xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Replaces repeated sequences of instructions with function calls.
11 ///
12 /// This works by placing every instruction from every basic block in a
13 /// suffix tree, and repeatedly querying that tree for repeated sequences of
14 /// instructions. If a sequence of instructions appears often, then it ought
15 /// to be beneficial to pull out into a function.
16 ///
17 /// The MachineOutliner communicates with a given target using hooks defined in
18 /// TargetInstrInfo.h. The target supplies the outliner with information on how
19 /// a specific sequence of instructions should be outlined. This information
20 /// is used to deduce the number of instructions necessary to
21 ///
22 /// * Create an outlined function
23 /// * Call that outlined function
24 ///
25 /// Targets must implement
26 ///   * getOutliningCandidateInfo
27 ///   * buildOutlinedFrame
28 ///   * insertOutlinedCall
29 ///   * isFunctionSafeToOutlineFrom
30 ///
31 /// in order to make use of the MachineOutliner.
32 ///
33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
35 /// how this pass works, the talk is available on YouTube at
36 ///
37 /// https://www.youtube.com/watch?v=yorld-WSOeU
38 ///
39 /// The slides for the talk are available at
40 ///
41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
42 ///
43 /// The talk provides an overview of how the outliner finds candidates and
44 /// ultimately outlines them. It describes how the main data structure for this
45 /// pass, the suffix tree, is queried and purged for candidates. It also gives
46 /// a simplified suffix tree construction algorithm for suffix trees based off
47 /// of the algorithm actually used here, Ukkonen's algorithm.
48 ///
49 /// For the original RFC for this pass, please see
50 ///
51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
52 ///
53 /// For more information on the suffix tree data structure, please see
54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
55 ///
56 //===----------------------------------------------------------------------===//
57 #include "llvm/CodeGen/MachineOutliner.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/CodeGen/MachineFunction.h"
62 #include "llvm/CodeGen/MachineModuleInfo.h"
63 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
64 #include "llvm/CodeGen/MachineRegisterInfo.h"
65 #include "llvm/CodeGen/Passes.h"
66 #include "llvm/CodeGen/TargetInstrInfo.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include "llvm/IR/DIBuilder.h"
69 #include "llvm/IR/IRBuilder.h"
70 #include "llvm/IR/Mangler.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Support/Allocator.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <functional>
77 #include <tuple>
78 #include <vector>
79 
80 #define DEBUG_TYPE "machine-outliner"
81 
82 using namespace llvm;
83 using namespace ore;
84 using namespace outliner;
85 
86 STATISTIC(NumOutlined, "Number of candidates outlined");
87 STATISTIC(FunctionsCreated, "Number of functions created");
88 
89 // Set to true if the user wants the outliner to run on linkonceodr linkage
90 // functions. This is false by default because the linker can dedupe linkonceodr
91 // functions. Since the outliner is confined to a single module (modulo LTO),
92 // this is off by default. It should, however, be the default behaviour in
93 // LTO.
94 static cl::opt<bool> EnableLinkOnceODROutlining(
95     "enable-linkonceodr-outlining", cl::Hidden,
96     cl::desc("Enable the machine outliner on linkonceodr functions"),
97     cl::init(false));
98 
99 namespace {
100 
101 /// Represents an undefined index in the suffix tree.
102 const unsigned EmptyIdx = -1;
103 
104 /// A node in a suffix tree which represents a substring or suffix.
105 ///
106 /// Each node has either no children or at least two children, with the root
107 /// being a exception in the empty tree.
108 ///
109 /// Children are represented as a map between unsigned integers and nodes. If
110 /// a node N has a child M on unsigned integer k, then the mapping represented
111 /// by N is a proper prefix of the mapping represented by M. Note that this,
112 /// although similar to a trie is somewhat different: each node stores a full
113 /// substring of the full mapping rather than a single character state.
114 ///
115 /// Each internal node contains a pointer to the internal node representing
116 /// the same string, but with the first character chopped off. This is stored
117 /// in \p Link. Each leaf node stores the start index of its respective
118 /// suffix in \p SuffixIdx.
119 struct SuffixTreeNode {
120 
121   /// The children of this node.
122   ///
123   /// A child existing on an unsigned integer implies that from the mapping
124   /// represented by the current node, there is a way to reach another
125   /// mapping by tacking that character on the end of the current string.
126   DenseMap<unsigned, SuffixTreeNode *> Children;
127 
128   /// The start index of this node's substring in the main string.
129   unsigned StartIdx = EmptyIdx;
130 
131   /// The end index of this node's substring in the main string.
132   ///
133   /// Every leaf node must have its \p EndIdx incremented at the end of every
134   /// step in the construction algorithm. To avoid having to update O(N)
135   /// nodes individually at the end of every step, the end index is stored
136   /// as a pointer.
137   unsigned *EndIdx = nullptr;
138 
139   /// For leaves, the start index of the suffix represented by this node.
140   ///
141   /// For all other nodes, this is ignored.
142   unsigned SuffixIdx = EmptyIdx;
143 
144   /// For internal nodes, a pointer to the internal node representing
145   /// the same sequence with the first character chopped off.
