xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachinePipeliner.cpp (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetOperations.h"
38 #include "llvm/ADT/SetVector.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/ADT/iterator_range.h"
44 #include "llvm/Analysis/AliasAnalysis.h"
45 #include "llvm/Analysis/MemoryLocation.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/CodeGen/DFAPacketizer.h"
48 #include "llvm/CodeGen/LiveIntervals.h"
49 #include "llvm/CodeGen/MachineBasicBlock.h"
50 #include "llvm/CodeGen/MachineDominators.h"
51 #include "llvm/CodeGen/MachineFunction.h"
52 #include "llvm/CodeGen/MachineFunctionPass.h"
53 #include "llvm/CodeGen/MachineInstr.h"
54 #include "llvm/CodeGen/MachineInstrBuilder.h"
55 #include "llvm/CodeGen/MachineLoopInfo.h"
56 #include "llvm/CodeGen/MachineMemOperand.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachinePipeliner.h"
59 #include "llvm/CodeGen/MachineRegisterInfo.h"
60 #include "llvm/CodeGen/ModuloSchedule.h"
61 #include "llvm/CodeGen/RegisterPressure.h"
62 #include "llvm/CodeGen/ScheduleDAG.h"
63 #include "llvm/CodeGen/ScheduleDAGMutation.h"
64 #include "llvm/CodeGen/TargetOpcodes.h"
65 #include "llvm/CodeGen/TargetRegisterInfo.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/Config/llvm-config.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/MC/LaneBitmask.h"
72 #include "llvm/MC/MCInstrDesc.h"
73 #include "llvm/MC/MCInstrItineraries.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <climits>
84 #include <cstdint>
85 #include <deque>
86 #include <functional>
87 #include <iterator>
88 #include <map>
89 #include <memory>
90 #include <tuple>
91 #include <utility>
92 #include <vector>
93 
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "pipeliner"
97 
98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
99 STATISTIC(NumPipelined, "Number of loops software pipelined");
100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
109 
110 /// A command line option to turn software pipelining on or off.
111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
112                                cl::ZeroOrMore,
113                                cl::desc("Enable Software Pipelining"));
114 
115 /// A command line option to enable SWP at -Os.
116 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
117                                       cl::desc("Enable SWP at Os."), cl::Hidden,
118                                       cl::init(false));
119 
120 /// A command line argument to limit minimum initial interval for pipelining.
121 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
122                               cl::desc("Size limit for the MII."),
123                               cl::Hidden, cl::init(27));
124 
125 /// A command line argument to limit the number of stages in the pipeline.
126 static cl::opt<int>
127     SwpMaxStages("pipeliner-max-stages",
128                  cl::desc("Maximum stages allowed in the generated scheduled."),
129                  cl::Hidden, cl::init(3));
130 
131 /// A command line option to disable the pruning of chain dependences due to
132 /// an unrelated Phi.
133 static cl::opt<bool>
134     SwpPruneDeps("pipeliner-prune-deps",
135                  cl::desc("Prune dependences between unrelated Phi nodes."),
136                  cl::Hidden, cl::init(true));
137 
138 /// A command line option to disable the pruning of loop carried order
139 /// dependences.
140 static cl::opt<bool>
141     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
142                         cl::desc("Prune loop carried order dependences."),
143                         cl::Hidden, cl::init(true));
144 
145 #ifndef NDEBUG
146 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
147 #endif
148 
149 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
150                                      cl::ReallyHidden, cl::init(false),
151                                      cl::ZeroOrMore, cl::desc("Ignore RecMII"));
152 
153 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
154                                     cl::init(false));
155 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
156                                       cl::init(false));
157 
158 static cl::opt<bool> EmitTestAnnotations(
159     "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
160     cl::desc("Instead of emitting the pipelined code, annotate instructions "
161              "with the generated schedule for feeding into the "
162              "-modulo-schedule-test pass"));
163 
164 static cl::opt<bool> ExperimentalCodeGen(
165     "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
166     cl::desc(
167         "Use the experimental peeling code generator for software pipelining"));
168 
169 namespace llvm {
170 
171 // A command line option to enable the CopyToPhi DAG mutation.
172 cl::opt<bool>
173     SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
174                        cl::init(true), cl::ZeroOrMore,
175                        cl::desc("Enable CopyToPhi DAG Mutation"));
176 
177 } // end namespace llvm
178 
179 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
180 char MachinePipeliner::ID = 0;
181 #ifndef NDEBUG
182 int MachinePipeliner::NumTries = 0;
183 #endif
184 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
185 
186 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
187                       "Modulo Software Pipelining", false, false)
188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
191 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
192 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
193                     "Modulo Software Pipelining", false, false)
194 
195 /// The "main" function for implementing Swing Modulo Scheduling.
196 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
197   if (skipFunction(mf.getFunction()))
198     return false;
199 
200   if (!EnableSWP)
201     return false;
202 
203   if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
204       !EnableSWPOptSize.getPosition())
205     return false;
206 
207   if (!mf.getSubtarget().enableMachinePipeliner())
208     return false;
209 
210   // Cannot pipeline loops without instruction itineraries if we are using
211   // DFA for the pipeliner.
212   if (mf.getSubtarget().useDFAforSMS() &&
213       (!mf.getSubtarget().getInstrItineraryData() ||
214        mf.getSubtarget().getInstrItineraryData()->isEmpty()))
215     return false;
216 
217   MF = &mf;
218   MLI = &getAnalysis<MachineLoopInfo>();
219   MDT = &getAnalysis<MachineDominatorTree>();
220   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
221   TII = MF->getSubtarget().getInstrInfo();
222   RegClassInfo.runOnMachineFunction(*MF);
223 
224   for (auto &L : *MLI)
225     scheduleLoop(*L);
226 
227   return false;
228 }
229 
230 /// Attempt to perform the SMS algorithm on the specified loop. This function is
231 /// the main entry point for the algorithm.  The function identifies candidate
232 /// loops, calculates the minimum initiation interval, and attempts to schedule
233 /// the loop.
234 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
235   bool Changed = false;
236   for (auto &InnerLoop : L)
237     Changed |= scheduleLoop(*InnerLoop);
238 
239 #ifndef NDEBUG
240   // Stop trying after reaching the limit (if any).
241   int Limit = SwpLoopLimit;
242   if (Limit >= 0) {
243     if (NumTries >= SwpLoopLimit)
244       return Changed;
245     NumTries++;
246   }
247 #endif
248 
249   setPragmaPipelineOptions(L);
250   if (!canPipelineLoop(L)) {
251     LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
252     ORE->emit([&]() {
253       return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
254                                              L.getStartLoc(), L.getHeader())
255              << "Failed to pipeline loop";
256     });
257 
258     return Changed;
259   }
260 
261   ++NumTrytoPipeline;
262 
263   Changed = swingModuloScheduler(L);
264 
265   return Changed;
266 }
267 
268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
269   // Reset the pragma for the next loop in iteration.
270   disabledByPragma = false;
271   II_setByPragma = 0;
272 
273   MachineBasicBlock *LBLK = L.getTopBlock();
274 
275   if (LBLK == nullptr)
276     return;
277 
278   const BasicBlock *BBLK = LBLK->getBasicBlock();
279   if (BBLK == nullptr)
280     return;
281 
282   const Instruction *TI = BBLK->getTerminator();
283   if (TI == nullptr)
284     return;
285 
286   MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
287   if (LoopID == nullptr)
288     return;
289 
290   assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
291   assert(LoopID->getOperand(0) == LoopID && "invalid loop");
292 
293   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
294     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
295 
296     if (MD == nullptr)
297       continue;
298 
299     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
300 
301     if (S == nullptr)
302       continue;
303 
304     if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
305       assert(MD->getNumOperands() == 2 &&
306              "Pipeline initiation interval hint metadata should have two operands.");
307       II_setByPragma =
308           mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
309       assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
310     } else if (S->getString() == "llvm.loop.pipeline.disable") {
311       disabledByPragma = true;
312     }
313   }
314 }
315 
316 /// Return true if the loop can be software pipelined.  The algorithm is
317 /// restricted to loops with a single basic block.  Make sure that the
318 /// branch in the loop can be analyzed.
319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
320   if (L.getNumBlocks() != 1) {
321     ORE->emit([&]() {
322       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
323                                                L.getStartLoc(), L.getHeader())
324              << "Not a single basic block: "
325              << ore::NV("NumBlocks", L.getNumBlocks());
326     });
327     return false;
328   }
329 
330   if (disabledByPragma) {
331     ORE->emit([&]() {
332       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
333                                                L.getStartLoc(), L.getHeader())
334              << "Disabled by Pragma.";
335     });
336     return false;
337   }
338 
339   // Check if the branch can't be understood because we can't do pipelining
340   // if that's the case.
341   LI.TBB = nullptr;
342   LI.FBB = nullptr;
343   LI.BrCond.clear();
344   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
345     LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
346     NumFailBranch++;
347     ORE->emit([&]() {
348       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
349                                                L.getStartLoc(), L.getHeader())
350              << "The branch can't be understood";
351     });
352     return false;
353   }
354 
355   LI.LoopInductionVar = nullptr;
356   LI.LoopCompare = nullptr;
357   if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
358     LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
359     NumFailLoop++;
360     ORE->emit([&]() {
361       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
362                                                L.getStartLoc(), L.getHeader())
363              << "The loop structure is not supported";
364     });
365     return false;
366   }
367 
368   if (!L.getLoopPreheader()) {
369     LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
370     NumFailPreheader++;
371     ORE->emit([&]() {
372       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
373                                                L.getStartLoc(), L.getHeader())
374              << "No loop preheader found";
375     });
376     return false;
377   }
378 
379   // Remove any subregisters from inputs to phi nodes.
380   preprocessPhiNodes(*L.getHeader());
381   return true;
382 }
383 
384 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
385   MachineRegisterInfo &MRI = MF->getRegInfo();
386   SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
387 
388   for (MachineInstr &PI : B.phis()) {
389     MachineOperand &DefOp = PI.getOperand(0);
390     assert(DefOp.getSubReg() == 0);
391     auto *RC = MRI.getRegClass(DefOp.getReg());
392 
393     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
394       MachineOperand &RegOp = PI.getOperand(i);
395       if (RegOp.getSubReg() == 0)
396         continue;
397 
398       // If the operand uses a subregister, replace it with a new register
399       // without subregisters, and generate a copy to the new register.
400       Register NewReg = MRI.createVirtualRegister(RC);
401       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
402       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
403       const DebugLoc &DL = PredB.findDebugLoc(At);
404       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
405                     .addReg(RegOp.getReg(), getRegState(RegOp),
406                             RegOp.getSubReg());
407       Slots.insertMachineInstrInMaps(*Copy);
408       RegOp.setReg(NewReg);
409       RegOp.setSubReg(0);
410     }
411   }
412 }
413 
414 /// The SMS algorithm consists of the following main steps:
415 /// 1. Computation and analysis of the dependence graph.
416 /// 2. Ordering of the nodes (instructions).
417 /// 3. Attempt to Schedule the loop.
418 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
419   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
420 
421   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
422                         II_setByPragma);
423 
424   MachineBasicBlock *MBB = L.getHeader();
425   // The kernel should not include any terminator instructions.  These
426   // will be added back later.
427   SMS.startBlock(MBB);
428 
429   // Compute the number of 'real' instructions in the basic block by
430   // ignoring terminators.
431   unsigned size = MBB->size();
432   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
433                                    E = MBB->instr_end();
434        I != E; ++I, --size)
435     ;
436 
437   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
438   SMS.schedule();
439   SMS.exitRegion();
440 
441   SMS.finishBlock();
442   return SMS.hasNewSchedule();
443 }
444 
445 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
446   AU.addRequired<AAResultsWrapperPass>();
447   AU.addPreserved<AAResultsWrapperPass>();
448   AU.addRequired<MachineLoopInfo>();
449   AU.addRequired<MachineDominatorTree>();
450   AU.addRequired<LiveIntervals>();
451   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
452   MachineFunctionPass::getAnalysisUsage(AU);
453 }
454 
455 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
456   if (II_setByPragma > 0)
457     MII = II_setByPragma;
458   else
459     MII = std::max(ResMII, RecMII);
460 }
461 
462 void SwingSchedulerDAG::setMAX_II() {
463   if (II_setByPragma > 0)
464     MAX_II = II_setByPragma;
465   else
466     MAX_II = MII + 10;
467 }
468 
469 /// We override the schedule function in ScheduleDAGInstrs to implement the
470 /// scheduling part of the Swing Modulo Scheduling algorithm.
