reset(); 1334 Cir.circuit(i, i, NodeSets); 1335 } 1336 1337 // Change the dependences back so that we've created a DAG again. 1338 swapAntiDependences(SUnits); 1339 } 1340 1341 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 1342 // is loop-carried to the USE in next iteration. This will help pipeliner avoid 1343 // additional copies that are needed across iterations. An artificial dependence 1344 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 1345 1346 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 1347 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 1348 // PHI-------True-Dep------> USEOfPhi 1349 1350 // The mutation creates 1351 // USEOfPHI -------Artificial-Dep---> SRCOfCopy 1352 1353 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 1354 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 1355 // late to avoid additional copies across iterations. The possible scheduling 1356 // order would be 1357 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 1358 1359 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 1360 for (SUnit &SU : DAG->SUnits) { 1361 // Find the COPY/REG_SEQUENCE instruction. 1362 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 1363 continue; 1364 1365 // Record the loop carried PHIs. 1366 SmallVector<SUnit *, 4> PHISUs; 1367 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 1368 SmallVector<SUnit *, 4> SrcSUs; 1369 1370 for (auto &Dep : SU.Preds) { 1371 SUnit *TmpSU = Dep.getSUnit(); 1372 MachineInstr *TmpMI = TmpSU->getInstr(); 1373 SDep::Kind DepKind = Dep.getKind(); 1374 // Save the loop carried PHI. 1375 if (DepKind == SDep::Anti && TmpMI->isPHI()) 1376 PHISUs.push_back(TmpSU); 1377 // Save the source of COPY/REG_SEQUENCE. 1378 // If the source has no pre-decessors, we will end up creating cycles. 1379 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 1380 SrcSUs.push_back(TmpSU); 1381 } 1382 1383 if (PHISUs.size() == 0 || SrcSUs.size() == 0) 1384 continue; 1385 1386 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 1387 // SUnit to the container. 1388 SmallVector<SUnit *, 8> UseSUs; 1389 // Do not use iterator based loop here as we are updating the container. 1390 for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1391 for (auto &Dep : PHISUs[Index]->Succs) { 1392 if (Dep.getKind() != SDep::Data) 1393 continue; 1394 1395 SUnit *TmpSU = Dep.getSUnit(); 1396 MachineInstr *TmpMI = TmpSU->getInstr(); 1397 if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 1398 PHISUs.push_back(TmpSU); 1399 continue; 1400 } 1401 UseSUs.push_back(TmpSU); 1402 } 1403 } 1404 1405 if (UseSUs.size() == 0) 1406 continue; 1407 1408 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 1409 // Add the artificial dependencies if it does not form a cycle. 1410 for (auto I : UseSUs) { 1411 for (auto Src : SrcSUs) { 1412 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 1413 Src->addPred(SDep(I, SDep::Artificial)); 1414 SDAG->Topo.AddPred(Src, I); 1415 } 1416 } 1417 } 1418 } 1419 } 1420 1421 /// Return true for DAG nodes that we ignore when computing the cost functions. 1422 /// We ignore the back-edge recurrence in order to avoid unbounded recursion 1423 /// in the calculation of the ASAP, ALAP, etc functions. 1424 static bool ignoreDependence(const SDep &D, bool isPred) { 1425 if (D.isArtificial()) 1426 return true; 1427 return D.getKind() == SDep::Anti && isPred; 1428 } 1429 1430 /// Compute several functions need to order the nodes for scheduling. 1431 /// ASAP - Earliest time to schedule a node. 1432 /// ALAP - Latest time to schedule a node. 1433 /// MOV - Mobility function, difference between ALAP and ASAP. 1434 /// D - Depth of each node. 1435 /// H - Height of each node. 1436 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1437 ScheduleInfo.resize(SUnits.size()); 1438 1439 LLVM_DEBUG({ 1440 for (int I : Topo) { 1441 const SUnit &SU = SUnits[I]; 1442 dumpNode(SU); 1443 } 1444 }); 1445 1446 int maxASAP = 0; 1447 // Compute ASAP and ZeroLatencyDepth. 1448 for (int I : Topo) { 1449 int asap = 0; 1450 int zeroLatencyDepth = 0; 1451 SUnit *SU = &SUnits[I]; 1452 for (const SDep &P : SU->Preds) { 1453 SUnit *pred = P.getSUnit(); 1454 if (P.getLatency() == 0) 1455 zeroLatencyDepth = 1456 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 1457 if (ignoreDependence(P, true)) 1458 continue; 1459 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 1460 getDistance(pred, SU, P) * MII)); 1461 } 1462 maxASAP = std::max(maxASAP, asap); 1463 ScheduleInfo[I].ASAP = asap; 1464 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 1465 } 1466 1467 // Compute ALAP, ZeroLatencyHeight, and MOV. 1468 for (int I : llvm::reverse(Topo)) { 1469 int alap = maxASAP; 1470 int zeroLatencyHeight = 0; 1471 SUnit *SU = &SUnits[I]; 1472 for (const SDep &S : SU->Succs) { 1473 SUnit *succ = S.getSUnit(); 1474 if (S.getLatency() == 0) 1475 zeroLatencyHeight = 1476 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 1477 if (ignoreDependence(S, true)) 1478 continue; 1479 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 1480 getDistance(SU, succ, S) * MII)); 1481 } 1482 1483 ScheduleInfo[I].ALAP = alap; 1484 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 1485 } 1486 1487 // After computing the node functions, compute the summary for each node set. 1488 for (NodeSet &I : NodeSets) 1489 I.computeNodeSetInfo(this); 1490 1491 LLVM_DEBUG({ 1492 for (unsigned i = 0; i < SUnits.size(); i++) { 1493 dbgs() << "\tNode " << i << ":\n"; 1494 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1495 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1496 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1497 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1498 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1499 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 1500 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 1501 } 1502 }); 1503 } 1504 1505 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1506 /// as the predecessors of the elements of NodeOrder that are not also in 1507 /// NodeOrder. 1508 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1509 SmallSetVector<SUnit *, 8> &Preds, 1510 const NodeSet *S = nullptr) { 1511 Preds.clear(); 1512 for (const SUnit *SU : NodeOrder) { 1513 for (const SDep &Pred : SU->Preds) { 1514 if (S && S->count(Pred.getSUnit()) == 0) 1515 continue; 1516 if (ignoreDependence(Pred, true)) 1517 continue; 1518 if (NodeOrder.count(Pred.getSUnit()) == 0) 1519 Preds.insert(Pred.getSUnit()); 1520 } 1521 // Back-edges are predecessors with an anti-dependence. 1522 for (const SDep &Succ : SU->Succs) { 1523 if (Succ.getKind() != SDep::Anti) 1524 continue; 1525 if (S && S->count(Succ.getSUnit()) == 0) 1526 continue; 1527 if (NodeOrder.count(Succ.getSUnit()) == 0) 1528 Preds.insert(Succ.getSUnit()); 1529 } 1530 } 1531 return !Preds.empty(); 1532 } 1533 1534 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1535 /// as the successors of the elements of NodeOrder that are not also in 1536 /// NodeOrder. 