146   ///
147   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
148   /// Ukkonen's algorithm does to achieve linear-time construction is
149   /// keep track of which node the next insert should be at. This makes each
150   /// insert O(1), and there are a total of O(N) inserts. The suffix link
151   /// helps with inserting children of internal nodes.
152   ///
153   /// Say we add a child to an internal node with associated mapping S. The
154   /// next insertion must be at the node representing S - its first character.
155   /// This is given by the way that we iteratively build the tree in Ukkonen's
156   /// algorithm. The main idea is to look at the suffixes of each prefix in the
157   /// string, starting with the longest suffix of the prefix, and ending with
158   /// the shortest. Therefore, if we keep pointers between such nodes, we can
159   /// move to the next insertion point in O(1) time. If we don't, then we'd
160   /// have to query from the root, which takes O(N) time. This would make the
161   /// construction algorithm O(N^2) rather than O(N).
162   SuffixTreeNode *Link = nullptr;
163 
164   /// The length of the string formed by concatenating the edge labels from the
165   /// root to this node.
166   unsigned ConcatLen = 0;
167 
168   /// Returns true if this node is a leaf.
169   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
170 
171   /// Returns true if this node is the root of its owning \p SuffixTree.
172   bool isRoot() const { return StartIdx == EmptyIdx; }
173 
174   /// Return the number of elements in the substring associated with this node.
175   size_t size() const {
176 
177     // Is it the root? If so, it's the empty string so return 0.
178     if (isRoot())
179       return 0;
180 
181     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
182 
183     // Size = the number of elements in the string.
184     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
185     return *EndIdx - StartIdx + 1;
186   }
187 
188   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
189       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
190 
191   SuffixTreeNode() {}
192 };
193 
194 /// A data structure for fast substring queries.
195 ///
196 /// Suffix trees represent the suffixes of their input strings in their leaves.
197 /// A suffix tree is a type of compressed trie structure where each node
198 /// represents an entire substring rather than a single character. Each leaf
199 /// of the tree is a suffix.
200 ///
201 /// A suffix tree can be seen as a type of state machine where each state is a
202 /// substring of the full string. The tree is structured so that, for a string
203 /// of length N, there are exactly N leaves in the tree. This structure allows
204 /// us to quickly find repeated substrings of the input string.
205 ///
206 /// In this implementation, a "string" is a vector of unsigned integers.
207 /// These integers may result from hashing some data type. A suffix tree can
208 /// contain 1 or many strings, which can then be queried as one large string.
209 ///
210 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
211 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
212 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
213 /// paper is available at
214 ///
215 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
216 class SuffixTree {
217 public:
218   /// Each element is an integer representing an instruction in the module.
219   ArrayRef<unsigned> Str;
220 
221   /// A repeated substring in the tree.
222   struct RepeatedSubstring {
223     /// The length of the string.
224     unsigned Length;
225 
226     /// The start indices of each occurrence.
227     std::vector<unsigned> StartIndices;
228   };
229 
230 private:
231   /// Maintains each node in the tree.
232   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
233 
234   /// The root of the suffix tree.
235   ///
236   /// The root represents the empty string. It is maintained by the
237   /// \p NodeAllocator like every other node in the tree.
238   SuffixTreeNode *Root = nullptr;
239 
240   /// Maintains the end indices of the internal nodes in the tree.
241   ///
242   /// Each internal node is guaranteed to never have its end index change
243   /// during the construction algorithm; however, leaves must be updated at
244   /// every step. Therefore, we need to store leaf end indices by reference
245   /// to avoid updating O(N) leaves at every step of construction. Thus,
246   /// every internal node must be allocated its own end index.
247   BumpPtrAllocator InternalEndIdxAllocator;
248 
249   /// The end index of each leaf in the tree.
250   unsigned LeafEndIdx = -1;
251 
252   /// Helper struct which keeps track of the next insertion point in
253   /// Ukkonen's algorithm.
254   struct ActiveState {
255     /// The next node to insert at.
256     SuffixTreeNode *Node = nullptr;
257 
258     /// The index of the first character in the substring currently being added.
259     unsigned Idx = EmptyIdx;
260 
261     /// The length of the substring we have to add at the current step.
262     unsigned Len = 0;
263   };
264 
265   /// The point the next insertion will take place at in the
266   /// construction algorithm.
267   ActiveState Active;
268 
269   /// Allocate a leaf node and add it to the tree.
270   ///
271   /// \param Parent The parent of this node.
272   /// \param StartIdx The start index of this node's associated string.
273   /// \param Edge The label on the edge leaving \p Parent to this node.
274   ///
275   /// \returns A pointer to the allocated leaf node.
276   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
277                              unsigned Edge) {
278 
279     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
280 
281     SuffixTreeNode *N = new (NodeAllocator.Allocate())
282         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
283     Parent.Children[Edge] = N;
284 
285     return N;
286   }
287 
288   /// Allocate an internal node and add it to the tree.
289   ///
290   /// \param Parent The parent of this node. Only null when allocating the root.
291   /// \param StartIdx The start index of this node's associated string.
292   /// \param EndIdx The end index of this node's associated string.