471 void SwingSchedulerDAG::schedule() {
472   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
473   buildSchedGraph(AA);
474   addLoopCarriedDependences(AA);
475   updatePhiDependences();
476   Topo.InitDAGTopologicalSorting();
477   changeDependences();
478   postprocessDAG();
479   LLVM_DEBUG(dump());
480 
481   NodeSetType NodeSets;
482   findCircuits(NodeSets);
483   NodeSetType Circuits = NodeSets;
484 
485   // Calculate the MII.
486   unsigned ResMII = calculateResMII();
487   unsigned RecMII = calculateRecMII(NodeSets);
488 
489   fuseRecs(NodeSets);
490 
491   // This flag is used for testing and can cause correctness problems.
492   if (SwpIgnoreRecMII)
493     RecMII = 0;
494 
495   setMII(ResMII, RecMII);
496   setMAX_II();
497 
498   LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
499                     << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
500 
501   // Can't schedule a loop without a valid MII.
502   if (MII == 0) {
503     LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
504     NumFailZeroMII++;
505     Pass.ORE->emit([&]() {
506       return MachineOptimizationRemarkAnalysis(
507                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
508              << "Invalid Minimal Initiation Interval: 0";
509     });
510     return;
511   }
512 
513   // Don't pipeline large loops.
514   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
515     LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
516                       << ", we don't pipleline large loops\n");
517     NumFailLargeMaxMII++;
518     Pass.ORE->emit([&]() {
519       return MachineOptimizationRemarkAnalysis(
520                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
521              << "Minimal Initiation Interval too large: "
522              << ore::NV("MII", (int)MII) << " > "
523              << ore::NV("SwpMaxMii", SwpMaxMii) << "."
524              << "Refer to -pipeliner-max-mii.";
525     });
526     return;
527   }
528 
529   computeNodeFunctions(NodeSets);
530 
531   registerPressureFilter(NodeSets);
532 
533   colocateNodeSets(NodeSets);
534 
535   checkNodeSets(NodeSets);
536 
537   LLVM_DEBUG({
538     for (auto &I : NodeSets) {
539       dbgs() << "  Rec NodeSet ";
540       I.dump();
541     }
542   });
543 
544   llvm::stable_sort(NodeSets, std::greater<NodeSet>());
545 
546   groupRemainingNodes(NodeSets);
547 
548   removeDuplicateNodes(NodeSets);
549 
550   LLVM_DEBUG({
551     for (auto &I : NodeSets) {
552       dbgs() << "  NodeSet ";
553       I.dump();
554     }
555   });
556 
557   computeNodeOrder(NodeSets);
558 
559   // check for node order issues
560   checkValidNodeOrder(Circuits);
561 
562   SMSchedule Schedule(Pass.MF);
563   Scheduled = schedulePipeline(Schedule);
564 
565   if (!Scheduled){
566     LLVM_DEBUG(dbgs() << "No schedule found, return\n");
567     NumFailNoSchedule++;
568     Pass.ORE->emit([&]() {
569       return MachineOptimizationRemarkAnalysis(
570                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
571              << "Unable to find schedule";
572     });
573     return;
574   }
575 
576   unsigned numStages = Schedule.getMaxStageCount();
577   // No need to generate pipeline if there are no overlapped iterations.
578   if (numStages == 0) {
579     LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
580     NumFailZeroStage++;
581     Pass.ORE->emit([&]() {
582       return MachineOptimizationRemarkAnalysis(
583                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
584              << "No need to pipeline - no overlapped iterations in schedule.";
585     });
586     return;
587   }
588   // Check that the maximum stage count is less than user-defined limit.
589   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
590     LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
591                       << " : too many stages, abort\n");
592     NumFailLargeMaxStage++;
593     Pass.ORE->emit([&]() {
594       return MachineOptimizationRemarkAnalysis(
595                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
596              << "Too many stages in schedule: "
597              << ore::NV("numStages", (int)numStages) << " > "
598              << ore::NV("SwpMaxStages", SwpMaxStages)
599              << ". Refer to -pipeliner-max-stages.";
600     });
601     return;
602   }
603 
604   Pass.ORE->emit([&]() {
605     return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
606                                      Loop.getHeader())
607            << "Pipelined succesfully!";
608   });
609 
610   // Generate the schedule as a ModuloSchedule.
611   DenseMap<MachineInstr *, int> Cycles, Stages;
612   std::vector<MachineInstr *> OrderedInsts;
613   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
614        ++Cycle) {
615     for (SUnit *SU : Schedule.getInstructions(Cycle)) {
616       OrderedInsts.push_back(SU->getInstr());
617       Cycles[SU->getInstr()] = Cycle;
618       Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
619     }
620   }
621   DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
622   for (auto &KV : NewMIs) {
623     Cycles[KV.first] = Cycles[KV.second];
624     Stages[KV.first] = Stages[KV.second];
625     NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
626   }
627 
628   ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
629                     std::move(Stages));
630   if (EmitTestAnnotations) {
631     assert(NewInstrChanges.empty() &&
632            "Cannot serialize a schedule with InstrChanges!");
633     ModuloScheduleTestAnnotater MSTI(MF, MS);
634     MSTI.annotate();
635     return;
636   }
637   // The experimental code generator can't work if there are InstChanges.
638   if (ExperimentalCodeGen && NewInstrChanges.empty()) {
639     PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
640     MSE.expand();
641   } else {
642     ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
643     MSE.expand();
644     MSE.cleanup();
645   }
646   ++NumPipelined;
647 }
648 
649 /// Clean up after the software pipeliner runs.
650 void SwingSchedulerDAG::finishBlock() {
651   for (auto &KV : NewMIs)
652     MF.deleteMachineInstr(KV.second);
653   NewMIs.clear();
654 
655   // Call the superclass.
656   ScheduleDAGInstrs::finishBlock();
657 }
658 
659 /// Return the register values for  the operands of a Phi instruction.
660 /// This function assume the instruction is a Phi.
661 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
662                        unsigned &InitVal, unsigned &LoopVal) {
663   assert(Phi.isPHI() && "Expecting a Phi.");
664 
665   InitVal = 0;
666   LoopVal = 0;
667   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
668     if (Phi.getOperand(i + 1).getMBB() != Loop)
669       InitVal = Phi.getOperand(i).getReg();
670     else
671       LoopVal = Phi.getOperand(i).getReg();
672 
673   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
674 }
675 
676 /// Return the Phi register value that comes the loop block.
677 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
678   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
679     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
680       return Phi.getOperand(i).getReg();
681   return 0;
682 }
683 
684 /// Return true if SUb can be reached from SUa following the chain edges.
685 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
686   SmallPtrSet<SUnit *, 8> Visited;
687   SmallVector<SUnit *, 8> Worklist;
688   Worklist.push_back(SUa);
689   while (!Worklist.empty()) {
690     const SUnit *SU = Worklist.pop_back_val();
691     for (auto &SI : SU->Succs) {
692       SUnit *SuccSU = SI.getSUnit();
693       if (SI.getKind() == SDep::Order) {
694         if (Visited.count(SuccSU))
695           continue;
696         if (SuccSU == SUb)
697           return true;
698         Worklist.push_back(SuccSU);
699         Visited.insert(SuccSU);
700       }
701     }
702   }
703   return false;
704 }
705 
706 /// Return true if the instruction causes a chain between memory
707 /// references before and after it.
708 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
709   return MI.isCall() || MI.mayRaiseFPException() ||
710          MI.hasUnmodeledSideEffects() ||
711          (MI.hasOrderedMemoryRef() &&
712           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
713 }
714 
715 /// Return the underlying objects for the memory references of an instruction.
716 /// This function calls the code in ValueTracking, but first checks that the
717 /// instruction has a memory operand.
718 static void getUnderlyingObjects(const MachineInstr *MI,
719                                  SmallVectorImpl<const Value *> &Objs) {
720   if (!MI->hasOneMemOperand())
721     return;
722   MachineMemOperand *MM = *MI->memoperands_begin();
723   if (!MM->getValue())
724     return;
725   getUnderlyingObjects(MM->getValue(), Objs);
726   for (const Value *V : Objs) {
727     if (!isIdentifiedObject(V)) {
728       Objs.clear();
729       return;
730     }
731     Objs.push_back(V);
732   }
733 }
734 
735 /// Add a chain edge between a load and store if the store can be an
736 /// alias of the load on a subsequent iteration, i.e., a loop carried
737 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
738 /// but that code doesn't create loop carried dependences.
739 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
740   MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
741   Value *UnknownValue =
742     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
743   for (auto &SU : SUnits) {
744     MachineInstr &MI = *SU.getInstr();
745     if (isDependenceBarrier(MI, AA))
746       PendingLoads.clear();
747     else if (MI.mayLoad()) {
748       SmallVector<const Value *, 4> Objs;
749       ::getUnderlyingObjects(&MI, Objs);
750       if (Objs.empty())
751         Objs.push_back(UnknownValue);
752       for (auto V : Objs) {
753         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
754         SUs.push_back(&SU);
755       }
756     } else if (MI.mayStore()) {
757       SmallVector<const Value *, 4> Objs;
758       ::getUnderlyingObjects(&MI, Objs);
759       if (Objs.empty())
760         Objs.push_back(UnknownValue);
761       for (auto V : Objs) {
762         MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
763             PendingLoads.find(V);
764         if (I == PendingLoads.end())
765           continue;
766         for (auto Load : I->second) {
767           if (isSuccOrder(Load, &SU))
768             continue;
769           MachineInstr &LdMI = *Load->getInstr();
770           // First, perform the cheaper check that compares the base register.
771           // If they are the same and the load offset is less than the store
772           // offset, then mark the dependence as loop carried potentially.
773           const MachineOperand *BaseOp1, *BaseOp2;
774           int64_t Offset1, Offset2;
775           bool Offset1IsScalable, Offset2IsScalable;
776           if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
777                                            Offset1IsScalable, TRI) &&
778               TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
779                                            Offset2IsScalable, TRI)) {
780             if (BaseOp1->isIdenticalTo(*BaseOp2) &&
781                 Offset1IsScalable == Offset2IsScalable &&
782                 (int)Offset1 < (int)Offset2) {
783               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
784                      "What happened to the chain edge?");
785               SDep Dep(Load, SDep::Barrier);
786               Dep.setLatency(1);
787               SU.addPred(Dep);
788               continue;
789             }
790           }
791           // Second, the more expensive check that uses alias analysis on the
792           // base registers. If they alias, and the load offset is less than
793           // the store offset, the mark the dependence as loop carried.
794           if (!AA) {
795             SDep Dep(Load, SDep::Barrier);
796             Dep.setLatency(1);
797             SU.addPred(Dep);
798             continue;
799           }
800           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
801           MachineMemOperand *MMO2 = *MI.memoperands_begin();
802           if (!MMO1->getValue() || !MMO2->getValue()) {
803             SDep Dep(Load, SDep::Barrier);
804             Dep.setLatency(1);
805             SU.addPred(Dep);
806             continue;
807           }
808           if (MMO1->getValue() == MMO2->getValue() &&
809               MMO1->getOffset() <= MMO2->getOffset()) {
810             SDep Dep(Load, SDep::Barrier);
811             Dep.setLatency(1);
812             SU.addPred(Dep);
813             continue;
814           }
815           if (!AA->isNoAlias(
816                   MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
817                   MemoryLocation::getAfter(MMO2->getValue(),
818                                            MMO2->getAAInfo()))) {
819             SDep Dep(Load, SDep::Barrier);
820             Dep.setLatency(1);
821             SU.addPred(Dep);
822           }
823         }
824       }
825     }
826   }
827 }
828 
829 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
830 /// processes dependences for PHIs. This function adds true dependences
831 /// from a PHI to a use, and a loop carried dependence from the use to the
832 /// PHI. The loop carried dependence is represented as an anti dependence
833 /// edge. This function also removes chain dependences between unrelated
834 /// PHIs.
835 void SwingSchedulerDAG::updatePhiDependences() {
836   SmallVector<SDep, 4> RemoveDeps;
837   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
838 
839   // Iterate over each DAG node.
840   for (SUnit &I : SUnits) {
841     RemoveDeps.clear();
842     // Set to true if the instruction has an operand defined by a Phi.
843     unsigned HasPhiUse = 0;
844     unsigned HasPhiDef = 0;
845     MachineInstr *MI = I.getInstr();
846     // Iterate over each operand, and we process the definitions.
847     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
848                                     MOE = MI->operands_end();
849          MOI != MOE; ++MOI) {
850       if (!MOI->isReg())
851         continue;
852       Register Reg = MOI->getReg();
853       if (MOI->isDef()) {
854         // If the register is used by a Phi, then create an anti dependence.