1537 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1538 SmallSetVector<SUnit *, 8> &Succs, 1539 const NodeSet *S = nullptr) { 1540 Succs.clear(); 1541 for (const SUnit *SU : NodeOrder) { 1542 for (const SDep &Succ : SU->Succs) { 1543 if (S && S->count(Succ.getSUnit()) == 0) 1544 continue; 1545 if (ignoreDependence(Succ, false)) 1546 continue; 1547 if (NodeOrder.count(Succ.getSUnit()) == 0) 1548 Succs.insert(Succ.getSUnit()); 1549 } 1550 for (const SDep &Pred : SU->Preds) { 1551 if (Pred.getKind() != SDep::Anti) 1552 continue; 1553 if (S && S->count(Pred.getSUnit()) == 0) 1554 continue; 1555 if (NodeOrder.count(Pred.getSUnit()) == 0) 1556 Succs.insert(Pred.getSUnit()); 1557 } 1558 } 1559 return !Succs.empty(); 1560 } 1561 1562 /// Return true if there is a path from the specified node to any of the nodes 1563 /// in DestNodes. Keep track and return the nodes in any path. 1564 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1565 SetVector<SUnit *> &DestNodes, 1566 SetVector<SUnit *> &Exclude, 1567 SmallPtrSet<SUnit *, 8> &Visited) { 1568 if (Cur->isBoundaryNode()) 1569 return false; 1570 if (Exclude.contains(Cur)) 1571 return false; 1572 if (DestNodes.contains(Cur)) 1573 return true; 1574 if (!Visited.insert(Cur).second) 1575 return Path.contains(Cur); 1576 bool FoundPath = false; 1577 for (auto &SI : Cur->Succs) 1578 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1579 for (auto &PI : Cur->Preds) 1580 if (PI.getKind() == SDep::Anti) 1581 FoundPath |= 1582 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1583 if (FoundPath) 1584 Path.insert(Cur); 1585 return FoundPath; 1586 } 1587 1588 /// Compute the live-out registers for the instructions in a node-set. 1589 /// The live-out registers are those that are defined in the node-set, 1590 /// but not used. Except for use operands of Phis. 1591 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1592 NodeSet &NS) { 1593 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1594 MachineRegisterInfo &MRI = MF.getRegInfo(); 1595 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1596 SmallSet<unsigned, 4> Uses; 1597 for (SUnit *SU : NS) { 1598 const MachineInstr *MI = SU->getInstr(); 1599 if (MI->isPHI()) 1600 continue; 1601 for (const MachineOperand &MO : MI->operands()) 1602 if (MO.isReg() && MO.isUse()) { 1603 Register Reg = MO.getReg(); 1604 if (Register::isVirtualRegister(Reg)) 1605 Uses.insert(Reg); 1606 else if (MRI.isAllocatable(Reg)) 1607 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1608 ++Units) 1609 Uses.insert(*Units); 1610 } 1611 } 1612 for (SUnit *SU : NS) 1613 for (const MachineOperand &MO : SU->getInstr()->operands()) 1614 if (MO.isReg() && MO.isDef() && !MO.isDead()) { 1615 Register Reg = MO.getReg(); 1616 if (Register::isVirtualRegister(Reg)) { 1617 if (!Uses.count(Reg)) 1618 LiveOutRegs.push_back(RegisterMaskPair(Reg, 1619 LaneBitmask::getNone())); 1620 } else if (MRI.isAllocatable(Reg)) { 1621 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 1622 ++Units) 1623 if (!Uses.count(*Units)) 1624 LiveOutRegs.push_back(RegisterMaskPair(*Units, 1625 LaneBitmask::getNone())); 1626 } 1627 } 1628 RPTracker.addLiveRegs(LiveOutRegs); 1629 } 1630 1631 /// A heuristic to filter nodes in recurrent node-sets if the register 1632 /// pressure of a set is too high. 1633 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1634 for (auto &NS : NodeSets) { 1635 // Skip small node-sets since they won't cause register pressure problems. 1636 if (NS.size() <= 2) 1637 continue; 1638 IntervalPressure RecRegPressure; 1639 RegPressureTracker RecRPTracker(RecRegPressure); 1640 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1641 computeLiveOuts(MF, RecRPTracker, NS); 1642 RecRPTracker.closeBottom(); 1643 1644 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1645 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 1646 return A->NodeNum > B->NodeNum; 1647 }); 1648 1649 for (auto &SU : SUnits) { 1650 // Since we're computing the register pressure for a subset of the 1651 // instructions in a block, we need to set the tracker for each 1652 // instruction in the node-set. The tracker is set to the instruction 1653 // just after the one we're interested in. 1654 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1655 RecRPTracker.setPos(std::next(CurInstI)); 1656 1657 RegPressureDelta RPDelta; 1658 ArrayRef<PressureChange> CriticalPSets; 1659 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1660 CriticalPSets, 1661 RecRegPressure.MaxSetPressure); 1662 if (RPDelta.Excess.isValid()) { 1663 LLVM_DEBUG( 1664 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1665 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1666 << ":" << RPDelta.Excess.getUnitInc()); 1667 NS.setExceedPressure(SU); 1668 break; 1669 } 1670 RecRPTracker.recede(); 1671 } 1672 } 1673 } 1674 1675 /// A heuristic to colocate node sets that have the same set of 1676 /// successors. 1677 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1678 unsigned Colocate = 0; 1679 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1680 NodeSet &N1 = NodeSets[i]; 1681 SmallSetVector<SUnit *, 8> S1; 1682 if (N1.empty() || !succ_L(N1, S1)) 1683 continue; 1684 for (int j = i + 1; j < e; ++j) { 1685 NodeSet &N2 = NodeSets[j]; 1686 if (N1.compareRecMII(N2) != 0) 1687 continue; 1688 SmallSetVector<SUnit *, 8> S2; 1689 if (N2.empty() || !succ_L(N2, S2)) 1690 continue; 1691 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 1692 N1.setColocate(++Colocate); 1693 N2.setColocate(Colocate); 1694 break; 1695 } 1696 } 1697 } 1698 } 1699 1700 /// Check if the existing node-sets are profitable. If not, then ignore the 1701 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1702 /// a heuristic. If the MII is large and all the recurrent node-sets are small, 1703 /// then it's best to try to schedule all instructions together instead of 1704 /// starting with the recurrent node-sets. 1705 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1706 // Look for loops with a large MII. 1707 if (MII < 17) 1708 return; 1709 // Check if the node-set contains only a simple add recurrence. 1710 for (auto &NS : NodeSets) { 1711 if (NS.getRecMII() > 2) 1712 return; 1713 if (NS.getMaxDepth() > MII) 1714 return; 1715 } 1716 NodeSets.clear(); 1717 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1718 } 1719 1720 /// Add the nodes that do not belong to a recurrence set into groups 1721 /// based upon connected componenets. 1722 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1723 SetVector<SUnit *> NodesAdded; 1724 SmallPtrSet<SUnit *, 8> Visited; 1725 // Add the nodes that are on a path between the previous node sets and 1726 // the current node set. 1727 for (NodeSet &I : NodeSets) { 1728 SmallSetVector<SUnit *, 8> N; 1729 // Add the nodes from the current node set to the previous node set. 1730 if (succ_L(I, N)) { 1731 SetVector<SUnit *> Path; 1732 for (SUnit *NI : N) { 1733 Visited.clear(); 1734 computePath(NI, Path, NodesAdded, I, Visited); 1735 } 1736 if (!Path.empty()) 1737 I.insert(Path.begin(), Path.end()); 1738 } 1739 // Add the nodes from the previous node set to the current node set. 1740 N.clear(); 1741 if (succ_L(NodesAdded, N)) { 1742 SetVector<SUnit *> Path; 1743 for (SUnit *NI : N) { 1744 Visited.clear(); 1745 computePath(NI, Path, I, NodesAdded, Visited); 1746 } 1747 if (!Path.empty()) 1748 I.insert(Path.begin(), Path.end()); 1749 } 1750 NodesAdded.insert(I.begin(), I.end()); 1751 } 1752 1753 // Create a new node set with the connected nodes of any successor of a node 1754 // in a recurrent set. 1755 NodeSet NewSet; 1756 SmallSetVector<SUnit *, 8> N; 1757 if (succ_L(NodesAdded, N)) 1758 for (SUnit *I : N) 1759 addConnectedNodes(I, NewSet, NodesAdded); 1760 if (!NewSet.empty()) 1761 NodeSets.push_back(NewSet); 1762 1763 // Create a new node set with the connected nodes of any predecessor of a node 1764 // in a recurrent set. 1765 NewSet.clear(); 1766 if (pred_L(NodesAdded, N)) 1767 for (SUnit *I : N) 1768 addConnectedNodes(I, NewSet, NodesAdded); 1769 if (!NewSet.empty()) 1770 NodeSets.push_back(NewSet); 1771 1772 // Create new nodes sets with the connected nodes any remaining node that 1773 // has no predecessor. 