293   /// \param Edge The label on the edge leaving \p Parent to this node.
294   ///
295   /// \returns A pointer to the allocated internal node.
296   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
297                                      unsigned EndIdx, unsigned Edge) {
298 
299     assert(StartIdx <= EndIdx && "String can't start after it ends!");
300     assert(!(!Parent && StartIdx != EmptyIdx) &&
301            "Non-root internal nodes must have parents!");
302 
303     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
304     SuffixTreeNode *N =
305         new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, E, Root);
306     if (Parent)
307       Parent->Children[Edge] = N;
308 
309     return N;
310   }
311 
312   /// Set the suffix indices of the leaves to the start indices of their
313   /// respective suffixes.
314   void setSuffixIndices() {
315     // List of nodes we need to visit along with the current length of the
316     // string.
317     std::vector<std::pair<SuffixTreeNode *, unsigned>> ToVisit;
318 
319     // Current node being visited.
320     SuffixTreeNode *CurrNode = Root;
321 
322     // Sum of the lengths of the nodes down the path to the current one.
323     unsigned CurrNodeLen = 0;
324     ToVisit.push_back({CurrNode, CurrNodeLen});
325     while (!ToVisit.empty()) {
326       std::tie(CurrNode, CurrNodeLen) = ToVisit.back();
327       ToVisit.pop_back();
328       CurrNode->ConcatLen = CurrNodeLen;
329       for (auto &ChildPair : CurrNode->Children) {
330         assert(ChildPair.second && "Node had a null child!");
331         ToVisit.push_back(
332             {ChildPair.second, CurrNodeLen + ChildPair.second->size()});
333       }
334 
335       // No children, so we are at the end of the string.
336       if (CurrNode->Children.size() == 0 && !CurrNode->isRoot())
337         CurrNode->SuffixIdx = Str.size() - CurrNodeLen;
338     }
339   }
340 
341   /// Construct the suffix tree for the prefix of the input ending at
342   /// \p EndIdx.
343   ///
344   /// Used to construct the full suffix tree iteratively. At the end of each
345   /// step, the constructed suffix tree is either a valid suffix tree, or a
346   /// suffix tree with implicit suffixes. At the end of the final step, the
347   /// suffix tree is a valid tree.
348   ///
349   /// \param EndIdx The end index of the current prefix in the main string.
350   /// \param SuffixesToAdd The number of suffixes that must be added
351   /// to complete the suffix tree at the current phase.
352   ///
353   /// \returns The number of suffixes that have not been added at the end of
354   /// this step.
355   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
356     SuffixTreeNode *NeedsLink = nullptr;
357 
358     while (SuffixesToAdd > 0) {
359 
360       // Are we waiting to add anything other than just the last character?
361       if (Active.Len == 0) {
362         // If not, then say the active index is the end index.
363         Active.Idx = EndIdx;
364       }
365 
366       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
367 
368       // The first character in the current substring we're looking at.
369       unsigned FirstChar = Str[Active.Idx];
370 
371       // Have we inserted anything starting with FirstChar at the current node?
372       if (Active.Node->Children.count(FirstChar) == 0) {
373         // If not, then we can just insert a leaf and move too the next step.
374         insertLeaf(*Active.Node, EndIdx, FirstChar);
375 
376         // The active node is an internal node, and we visited it, so it must
377         // need a link if it doesn't have one.
378         if (NeedsLink) {
379           NeedsLink->Link = Active.Node;
380           NeedsLink = nullptr;
381         }
382       } else {
383         // There's a match with FirstChar, so look for the point in the tree to
384         // insert a new node.
385         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
386 
387         unsigned SubstringLen = NextNode->size();
388 
389         // Is the current suffix we're trying to insert longer than the size of
390         // the child we want to move to?
391         if (Active.Len >= SubstringLen) {
392           // If yes, then consume the characters we've seen and move to the next
393           // node.
394           Active.Idx += SubstringLen;
395           Active.Len -= SubstringLen;
396           Active.Node = NextNode;
397           continue;
398         }
399 
400         // Otherwise, the suffix we're trying to insert must be contained in the
401         // next node we want to move to.
402         unsigned LastChar = Str[EndIdx];
403 
404         // Is the string we're trying to insert a substring of the next node?
405         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
406           // If yes, then we're done for this step. Remember our insertion point
407           // and move to the next end index. At this point, we have an implicit
408           // suffix tree.
409           if (NeedsLink && !Active.Node->isRoot()) {
410             NeedsLink->Link = Active.Node;
411             NeedsLink = nullptr;
412           }
413 
414           Active.Len++;
415           break;
416         }
417 
418         // The string we're trying to insert isn't a substring of the next node,
419         // but matches up to a point. Split the node.
420         //
421         // For example, say we ended our search at a node n and we're trying to
422         // insert ABD. Then we'll create a new node s for AB, reduce n to just
423         // representing C, and insert a new leaf node l to represent d. This
424         // allows us to ensure that if n was a leaf, it remains a leaf.