855         for (MachineRegisterInfo::use_instr_iterator
856                  UI = MRI.use_instr_begin(Reg),
857                  UE = MRI.use_instr_end();
858              UI != UE; ++UI) {
859           MachineInstr *UseMI = &*UI;
860           SUnit *SU = getSUnit(UseMI);
861           if (SU != nullptr && UseMI->isPHI()) {
862             if (!MI->isPHI()) {
863               SDep Dep(SU, SDep::Anti, Reg);
864               Dep.setLatency(1);
865               I.addPred(Dep);
866             } else {
867               HasPhiDef = Reg;
868               // Add a chain edge to a dependent Phi that isn't an existing
869               // predecessor.
870               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
871                 I.addPred(SDep(SU, SDep::Barrier));
872             }
873           }
874         }
875       } else if (MOI->isUse()) {
876         // If the register is defined by a Phi, then create a true dependence.
877         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
878         if (DefMI == nullptr)
879           continue;
880         SUnit *SU = getSUnit(DefMI);
881         if (SU != nullptr && DefMI->isPHI()) {
882           if (!MI->isPHI()) {
883             SDep Dep(SU, SDep::Data, Reg);
884             Dep.setLatency(0);
885             ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
886             I.addPred(Dep);
887           } else {
888             HasPhiUse = Reg;
889             // Add a chain edge to a dependent Phi that isn't an existing
890             // predecessor.
891             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
892               I.addPred(SDep(SU, SDep::Barrier));
893           }
894         }
895       }
896     }
897     // Remove order dependences from an unrelated Phi.
898     if (!SwpPruneDeps)
899       continue;
900     for (auto &PI : I.Preds) {
901       MachineInstr *PMI = PI.getSUnit()->getInstr();
902       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
903         if (I.getInstr()->isPHI()) {
904           if (PMI->getOperand(0).getReg() == HasPhiUse)
905             continue;
906           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
907             continue;
908         }
909         RemoveDeps.push_back(PI);
910       }
911     }
912     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
913       I.removePred(RemoveDeps[i]);
914   }
915 }
916 
917 /// Iterate over each DAG node and see if we can change any dependences
918 /// in order to reduce the recurrence MII.
919 void SwingSchedulerDAG::changeDependences() {
920   // See if an instruction can use a value from the previous iteration.
921   // If so, we update the base and offset of the instruction and change
922   // the dependences.
923   for (SUnit &I : SUnits) {
924     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
925     int64_t NewOffset = 0;
926     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
927                                NewOffset))
928       continue;
929 
930     // Get the MI and SUnit for the instruction that defines the original base.
931     Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
932     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
933     if (!DefMI)
934       continue;
935     SUnit *DefSU = getSUnit(DefMI);
936     if (!DefSU)
937       continue;
938     // Get the MI and SUnit for the instruction that defins the new base.
939     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
940     if (!LastMI)
941       continue;
942     SUnit *LastSU = getSUnit(LastMI);
943     if (!LastSU)
944       continue;
945 
946     if (Topo.IsReachable(&I, LastSU))
947       continue;
948 
949     // Remove the dependence. The value now depends on a prior iteration.
950     SmallVector<SDep, 4> Deps;
951     for (const SDep &P : I.Preds)
952       if (P.getSUnit() == DefSU)
953         Deps.push_back(P);
954     for (int i = 0, e = Deps.size(); i != e; i++) {
955       Topo.RemovePred(&I, Deps[i].getSUnit());
956       I.removePred(Deps[i]);
957     }
958     // Remove the chain dependence between the instructions.
959     Deps.clear();
960     for (auto &P : LastSU->Preds)
961       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
962         Deps.push_back(P);
963     for (int i = 0, e = Deps.size(); i != e; i++) {
964       Topo.RemovePred(LastSU, Deps[i].getSUnit());
965       LastSU->removePred(Deps[i]);
966     }
967 
968     // Add a dependence between the new instruction and the instruction
969     // that defines the new base.
970     SDep Dep(&I, SDep::Anti, NewBase);
971     Topo.AddPred(LastSU, &I);
972     LastSU->addPred(Dep);
973 
974     // Remember the base and offset information so that we can update the
975     // instruction during code generation.
976     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
977   }
978 }
979 
980 namespace {
981 
982 // FuncUnitSorter - Comparison operator used to sort instructions by
983 // the number of functional unit choices.
984 struct FuncUnitSorter {
985   const InstrItineraryData *InstrItins;
986   const MCSubtargetInfo *STI;
987   DenseMap<InstrStage::FuncUnits, unsigned> Resources;
988 
989   FuncUnitSorter(const TargetSubtargetInfo &TSI)
990       : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
991 
992   // Compute the number of functional unit alternatives needed
993   // at each stage, and take the minimum value. We prioritize the
994   // instructions by the least number of choices first.
995   unsigned minFuncUnits(const MachineInstr *Inst,
996                         InstrStage::FuncUnits &F) const {
997     unsigned SchedClass = Inst->getDesc().getSchedClass();
998     unsigned min = UINT_MAX;
999     if (InstrItins && !InstrItins->isEmpty()) {
1000       for (const InstrStage &IS :
1001            make_range(InstrItins->beginStage(SchedClass),
1002                       InstrItins->endStage(SchedClass))) {
1003         InstrStage::FuncUnits funcUnits = IS.getUnits();
1004         unsigned numAlternatives = countPopulation(funcUnits);
1005         if (numAlternatives < min) {
1006           min = numAlternatives;
1007           F = funcUnits;
1008         }
1009       }
1010       return min;
1011     }
1012     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1013       const MCSchedClassDesc *SCDesc =
1014           STI->getSchedModel().getSchedClassDesc(SchedClass);
1015       if (!SCDesc->isValid())
1016         // No valid Schedule Class Desc for schedClass, should be
1017         // Pseudo/PostRAPseudo
1018         return min;
1019 
1020       for (const MCWriteProcResEntry &PRE :
1021            make_range(STI->getWriteProcResBegin(SCDesc),
1022                       STI->getWriteProcResEnd(SCDesc))) {
1023         if (!PRE.Cycles)
1024           continue;
1025         const MCProcResourceDesc *ProcResource =
1026             STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1027         unsigned NumUnits = ProcResource->NumUnits;
1028         if (NumUnits < min) {
1029           min = NumUnits;
1030           F = PRE.ProcResourceIdx;
1031         }
1032       }
1033       return min;
1034     }
1035     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1036   }
1037 
1038   // Compute the critical resources needed by the instruction. This
1039   // function records the functional units needed by instructions that
1040   // must use only one functional unit. We use this as a tie breaker
1041   // for computing the resource MII. The instrutions that require
1042   // the same, highly used, functional unit have high priority.
1043   void calcCriticalResources(MachineInstr &MI) {
1044     unsigned SchedClass = MI.getDesc().getSchedClass();
1045     if (InstrItins && !InstrItins->isEmpty()) {
1046       for (const InstrStage &IS :
1047            make_range(InstrItins->beginStage(SchedClass),
1048                       InstrItins->endStage(SchedClass))) {
1049         InstrStage::FuncUnits FuncUnits = IS.getUnits();
1050         if (countPopulation(FuncUnits) == 1)
1051           Resources[FuncUnits]++;
1052       }
1053       return;
1054     }
1055     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1056       const MCSchedClassDesc *SCDesc =
1057           STI->getSchedModel().getSchedClassDesc(SchedClass);
1058       if (!SCDesc->isValid())
1059         // No valid Schedule Class Desc for schedClass, should be
1060         // Pseudo/PostRAPseudo
1061         return;
1062 
1063       for (const MCWriteProcResEntry &PRE :
1064            make_range(STI->getWriteProcResBegin(SCDesc),
1065                       STI->getWriteProcResEnd(SCDesc))) {
1066         if (!PRE.Cycles)
1067           continue;
1068         Resources[PRE.ProcResourceIdx]++;
1069       }
1070       return;
1071     }
1072     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1073   }
1074 
1075   /// Return true if IS1 has less priority than IS2.
1076   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1077     InstrStage::FuncUnits F1 = 0, F2 = 0;
1078     unsigned MFUs1 = minFuncUnits(IS1, F1);
1079     unsigned MFUs2 = minFuncUnits(IS2, F2);
1080     if (MFUs1 == MFUs2)
1081       return Resources.lookup(F1) < Resources.lookup(F2);
1082     return MFUs1 > MFUs2;
1083   }
1084 };
1085 
1086 } // end anonymous namespace
1087 
1088 /// Calculate the resource constrained minimum initiation interval for the
1089 /// specified loop. We use the DFA to model the resources needed for
1090 /// each instruction, and we ignore dependences. A different DFA is created
1091 /// for each cycle that is required. When adding a new instruction, we attempt
1092 /// to add it to each existing DFA, until a legal space is found. If the
1093 /// instruction cannot be reserved in an existing DFA, we create a new one.
1094 unsigned SwingSchedulerDAG::calculateResMII() {
1095 
1096   LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1097   SmallVector<ResourceManager*, 8> Resources;
1098   MachineBasicBlock *MBB = Loop.getHeader();
1099   Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1100 
1101   // Sort the instructions by the number of available choices for scheduling,
1102   // least to most. Use the number of critical resources as the tie breaker.
1103   FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1104   for (MachineInstr &MI :
1105        llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator()))
1106     FUS.calcCriticalResources(MI);
1107   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1108       FuncUnitOrder(FUS);
1109 
1110   for (MachineInstr &MI :
1111        llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator()))
1112     FuncUnitOrder.push(&MI);
1113 
1114   while (!FuncUnitOrder.empty()) {
1115     MachineInstr *MI = FuncUnitOrder.top();
1116     FuncUnitOrder.pop();
1117     if (TII->isZeroCost(MI->getOpcode()))
1118       continue;
1119     // Attempt to reserve the instruction in an existing DFA. At least one
1120     // DFA is needed for each cycle.
1121     unsigned NumCycles = getSUnit(MI)->Latency;
1122     unsigned ReservedCycles = 0;
1123     SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1124     SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1125     LLVM_DEBUG({
1126       dbgs() << "Trying to reserve resource for " << NumCycles
1127              << " cycles for \n";
1128       MI->dump();
1129     });
1130     for (unsigned C = 0; C < NumCycles; ++C)
1131       while (RI != RE) {
1132         if ((*RI)->canReserveResources(*MI)) {
1133           (*RI)->reserveResources(*MI);
1134           ++ReservedCycles;
1135           break;
1136         }
1137         RI++;
1138       }
1139     LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1140                       << ", NumCycles:" << NumCycles << "\n");
1141     // Add new DFAs, if needed, to reserve resources.
1142     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1143       LLVM_DEBUG(if (SwpDebugResource) dbgs()
1144                  << "NewResource created to reserve resources"
1145                  << "\n");
1146       ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1147       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1148       NewResource->reserveResources(*MI);
1149       Resources.push_back(NewResource);
1150     }
1151   }
1152   int Resmii = Resources.size();
1153   LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
1154   // Delete the memory for each of the DFAs that were created earlier.
1155   for (ResourceManager *RI : Resources) {
1156     ResourceManager *D = RI;
1157     delete D;
1158   }
1159   Resources.clear();
1160   return Resmii;
1161 }
1162 
1163 /// Calculate the recurrence-constrainted minimum initiation interval.
1164 /// Iterate over each circuit.  Compute the delay(c) and distance(c)
1165 /// for each circuit. The II needs to satisfy the inequality
1166 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1167 /// II that satisfies the inequality, and the RecMII is the maximum
1168 /// of those values.
1169 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1170   unsigned RecMII = 0;
1171 
1172   for (NodeSet &Nodes : NodeSets) {
1173     if (Nodes.empty())
1174       continue;
1175 
1176     unsigned Delay = Nodes.getLatency();
1177     unsigned Distance = 1;
1178 
1179     // ii = ceil(delay / distance)
1180     unsigned CurMII = (Delay + Distance - 1) / Distance;
1181     Nodes.setRecMII(CurMII);
1182     if (CurMII > RecMII)
1183       RecMII = CurMII;
1184   }
1185 
1186   return RecMII;
1187 }
1188 
1189 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1190 /// but we do this to find the circuits, and then change them back.
1191 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1192   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1193   for (SUnit &SU : SUnits) {
1194     for (SDep &Pred : SU.Preds)
1195       if (Pred.getKind() == SDep::Anti)
1196         DepsAdded.push_back(std::make_pair(&SU, Pred));
1197   }
1198   for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1199     // Remove this anti dependency and add one in the reverse direction.
1200     SUnit *SU = P.first;
1201     SDep &D = P.second;
1202     SUnit *TargetSU = D.getSUnit();
1203     unsigned Reg = D.getReg();
1204     unsigned Lat = D.getLatency();
1205     SU->removePred(D);
1206     SDep Dep(SU, SDep::Anti, Reg);
1207     Dep.setLatency(Lat);
1208     TargetSU->addPred(Dep);
1209   }
1210 }
1211 
1212 /// Create the adjacency structure of the nodes in the graph.