1774 for (SUnit &SU : SUnits) { 1775 if (NodesAdded.count(&SU) == 0) { 1776 NewSet.clear(); 1777 addConnectedNodes(&SU, NewSet, NodesAdded); 1778 if (!NewSet.empty()) 1779 NodeSets.push_back(NewSet); 1780 } 1781 } 1782 } 1783 1784 /// Add the node to the set, and add all of its connected nodes to the set. 1785 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1786 SetVector<SUnit *> &NodesAdded) { 1787 NewSet.insert(SU); 1788 NodesAdded.insert(SU); 1789 for (auto &SI : SU->Succs) { 1790 SUnit *Successor = SI.getSUnit(); 1791 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1792 addConnectedNodes(Successor, NewSet, NodesAdded); 1793 } 1794 for (auto &PI : SU->Preds) { 1795 SUnit *Predecessor = PI.getSUnit(); 1796 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1797 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1798 } 1799 } 1800 1801 /// Return true if Set1 contains elements in Set2. The elements in common 1802 /// are returned in a different container. 1803 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1804 SmallSetVector<SUnit *, 8> &Result) { 1805 Result.clear(); 1806 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1807 SUnit *SU = Set1[i]; 1808 if (Set2.count(SU) != 0) 1809 Result.insert(SU); 1810 } 1811 return !Result.empty(); 1812 } 1813 1814 /// Merge the recurrence node sets that have the same initial node. 1815 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1816 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1817 ++I) { 1818 NodeSet &NI = *I; 1819 for (NodeSetType::iterator J = I + 1; J != E;) { 1820 NodeSet &NJ = *J; 1821 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1822 if (NJ.compareRecMII(NI) > 0) 1823 NI.setRecMII(NJ.getRecMII()); 1824 for (SUnit *SU : *J) 1825 I->insert(SU); 1826 NodeSets.erase(J); 1827 E = NodeSets.end(); 1828 } else { 1829 ++J; 1830 } 1831 } 1832 } 1833 } 1834 1835 /// Remove nodes that have been scheduled in previous NodeSets. 1836 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1837 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1838 ++I) 1839 for (NodeSetType::iterator J = I + 1; J != E;) { 1840 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1841 1842 if (J->empty()) { 1843 NodeSets.erase(J); 1844 E = NodeSets.end(); 1845 } else { 1846 ++J; 1847 } 1848 } 1849 } 1850 1851 /// Compute an ordered list of the dependence graph nodes, which 1852 /// indicates the order that the nodes will be scheduled. This is a 1853 /// two-level algorithm. First, a partial order is created, which 1854 /// consists of a list of sets ordered from highest to lowest priority. 1855 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1856 SmallSetVector<SUnit *, 8> R; 1857 NodeOrder.clear(); 1858 1859 for (auto &Nodes : NodeSets) { 1860 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1861 OrderKind Order; 1862 SmallSetVector<SUnit *, 8> N; 1863 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1864 R.insert(N.begin(), N.end()); 1865 Order = BottomUp; 1866 LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 1867 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 1868 R.insert(N.begin(), N.end()); 1869 Order = TopDown; 1870 LLVM_DEBUG(dbgs() << " Top down (succs) "); 1871 } else if (isIntersect(N, Nodes, R)) { 1872 // If some of the successors are in the existing node-set, then use the 1873 // top-down ordering. 1874 Order = TopDown; 1875 LLVM_DEBUG(dbgs() << " Top down (intersect) "); 1876 } else if (NodeSets.size() == 1) { 1877 for (auto &N : Nodes) 1878 if (N->Succs.size() == 0) 1879 R.insert(N); 1880 Order = BottomUp; 1881 LLVM_DEBUG(dbgs() << " Bottom up (all) "); 1882 } else { 1883 // Find the node with the highest ASAP. 1884 SUnit *maxASAP = nullptr; 1885 for (SUnit *SU : Nodes) { 1886 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 1887 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 1888 maxASAP = SU; 1889 } 1890 R.insert(maxASAP); 1891 Order = BottomUp; 1892 LLVM_DEBUG(dbgs() << " Bottom up (default) "); 1893 } 1894 1895 while (!R.empty()) { 1896 if (Order == TopDown) { 1897 // Choose the node with the maximum height. If more than one, choose 1898 // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 1899 // choose the node with the lowest MOV. 1900 while (!R.empty()) { 1901 SUnit *maxHeight = nullptr; 1902 for (SUnit *I : R) { 1903 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 1904 maxHeight = I; 1905 else if (getHeight(I) == getHeight(maxHeight) && 1906 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 1907 maxHeight = I; 1908 else if (getHeight(I) == getHeight(maxHeight) && 1909 getZeroLatencyHeight(I) == 1910 getZeroLatencyHeight(maxHeight) && 1911 getMOV(I) < getMOV(maxHeight)) 1912 maxHeight = I; 1913 } 1914 NodeOrder.insert(maxHeight); 1915 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 1916 R.remove(maxHeight); 1917 for (const auto &I : maxHeight->Succs) { 1918 if (Nodes.count(I.getSUnit()) == 0) 1919 continue; 1920 if (NodeOrder.contains(I.getSUnit())) 1921 continue; 1922 if (ignoreDependence(I, false)) 1923 continue; 1924 R.insert(I.getSUnit()); 1925 } 1926 // Back-edges are predecessors with an anti-dependence. 1927 for (const auto &I : maxHeight->Preds) { 1928 if (I.getKind() != SDep::Anti) 1929 continue; 1930 if (Nodes.count(I.getSUnit()) == 0) 1931 continue; 1932 if (NodeOrder.contains(I.getSUnit())) 1933 continue; 1934 R.insert(I.getSUnit()); 1935 } 1936 } 1937 Order = BottomUp; 1938 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 1939 SmallSetVector<SUnit *, 8> N; 1940 if (pred_L(NodeOrder, N, &Nodes)) 1941 R.insert(N.begin(), N.end()); 1942 } else { 1943 // Choose the node with the maximum depth. If more than one, choose 1944 // the node with the maximum ZeroLatencyDepth. If still more than one, 1945 // choose the node with the lowest MOV. 1946 while (!R.empty()) { 1947 SUnit *maxDepth = nullptr; 1948 for (SUnit *I : R) { 1949 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 1950 maxDepth = I; 1951 else if (getDepth(I) == getDepth(maxDepth) && 1952 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 1953 maxDepth = I; 1954 else if (getDepth(I) == getDepth(maxDepth) && 1955 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 1956 getMOV(I) < getMOV(maxDepth)) 1957 maxDepth = I; 1958 } 1959 NodeOrder.insert(maxDepth); 1960 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 1961 R.remove(maxDepth); 1962 if (Nodes.isExceedSU(maxDepth)) { 1963 Order = TopDown; 1964 R.clear(); 1965 R.insert(Nodes.getNode(0)); 1966 break; 1967 } 1968 for (const auto &I : maxDepth->Preds) { 1969 if (Nodes.count(I.getSUnit()) == 0) 1970 continue; 1971 if (NodeOrder.contains(I.getSUnit())) 1972 continue; 1973 R.insert(I.getSUnit()); 1974 } 1975 // Back-edges are predecessors with an anti-dependence. 1976 for (const auto &I : maxDepth->Succs) { 1977 if (I.getKind() != SDep::Anti) 1978 continue; 1979 if (Nodes.count(I.getSUnit()) == 0) 1980 continue; 1981 if (NodeOrder.contains(I.getSUnit())) 1982 continue; 1983 R.insert(I.getSUnit()); 1984 } 1985 } 1986 Order = TopDown; 1987 LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 1988 SmallSetVector<SUnit *, 8> N; 1989 if (succ_L(NodeOrder, N, &Nodes)) 1990 R.insert(N.begin(), N.end()); 1991 } 1992 } 1993 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 1994 } 1995 1996 LLVM_DEBUG({ 1997 dbgs() << "Node order: "; 1998 for (SUnit *I : NodeOrder) 1999 dbgs() << " " << I->NodeNum << " "; 2000 dbgs() << "\n"; 2001 }); 2002 } 2003 2004 /// Process the nodes in the computed order and create the pipelined schedule 2005 /// of the instructions, if possible. Return true if a schedule is found. 2006 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2007 2008 if (NodeOrder.empty()){ 2009 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 2010 return false; 2011 } 2012 2013 bool scheduleFound = false; 2014 // Keep increasing II until a valid schedule is found. 