425         //
426         //   | ABC  ---split--->  | AB
427         //   n                    s
428         //                     C / \ D
429         //                      n   l
430 
431         // The node s from the diagram
432         SuffixTreeNode *SplitNode =
433             insertInternalNode(Active.Node, NextNode->StartIdx,
434                                NextNode->StartIdx + Active.Len - 1, FirstChar);
435 
436         // Insert the new node representing the new substring into the tree as
437         // a child of the split node. This is the node l from the diagram.
438         insertLeaf(*SplitNode, EndIdx, LastChar);
439 
440         // Make the old node a child of the split node and update its start
441         // index. This is the node n from the diagram.
442         NextNode->StartIdx += Active.Len;
443         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
444 
445         // SplitNode is an internal node, update the suffix link.
446         if (NeedsLink)
447           NeedsLink->Link = SplitNode;
448 
449         NeedsLink = SplitNode;
450       }
451 
452       // We've added something new to the tree, so there's one less suffix to
453       // add.
454       SuffixesToAdd--;
455 
456       if (Active.Node->isRoot()) {
457         if (Active.Len > 0) {
458           Active.Len--;
459           Active.Idx = EndIdx - SuffixesToAdd + 1;
460         }
461       } else {
462         // Start the next phase at the next smallest suffix.
463         Active.Node = Active.Node->Link;
464       }
465     }
466 
467     return SuffixesToAdd;
468   }
469 
470 public:
471   /// Construct a suffix tree from a sequence of unsigned integers.
472   ///
473   /// \param Str The string to construct the suffix tree for.
474   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
475     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
476     Active.Node = Root;
477 
478     // Keep track of the number of suffixes we have to add of the current
479     // prefix.
480     unsigned SuffixesToAdd = 0;
481 
482     // Construct the suffix tree iteratively on each prefix of the string.
483     // PfxEndIdx is the end index of the current prefix.
484     // End is one past the last element in the string.
485     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
486          PfxEndIdx++) {
487       SuffixesToAdd++;
488       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
489       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
490     }
491 
492     // Set the suffix indices of each leaf.
493     assert(Root && "Root node can't be nullptr!");
494     setSuffixIndices();
495   }
496 
497   /// Iterator for finding all repeated substrings in the suffix tree.
498   struct RepeatedSubstringIterator {
499   private:
500     /// The current node we're visiting.
501     SuffixTreeNode *N = nullptr;
502 
503     /// The repeated substring associated with this node.
504     RepeatedSubstring RS;
505 
506     /// The nodes left to visit.
507     std::vector<SuffixTreeNode *> ToVisit;
508 
509     /// The minimum length of a repeated substring to find.
510     /// Since we're outlining, we want at least two instructions in the range.
511     /// FIXME: This may not be true for targets like X86 which support many
512     /// instruction lengths.
513     const unsigned MinLength = 2;
514 
515     /// Move the iterator to the next repeated substring.
516     void advance() {
517       // Clear the current state. If we're at the end of the range, then this
518       // is the state we want to be in.
519       RS = RepeatedSubstring();
520       N = nullptr;
521 
522       // Each leaf node represents a repeat of a string.
523       std::vector<SuffixTreeNode *> LeafChildren;
524 
525       // Continue visiting nodes until we find one which repeats more than once.
526       while (!ToVisit.empty()) {
527         SuffixTreeNode *Curr = ToVisit.back();
528         ToVisit.pop_back();
529         LeafChildren.clear();
530 
531         // Keep track of the length of the string associated with the node. If
532         // it's too short, we'll quit.
533         unsigned Length = Curr->ConcatLen;
534 
535         // Iterate over each child, saving internal nodes for visiting, and
536         // leaf nodes in LeafChildren. Internal nodes represent individual
537         // strings, which may repeat.
538         for (auto &ChildPair : Curr->Children) {
539           // Save all of this node's children for processing.
540           if (!ChildPair.second->isLeaf())
541             ToVisit.push_back(ChildPair.second);
542 
543           // It's not an internal node, so it must be a leaf. If we have a
544           // long enough string, then save the leaf children.
545           else if (Length >= MinLength)
546             LeafChildren.push_back(ChildPair.second);
547         }
548 
549         // The root never represents a repeated substring. If we're looking at
550         // that, then skip it.
551         if (Curr->isRoot())
552           continue;
553 
554         // Do we have any repeated substrings?
555         if (LeafChildren.size() >= 2) {
556           // Yes. Update the state to reflect this, and then bail out.
557           N = Curr;
558           RS.Length = Length;
559           for (SuffixTreeNode *Leaf : LeafChildren)
560             RS.StartIndices.push_back(Leaf->SuffixIdx);
561           break;
562         }
563       }
564 
565       // At this point, either NewRS is an empty RepeatedSubstring, or it was
566       // set in the above loop. Similarly, N is either nullptr, or the node
567       // associated with NewRS.
568     }
569 
570   public:
571     /// Return the current repeated substring.
572     RepeatedSubstring &operator*() { return RS; }
573 
574     RepeatedSubstringIterator &operator++() {
575       advance();
576       return *this;
577     }
578 
579     RepeatedSubstringIterator operator++(int I) {
580       RepeatedSubstringIterator It(*this);
581       advance();
582       return It;
583     }
584 
585     bool operator==(const RepeatedSubstringIterator &Other) {
586       return N == Other.N;
587     }
588     bool operator!=(const RepeatedSubstringIterator &Other) {
589       return !(*this == Other);
590     }
591 
592     RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
593       // Do we have a non-null node?