1213 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1214     SwingSchedulerDAG *DAG) {
1215   BitVector Added(SUnits.size());
1216   DenseMap<int, int> OutputDeps;
1217   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1218     Added.reset();
1219     // Add any successor to the adjacency matrix and exclude duplicates.
1220     for (auto &SI : SUnits[i].Succs) {
1221       // Only create a back-edge on the first and last nodes of a dependence
1222       // chain. This records any chains and adds them later.
1223       if (SI.getKind() == SDep::Output) {
1224         int N = SI.getSUnit()->NodeNum;
1225         int BackEdge = i;
1226         auto Dep = OutputDeps.find(BackEdge);
1227         if (Dep != OutputDeps.end()) {
1228           BackEdge = Dep->second;
1229           OutputDeps.erase(Dep);
1230         }
1231         OutputDeps[N] = BackEdge;
1232       }
1233       // Do not process a boundary node, an artificial node.
1234       // A back-edge is processed only if it goes to a Phi.
1235       if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1236           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1237         continue;
1238       int N = SI.getSUnit()->NodeNum;
1239       if (!Added.test(N)) {
1240         AdjK[i].push_back(N);
1241         Added.set(N);
1242       }
1243     }
1244     // A chain edge between a store and a load is treated as a back-edge in the
1245     // adjacency matrix.
1246     for (auto &PI : SUnits[i].Preds) {
1247       if (!SUnits[i].getInstr()->mayStore() ||
1248           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1249         continue;
1250       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1251         int N = PI.getSUnit()->NodeNum;
1252         if (!Added.test(N)) {
1253           AdjK[i].push_back(N);
1254           Added.set(N);
1255         }
1256       }
1257     }
1258   }
1259   // Add back-edges in the adjacency matrix for the output dependences.
1260   for (auto &OD : OutputDeps)
1261     if (!Added.test(OD.second)) {
1262       AdjK[OD.first].push_back(OD.second);
1263       Added.set(OD.second);
1264     }
1265 }
1266 
1267 /// Identify an elementary circuit in the dependence graph starting at the
1268 /// specified node.
1269 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1270                                           bool HasBackedge) {
1271   SUnit *SV = &SUnits[V];
1272   bool F = false;
1273   Stack.insert(SV);
1274   Blocked.set(V);
1275 
1276   for (auto W : AdjK[V]) {
1277     if (NumPaths > MaxPaths)
1278       break;
1279     if (W < S)
1280       continue;
1281     if (W == S) {
1282       if (!HasBackedge)
1283         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1284       F = true;
1285       ++NumPaths;
1286       break;
1287     } else if (!Blocked.test(W)) {
1288       if (circuit(W, S, NodeSets,
1289                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1290         F = true;
1291     }
1292   }
1293 
1294   if (F)
1295     unblock(V);
1296   else {
1297     for (auto W : AdjK[V]) {
1298       if (W < S)
1299         continue;
1300       if (B[W].count(SV) == 0)
1301         B[W].insert(SV);
1302     }
1303   }
1304   Stack.pop_back();
1305   return F;
1306 }
1307 
1308 /// Unblock a node in the circuit finding algorithm.
1309 void SwingSchedulerDAG::Circuits::unblock(int U) {
1310   Blocked.reset(U);
1311   SmallPtrSet<SUnit *, 4> &BU = B[U];
1312   while (!BU.empty()) {
1313     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1314     assert(SI != BU.end() && "Invalid B set.");
1315     SUnit *W = *SI;
1316     BU.erase(W);
1317     if (Blocked.test(W->NodeNum))
1318       unblock(W->NodeNum);
1319   }
1320 }
1321 
1322 /// Identify all the elementary circuits in the dependence graph using
1323 /// Johnson's circuit algorithm.
1324 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1325   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1326   // but we do this to find the circuits, and then change them back.
1327   swapAntiDependences(SUnits);
1328 
1329   Circuits Cir(SUnits, Topo);
1330   // Create the adjacency structure.
1331   Cir.createAdjacencyStructure(this);
1332   for (int i = 0, e = SUnits.size(); i != e; ++i) {
1333     Cir.reset();
1334     Cir.circuit(i, i, NodeSets);
1335   }
1336 
1337   // Change the dependences back so that we've created a DAG again.
1338   swapAntiDependences(SUnits);
1339 }
1340 
1341 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1342 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1343 // additional copies that are needed across iterations. An artificial dependence
1344 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1345 
1346 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1347 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1348 // PHI-------True-Dep------> USEOfPhi
1349 
1350 // The mutation creates
1351 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1352 
1353 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1354 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1355 // late  to avoid additional copies across iterations. The possible scheduling
1356 // order would be
1357 // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE.
1358 
1359 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1360   for (SUnit &SU : DAG->SUnits) {
1361     // Find the COPY/REG_SEQUENCE instruction.
1362     if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1363       continue;
1364 
1365     // Record the loop carried PHIs.
1366     SmallVector<SUnit *, 4> PHISUs;
1367     // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1368     SmallVector<SUnit *, 4> SrcSUs;
1369 
1370     for (auto &Dep : SU.Preds) {
1371       SUnit *TmpSU = Dep.getSUnit();
1372       MachineInstr *TmpMI = TmpSU->getInstr();
1373       SDep::Kind DepKind = Dep.getKind();
1374       // Save the loop carried PHI.
1375       if (DepKind == SDep::Anti && TmpMI->isPHI())
1376         PHISUs.push_back(TmpSU);
1377       // Save the source of COPY/REG_SEQUENCE.
1378       // If the source has no pre-decessors, we will end up creating cycles.
1379       else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1380         SrcSUs.push_back(TmpSU);
1381     }
1382 
1383     if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1384       continue;
1385 
1386     // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1387     // SUnit to the container.
1388     SmallVector<SUnit *, 8> UseSUs;
1389     // Do not use iterator based loop here as we are updating the container.
1390     for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1391       for (auto &Dep : PHISUs[Index]->Succs) {
1392         if (Dep.getKind() != SDep::Data)
1393           continue;
1394 
1395         SUnit *TmpSU = Dep.getSUnit();
1396         MachineInstr *TmpMI = TmpSU->getInstr();
1397         if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1398           PHISUs.push_back(TmpSU);
1399           continue;
1400         }
1401         UseSUs.push_back(TmpSU);
1402       }
1403     }
1404 
1405     if (UseSUs.size() == 0)
1406       continue;
1407 
1408     SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1409     // Add the artificial dependencies if it does not form a cycle.
1410     for (auto I : UseSUs) {
1411       for (auto Src : SrcSUs) {
1412         if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1413           Src->addPred(SDep(I, SDep::Artificial));
1414           SDAG->Topo.AddPred(Src, I);
1415         }
1416       }
1417     }
1418   }
1419 }
1420 
1421 /// Return true for DAG nodes that we ignore when computing the cost functions.
1422 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1423 /// in the calculation of the ASAP, ALAP, etc functions.
1424 static bool ignoreDependence(const SDep &D, bool isPred) {
1425   if (D.isArtificial())
1426     return true;
1427   return D.getKind() == SDep::Anti && isPred;
1428 }
1429 
1430 /// Compute several functions need to order the nodes for scheduling.
1431 ///  ASAP - Earliest time to schedule a node.
1432 ///  ALAP - Latest time to schedule a node.
1433 ///  MOV - Mobility function, difference between ALAP and ASAP.
1434 ///  D - Depth of each node.
1435 ///  H - Height of each node.
1436 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1437   ScheduleInfo.resize(SUnits.size());
1438 
1439   LLVM_DEBUG({
1440     for (int I : Topo) {
1441       const SUnit &SU = SUnits[I];
1442       dumpNode(SU);
1443     }
1444   });
1445 
1446   int maxASAP = 0;
1447   // Compute ASAP and ZeroLatencyDepth.
1448   for (int I : Topo) {
1449     int asap = 0;
1450     int zeroLatencyDepth = 0;
1451     SUnit *SU = &SUnits[I];
1452     for (const SDep &P : SU->Preds) {
1453       SUnit *pred = P.getSUnit();
1454       if (P.getLatency() == 0)
1455         zeroLatencyDepth =
1456             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1457       if (ignoreDependence(P, true))
1458         continue;
1459       asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() -
1460                                   getDistance(pred, SU, P) * MII));
1461     }
1462     maxASAP = std::max(maxASAP, asap);
1463     ScheduleInfo[I].ASAP = asap;
1464     ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1465   }
1466 
1467   // Compute ALAP, ZeroLatencyHeight, and MOV.
1468   for (int I : llvm::reverse(Topo)) {
1469     int alap = maxASAP;
1470     int zeroLatencyHeight = 0;
1471     SUnit *SU = &SUnits[I];
1472     for (const SDep &S : SU->Succs) {
1473       SUnit *succ = S.getSUnit();
1474       if (S.getLatency() == 0)
1475         zeroLatencyHeight =
1476             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1477       if (ignoreDependence(S, true))
1478         continue;
1479       alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() +
1480                                   getDistance(SU, succ, S) * MII));
1481     }
1482 
1483     ScheduleInfo[I].ALAP = alap;
1484     ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1485   }
1486 
1487   // After computing the node functions, compute the summary for each node set.
1488   for (NodeSet &I : NodeSets)
1489     I.computeNodeSetInfo(this);
1490 
1491   LLVM_DEBUG({
1492     for (unsigned i = 0; i < SUnits.size(); i++) {
1493       dbgs() << "\tNode " << i << ":\n";
1494       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
1495       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
1496       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
1497       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
1498       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
1499       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1500       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1501     }
1502   });
1503 }
1504 
1505 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1506 /// as the predecessors of the elements of NodeOrder that are not also in
1507 /// NodeOrder.
1508 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1509                    SmallSetVector<SUnit *, 8> &Preds,
1510                    const NodeSet *S = nullptr) {
1511   Preds.clear();
1512   for (const SUnit *SU : NodeOrder) {
1513     for (const SDep &Pred : SU->Preds) {
1514       if (S && S->count(Pred.getSUnit()) == 0)
1515         continue;
1516       if (ignoreDependence(Pred, true))
1517         continue;
1518       if (NodeOrder.count(Pred.getSUnit()) == 0)
1519         Preds.insert(Pred.getSUnit());
1520     }
1521     // Back-edges are predecessors with an anti-dependence.
1522     for (const SDep &Succ : SU->Succs) {
1523       if (Succ.getKind() != SDep::Anti)
1524         continue;
1525       if (S && S->count(Succ.getSUnit()) == 0)
1526         continue;
1527       if (NodeOrder.count(Succ.getSUnit()) == 0)
1528         Preds.insert(Succ.getSUnit());
1529     }
1530   }
1531   return !Preds.empty();
1532 }
1533 
1534 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1535 /// as the successors of the elements of NodeOrder that are not also in
1536 /// NodeOrder.
1537 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1538                    SmallSetVector<SUnit *, 8> &Succs,
1539                    const NodeSet *S = nullptr) {
1540   Succs.clear();
1541   for (const SUnit *SU : NodeOrder) {
1542     for (const SDep &Succ : SU->Succs) {
1543       if (S && S->count(Succ.getSUnit()) == 0)
1544         continue;
1545       if (ignoreDependence(Succ, false))
1546         continue;
1547       if (NodeOrder.count(Succ.getSUnit()) == 0)
1548         Succs.insert(Succ.getSUnit());
1549     }
1550     for (const SDep &Pred : SU->Preds) {
1551       if (Pred.getKind() != SDep::Anti)
1552         continue;
1553       if (S && S->count(Pred.getSUnit()) == 0)
1554         continue;
1555       if (NodeOrder.count(Pred.getSUnit()) == 0)
1556         Succs.insert(Pred.getSUnit());
1557     }
1558   }
1559   return !Succs.empty();
1560 }
1561 
1562 /// Return true if there is a path from the specified node to any of the nodes
1563 /// in DestNodes. Keep track and return the nodes in any path.
1564 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1565                         SetVector<SUnit *> &DestNodes,
1566                         SetVector<SUnit *> &Exclude,
1567                         SmallPtrSet<SUnit *, 8> &Visited) {
1568   if (Cur->isBoundaryNode())
1569     return false;
1570   if (Exclude.contains(Cur))
1571     return false;
1572   if (DestNodes.contains(Cur))
1573     return true;
1574   if (!Visited.insert(Cur).second)
1575     return Path.contains(Cur);
1576   bool FoundPath = false;
1577   for (auto &SI : Cur->Succs)
1578     FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1579   for (auto &PI : Cur->Preds)
1580     if (PI.getKind() == SDep::Anti)
1581       FoundPath |=
1582           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1583   if (FoundPath)
1584     Path.insert(Cur);
1585   return FoundPath;
1586 }
1587 
1588 /// Compute the live-out registers for the instructions in a node-set.