2015 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 2016 Schedule.reset(); 2017 Schedule.setInitiationInterval(II); 2018 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2019 2020 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2021 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2022 do { 2023 SUnit *SU = *NI; 2024 2025 // Compute the schedule time for the instruction, which is based 2026 // upon the scheduled time for any predecessors/successors. 2027 int EarlyStart = INT_MIN; 2028 int LateStart = INT_MAX; 2029 // These values are set when the size of the schedule window is limited 2030 // due to chain dependences. 2031 int SchedEnd = INT_MAX; 2032 int SchedStart = INT_MIN; 2033 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2034 II, this); 2035 LLVM_DEBUG({ 2036 dbgs() << "\n"; 2037 dbgs() << "Inst (" << SU->NodeNum << ") "; 2038 SU->getInstr()->dump(); 2039 dbgs() << "\n"; 2040 }); 2041 LLVM_DEBUG({ 2042 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, 2043 LateStart, SchedEnd, SchedStart); 2044 }); 2045 2046 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2047 SchedStart > LateStart) 2048 scheduleFound = false; 2049 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2050 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2051 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2052 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2053 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2054 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2055 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2056 SchedEnd = 2057 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2058 // When scheduling a Phi it is better to start at the late cycle and go 2059 // backwards. The default order may insert the Phi too far away from 2060 // its first dependence. 2061 if (SU->getInstr()->isPHI()) 2062 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2063 else 2064 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2065 } else { 2066 int FirstCycle = Schedule.getFirstCycle(); 2067 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2068 FirstCycle + getASAP(SU) + II - 1, II); 2069 } 2070 // Even if we find a schedule, make sure the schedule doesn't exceed the 2071 // allowable number of stages. We keep trying if this happens. 2072 if (scheduleFound) 2073 if (SwpMaxStages > -1 && 2074 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2075 scheduleFound = false; 2076 2077 LLVM_DEBUG({ 2078 if (!scheduleFound) 2079 dbgs() << "\tCan't schedule\n"; 2080 }); 2081 } while (++NI != NE && scheduleFound); 2082 2083 // If a schedule is found, check if it is a valid schedule too. 2084 if (scheduleFound) 2085 scheduleFound = Schedule.isValidSchedule(this); 2086 } 2087 2088 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2089 << " (II=" << Schedule.getInitiationInterval() 2090 << ")\n"); 2091 2092 if (scheduleFound) { 2093 Schedule.finalizeSchedule(this); 2094 Pass.ORE->emit([&]() { 2095 return MachineOptimizationRemarkAnalysis( 2096 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2097 << "Schedule found with Initiation Interval: " 2098 << ore::NV("II", Schedule.getInitiationInterval()) 2099 << ", MaxStageCount: " 2100 << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 2101 }); 2102 } else 2103 Schedule.reset(); 2104 2105 return scheduleFound && Schedule.getMaxStageCount() > 0; 2106 } 2107 2108 /// Return true if we can compute the amount the instruction changes 2109 /// during each iteration. Set Delta to the amount of the change. 2110 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 2111 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2112 const MachineOperand *BaseOp; 2113 int64_t Offset; 2114 bool OffsetIsScalable; 2115 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 2116 return false; 2117 2118 // FIXME: This algorithm assumes instructions have fixed-size offsets. 2119 if (OffsetIsScalable) 2120 return false; 2121 2122 if (!BaseOp->isReg()) 2123 return false; 2124 2125 Register BaseReg = BaseOp->getReg(); 2126 2127 MachineRegisterInfo &MRI = MF.getRegInfo(); 2128 // Check if there is a Phi. If so, get the definition in the loop. 2129 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 2130 if (BaseDef && BaseDef->isPHI()) { 2131 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 2132 BaseDef = MRI.getVRegDef(BaseReg); 2133 } 2134 if (!BaseDef) 2135 return false; 2136 2137 int D = 0; 2138 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 2139 return false; 2140 2141 Delta = D; 2142 return true; 2143 } 2144 2145 /// Check if we can change the instruction to use an offset value from the 2146 /// previous iteration. If so, return true and set the base and offset values 2147 /// so that we can rewrite the load, if necessary. 2148 /// v1 = Phi(v0, v3) 2149 /// v2 = load v1, 0 2150 /// v3 = post_store v1, 4, x 2151 /// This function enables the load to be rewritten as v2 = load v3, 4. 2152 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 2153 unsigned &BasePos, 2154 unsigned &OffsetPos, 2155 unsigned &NewBase, 2156 int64_t &Offset) { 2157 // Get the load instruction. 2158 if (TII->isPostIncrement(*MI)) 2159 return false; 2160 unsigned BasePosLd, OffsetPosLd; 2161 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 2162 return false; 2163 Register BaseReg = MI->getOperand(BasePosLd).getReg(); 2164 2165 // Look for the Phi instruction. 2166 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 2167 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 2168 if (!Phi || !Phi->isPHI()) 2169 return false; 2170 // Get the register defined in the loop block. 2171 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 2172 if (!PrevReg) 2173 return false; 2174 2175 // Check for the post-increment load/store instruction. 2176 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 2177 if (!PrevDef || PrevDef == MI) 2178 return false; 2179 2180 if (!TII->isPostIncrement(*PrevDef)) 2181 return false; 2182 2183 unsigned BasePos1 = 0, OffsetPos1 = 0; 2184 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 2185 return false; 2186 2187 // Make sure that the instructions do not access the same memory location in 2188 // the next iteration. 2189 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 2190 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 2191 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2192 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 2193 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 2194 MF.deleteMachineInstr(NewMI); 2195 if (!Disjoint) 2196 return false; 2197 2198 // Set the return value once we determine that we return true. 2199 BasePos = BasePosLd; 2200 OffsetPos = OffsetPosLd; 2201 NewBase = PrevReg; 2202 Offset = StoreOffset; 2203 return true; 2204 } 2205 2206 /// Apply changes to the instruction if needed. The changes are need 2207 /// to improve the scheduling and depend up on the final schedule. 2208 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 2209 SMSchedule &Schedule) { 2210 SUnit *SU = getSUnit(MI); 2211 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2212 InstrChanges.find(SU); 2213 if (It != InstrChanges.end()) { 2214 std::pair<unsigned, int64_t> RegAndOffset = It->second; 2215 unsigned BasePos, OffsetPos; 2216 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2217 return; 2218 Register BaseReg = MI->getOperand(BasePos).getReg(); 2219 MachineInstr *LoopDef = findDefInLoop(BaseReg); 2220 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 2221 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 2222 int BaseStageNum = Schedule.stageScheduled(SU); 2223 int BaseCycleNum = Schedule.cycleScheduled(SU); 2224 if (BaseStageNum < DefStageNum) { 2225 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2226 int OffsetDiff = DefStageNum - BaseStageNum; 2227 if (DefCycleNum < BaseCycleNum) { 2228 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 2229 if (OffsetDiff > 0) 2230 --OffsetDiff; 2231 } 2232 int64_t NewOffset = 2233 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 2234 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2235 SU->setInstr(NewMI); 2236 MISUnitMap[NewMI] = SU; 2237 NewMIs[MI] = NewMI; 2238 } 2239 } 2240 } 2241 2242 /// Return the instruction in the loop that defines the register. 