594       if (N) {
595         // Yes. At the first step, we need to visit all of N's children.
596         // Note: This means that we visit N last.
597         ToVisit.push_back(N);
598         advance();
599       }
600     }
601   };
602 
603   typedef RepeatedSubstringIterator iterator;
604   iterator begin() { return iterator(Root); }
605   iterator end() { return iterator(nullptr); }
606 };
607 
608 /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
609 struct InstructionMapper {
610 
611   /// The next available integer to assign to a \p MachineInstr that
612   /// cannot be outlined.
613   ///
614   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
615   unsigned IllegalInstrNumber = -3;
616 
617   /// The next available integer to assign to a \p MachineInstr that can
618   /// be outlined.
619   unsigned LegalInstrNumber = 0;
620 
621   /// Correspondence from \p MachineInstrs to unsigned integers.
622   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
623       InstructionIntegerMap;
624 
625   /// Correspondence between \p MachineBasicBlocks and target-defined flags.
626   DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap;
627 
628   /// The vector of unsigned integers that the module is mapped to.
629   std::vector<unsigned> UnsignedVec;
630 
631   /// Stores the location of the instruction associated with the integer
632   /// at index i in \p UnsignedVec for each index i.
633   std::vector<MachineBasicBlock::iterator> InstrList;
634 
635   // Set if we added an illegal number in the previous step.
636   // Since each illegal number is unique, we only need one of them between
637   // each range of legal numbers. This lets us make sure we don't add more
638   // than one illegal number per range.
639   bool AddedIllegalLastTime = false;
640 
641   /// Maps \p *It to a legal integer.
642   ///
643   /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
644   /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber.
645   ///
646   /// \returns The integer that \p *It was mapped to.
647   unsigned mapToLegalUnsigned(
648       MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
649       bool &HaveLegalRange, unsigned &NumLegalInBlock,
650       std::vector<unsigned> &UnsignedVecForMBB,
651       std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
652     // We added something legal, so we should unset the AddedLegalLastTime
653     // flag.
654     AddedIllegalLastTime = false;
655 
656     // If we have at least two adjacent legal instructions (which may have
657     // invisible instructions in between), remember that.
658     if (CanOutlineWithPrevInstr)
659       HaveLegalRange = true;
660     CanOutlineWithPrevInstr = true;
661 
662     // Keep track of the number of legal instructions we insert.
663     NumLegalInBlock++;
664 
665     // Get the integer for this instruction or give it the current
666     // LegalInstrNumber.
667     InstrListForMBB.push_back(It);
668     MachineInstr &MI = *It;
669     bool WasInserted;
670     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
671         ResultIt;
672     std::tie(ResultIt, WasInserted) =
673         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
674     unsigned MINumber = ResultIt->second;
675 
676     // There was an insertion.
677     if (WasInserted)
678       LegalInstrNumber++;
679 
680     UnsignedVecForMBB.push_back(MINumber);
681 
682     // Make sure we don't overflow or use any integers reserved by the DenseMap.
683     if (LegalInstrNumber >= IllegalInstrNumber)
684       report_fatal_error("Instruction mapping overflow!");
685 
686     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
687            "Tried to assign DenseMap tombstone or empty key to instruction.");
688     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
689            "Tried to assign DenseMap tombstone or empty key to instruction.");
690 
691     return MINumber;
692   }
693 
694   /// Maps \p *It to an illegal integer.
695   ///
696   /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
697   /// IllegalInstrNumber.
698   ///
699   /// \returns The integer that \p *It was mapped to.
700   unsigned mapToIllegalUnsigned(
701       MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
702       std::vector<unsigned> &UnsignedVecForMBB,
703       std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
704     // Can't outline an illegal instruction. Set the flag.
705     CanOutlineWithPrevInstr = false;
706 
707     // Only add one illegal number per range of legal numbers.
708     if (AddedIllegalLastTime)
709       return IllegalInstrNumber;
710 
711     // Remember that we added an illegal number last time.
712     AddedIllegalLastTime = true;
713     unsigned MINumber = IllegalInstrNumber;
714 
715     InstrListForMBB.push_back(It);
716     UnsignedVecForMBB.push_back(IllegalInstrNumber);
717     IllegalInstrNumber--;
718 
719     assert(LegalInstrNumber < IllegalInstrNumber &&
720            "Instruction mapping overflow!");
721 
722     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
723            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
724 
725     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
726            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
727 
728     return MINumber;
729   }
730 
731   /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
732   /// and appends it to \p UnsignedVec and \p InstrList.
733   ///
734   /// Two instructions are assigned the same integer if they are identical.
735   /// If an instruction is deemed unsafe to outline, then it will be assigned an
736   /// unique integer. The resulting mapping is placed into a suffix tree and
737   /// queried for candidates.
738   ///
739   /// \param MBB The \p MachineBasicBlock to be translated into integers.