1589 /// The live-out registers are those that are defined in the node-set,
1590 /// but not used. Except for use operands of Phis.
1591 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1592                             NodeSet &NS) {
1593   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1594   MachineRegisterInfo &MRI = MF.getRegInfo();
1595   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1596   SmallSet<unsigned, 4> Uses;
1597   for (SUnit *SU : NS) {
1598     const MachineInstr *MI = SU->getInstr();
1599     if (MI->isPHI())
1600       continue;
1601     for (const MachineOperand &MO : MI->operands())
1602       if (MO.isReg() && MO.isUse()) {
1603         Register Reg = MO.getReg();
1604         if (Register::isVirtualRegister(Reg))
1605           Uses.insert(Reg);
1606         else if (MRI.isAllocatable(Reg))
1607           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1608                ++Units)
1609             Uses.insert(*Units);
1610       }
1611   }
1612   for (SUnit *SU : NS)
1613     for (const MachineOperand &MO : SU->getInstr()->operands())
1614       if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1615         Register Reg = MO.getReg();
1616         if (Register::isVirtualRegister(Reg)) {
1617           if (!Uses.count(Reg))
1618             LiveOutRegs.push_back(RegisterMaskPair(Reg,
1619                                                    LaneBitmask::getNone()));
1620         } else if (MRI.isAllocatable(Reg)) {
1621           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1622                ++Units)
1623             if (!Uses.count(*Units))
1624               LiveOutRegs.push_back(RegisterMaskPair(*Units,
1625                                                      LaneBitmask::getNone()));
1626         }
1627       }
1628   RPTracker.addLiveRegs(LiveOutRegs);
1629 }
1630 
1631 /// A heuristic to filter nodes in recurrent node-sets if the register
1632 /// pressure of a set is too high.
1633 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1634   for (auto &NS : NodeSets) {
1635     // Skip small node-sets since they won't cause register pressure problems.
1636     if (NS.size() <= 2)
1637       continue;
1638     IntervalPressure RecRegPressure;
1639     RegPressureTracker RecRPTracker(RecRegPressure);
1640     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1641     computeLiveOuts(MF, RecRPTracker, NS);
1642     RecRPTracker.closeBottom();
1643 
1644     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1645     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1646       return A->NodeNum > B->NodeNum;
1647     });
1648 
1649     for (auto &SU : SUnits) {
1650       // Since we're computing the register pressure for a subset of the
1651       // instructions in a block, we need to set the tracker for each
1652       // instruction in the node-set. The tracker is set to the instruction
1653       // just after the one we're interested in.
1654       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1655       RecRPTracker.setPos(std::next(CurInstI));
1656 
1657       RegPressureDelta RPDelta;
1658       ArrayRef<PressureChange> CriticalPSets;
1659       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1660                                              CriticalPSets,
1661                                              RecRegPressure.MaxSetPressure);
1662       if (RPDelta.Excess.isValid()) {
1663         LLVM_DEBUG(
1664             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1665                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1666                    << ":" << RPDelta.Excess.getUnitInc());
1667         NS.setExceedPressure(SU);
1668         break;
1669       }
1670       RecRPTracker.recede();
1671     }
1672   }
1673 }
1674 
1675 /// A heuristic to colocate node sets that have the same set of
1676 /// successors.
1677 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1678   unsigned Colocate = 0;
1679   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1680     NodeSet &N1 = NodeSets[i];
1681     SmallSetVector<SUnit *, 8> S1;
1682     if (N1.empty() || !succ_L(N1, S1))
1683       continue;
1684     for (int j = i + 1; j < e; ++j) {
1685       NodeSet &N2 = NodeSets[j];
1686       if (N1.compareRecMII(N2) != 0)
1687         continue;
1688       SmallSetVector<SUnit *, 8> S2;
1689       if (N2.empty() || !succ_L(N2, S2))
1690         continue;
1691       if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1692         N1.setColocate(++Colocate);
1693         N2.setColocate(Colocate);
1694         break;
1695       }
1696     }
1697   }
1698 }
1699 
1700 /// Check if the existing node-sets are profitable. If not, then ignore the
1701 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1702 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1703 /// then it's best to try to schedule all instructions together instead of
1704 /// starting with the recurrent node-sets.
1705 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1706   // Look for loops with a large MII.
1707   if (MII < 17)
1708     return;
1709   // Check if the node-set contains only a simple add recurrence.
1710   for (auto &NS : NodeSets) {
1711     if (NS.getRecMII() > 2)
1712       return;
1713     if (NS.getMaxDepth() > MII)
1714       return;
1715   }
1716   NodeSets.clear();
1717   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1718 }
1719 
1720 /// Add the nodes that do not belong to a recurrence set into groups
1721 /// based upon connected componenets.
1722 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1723   SetVector<SUnit *> NodesAdded;
1724   SmallPtrSet<SUnit *, 8> Visited;
1725   // Add the nodes that are on a path between the previous node sets and
1726   // the current node set.
1727   for (NodeSet &I : NodeSets) {
1728     SmallSetVector<SUnit *, 8> N;
1729     // Add the nodes from the current node set to the previous node set.
1730     if (succ_L(I, N)) {
1731       SetVector<SUnit *> Path;
1732       for (SUnit *NI : N) {
1733         Visited.clear();
1734         computePath(NI, Path, NodesAdded, I, Visited);
1735       }
1736       if (!Path.empty())
1737         I.insert(Path.begin(), Path.end());
1738     }
1739     // Add the nodes from the previous node set to the current node set.
1740     N.clear();
1741     if (succ_L(NodesAdded, N)) {
1742       SetVector<SUnit *> Path;
1743       for (SUnit *NI : N) {
1744         Visited.clear();
1745         computePath(NI, Path, I, NodesAdded, Visited);
1746       }
1747       if (!Path.empty())
1748         I.insert(Path.begin(), Path.end());
1749     }
1750     NodesAdded.insert(I.begin(), I.end());
1751   }
1752 
1753   // Create a new node set with the connected nodes of any successor of a node
1754   // in a recurrent set.
1755   NodeSet NewSet;
1756   SmallSetVector<SUnit *, 8> N;
1757   if (succ_L(NodesAdded, N))
1758     for (SUnit *I : N)
1759       addConnectedNodes(I, NewSet, NodesAdded);
1760   if (!NewSet.empty())
1761     NodeSets.push_back(NewSet);
1762 
1763   // Create a new node set with the connected nodes of any predecessor of a node
1764   // in a recurrent set.
1765   NewSet.clear();
1766   if (pred_L(NodesAdded, N))
1767     for (SUnit *I : N)
1768       addConnectedNodes(I, NewSet, NodesAdded);
1769   if (!NewSet.empty())
1770     NodeSets.push_back(NewSet);
1771 
1772   // Create new nodes sets with the connected nodes any remaining node that
1773   // has no predecessor.
1774   for (SUnit &SU : SUnits) {
1775     if (NodesAdded.count(&SU) == 0) {
1776       NewSet.clear();
1777       addConnectedNodes(&SU, NewSet, NodesAdded);
1778       if (!NewSet.empty())
1779         NodeSets.push_back(NewSet);
1780     }
1781   }
1782 }
1783 
1784 /// Add the node to the set, and add all of its connected nodes to the set.
1785 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1786                                           SetVector<SUnit *> &NodesAdded) {
1787   NewSet.insert(SU);
1788   NodesAdded.insert(SU);
1789   for (auto &SI : SU->Succs) {
1790     SUnit *Successor = SI.getSUnit();
1791     if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1792       addConnectedNodes(Successor, NewSet, NodesAdded);
1793   }
1794   for (auto &PI : SU->Preds) {
1795     SUnit *Predecessor = PI.getSUnit();
1796     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1797       addConnectedNodes(Predecessor, NewSet, NodesAdded);
1798   }
1799 }
1800 
1801 /// Return true if Set1 contains elements in Set2. The elements in common
1802 /// are returned in a different container.
1803 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1804                         SmallSetVector<SUnit *, 8> &Result) {
1805   Result.clear();
1806   for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1807     SUnit *SU = Set1[i];
1808     if (Set2.count(SU) != 0)
1809       Result.insert(SU);
1810   }
1811   return !Result.empty();
1812 }
1813 
1814 /// Merge the recurrence node sets that have the same initial node.
1815 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1816   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1817        ++I) {
1818     NodeSet &NI = *I;
1819     for (NodeSetType::iterator J = I + 1; J != E;) {
1820       NodeSet &NJ = *J;
1821       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1822         if (NJ.compareRecMII(NI) > 0)
1823           NI.setRecMII(NJ.getRecMII());
1824         for (SUnit *SU : *J)
1825           I->insert(SU);
1826         NodeSets.erase(J);
1827         E = NodeSets.end();
1828       } else {
1829         ++J;
1830       }
1831     }
1832   }
1833 }
1834 
1835 /// Remove nodes that have been scheduled in previous NodeSets.
1836 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1837   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1838        ++I)
1839     for (NodeSetType::iterator J = I + 1; J != E;) {
1840       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1841 
1842       if (J->empty()) {
1843         NodeSets.erase(J);
1844         E = NodeSets.end();
1845       } else {
1846         ++J;
1847       }
1848     }
1849 }
1850 
1851 /// Compute an ordered list of the dependence graph nodes, which
1852 /// indicates the order that the nodes will be scheduled.  This is a
1853 /// two-level algorithm. First, a partial order is created, which
1854 /// consists of a list of sets ordered from highest to lowest priority.
1855 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1856   SmallSetVector<SUnit *, 8> R;
1857   NodeOrder.clear();
1858 
1859   for (auto &Nodes : NodeSets) {
1860     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1861     OrderKind Order;
1862     SmallSetVector<SUnit *, 8> N;
1863     if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1864       R.insert(N.begin(), N.end());
1865       Order = BottomUp;
1866       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
1867     } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1868       R.insert(N.begin(), N.end());
1869       Order = TopDown;
1870       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
1871     } else if (isIntersect(N, Nodes, R)) {
1872       // If some of the successors are in the existing node-set, then use the
1873       // top-down ordering.
1874       Order = TopDown;
1875       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
1876     } else if (NodeSets.size() == 1) {
1877       for (auto &N : Nodes)
1878         if (N->Succs.size() == 0)
1879           R.insert(N);
1880       Order = BottomUp;
1881       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
1882     } else {
1883       // Find the node with the highest ASAP.
1884       SUnit *maxASAP = nullptr;
1885       for (SUnit *SU : Nodes) {
1886         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1887             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1888           maxASAP = SU;
1889       }
1890       R.insert(maxASAP);
1891       Order = BottomUp;
1892       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
1893     }
1894 
1895     while (!R.empty()) {
1896       if (Order == TopDown) {
1897         // Choose the node with the maximum height.  If more than one, choose
1898         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1899         // choose the node with the lowest MOV.
1900         while (!R.empty()) {
1901           SUnit *maxHeight = nullptr;
1902           for (SUnit *I : R) {
1903             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1904               maxHeight = I;
1905             else if (getHeight(I) == getHeight(maxHeight) &&
1906                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1907               maxHeight = I;
1908             else if (getHeight(I) == getHeight(maxHeight) &&
1909                      getZeroLatencyHeight(I) ==
1910                          getZeroLatencyHeight(maxHeight) &&
1911                      getMOV(I) < getMOV(maxHeight))
1912               maxHeight = I;
1913           }
1914           NodeOrder.insert(maxHeight);
1915           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1916           R.remove(maxHeight);
1917           for (const auto &I : maxHeight->Succs) {
1918             if (Nodes.count(I.getSUnit()) == 0)
1919               continue;
1920             if (NodeOrder.contains(I.getSUnit()))
1921               continue;
1922             if (ignoreDependence(I, false))
1923               continue;
1924             R.insert(I.getSUnit());
1925           }
1926           // Back-edges are predecessors with an anti-dependence.
1927           for (const auto &I : maxHeight->Preds) {
1928             if (I.getKind() != SDep::Anti)
1929               continue;
1930             if (Nodes.count(I.getSUnit()) == 0)
1931               continue;
1932             if (NodeOrder.contains(I.getSUnit()))
1933               continue;
1934             R.insert(I.getSUnit());
1935           }
1936         }
1937         Order = BottomUp;
1938         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
1939         SmallSetVector<SUnit *, 8> N;
1940         if (pred_L(NodeOrder, N, &Nodes))
1941           R.insert(N.begin(), N.end());
1942       } else {
1943         // Choose the node with the maximum depth.  If more than one, choose
1944         // the node with the maximum ZeroLatencyDepth. If still more than one,
1945         // choose the node with the lowest MOV.