2243 /// If the definition is a Phi, then follow the Phi operand to 2244 /// the instruction in the loop. 2245 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 2246 SmallPtrSet<MachineInstr *, 8> Visited; 2247 MachineInstr *Def = MRI.getVRegDef(Reg); 2248 while (Def->isPHI()) { 2249 if (!Visited.insert(Def).second) 2250 break; 2251 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 2252 if (Def->getOperand(i + 1).getMBB() == BB) { 2253 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 2254 break; 2255 } 2256 } 2257 return Def; 2258 } 2259 2260 /// Return true for an order or output dependence that is loop carried 2261 /// potentially. A dependence is loop carried if the destination defines a valu 2262 /// that may be used or defined by the source in a subsequent iteration. 2263 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 2264 bool isSucc) { 2265 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 2266 Dep.isArtificial()) 2267 return false; 2268 2269 if (!SwpPruneLoopCarried) 2270 return true; 2271 2272 if (Dep.getKind() == SDep::Output) 2273 return true; 2274 2275 MachineInstr *SI = Source->getInstr(); 2276 MachineInstr *DI = Dep.getSUnit()->getInstr(); 2277 if (!isSucc) 2278 std::swap(SI, DI); 2279 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 2280 2281 // Assume ordered loads and stores may have a loop carried dependence. 2282 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 2283 SI->mayRaiseFPException() || DI->mayRaiseFPException() || 2284 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 2285 return true; 2286 2287 // Only chain dependences between a load and store can be loop carried. 2288 if (!DI->mayStore() || !SI->mayLoad()) 2289 return false; 2290 2291 unsigned DeltaS, DeltaD; 2292 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 2293 return true; 2294 2295 const MachineOperand *BaseOpS, *BaseOpD; 2296 int64_t OffsetS, OffsetD; 2297 bool OffsetSIsScalable, OffsetDIsScalable; 2298 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2299 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 2300 TRI) || 2301 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 2302 TRI)) 2303 return true; 2304 2305 assert(!OffsetSIsScalable && !OffsetDIsScalable && 2306 "Expected offsets to be byte offsets"); 2307 2308 if (!BaseOpS->isIdenticalTo(*BaseOpD)) 2309 return true; 2310 2311 // Check that the base register is incremented by a constant value for each 2312 // iteration. 2313 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); 2314 if (!Def || !Def->isPHI()) 2315 return true; 2316 unsigned InitVal = 0; 2317 unsigned LoopVal = 0; 2318 getPhiRegs(*Def, BB, InitVal, LoopVal); 2319 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); 2320 int D = 0; 2321 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) 2322 return true; 2323 2324 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 2325 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 2326 2327 // This is the main test, which checks the offset values and the loop 2328 // increment value to determine if the accesses may be loop carried. 2329 if (AccessSizeS == MemoryLocation::UnknownSize || 2330 AccessSizeD == MemoryLocation::UnknownSize) 2331 return true; 2332 2333 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) 2334 return true; 2335 2336 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); 2337 } 2338 2339 void SwingSchedulerDAG::postprocessDAG() { 2340 for (auto &M : Mutations) 2341 M->apply(this); 2342 } 2343 2344 /// Try to schedule the node at the specified StartCycle and continue 2345 /// until the node is schedule or the EndCycle is reached. This function 2346 /// returns true if the node is scheduled. This routine may search either 2347 /// forward or backward for a place to insert the instruction based upon 2348 /// the relative values of StartCycle and EndCycle. 2349 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 2350 bool forward = true; 2351 LLVM_DEBUG({ 2352 dbgs() << "Trying to insert node between " << StartCycle << " and " 2353 << EndCycle << " II: " << II << "\n"; 2354 }); 2355 if (StartCycle > EndCycle) 2356 forward = false; 2357 2358 // The terminating condition depends on the direction. 2359 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 2360 for (int curCycle = StartCycle; curCycle != termCycle; 2361 forward ? ++curCycle : --curCycle) { 2362 2363 // Add the already scheduled instructions at the specified cycle to the 2364 // DFA. 2365 ProcItinResources.clearResources(); 2366 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 2367 checkCycle <= LastCycle; checkCycle += II) { 2368 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 2369 2370 for (SUnit *CI : cycleInstrs) { 2371 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode())) 2372 continue; 2373 assert(ProcItinResources.canReserveResources(*CI->getInstr()) && 2374 "These instructions have already been scheduled."); 2375 ProcItinResources.reserveResources(*CI->getInstr()); 2376 } 2377 } 2378 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2379 ProcItinResources.canReserveResources(*SU->getInstr())) { 2380 LLVM_DEBUG({ 2381 dbgs() << "\tinsert at cycle " << curCycle << " "; 2382 SU->getInstr()->dump(); 2383 }); 2384 2385 ScheduledInstrs[curCycle].push_back(SU); 2386 InstrToCycle.insert(std::make_pair(SU, curCycle)); 2387 if (curCycle > LastCycle) 2388 LastCycle = curCycle; 2389 if (curCycle < FirstCycle) 2390 FirstCycle = curCycle; 2391 return true; 2392 } 2393 LLVM_DEBUG({ 2394 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 2395 SU->getInstr()->dump(); 2396 }); 2397 } 2398 return false; 2399 } 2400 2401 // Return the cycle of the earliest scheduled instruction in the chain. 2402 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 2403 SmallPtrSet<SUnit *, 8> Visited; 2404 SmallVector<SDep, 8> Worklist; 2405 Worklist.push_back(Dep); 2406 int EarlyCycle = INT_MAX; 2407 while (!Worklist.empty()) { 2408 const SDep &Cur = Worklist.pop_back_val(); 2409 SUnit *PrevSU = Cur.getSUnit(); 2410 if (Visited.count(PrevSU)) 2411 continue; 2412 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 2413 if (it == InstrToCycle.end()) 2414 continue; 2415 EarlyCycle = std::min(EarlyCycle, it->second); 2416 for (const auto &PI : PrevSU->Preds) 2417 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 2418 Worklist.push_back(PI); 2419 Visited.insert(PrevSU); 2420 } 2421 return EarlyCycle; 2422 } 2423 2424 // Return the cycle of the latest scheduled instruction in the chain. 