740   /// \param TII \p TargetInstrInfo for the function.
741   void convertToUnsignedVec(MachineBasicBlock &MBB,
742                             const TargetInstrInfo &TII) {
743     unsigned Flags = 0;
744 
745     // Don't even map in this case.
746     if (!TII.isMBBSafeToOutlineFrom(MBB, Flags))
747       return;
748 
749     // Store info for the MBB for later outlining.
750     MBBFlagsMap[&MBB] = Flags;
751 
752     MachineBasicBlock::iterator It = MBB.begin();
753 
754     // The number of instructions in this block that will be considered for
755     // outlining.
756     unsigned NumLegalInBlock = 0;
757 
758     // True if we have at least two legal instructions which aren't separated
759     // by an illegal instruction.
760     bool HaveLegalRange = false;
761 
762     // True if we can perform outlining given the last mapped (non-invisible)
763     // instruction. This lets us know if we have a legal range.
764     bool CanOutlineWithPrevInstr = false;
765 
766     // FIXME: Should this all just be handled in the target, rather than using
767     // repeated calls to getOutliningType?
768     std::vector<unsigned> UnsignedVecForMBB;
769     std::vector<MachineBasicBlock::iterator> InstrListForMBB;
770 
771     for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; ++It) {
772       // Keep track of where this instruction is in the module.
773       switch (TII.getOutliningType(It, Flags)) {
774       case InstrType::Illegal:
775         mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
776                              InstrListForMBB);
777         break;
778 
779       case InstrType::Legal:
780         mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
781                            NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
782         break;
783 
784       case InstrType::LegalTerminator:
785         mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
786                            NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
787         // The instruction also acts as a terminator, so we have to record that
788         // in the string.
789         mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
790                              InstrListForMBB);
791         break;
792 
793       case InstrType::Invisible:
794         // Normally this is set by mapTo(Blah)Unsigned, but we just want to
795         // skip this instruction. So, unset the flag here.
796         AddedIllegalLastTime = false;
797         break;
798       }
799     }
800 
801     // Are there enough legal instructions in the block for outlining to be
802     // possible?
803     if (HaveLegalRange) {
804       // After we're done every insertion, uniquely terminate this part of the
805       // "string". This makes sure we won't match across basic block or function
806       // boundaries since the "end" is encoded uniquely and thus appears in no
807       // repeated substring.
808       mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
809                            InstrListForMBB);
810       InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
811                        InstrListForMBB.end());
812       UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
813                          UnsignedVecForMBB.end());
814     }
815   }
816 
817   InstructionMapper() {
818     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
819     // changed.
820     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
821            "DenseMapInfo<unsigned>'s empty key isn't -1!");
822     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
823            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
824   }
825 };
826 
827 /// An interprocedural pass which finds repeated sequences of
828 /// instructions and replaces them with calls to functions.
829 ///
830 /// Each instruction is mapped to an unsigned integer and placed in a string.
831 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
832 /// is then repeatedly queried for repeated sequences of instructions. Each
833 /// non-overlapping repeated sequence is then placed in its own
834 /// \p MachineFunction and each instance is then replaced with a call to that
835 /// function.
836 struct MachineOutliner : public ModulePass {
837 
838   static char ID;
839 
840   /// Set to true if the outliner should consider functions with
841   /// linkonceodr linkage.
842   bool OutlineFromLinkOnceODRs = false;
843 
844   /// Set to true if the outliner should run on all functions in the module
845   /// considered safe for outlining.
846   /// Set to true by default for compatibility with llc's -run-pass option.
847   /// Set when the pass is constructed in TargetPassConfig.
848   bool RunOnAllFunctions = true;
849 
850   StringRef getPassName() const override { return "Machine Outliner"; }
851 
852   void getAnalysisUsage(AnalysisUsage &AU) const override {
853     AU.addRequired<MachineModuleInfoWrapperPass>();
854     AU.addPreserved<MachineModuleInfoWrapperPass>();
855     AU.setPreservesAll();
856     ModulePass::getAnalysisUsage(AU);
857   }
858 
859   MachineOutliner() : ModulePass(ID) {
860     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
861   }
862 
863   /// Remark output explaining that not outlining a set of candidates would be
864   /// better than outlining that set.
865   void emitNotOutliningCheaperRemark(
866       unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
867       OutlinedFunction &OF);
868 
869   /// Remark output explaining that a function was outlined.
870   void emitOutlinedFunctionRemark(OutlinedFunction &OF);
871 
872   /// Find all repeated substrings that satisfy the outlining cost model by
873   /// constructing a suffix tree.
874   ///
875   /// If a substring appears at least twice, then it must be represented by
876   /// an internal node which appears in at least two suffixes. Each suffix
877   /// is represented by a leaf node. To do this, we visit each internal node
878   /// in the tree, using the leaf children of each internal node. If an
879   /// internal node represents a beneficial substring, then we use each of
880   /// its leaf children to find the locations of its substring.
881   ///
882   /// \param Mapper Contains outlining mapping information.
883   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
884   /// each type of candidate.