1946         while (!R.empty()) {
1947           SUnit *maxDepth = nullptr;
1948           for (SUnit *I : R) {
1949             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1950               maxDepth = I;
1951             else if (getDepth(I) == getDepth(maxDepth) &&
1952                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1953               maxDepth = I;
1954             else if (getDepth(I) == getDepth(maxDepth) &&
1955                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1956                      getMOV(I) < getMOV(maxDepth))
1957               maxDepth = I;
1958           }
1959           NodeOrder.insert(maxDepth);
1960           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1961           R.remove(maxDepth);
1962           if (Nodes.isExceedSU(maxDepth)) {
1963             Order = TopDown;
1964             R.clear();
1965             R.insert(Nodes.getNode(0));
1966             break;
1967           }
1968           for (const auto &I : maxDepth->Preds) {
1969             if (Nodes.count(I.getSUnit()) == 0)
1970               continue;
1971             if (NodeOrder.contains(I.getSUnit()))
1972               continue;
1973             R.insert(I.getSUnit());
1974           }
1975           // Back-edges are predecessors with an anti-dependence.
1976           for (const auto &I : maxDepth->Succs) {
1977             if (I.getKind() != SDep::Anti)
1978               continue;
1979             if (Nodes.count(I.getSUnit()) == 0)
1980               continue;
1981             if (NodeOrder.contains(I.getSUnit()))
1982               continue;
1983             R.insert(I.getSUnit());
1984           }
1985         }
1986         Order = TopDown;
1987         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
1988         SmallSetVector<SUnit *, 8> N;
1989         if (succ_L(NodeOrder, N, &Nodes))
1990           R.insert(N.begin(), N.end());
1991       }
1992     }
1993     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1994   }
1995 
1996   LLVM_DEBUG({
1997     dbgs() << "Node order: ";
1998     for (SUnit *I : NodeOrder)
1999       dbgs() << " " << I->NodeNum << " ";
2000     dbgs() << "\n";
2001   });
2002 }
2003 
2004 /// Process the nodes in the computed order and create the pipelined schedule
2005 /// of the instructions, if possible. Return true if a schedule is found.
2006 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2007 
2008   if (NodeOrder.empty()){
2009     LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2010     return false;
2011   }
2012 
2013   bool scheduleFound = false;
2014   // Keep increasing II until a valid schedule is found.
2015   for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
2016     Schedule.reset();
2017     Schedule.setInitiationInterval(II);
2018     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2019 
2020     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2021     SetVector<SUnit *>::iterator NE = NodeOrder.end();
2022     do {
2023       SUnit *SU = *NI;
2024 
2025       // Compute the schedule time for the instruction, which is based
2026       // upon the scheduled time for any predecessors/successors.
2027       int EarlyStart = INT_MIN;
2028       int LateStart = INT_MAX;
2029       // These values are set when the size of the schedule window is limited
2030       // due to chain dependences.
2031       int SchedEnd = INT_MAX;
2032       int SchedStart = INT_MIN;
2033       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2034                             II, this);
2035       LLVM_DEBUG({
2036         dbgs() << "\n";
2037         dbgs() << "Inst (" << SU->NodeNum << ") ";
2038         SU->getInstr()->dump();
2039         dbgs() << "\n";
2040       });
2041       LLVM_DEBUG({
2042         dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2043                          LateStart, SchedEnd, SchedStart);
2044       });
2045 
2046       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2047           SchedStart > LateStart)
2048         scheduleFound = false;
2049       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2050         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2051         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2052       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2053         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2054         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2055       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2056         SchedEnd =
2057             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2058         // When scheduling a Phi it is better to start at the late cycle and go
2059         // backwards. The default order may insert the Phi too far away from
2060         // its first dependence.
2061         if (SU->getInstr()->isPHI())
2062           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2063         else
2064           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2065       } else {
2066         int FirstCycle = Schedule.getFirstCycle();
2067         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2068                                         FirstCycle + getASAP(SU) + II - 1, II);
2069       }
2070       // Even if we find a schedule, make sure the schedule doesn't exceed the
2071       // allowable number of stages. We keep trying if this happens.
2072       if (scheduleFound)
2073         if (SwpMaxStages > -1 &&
2074             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2075           scheduleFound = false;
2076 
2077       LLVM_DEBUG({
2078         if (!scheduleFound)
2079           dbgs() << "\tCan't schedule\n";
2080       });
2081     } while (++NI != NE && scheduleFound);
2082 
2083     // If a schedule is found, check if it is a valid schedule too.
2084     if (scheduleFound)
2085       scheduleFound = Schedule.isValidSchedule(this);
2086   }
2087 
2088   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2089                     << " (II=" << Schedule.getInitiationInterval()
2090                     << ")\n");
2091 
2092   if (scheduleFound) {
2093     Schedule.finalizeSchedule(this);
2094     Pass.ORE->emit([&]() {
2095       return MachineOptimizationRemarkAnalysis(
2096                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2097              << "Schedule found with Initiation Interval: "
2098              << ore::NV("II", Schedule.getInitiationInterval())
2099              << ", MaxStageCount: "
2100              << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2101     });
2102   } else
2103     Schedule.reset();
2104 
2105   return scheduleFound && Schedule.getMaxStageCount() > 0;
2106 }
2107 
2108 /// Return true if we can compute the amount the instruction changes
2109 /// during each iteration. Set Delta to the amount of the change.
2110 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2111   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2112   const MachineOperand *BaseOp;
2113   int64_t Offset;
2114   bool OffsetIsScalable;
2115   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2116     return false;
2117 
2118   // FIXME: This algorithm assumes instructions have fixed-size offsets.
2119   if (OffsetIsScalable)
2120     return false;
2121 
2122   if (!BaseOp->isReg())
2123     return false;
2124 
2125   Register BaseReg = BaseOp->getReg();
2126 
2127   MachineRegisterInfo &MRI = MF.getRegInfo();
2128   // Check if there is a Phi. If so, get the definition in the loop.
2129   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2130   if (BaseDef && BaseDef->isPHI()) {
2131     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2132     BaseDef = MRI.getVRegDef(BaseReg);
2133   }
2134   if (!BaseDef)
2135     return false;
2136 
2137   int D = 0;
2138   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2139     return false;
2140 
2141   Delta = D;
2142   return true;
2143 }
2144 
2145 /// Check if we can change the instruction to use an offset value from the
2146 /// previous iteration. If so, return true and set the base and offset values
2147 /// so that we can rewrite the load, if necessary.
2148 ///   v1 = Phi(v0, v3)
2149 ///   v2 = load v1, 0
2150 ///   v3 = post_store v1, 4, x
2151 /// This function enables the load to be rewritten as v2 = load v3, 4.
2152 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2153                                               unsigned &BasePos,
2154                                               unsigned &OffsetPos,
2155                                               unsigned &NewBase,
2156                                               int64_t &Offset) {
2157   // Get the load instruction.
2158   if (TII->isPostIncrement(*MI))
2159     return false;
2160   unsigned BasePosLd, OffsetPosLd;
2161   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2162     return false;
2163   Register BaseReg = MI->getOperand(BasePosLd).getReg();
2164 
2165   // Look for the Phi instruction.
2166   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2167   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2168   if (!Phi || !Phi->isPHI())
2169     return false;
2170   // Get the register defined in the loop block.
2171   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2172   if (!PrevReg)
2173     return false;
2174 
2175   // Check for the post-increment load/store instruction.
2176   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2177   if (!PrevDef || PrevDef == MI)
2178     return false;
2179 
2180   if (!TII->isPostIncrement(*PrevDef))
2181     return false;
2182 
2183   unsigned BasePos1 = 0, OffsetPos1 = 0;
2184   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2185     return false;
2186 
2187   // Make sure that the instructions do not access the same memory location in
2188   // the next iteration.
2189   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2190   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2191   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2192   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2193   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2194   MF.deleteMachineInstr(NewMI);
2195   if (!Disjoint)
2196     return false;
2197 
2198   // Set the return value once we determine that we return true.
2199   BasePos = BasePosLd;
2200   OffsetPos = OffsetPosLd;
2201   NewBase = PrevReg;
2202   Offset = StoreOffset;
2203   return true;
2204 }
2205 
2206 /// Apply changes to the instruction if needed. The changes are need
2207 /// to improve the scheduling and depend up on the final schedule.
2208 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2209                                          SMSchedule &Schedule) {
2210   SUnit *SU = getSUnit(MI);
2211   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2212       InstrChanges.find(SU);
2213   if (It != InstrChanges.end()) {
2214     std::pair<unsigned, int64_t> RegAndOffset = It->second;
2215     unsigned BasePos, OffsetPos;
2216     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2217       return;
2218     Register BaseReg = MI->getOperand(BasePos).getReg();
2219     MachineInstr *LoopDef = findDefInLoop(BaseReg);
2220     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2221     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2222     int BaseStageNum = Schedule.stageScheduled(SU);
2223     int BaseCycleNum = Schedule.cycleScheduled(SU);
2224     if (BaseStageNum < DefStageNum) {
2225       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2226       int OffsetDiff = DefStageNum - BaseStageNum;
2227       if (DefCycleNum < BaseCycleNum) {
2228         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2229         if (OffsetDiff > 0)
2230           --OffsetDiff;
2231       }
2232       int64_t NewOffset =
2233           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2234       NewMI->getOperand(OffsetPos).setImm(NewOffset);
2235       SU->setInstr(NewMI);
2236       MISUnitMap[NewMI] = SU;
2237       NewMIs[MI] = NewMI;
2238     }
2239   }
2240 }
2241 
2242 /// Return the instruction in the loop that defines the register.
2243 /// If the definition is a Phi, then follow the Phi operand to
2244 /// the instruction in the loop.
2245 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2246   SmallPtrSet<MachineInstr *, 8> Visited;
2247   MachineInstr *Def = MRI.getVRegDef(Reg);
2248   while (Def->isPHI()) {
2249     if (!Visited.insert(Def).second)
2250       break;
2251     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2252       if (Def->getOperand(i + 1).getMBB() == BB) {
2253         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2254         break;
2255       }
2256   }
2257   return Def;
2258 }
2259 
2260 /// Return true for an order or output dependence that is loop carried
2261 /// potentially. A dependence is loop carried if the destination defines a valu
2262 /// that may be used or defined by the source in a subsequent iteration.
2263 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2264                                          bool isSucc) {
2265   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2266       Dep.isArtificial())
2267     return false;
2268 
2269   if (!SwpPruneLoopCarried)
2270     return true;
2271 
2272   if (Dep.getKind() == SDep::Output)
2273     return true;
2274 
2275   MachineInstr *SI = Source->getInstr();
2276   MachineInstr *DI = Dep.getSUnit()->getInstr();
2277   if (!isSucc)
2278     std::swap(SI, DI);
2279   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2280 
2281   // Assume ordered loads and stores may have a loop carried dependence.
2282   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2283       SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2284       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2285     return true;
2286 
2287   // Only chain dependences between a load and store can be loop carried.
2288   if (!DI->mayStore() || !SI->mayLoad())
2289     return false;
2290 
2291   unsigned DeltaS, DeltaD;
2292   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2293     return true;
2294 
2295   const MachineOperand *BaseOpS, *BaseOpD;
2296   int64_t OffsetS, OffsetD;
2297   bool OffsetSIsScalable, OffsetDIsScalable;
2298   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2299   if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2300                                     TRI) ||
2301       !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2302                                     TRI))
2303     return true;
2304 
2305   assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2306          "Expected offsets to be byte offsets");
2307 
2308   if (!BaseOpS->isIdenticalTo(*BaseOpD))
2309     return true;
2310 
2311   // Check that the base register is incremented by a constant value for each
2312   // iteration.
2313   MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2314   if (!Def || !Def->isPHI())
2315     return true;
2316   unsigned InitVal = 0;
2317   unsigned LoopVal = 0;
2318   getPhiRegs(*Def, BB, InitVal, LoopVal);
2319   MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2320   int D = 0;
2321   if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2322     return true;
2323 
2324   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2325   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2326 
2327   // This is the main test, which checks the offset values and the loop
2328   // increment value to determine if the accesses may be loop carried.
2329   if (AccessSizeS == MemoryLocation::UnknownSize ||
2330       AccessSizeD == MemoryLocation::UnknownSize)
2331     return true;
2332 
2333   if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2334     return true;
2335 
2336   return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2337 }
2338 
2339 void SwingSchedulerDAG::postprocessDAG() {
2340   for (auto &M : Mutations)
2341     M->apply(this);
2342 }
2343 
2344 /// Try to schedule the node at the specified StartCycle and continue
2345 /// until the node is schedule or the EndCycle is reached.  This function
2346 /// returns true if the node is scheduled.  This routine may search either
2347 /// forward or backward for a place to insert the instruction based upon
2348 /// the relative values of StartCycle and EndCycle.