2425 int SMSchedule::latestCycleInChain(const SDep &Dep) { 2426 SmallPtrSet<SUnit *, 8> Visited; 2427 SmallVector<SDep, 8> Worklist; 2428 Worklist.push_back(Dep); 2429 int LateCycle = INT_MIN; 2430 while (!Worklist.empty()) { 2431 const SDep &Cur = Worklist.pop_back_val(); 2432 SUnit *SuccSU = Cur.getSUnit(); 2433 if (Visited.count(SuccSU)) 2434 continue; 2435 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 2436 if (it == InstrToCycle.end()) 2437 continue; 2438 LateCycle = std::max(LateCycle, it->second); 2439 for (const auto &SI : SuccSU->Succs) 2440 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 2441 Worklist.push_back(SI); 2442 Visited.insert(SuccSU); 2443 } 2444 return LateCycle; 2445 } 2446 2447 /// If an instruction has a use that spans multiple iterations, then 2448 /// return true. These instructions are characterized by having a back-ege 2449 /// to a Phi, which contains a reference to another Phi. 2450 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 2451 for (auto &P : SU->Preds) 2452 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 2453 for (auto &S : P.getSUnit()->Succs) 2454 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 2455 return P.getSUnit(); 2456 return nullptr; 2457 } 2458 2459 /// Compute the scheduling start slot for the instruction. The start slot 2460 /// depends on any predecessor or successor nodes scheduled already. 2461 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 2462 int *MinEnd, int *MaxStart, int II, 2463 SwingSchedulerDAG *DAG) { 2464 // Iterate over each instruction that has been scheduled already. The start 2465 // slot computation depends on whether the previously scheduled instruction 2466 // is a predecessor or successor of the specified instruction. 2467 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 2468 2469 // Iterate over each instruction in the current cycle. 2470 for (SUnit *I : getInstructions(cycle)) { 2471 // Because we're processing a DAG for the dependences, we recognize 2472 // the back-edge in recurrences by anti dependences. 2473 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 2474 const SDep &Dep = SU->Preds[i]; 2475 if (Dep.getSUnit() == I) { 2476 if (!DAG->isBackedge(SU, Dep)) { 2477 int EarlyStart = cycle + Dep.getLatency() - 2478 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2479 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2480 if (DAG->isLoopCarriedDep(SU, Dep, false)) { 2481 int End = earliestCycleInChain(Dep) + (II - 1); 2482 *MinEnd = std::min(*MinEnd, End); 2483 } 2484 } else { 2485 int LateStart = cycle - Dep.getLatency() + 2486 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2487 *MinLateStart = std::min(*MinLateStart, LateStart); 2488 } 2489 } 2490 // For instruction that requires multiple iterations, make sure that 2491 // the dependent instruction is not scheduled past the definition. 2492 SUnit *BE = multipleIterations(I, DAG); 2493 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 2494 !SU->isPred(I)) 2495 *MinLateStart = std::min(*MinLateStart, cycle); 2496 } 2497 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 2498 if (SU->Succs[i].getSUnit() == I) { 2499 const SDep &Dep = SU->Succs[i]; 2500 if (!DAG->isBackedge(SU, Dep)) { 2501 int LateStart = cycle - Dep.getLatency() + 2502 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 2503 *MinLateStart = std::min(*MinLateStart, LateStart); 2504 if (DAG->isLoopCarriedDep(SU, Dep)) { 2505 int Start = latestCycleInChain(Dep) + 1 - II; 2506 *MaxStart = std::max(*MaxStart, Start); 2507 } 2508 } else { 2509 int EarlyStart = cycle + Dep.getLatency() - 2510 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 2511 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 2512 } 2513 } 2514 } 2515 } 2516 } 2517 } 2518 2519 /// Order the instructions within a cycle so that the definitions occur 2520 /// before the uses. Returns true if the instruction is added to the start 2521 /// of the list, or false if added to the end. 2522 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 2523 std::deque<SUnit *> &Insts) { 2524 MachineInstr *MI = SU->getInstr(); 2525 bool OrderBeforeUse = false; 2526 bool OrderAfterDef = false; 2527 bool OrderBeforeDef = false; 2528 unsigned MoveDef = 0; 2529 unsigned MoveUse = 0; 2530 int StageInst1 = stageScheduled(SU); 2531 2532 unsigned Pos = 0; 2533 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 2534 ++I, ++Pos) { 2535 for (MachineOperand &MO : MI->operands()) { 2536 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 2537 continue; 2538 2539 Register Reg = MO.getReg(); 2540 unsigned BasePos, OffsetPos; 2541 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 2542 if (MI->getOperand(BasePos).getReg() == Reg) 2543 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 2544 Reg = NewReg; 2545 bool Reads, Writes; 2546 std::tie(Reads, Writes) = 2547 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 2548 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 2549 OrderBeforeUse = true; 2550 if (MoveUse == 0) 2551 MoveUse = Pos; 2552 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 2553 // Add the instruction after the scheduled instruction. 2554 OrderAfterDef = true; 2555 MoveDef = Pos; 2556 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 2557 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 2558 OrderBeforeUse = true; 2559 if (MoveUse == 0) 2560 MoveUse = Pos; 2561 } else { 2562 OrderAfterDef = true; 2563 MoveDef = Pos; 2564 } 2565 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 2566 OrderBeforeUse = true; 2567 if (MoveUse == 0) 2568 MoveUse = Pos; 2569 if (MoveUse != 0) { 2570 OrderAfterDef = true; 2571 MoveDef = Pos - 1; 2572 } 2573 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 2574 // Add the instruction before the scheduled instruction. 2575 OrderBeforeUse = true; 2576 if (MoveUse == 0) 2577 MoveUse = Pos; 2578 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 2579 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 2580 if (MoveUse == 0) { 2581 OrderBeforeDef = true; 2582 MoveUse = Pos; 2583 } 2584 } 2585 } 2586 // Check for order dependences between instructions. Make sure the source 2587 // is ordered before the destination. 2588 for (auto &S : SU->Succs) { 2589 if (S.getSUnit() != *I) 2590 continue; 2591 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2592 OrderBeforeUse = true; 2593 if (Pos < MoveUse) 2594 MoveUse = Pos; 2595 } 2596 // We did not handle HW dependences in previous for loop, 2597 // and we normally set Latency = 0 for Anti deps, 2598 // so may have nodes in same cycle with Anti denpendent on HW regs. 2599 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 2600 OrderBeforeUse = true; 2601 if ((MoveUse == 0) || (Pos < MoveUse)) 2602 MoveUse = Pos; 2603 } 2604 } 2605 for (auto &P : SU->Preds) { 2606 if (P.getSUnit() != *I) 2607 continue; 2608 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 2609 OrderAfterDef = true; 2610 MoveDef = Pos; 2611 } 2612 } 2613 } 2614 2615 // A circular dependence. 2616 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 2617 OrderBeforeUse = false; 2618 2619 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 2620 // to a loop-carried dependence. 2621 if (OrderBeforeDef) 2622 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 2623 2624 // The uncommon case when the instruction order needs to be updated because 2625 // there is both a use and def. 2626 if (OrderBeforeUse && OrderAfterDef) { 2627 SUnit *UseSU = Insts.at(MoveUse); 2628 SUnit *DefSU = Insts.at(MoveDef); 2629 if (MoveUse > MoveDef) { 2630 Insts.erase(Insts.begin() + MoveUse); 2631 Insts.erase(Insts.begin() + MoveDef); 2632 } else { 2633 Insts.erase(Insts.begin() + MoveDef); 2634 Insts.erase(Insts.begin() + MoveUse); 2635 } 2636 orderDependence(SSD, UseSU, Insts); 2637 orderDependence(SSD, SU, Insts); 2638 orderDependence(SSD, DefSU, Insts); 2639 return; 2640 } 2641 // Put the new instruction first if there is a use in the list. Otherwise, 2642 // put it at the end of the list. 2643 if (OrderBeforeUse) 2644 Insts.push_front(SU); 2645 else 2646 Insts.push_back(SU); 2647 } 2648 2649 /// Return true if the scheduled Phi has a loop carried operand. 