885   void findCandidates(InstructionMapper &Mapper,
886                       std::vector<OutlinedFunction> &FunctionList);
887 
888   /// Replace the sequences of instructions represented by \p OutlinedFunctions
889   /// with calls to functions.
890   ///
891   /// \param M The module we are outlining from.
892   /// \param FunctionList A list of functions to be inserted into the module.
893   /// \param Mapper Contains the instruction mappings for the module.
894   bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList,
895                InstructionMapper &Mapper, unsigned &OutlinedFunctionNum);
896 
897   /// Creates a function for \p OF and inserts it into the module.
898   MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF,
899                                           InstructionMapper &Mapper,
900                                           unsigned Name);
901 
902   /// Calls 'doOutline()'.
903   bool runOnModule(Module &M) override;
904 
905   /// Construct a suffix tree on the instructions in \p M and outline repeated
906   /// strings from that tree.
907   bool doOutline(Module &M, unsigned &OutlinedFunctionNum);
908 
909   /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
910   /// function for remark emission.
911   DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
912     for (const Candidate &C : OF.Candidates)
913       if (MachineFunction *MF = C.getMF())
914         if (DISubprogram *SP = MF->getFunction().getSubprogram())
915           return SP;
916     return nullptr;
917   }
918 
919   /// Populate and \p InstructionMapper with instruction-to-integer mappings.
920   /// These are used to construct a suffix tree.
921   void populateMapper(InstructionMapper &Mapper, Module &M,
922                       MachineModuleInfo &MMI);
923 
924   /// Initialize information necessary to output a size remark.
925   /// FIXME: This should be handled by the pass manager, not the outliner.
926   /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
927   /// pass manager.
928   void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI,
929                           StringMap<unsigned> &FunctionToInstrCount);
930 
931   /// Emit the remark.
932   // FIXME: This should be handled by the pass manager, not the outliner.
933   void
934   emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI,
935                               const StringMap<unsigned> &FunctionToInstrCount);
936 };
937 } // Anonymous namespace.
938 
939 char MachineOutliner::ID = 0;
940 
941 namespace llvm {
942 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
943   MachineOutliner *OL = new MachineOutliner();
944   OL->RunOnAllFunctions = RunOnAllFunctions;
945   return OL;
946 }
947 
948 } // namespace llvm
949 
950 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
951                 false)
952 
953 void MachineOutliner::emitNotOutliningCheaperRemark(
954     unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
955     OutlinedFunction &OF) {
956   // FIXME: Right now, we arbitrarily choose some Candidate from the
957   // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
958   // We should probably sort these by function name or something to make sure
959   // the remarks are stable.
960   Candidate &C = CandidatesForRepeatedSeq.front();
961   MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
962   MORE.emit([&]() {
963     MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
964                                       C.front()->getDebugLoc(), C.getMBB());
965     R << "Did not outline " << NV("Length", StringLen) << " instructions"
966       << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
967       << " locations."
968       << " Bytes from outlining all occurrences ("
969       << NV("OutliningCost", OF.getOutliningCost()) << ")"
970       << " >= Unoutlined instruction bytes ("
971       << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
972       << " (Also found at: ";
973 
974     // Tell the user the other places the candidate was found.
975     for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
976       R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
977               CandidatesForRepeatedSeq[i].front()->getDebugLoc());
978       if (i != e - 1)
979         R << ", ";
980     }
981 
982     R << ")";
983     return R;
984   });
985 }
986 
987 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
988   MachineBasicBlock *MBB = &*OF.MF->begin();
989   MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
990   MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
991                               MBB->findDebugLoc(MBB->begin()), MBB);
992   R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
993     << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions "
994     << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
995     << " locations. "
996     << "(Found at: ";
997 
998   // Tell the user the other places the candidate was found.
999   for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
1000 
1001     R << NV((Twine("StartLoc") + Twine(i)).str(),
1002             OF.Candidates[i].front()->getDebugLoc());
1003     if (i != e - 1)
1004       R << ", ";
1005   }
1006 
1007   R << ")";
1008 
1009   MORE.emit(R);
1010 }
1011 
1012 void MachineOutliner::findCandidates(
1013     InstructionMapper &Mapper, std::vector<OutlinedFunction> &FunctionList) {
1014   FunctionList.clear();
1015   SuffixTree ST(Mapper.UnsignedVec);
1016 
1017   // First, find all of the repeated substrings in the tree of minimum length
1018   // 2.
1019   std::vector<Candidate> CandidatesForRepeatedSeq;
1020   for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
1021     CandidatesForRepeatedSeq.clear();
1022     SuffixTree::RepeatedSubstring RS = *It;
1023     unsigned StringLen = RS.Length;
1024     for (const unsigned &StartIdx : RS.StartIndices) {
1025       unsigned EndIdx = StartIdx + StringLen - 1;
1026       // Trick: Discard some candidates that would be incompatible with the
1027       // ones we've already found for this sequence. This will save us some
1028       // work in candidate selection.
1029       //
1030       // If two candidates overlap, then we can't outline them both. This
1031       // happens when we have candidates that look like, say
1032       //
1033       // AA (where each "A" is an instruction).