2349 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2350   bool forward = true;
2351   LLVM_DEBUG({
2352     dbgs() << "Trying to insert node between " << StartCycle << " and "
2353            << EndCycle << " II: " << II << "\n";
2354   });
2355   if (StartCycle > EndCycle)
2356     forward = false;
2357 
2358   // The terminating condition depends on the direction.
2359   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2360   for (int curCycle = StartCycle; curCycle != termCycle;
2361        forward ? ++curCycle : --curCycle) {
2362 
2363     // Add the already scheduled instructions at the specified cycle to the
2364     // DFA.
2365     ProcItinResources.clearResources();
2366     for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2367          checkCycle <= LastCycle; checkCycle += II) {
2368       std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2369 
2370       for (SUnit *CI : cycleInstrs) {
2371         if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode()))
2372           continue;
2373         assert(ProcItinResources.canReserveResources(*CI->getInstr()) &&
2374                "These instructions have already been scheduled.");
2375         ProcItinResources.reserveResources(*CI->getInstr());
2376       }
2377     }
2378     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2379         ProcItinResources.canReserveResources(*SU->getInstr())) {
2380       LLVM_DEBUG({
2381         dbgs() << "\tinsert at cycle " << curCycle << " ";
2382         SU->getInstr()->dump();
2383       });
2384 
2385       ScheduledInstrs[curCycle].push_back(SU);
2386       InstrToCycle.insert(std::make_pair(SU, curCycle));
2387       if (curCycle > LastCycle)
2388         LastCycle = curCycle;
2389       if (curCycle < FirstCycle)
2390         FirstCycle = curCycle;
2391       return true;
2392     }
2393     LLVM_DEBUG({
2394       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2395       SU->getInstr()->dump();
2396     });
2397   }
2398   return false;
2399 }
2400 
2401 // Return the cycle of the earliest scheduled instruction in the chain.
2402 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2403   SmallPtrSet<SUnit *, 8> Visited;
2404   SmallVector<SDep, 8> Worklist;
2405   Worklist.push_back(Dep);
2406   int EarlyCycle = INT_MAX;
2407   while (!Worklist.empty()) {
2408     const SDep &Cur = Worklist.pop_back_val();
2409     SUnit *PrevSU = Cur.getSUnit();
2410     if (Visited.count(PrevSU))
2411       continue;
2412     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2413     if (it == InstrToCycle.end())
2414       continue;
2415     EarlyCycle = std::min(EarlyCycle, it->second);
2416     for (const auto &PI : PrevSU->Preds)
2417       if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2418         Worklist.push_back(PI);
2419     Visited.insert(PrevSU);
2420   }
2421   return EarlyCycle;
2422 }
2423 
2424 // Return the cycle of the latest scheduled instruction in the chain.
2425 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2426   SmallPtrSet<SUnit *, 8> Visited;
2427   SmallVector<SDep, 8> Worklist;
2428   Worklist.push_back(Dep);
2429   int LateCycle = INT_MIN;
2430   while (!Worklist.empty()) {
2431     const SDep &Cur = Worklist.pop_back_val();
2432     SUnit *SuccSU = Cur.getSUnit();
2433     if (Visited.count(SuccSU))
2434       continue;
2435     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2436     if (it == InstrToCycle.end())
2437       continue;
2438     LateCycle = std::max(LateCycle, it->second);
2439     for (const auto &SI : SuccSU->Succs)
2440       if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2441         Worklist.push_back(SI);
2442     Visited.insert(SuccSU);
2443   }
2444   return LateCycle;
2445 }
2446 
2447 /// If an instruction has a use that spans multiple iterations, then
2448 /// return true. These instructions are characterized by having a back-ege
2449 /// to a Phi, which contains a reference to another Phi.
2450 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2451   for (auto &P : SU->Preds)
2452     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2453       for (auto &S : P.getSUnit()->Succs)
2454         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2455           return P.getSUnit();
2456   return nullptr;
2457 }
2458 
2459 /// Compute the scheduling start slot for the instruction.  The start slot
2460 /// depends on any predecessor or successor nodes scheduled already.
2461 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2462                               int *MinEnd, int *MaxStart, int II,
2463                               SwingSchedulerDAG *DAG) {
2464   // Iterate over each instruction that has been scheduled already.  The start
2465   // slot computation depends on whether the previously scheduled instruction
2466   // is a predecessor or successor of the specified instruction.
2467   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2468 
2469     // Iterate over each instruction in the current cycle.
2470     for (SUnit *I : getInstructions(cycle)) {
2471       // Because we're processing a DAG for the dependences, we recognize
2472       // the back-edge in recurrences by anti dependences.
2473       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2474         const SDep &Dep = SU->Preds[i];
2475         if (Dep.getSUnit() == I) {
2476           if (!DAG->isBackedge(SU, Dep)) {
2477             int EarlyStart = cycle + Dep.getLatency() -
2478                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2479             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2480             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2481               int End = earliestCycleInChain(Dep) + (II - 1);
2482               *MinEnd = std::min(*MinEnd, End);
2483             }
2484           } else {
2485             int LateStart = cycle - Dep.getLatency() +
2486                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2487             *MinLateStart = std::min(*MinLateStart, LateStart);
2488           }
2489         }
2490         // For instruction that requires multiple iterations, make sure that
2491         // the dependent instruction is not scheduled past the definition.
2492         SUnit *BE = multipleIterations(I, DAG);
2493         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2494             !SU->isPred(I))
2495           *MinLateStart = std::min(*MinLateStart, cycle);
2496       }
2497       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2498         if (SU->Succs[i].getSUnit() == I) {
2499           const SDep &Dep = SU->Succs[i];
2500           if (!DAG->isBackedge(SU, Dep)) {
2501             int LateStart = cycle - Dep.getLatency() +
2502                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2503             *MinLateStart = std::min(*MinLateStart, LateStart);
2504             if (DAG->isLoopCarriedDep(SU, Dep)) {
2505               int Start = latestCycleInChain(Dep) + 1 - II;
2506               *MaxStart = std::max(*MaxStart, Start);
2507             }
2508           } else {
2509             int EarlyStart = cycle + Dep.getLatency() -
2510                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2511             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2512           }
2513         }
2514       }
2515     }
2516   }
2517 }
2518 
2519 /// Order the instructions within a cycle so that the definitions occur
2520 /// before the uses. Returns true if the instruction is added to the start
2521 /// of the list, or false if added to the end.
2522 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2523                                  std::deque<SUnit *> &Insts) {
2524   MachineInstr *MI = SU->getInstr();
2525   bool OrderBeforeUse = false;
2526   bool OrderAfterDef = false;
2527   bool OrderBeforeDef = false;
2528   unsigned MoveDef = 0;
2529   unsigned MoveUse = 0;
2530   int StageInst1 = stageScheduled(SU);
2531 
2532   unsigned Pos = 0;
2533   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2534        ++I, ++Pos) {
2535     for (MachineOperand &MO : MI->operands()) {
2536       if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2537         continue;
2538 
2539       Register Reg = MO.getReg();
2540       unsigned BasePos, OffsetPos;
2541       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2542         if (MI->getOperand(BasePos).getReg() == Reg)
2543           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2544             Reg = NewReg;
2545       bool Reads, Writes;
2546       std::tie(Reads, Writes) =
2547           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2548       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2549         OrderBeforeUse = true;
2550         if (MoveUse == 0)
2551           MoveUse = Pos;
2552       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2553         // Add the instruction after the scheduled instruction.
2554         OrderAfterDef = true;
2555         MoveDef = Pos;
2556       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2557         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2558           OrderBeforeUse = true;
2559           if (MoveUse == 0)
2560             MoveUse = Pos;
2561         } else {
2562           OrderAfterDef = true;
2563           MoveDef = Pos;
2564         }
2565       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2566         OrderBeforeUse = true;
2567         if (MoveUse == 0)
2568           MoveUse = Pos;
2569         if (MoveUse != 0) {
2570           OrderAfterDef = true;
2571           MoveDef = Pos - 1;
2572         }
2573       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2574         // Add the instruction before the scheduled instruction.
2575         OrderBeforeUse = true;
2576         if (MoveUse == 0)
2577           MoveUse = Pos;
2578       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2579                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2580         if (MoveUse == 0) {
2581           OrderBeforeDef = true;
2582           MoveUse = Pos;
2583         }
2584       }
2585     }
2586     // Check for order dependences between instructions. Make sure the source
2587     // is ordered before the destination.
2588     for (auto &S : SU->Succs) {
2589       if (S.getSUnit() != *I)
2590         continue;
2591       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2592         OrderBeforeUse = true;
2593         if (Pos < MoveUse)
2594           MoveUse = Pos;
2595       }
2596       // We did not handle HW dependences in previous for loop,
2597       // and we normally set Latency = 0 for Anti deps,
2598       // so may have nodes in same cycle with Anti denpendent on HW regs.
2599       else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2600         OrderBeforeUse = true;
2601         if ((MoveUse == 0) || (Pos < MoveUse))
2602           MoveUse = Pos;
2603       }
2604     }
2605     for (auto &P : SU->Preds) {
2606       if (P.getSUnit() != *I)
2607         continue;
2608       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2609         OrderAfterDef = true;
2610         MoveDef = Pos;
2611       }
2612     }
2613   }
2614 
2615   // A circular dependence.
2616   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2617     OrderBeforeUse = false;
2618 
2619   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2620   // to a loop-carried dependence.
2621   if (OrderBeforeDef)
2622     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2623 
2624   // The uncommon case when the instruction order needs to be updated because
2625   // there is both a use and def.
2626   if (OrderBeforeUse && OrderAfterDef) {
2627     SUnit *UseSU = Insts.at(MoveUse);
2628     SUnit *DefSU = Insts.at(MoveDef);
2629     if (MoveUse > MoveDef) {
2630       Insts.erase(Insts.begin() + MoveUse);
2631       Insts.erase(Insts.begin() + MoveDef);
2632     } else {
2633       Insts.erase(Insts.begin() + MoveDef);
2634       Insts.erase(Insts.begin() + MoveUse);
2635     }
2636     orderDependence(SSD, UseSU, Insts);
2637     orderDependence(SSD, SU, Insts);
2638     orderDependence(SSD, DefSU, Insts);
2639     return;
2640   }
2641   // Put the new instruction first if there is a use in the list. Otherwise,
2642   // put it at the end of the list.
2643   if (OrderBeforeUse)
2644     Insts.push_front(SU);
2645   else
2646     Insts.push_back(SU);
2647 }
2648 
2649 /// Return true if the scheduled Phi has a loop carried operand.
2650 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2651   if (!Phi.isPHI())
2652     return false;
2653   assert(Phi.isPHI() && "Expecting a Phi.");
2654   SUnit *DefSU = SSD->getSUnit(&Phi);
2655   unsigned DefCycle = cycleScheduled(DefSU);
2656   int DefStage = stageScheduled(DefSU);
2657 
2658   unsigned InitVal = 0;
2659   unsigned LoopVal = 0;
2660   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2661   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2662   if (!UseSU)
2663     return true;
2664   if (UseSU->getInstr()->isPHI())
2665     return true;
2666   unsigned LoopCycle = cycleScheduled(UseSU);
2667   int LoopStage = stageScheduled(UseSU);
2668   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2669 }
2670 
2671 /// Return true if the instruction is a definition that is loop carried
2672 /// and defines the use on the next iteration.
2673 ///        v1 = phi(v2, v3)
2674 ///  (Def) v3 = op v1
2675 ///  (MO)   = v1
2676 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2677 /// register.
2678 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2679                                        MachineInstr *Def, MachineOperand &MO) {
2680   if (!MO.isReg())
2681     return false;
2682   if (Def->isPHI())
2683     return false;
2684   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2685   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2686     return false;
2687   if (!isLoopCarried(SSD, *Phi))
2688     return false;
2689   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2690   for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2691     MachineOperand &DMO = Def->getOperand(i);
2692     if (!DMO.isReg() || !DMO.isDef())
2693       continue;
2694     if (DMO.getReg() == LoopReg)
2695       return true;
2696   }
2697   return false;
2698 }
2699 
2700 // Check if the generated schedule is valid. This function checks if
2701 // an instruction that uses a physical register is scheduled in a
2702 // different stage than the definition. The pipeliner does not handle
2703 // physical register values that may cross a basic block boundary.