2650 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 2651 if (!Phi.isPHI()) 2652 return false; 2653 assert(Phi.isPHI() && "Expecting a Phi."); 2654 SUnit *DefSU = SSD->getSUnit(&Phi); 2655 unsigned DefCycle = cycleScheduled(DefSU); 2656 int DefStage = stageScheduled(DefSU); 2657 2658 unsigned InitVal = 0; 2659 unsigned LoopVal = 0; 2660 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 2661 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 2662 if (!UseSU) 2663 return true; 2664 if (UseSU->getInstr()->isPHI()) 2665 return true; 2666 unsigned LoopCycle = cycleScheduled(UseSU); 2667 int LoopStage = stageScheduled(UseSU); 2668 return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 2669 } 2670 2671 /// Return true if the instruction is a definition that is loop carried 2672 /// and defines the use on the next iteration. 2673 /// v1 = phi(v2, v3) 2674 /// (Def) v3 = op v1 2675 /// (MO) = v1 2676 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 2677 /// register. 2678 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 2679 MachineInstr *Def, MachineOperand &MO) { 2680 if (!MO.isReg()) 2681 return false; 2682 if (Def->isPHI()) 2683 return false; 2684 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 2685 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 2686 return false; 2687 if (!isLoopCarried(SSD, *Phi)) 2688 return false; 2689 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 2690 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 2691 MachineOperand &DMO = Def->getOperand(i); 2692 if (!DMO.isReg() || !DMO.isDef()) 2693 continue; 2694 if (DMO.getReg() == LoopReg) 2695 return true; 2696 } 2697 return false; 2698 } 2699 2700 // Check if the generated schedule is valid. This function checks if 2701 // an instruction that uses a physical register is scheduled in a 2702 // different stage than the definition. The pipeliner does not handle 2703 // physical register values that may cross a basic block boundary. 2704 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 2705 for (SUnit &SU : SSD->SUnits) { 2706 if (!SU.hasPhysRegDefs) 2707 continue; 2708 int StageDef = stageScheduled(&SU); 2709 assert(StageDef != -1 && "Instruction should have been scheduled."); 2710 for (auto &SI : SU.Succs) 2711 if (SI.isAssignedRegDep()) 2712 if (Register::isPhysicalRegister(SI.getReg())) 2713 if (stageScheduled(SI.getSUnit()) != StageDef) 2714 return false; 2715 } 2716 return true; 2717 } 2718 2719 /// A property of the node order in swing-modulo-scheduling is 2720 /// that for nodes outside circuits the following holds: 2721 /// none of them is scheduled after both a successor and a 2722 /// predecessor. 2723 /// The method below checks whether the property is met. 2724 /// If not, debug information is printed and statistics information updated. 2725 /// Note that we do not use an assert statement. 2726 /// The reason is that although an invalid node oder may prevent 2727 /// the pipeliner from finding a pipelined schedule for arbitrary II, 2728 /// it does not lead to the generation of incorrect code. 2729 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 2730 2731 // a sorted vector that maps each SUnit to its index in the NodeOrder 2732 typedef std::pair<SUnit *, unsigned> UnitIndex; 2733 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 2734 2735 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 2736 Indices.push_back(std::make_pair(NodeOrder[i], i)); 2737 2738 auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 2739 return std::get<0>(i1) < std::get<0>(i2); 2740 }; 2741 2742 // sort, so that we can perform a binary search 2743 llvm::sort(Indices, CompareKey); 2744 2745 bool Valid = true; 2746 (void)Valid; 2747 // for each SUnit in the NodeOrder, check whether 2748 // it appears after both a successor and a predecessor 2749 // of the SUnit. If this is the case, and the SUnit 2750 // is not part of circuit, then the NodeOrder is not 2751 // valid. 2752 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 2753 SUnit *SU = NodeOrder[i]; 2754 unsigned Index = i; 2755 2756 bool PredBefore = false; 2757 bool SuccBefore = false; 2758 2759 SUnit *Succ; 2760 SUnit *Pred; 2761 (void)Succ; 2762 (void)Pred; 2763 2764 for (SDep &PredEdge : SU->Preds) { 2765 SUnit *PredSU = PredEdge.getSUnit(); 2766 unsigned PredIndex = std::get<1>( 2767 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 2768 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 2769 PredBefore = true; 2770 Pred = PredSU; 2771 break; 2772 } 2773 } 2774 2775 for (SDep &SuccEdge : SU->Succs) { 2776 SUnit *SuccSU = SuccEdge.getSUnit(); 2777 // Do not process a boundary node, it was not included in NodeOrder, 2778 // hence not in Indices either, call to std::lower_bound() below will 2779 // return Indices.end(). 2780 if (SuccSU->isBoundaryNode()) 2781 continue; 2782 unsigned SuccIndex = std::get<1>( 2783 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 2784 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 2785 SuccBefore = true; 2786 Succ = SuccSU; 2787 break; 2788 } 2789 } 2790 2791 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 2792 // instructions in circuits are allowed to be scheduled 2793 // after both a successor and predecessor. 2794 bool InCircuit = llvm::any_of( 2795 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 2796 if (InCircuit) 2797 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 2798 else { 2799 Valid = false; 2800 NumNodeOrderIssues++; 2801 LLVM_DEBUG(dbgs() << "Predecessor ";); 2802 } 2803 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 2804 << " are scheduled before node " << SU->NodeNum 2805 << "\n";); 2806 } 2807 } 2808 2809 LLVM_DEBUG({ 2810 if (!Valid) 2811 dbgs() << "Invalid node order found!\n"; 2812 }); 2813 } 2814 2815 /// Attempt to fix the degenerate cases when the instruction serialization 2816 /// causes the register lifetimes to overlap. For example, 2817 /// p' = store_pi(p, b) 2818 /// = load p, offset 2819 /// In this case p and p' overlap, which means that two registers are needed. 2820 /// Instead, this function changes the load to use p' and updates the offset. 2821 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 2822 unsigned OverlapReg = 0; 2823 unsigned NewBaseReg = 0; 2824 for (SUnit *SU : Instrs) { 2825 MachineInstr *MI = SU->getInstr(); 2826 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 2827 const MachineOperand &MO = MI->getOperand(i); 2828 // Look for an instruction that uses p. The instruction occurs in the 2829 // same cycle but occurs later in the serialized order. 2830 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 2831 // Check that the instruction appears in the InstrChanges structure, 2832 // which contains instructions that can have the offset updated. 2833 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 2834 InstrChanges.find(SU); 2835 if (It != InstrChanges.end()) { 2836 unsigned BasePos, OffsetPos; 2837 // Update the base register and adjust the offset. 2838 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 2839 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 2840 NewMI->getOperand(BasePos).setReg(NewBaseReg); 2841 int64_t NewOffset = 2842 MI->getOperand(OffsetPos).getImm() - It->second.second; 2843 NewMI->getOperand(OffsetPos).setImm(NewOffset); 2844 SU->setInstr(NewMI); 2845 MISUnitMap[NewMI] = SU; 2846 NewMIs[MI] = NewMI; 2847 } 2848 } 2849 OverlapReg = 0; 2850 NewBaseReg = 0; 2851 break; 2852 } 2853 // Look for an instruction of the form p' = op(p), which uses and defines 2854 // two virtual registers that get allocated to the same physical register. 2855 unsigned TiedUseIdx = 0; 2856 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 2857 // OverlapReg is p in the example above. 2858 OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 2859 // NewBaseReg is p' in the example above. 