2704 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2705   for (SUnit &SU : SSD->SUnits) {
2706     if (!SU.hasPhysRegDefs)
2707       continue;
2708     int StageDef = stageScheduled(&SU);
2709     assert(StageDef != -1 && "Instruction should have been scheduled.");
2710     for (auto &SI : SU.Succs)
2711       if (SI.isAssignedRegDep())
2712         if (Register::isPhysicalRegister(SI.getReg()))
2713           if (stageScheduled(SI.getSUnit()) != StageDef)
2714             return false;
2715   }
2716   return true;
2717 }
2718 
2719 /// A property of the node order in swing-modulo-scheduling is
2720 /// that for nodes outside circuits the following holds:
2721 /// none of them is scheduled after both a successor and a
2722 /// predecessor.
2723 /// The method below checks whether the property is met.
2724 /// If not, debug information is printed and statistics information updated.
2725 /// Note that we do not use an assert statement.
2726 /// The reason is that although an invalid node oder may prevent
2727 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2728 /// it does not lead to the generation of incorrect code.
2729 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2730 
2731   // a sorted vector that maps each SUnit to its index in the NodeOrder
2732   typedef std::pair<SUnit *, unsigned> UnitIndex;
2733   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2734 
2735   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2736     Indices.push_back(std::make_pair(NodeOrder[i], i));
2737 
2738   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2739     return std::get<0>(i1) < std::get<0>(i2);
2740   };
2741 
2742   // sort, so that we can perform a binary search
2743   llvm::sort(Indices, CompareKey);
2744 
2745   bool Valid = true;
2746   (void)Valid;
2747   // for each SUnit in the NodeOrder, check whether
2748   // it appears after both a successor and a predecessor
2749   // of the SUnit. If this is the case, and the SUnit
2750   // is not part of circuit, then the NodeOrder is not
2751   // valid.
2752   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2753     SUnit *SU = NodeOrder[i];
2754     unsigned Index = i;
2755 
2756     bool PredBefore = false;
2757     bool SuccBefore = false;
2758 
2759     SUnit *Succ;
2760     SUnit *Pred;
2761     (void)Succ;
2762     (void)Pred;
2763 
2764     for (SDep &PredEdge : SU->Preds) {
2765       SUnit *PredSU = PredEdge.getSUnit();
2766       unsigned PredIndex = std::get<1>(
2767           *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2768       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2769         PredBefore = true;
2770         Pred = PredSU;
2771         break;
2772       }
2773     }
2774 
2775     for (SDep &SuccEdge : SU->Succs) {
2776       SUnit *SuccSU = SuccEdge.getSUnit();
2777       // Do not process a boundary node, it was not included in NodeOrder,
2778       // hence not in Indices either, call to std::lower_bound() below will
2779       // return Indices.end().
2780       if (SuccSU->isBoundaryNode())
2781         continue;
2782       unsigned SuccIndex = std::get<1>(
2783           *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2784       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2785         SuccBefore = true;
2786         Succ = SuccSU;
2787         break;
2788       }
2789     }
2790 
2791     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2792       // instructions in circuits are allowed to be scheduled
2793       // after both a successor and predecessor.
2794       bool InCircuit = llvm::any_of(
2795           Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2796       if (InCircuit)
2797         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2798       else {
2799         Valid = false;
2800         NumNodeOrderIssues++;
2801         LLVM_DEBUG(dbgs() << "Predecessor ";);
2802       }
2803       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2804                         << " are scheduled before node " << SU->NodeNum
2805                         << "\n";);
2806     }
2807   }
2808 
2809   LLVM_DEBUG({
2810     if (!Valid)
2811       dbgs() << "Invalid node order found!\n";
2812   });
2813 }
2814 
2815 /// Attempt to fix the degenerate cases when the instruction serialization
2816 /// causes the register lifetimes to overlap. For example,
2817 ///   p' = store_pi(p, b)
2818 ///      = load p, offset
2819 /// In this case p and p' overlap, which means that two registers are needed.
2820 /// Instead, this function changes the load to use p' and updates the offset.
2821 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2822   unsigned OverlapReg = 0;
2823   unsigned NewBaseReg = 0;
2824   for (SUnit *SU : Instrs) {
2825     MachineInstr *MI = SU->getInstr();
2826     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2827       const MachineOperand &MO = MI->getOperand(i);
2828       // Look for an instruction that uses p. The instruction occurs in the
2829       // same cycle but occurs later in the serialized order.
2830       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2831         // Check that the instruction appears in the InstrChanges structure,
2832         // which contains instructions that can have the offset updated.
2833         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2834           InstrChanges.find(SU);
2835         if (It != InstrChanges.end()) {
2836           unsigned BasePos, OffsetPos;
2837           // Update the base register and adjust the offset.
2838           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2839             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2840             NewMI->getOperand(BasePos).setReg(NewBaseReg);
2841             int64_t NewOffset =
2842                 MI->getOperand(OffsetPos).getImm() - It->second.second;
2843             NewMI->getOperand(OffsetPos).setImm(NewOffset);
2844             SU->setInstr(NewMI);
2845             MISUnitMap[NewMI] = SU;
2846             NewMIs[MI] = NewMI;
2847           }
2848         }
2849         OverlapReg = 0;
2850         NewBaseReg = 0;
2851         break;
2852       }
2853       // Look for an instruction of the form p' = op(p), which uses and defines
2854       // two virtual registers that get allocated to the same physical register.
2855       unsigned TiedUseIdx = 0;
2856       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2857         // OverlapReg is p in the example above.
2858         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2859         // NewBaseReg is p' in the example above.
2860         NewBaseReg = MI->getOperand(i).getReg();
2861         break;
2862       }
2863     }
2864   }
2865 }
2866 
2867 /// After the schedule has been formed, call this function to combine
2868 /// the instructions from the different stages/cycles.  That is, this
2869 /// function creates a schedule that represents a single iteration.
2870 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2871   // Move all instructions to the first stage from later stages.
2872   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2873     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2874          ++stage) {
2875       std::deque<SUnit *> &cycleInstrs =
2876           ScheduledInstrs[cycle + (stage * InitiationInterval)];
2877       for (SUnit *SU : llvm::reverse(cycleInstrs))
2878         ScheduledInstrs[cycle].push_front(SU);
2879     }
2880   }
2881 
2882   // Erase all the elements in the later stages. Only one iteration should
2883   // remain in the scheduled list, and it contains all the instructions.
2884   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2885     ScheduledInstrs.erase(cycle);
2886 
2887   // Change the registers in instruction as specified in the InstrChanges
2888   // map. We need to use the new registers to create the correct order.
2889   for (const SUnit &SU : SSD->SUnits)
2890     SSD->applyInstrChange(SU.getInstr(), *this);
2891 
2892   // Reorder the instructions in each cycle to fix and improve the
2893   // generated code.
2894   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2895     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2896     std::deque<SUnit *> newOrderPhi;
2897     for (SUnit *SU : cycleInstrs) {
2898       if (SU->getInstr()->isPHI())
2899         newOrderPhi.push_back(SU);
2900     }
2901     std::deque<SUnit *> newOrderI;
2902     for (SUnit *SU : cycleInstrs) {
2903       if (!SU->getInstr()->isPHI())
2904         orderDependence(SSD, SU, newOrderI);
2905     }
2906     // Replace the old order with the new order.
2907     cycleInstrs.swap(newOrderPhi);
2908     llvm::append_range(cycleInstrs, newOrderI);
2909     SSD->fixupRegisterOverlaps(cycleInstrs);
2910   }
2911 
2912   LLVM_DEBUG(dump(););
2913 }
2914 
2915 void NodeSet::print(raw_ostream &os) const {
2916   os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2917      << " depth " << MaxDepth << " col " << Colocate << "\n";
2918   for (const auto &I : Nodes)
2919     os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
2920   os << "\n";
2921 }
2922 
2923 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2924 /// Print the schedule information to the given output.
2925 void SMSchedule::print(raw_ostream &os) const {
2926   // Iterate over each cycle.
2927   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2928     // Iterate over each instruction in the cycle.
2929     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2930     for (SUnit *CI : cycleInstrs->second) {
2931       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2932       os << "(" << CI->NodeNum << ") ";
2933       CI->getInstr()->print(os);
2934       os << "\n";
2935     }
2936   }
2937 }
2938 
2939 /// Utility function used for debugging to print the schedule.
2940 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
2941 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2942 
2943 #endif
2944 
2945 void ResourceManager::initProcResourceVectors(
2946     const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2947   unsigned ProcResourceID = 0;
2948 
2949   // We currently limit the resource kinds to 64 and below so that we can use
2950   // uint64_t for Masks
2951   assert(SM.getNumProcResourceKinds() < 64 &&
2952          "Too many kinds of resources, unsupported");
2953   // Create a unique bitmask for every processor resource unit.
2954   // Skip resource at index 0, since it always references 'InvalidUnit'.
2955   Masks.resize(SM.getNumProcResourceKinds());
2956   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2957     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2958     if (Desc.SubUnitsIdxBegin)
2959       continue;
2960     Masks[I] = 1ULL << ProcResourceID;
2961     ProcResourceID++;
2962   }
2963   // Create a unique bitmask for every processor resource group.
2964   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2965     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2966     if (!Desc.SubUnitsIdxBegin)
2967       continue;
2968     Masks[I] = 1ULL << ProcResourceID;
2969     for (unsigned U = 0; U < Desc.NumUnits; ++U)
2970       Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
2971     ProcResourceID++;
2972   }
2973   LLVM_DEBUG({
2974     if (SwpShowResMask) {
2975       dbgs() << "ProcResourceDesc:\n";
2976       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2977         const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
2978         dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
2979                          ProcResource->Name, I, Masks[I],
2980                          ProcResource->NumUnits);
2981       }
2982       dbgs() << " -----------------\n";
2983     }
2984   });
2985 }
2986 
2987 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
2988 
2989   LLVM_DEBUG({
2990     if (SwpDebugResource)
2991       dbgs() << "canReserveResources:\n";
2992   });
2993   if (UseDFA)
2994     return DFAResources->canReserveResources(MID);
2995 
2996   unsigned InsnClass = MID->getSchedClass();
2997   const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
2998   if (!SCDesc->isValid()) {
2999     LLVM_DEBUG({
3000       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3001       dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3002     });
3003     return true;
3004   }
3005 
3006   const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3007   const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3008   for (; I != E; ++I) {
3009     if (!I->Cycles)
3010       continue;
3011     const MCProcResourceDesc *ProcResource =
3012         SM.getProcResource(I->ProcResourceIdx);
3013     unsigned NumUnits = ProcResource->NumUnits;
3014     LLVM_DEBUG({
3015       if (SwpDebugResource)
3016         dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3017                          ProcResource->Name, I->ProcResourceIdx,
3018                          ProcResourceCount[I->ProcResourceIdx], NumUnits,
3019                          I->Cycles);
3020     });
3021     if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
3022       return false;
3023   }
3024   LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
3025   return true;
3026 }
3027 
3028 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
3029   LLVM_DEBUG({
3030     if (SwpDebugResource)
3031       dbgs() << "reserveResources:\n";
3032   });
3033   if (UseDFA)
3034     return DFAResources->reserveResources(MID);
3035 
3036   unsigned InsnClass = MID->getSchedClass();
3037   const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3038   if (!SCDesc->isValid()) {
3039     LLVM_DEBUG({
3040       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3041       dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3042     });
3043     return;
3044   }
3045   for (const MCWriteProcResEntry &PRE :
3046        make_range(STI->getWriteProcResBegin(SCDesc),
3047                   STI->getWriteProcResEnd(SCDesc))) {
3048     if (!PRE.Cycles)
3049       continue;
3050     ++ProcResourceCount[PRE.ProcResourceIdx];
3051     LLVM_DEBUG({
3052       if (SwpDebugResource) {
3053         const MCProcResourceDesc *ProcResource =
3054             SM.getProcResource(PRE.ProcResourceIdx);
3055         dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3056                          ProcResource->Name, PRE.ProcResourceIdx,
3057                          ProcResourceCount[PRE.ProcResourceIdx],
3058                          ProcResource->NumUnits, PRE.Cycles);
3059       }
3060     });
3061   }
3062   LLVM_DEBUG({
3063     if (SwpDebugResource)
3064       dbgs() << "reserveResources: done!\n\n";
3065   });
3066 }
3067 
3068 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3069   return canReserveResources(&MI.getDesc());
3070 }
3071 
3072 void ResourceManager::reserveResources(const MachineInstr &MI) {
3073   return reserveResources(&MI.getDesc());
3074 }
3075 
3076 void ResourceManager::clearResources() {
3077   if (UseDFA)
3078     return DFAResources->clearResources();
3079   std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
3080 }
3081