2860 NewBaseReg = MI->getOperand(i).getReg(); 2861 break; 2862 } 2863 } 2864 } 2865 } 2866 2867 /// After the schedule has been formed, call this function to combine 2868 /// the instructions from the different stages/cycles. That is, this 2869 /// function creates a schedule that represents a single iteration. 2870 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 2871 // Move all instructions to the first stage from later stages. 2872 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2873 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 2874 ++stage) { 2875 std::deque<SUnit *> &cycleInstrs = 2876 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 2877 for (SUnit *SU : llvm::reverse(cycleInstrs)) 2878 ScheduledInstrs[cycle].push_front(SU); 2879 } 2880 } 2881 2882 // Erase all the elements in the later stages. Only one iteration should 2883 // remain in the scheduled list, and it contains all the instructions. 2884 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 2885 ScheduledInstrs.erase(cycle); 2886 2887 // Change the registers in instruction as specified in the InstrChanges 2888 // map. We need to use the new registers to create the correct order. 2889 for (const SUnit &SU : SSD->SUnits) 2890 SSD->applyInstrChange(SU.getInstr(), *this); 2891 2892 // Reorder the instructions in each cycle to fix and improve the 2893 // generated code. 2894 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 2895 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 2896 std::deque<SUnit *> newOrderPhi; 2897 for (SUnit *SU : cycleInstrs) { 2898 if (SU->getInstr()->isPHI()) 2899 newOrderPhi.push_back(SU); 2900 } 2901 std::deque<SUnit *> newOrderI; 2902 for (SUnit *SU : cycleInstrs) { 2903 if (!SU->getInstr()->isPHI()) 2904 orderDependence(SSD, SU, newOrderI); 2905 } 2906 // Replace the old order with the new order. 2907 cycleInstrs.swap(newOrderPhi); 2908 llvm::append_range(cycleInstrs, newOrderI); 2909 SSD->fixupRegisterOverlaps(cycleInstrs); 2910 } 2911 2912 LLVM_DEBUG(dump();); 2913 } 2914 2915 void NodeSet::print(raw_ostream &os) const { 2916 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 2917 << " depth " << MaxDepth << " col " << Colocate << "\n"; 2918 for (const auto &I : Nodes) 2919 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 2920 os << "\n"; 2921 } 2922 2923 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2924 /// Print the schedule information to the given output. 2925 void SMSchedule::print(raw_ostream &os) const { 2926 // Iterate over each cycle. 2927 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 2928 // Iterate over each instruction in the cycle. 2929 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 2930 for (SUnit *CI : cycleInstrs->second) { 2931 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 2932 os << "(" << CI->NodeNum << ") "; 2933 CI->getInstr()->print(os); 2934 os << "\n"; 2935 } 2936 } 2937 } 2938 2939 /// Utility function used for debugging to print the schedule. 2940 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 2941 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 2942 2943 #endif 2944 2945 void ResourceManager::initProcResourceVectors( 2946 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 2947 unsigned ProcResourceID = 0; 2948 2949 // We currently limit the resource kinds to 64 and below so that we can use 2950 // uint64_t for Masks 2951 assert(SM.getNumProcResourceKinds() < 64 && 2952 "Too many kinds of resources, unsupported"); 2953 // Create a unique bitmask for every processor resource unit. 2954 // Skip resource at index 0, since it always references 'InvalidUnit'. 2955 Masks.resize(SM.getNumProcResourceKinds()); 2956 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2957 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2958 if (Desc.SubUnitsIdxBegin) 2959 continue; 2960 Masks[I] = 1ULL << ProcResourceID; 2961 ProcResourceID++; 2962 } 2963 // Create a unique bitmask for every processor resource group. 2964 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2965 const MCProcResourceDesc &Desc = *SM.getProcResource(I); 2966 if (!Desc.SubUnitsIdxBegin) 2967 continue; 2968 Masks[I] = 1ULL << ProcResourceID; 2969 for (unsigned U = 0; U < Desc.NumUnits; ++U) 2970 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 2971 ProcResourceID++; 2972 } 2973 LLVM_DEBUG({ 2974 if (SwpShowResMask) { 2975 dbgs() << "ProcResourceDesc:\n"; 2976 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 2977 const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 2978 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 2979 ProcResource->Name, I, Masks[I], 2980 ProcResource->NumUnits); 2981 } 2982 dbgs() << " -----------------\n"; 2983 } 2984 }); 2985 } 2986 2987 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { 2988 2989 LLVM_DEBUG({ 2990 if (SwpDebugResource) 2991 dbgs() << "canReserveResources:\n"; 2992 }); 2993 if (UseDFA) 2994 return DFAResources->canReserveResources(MID); 2995 2996 unsigned InsnClass = MID->getSchedClass(); 2997 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 2998 if (!SCDesc->isValid()) { 2999 LLVM_DEBUG({ 3000 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3001 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3002 }); 3003 return true; 3004 } 3005 3006 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); 3007 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); 3008 for (; I != E; ++I) { 3009 if (!I->Cycles) 3010 continue; 3011 const MCProcResourceDesc *ProcResource = 3012 SM.getProcResource(I->ProcResourceIdx); 3013 unsigned NumUnits = ProcResource->NumUnits; 3014 LLVM_DEBUG({ 3015 if (SwpDebugResource) 3016 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3017 ProcResource->Name, I->ProcResourceIdx, 3018 ProcResourceCount[I->ProcResourceIdx], NumUnits, 3019 I->Cycles); 3020 }); 3021 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) 3022 return false; 3023 } 3024 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); 3025 return true; 3026 } 3027 3028 void ResourceManager::reserveResources(const MCInstrDesc *MID) { 3029 LLVM_DEBUG({ 3030 if (SwpDebugResource) 3031 dbgs() << "reserveResources:\n"; 3032 }); 3033 if (UseDFA) 3034 return DFAResources->reserveResources(MID); 3035 3036 unsigned InsnClass = MID->getSchedClass(); 3037 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); 3038 if (!SCDesc->isValid()) { 3039 LLVM_DEBUG({ 3040 dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3041 dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; 3042 }); 3043 return; 3044 } 3045 for (const MCWriteProcResEntry &PRE : 3046 make_range(STI->getWriteProcResBegin(SCDesc), 3047 STI->getWriteProcResEnd(SCDesc))) { 3048 if (!PRE.Cycles) 3049 continue; 3050 ++ProcResourceCount[PRE.ProcResourceIdx]; 3051 LLVM_DEBUG({ 3052 if (SwpDebugResource) { 3053 const MCProcResourceDesc *ProcResource = 3054 SM.getProcResource(PRE.ProcResourceIdx); 3055 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", 3056 ProcResource->Name, PRE.ProcResourceIdx, 3057 ProcResourceCount[PRE.ProcResourceIdx], 3058 ProcResource->NumUnits, PRE.Cycles); 3059 } 3060 }); 3061 } 3062 LLVM_DEBUG({ 3063 if (SwpDebugResource) 3064 dbgs() << "reserveResources: done!\n\n"; 3065 }); 3066 } 3067 3068 bool ResourceManager::canReserveResources(const MachineInstr &MI) const { 3069 return canReserveResources(&MI.getDesc()); 3070 } 3071 3072 void ResourceManager::reserveResources(const MachineInstr &MI) { 3073 return reserveResources(&MI.getDesc()); 3074 } 3075 3076 void ResourceManager::clearResources() { 3077 if (UseDFA) 3078 return DFAResources->clearResources(); 3079 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); 3080 } 3081