1034       //
1035       // We might have some portion of the module that looks like this:
1036       // AAAAAA (6 A's)
1037       //
1038       // In this case, there are 5 different copies of "AA" in this range, but
1039       // at most 3 can be outlined. If only outlining 3 of these is going to
1040       // be unbeneficial, then we ought to not bother.
1041       //
1042       // Note that two things DON'T overlap when they look like this:
1043       // start1...end1 .... start2...end2
1044       // That is, one must either
1045       // * End before the other starts
1046       // * Start after the other ends
1047       if (std::all_of(
1048               CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
1049               [&StartIdx, &EndIdx](const Candidate &C) {
1050                 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
1051               })) {
1052         // It doesn't overlap with anything, so we can outline it.
1053         // Each sequence is over [StartIt, EndIt].
1054         // Save the candidate and its location.
1055 
1056         MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
1057         MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1058         MachineBasicBlock *MBB = StartIt->getParent();
1059 
1060         CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
1061                                               EndIt, MBB, FunctionList.size(),
1062                                               Mapper.MBBFlagsMap[MBB]);
1063       }
1064     }
1065 
1066     // We've found something we might want to outline.
1067     // Create an OutlinedFunction to store it and check if it'd be beneficial
1068     // to outline.
1069     if (CandidatesForRepeatedSeq.size() < 2)
1070       continue;
1071 
1072     // Arbitrarily choose a TII from the first candidate.
1073     // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
1074     const TargetInstrInfo *TII =
1075         CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
1076 
1077     OutlinedFunction OF =
1078         TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
1079 
1080     // If we deleted too many candidates, then there's nothing worth outlining.
1081     // FIXME: This should take target-specified instruction sizes into account.
1082     if (OF.Candidates.size() < 2)
1083       continue;
1084 
1085     // Is it better to outline this candidate than not?
1086     if (OF.getBenefit() < 1) {
1087       emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
1088       continue;
1089     }
1090 
1091     FunctionList.push_back(OF);
1092   }
1093 }
1094 
1095 MachineFunction *MachineOutliner::createOutlinedFunction(
1096     Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) {
1097 
1098   // Create the function name. This should be unique.
1099   // FIXME: We should have a better naming scheme. This should be stable,
1100   // regardless of changes to the outliner's cost model/traversal order.
1101   std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str();
1102 
1103   // Create the function using an IR-level function.
1104   LLVMContext &C = M.getContext();
1105   Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false),
1106                                  Function::ExternalLinkage, FunctionName, M);
1107 
1108   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1109   // which gives us better results when we outline from linkonceodr functions.
1110   F->setLinkage(GlobalValue::InternalLinkage);
1111   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1112 
1113   // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1114   // necessary.
1115 
1116   // Set optsize/minsize, so we don't insert padding between outlined
1117   // functions.
1118   F->addFnAttr(Attribute::OptimizeForSize);
1119   F->addFnAttr(Attribute::MinSize);
1120 
1121   // Include target features from an arbitrary candidate for the outlined
1122   // function. This makes sure the outlined function knows what kinds of
1123   // instructions are going into it. This is fine, since all parent functions
1124   // must necessarily support the instructions that are in the outlined region.
1125   Candidate &FirstCand = OF.Candidates.front();
1126   const Function &ParentFn = FirstCand.getMF()->getFunction();
1127   if (ParentFn.hasFnAttribute("target-features"))
1128     F->addFnAttr(ParentFn.getFnAttribute("target-features"));
1129 
1130   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1131   IRBuilder<> Builder(EntryBB);
1132   Builder.CreateRetVoid();
1133 
1134   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1135   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1136   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1137   const TargetSubtargetInfo &STI = MF.getSubtarget();
1138   const TargetInstrInfo &TII = *STI.getInstrInfo();
1139 
1140   // Insert the new function into the module.
1141   MF.insert(MF.begin(), &MBB);
1142 
1143   for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E;
1144        ++I) {
1145     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
1146     NewMI->dropMemRefs(MF);
1147 
1148     // Don't keep debug information for outlined instructions.
1149     NewMI->setDebugLoc(DebugLoc());
1150     MBB.insert(MBB.end(), NewMI);
1151   }
1152 
1153   TII.buildOutlinedFrame(MBB, MF, OF);
1154 
1155   // Outlined functions shouldn't preserve liveness.
1156   MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
1157   MF.getRegInfo().freezeReservedRegs(MF);
1158 
1159   // If there's a DISubprogram associated with this outlined function, then
1160   // emit debug info for the outlined function.
1161   if (DISubprogram *SP = getSubprogramOrNull(OF)) {
1162     // We have a DISubprogram. Get its DICompileUnit.
1163     DICompileUnit *CU = SP->getUnit();
1164     DIBuilder DB(M, true, CU);
1165     DIFile *Unit = SP->getFile();
1166     Mangler Mg;
1167     // Get the mangled name of the function for the linkage name.
1168     std::string Dummy;
1169     llvm::raw_string_ostream MangledNameStream(Dummy);
1170     Mg.getNameWithPrefix(MangledNameStream, F, false);
1171 
1172     DISubprogram *OutlinedSP = DB.createFunction(
1173         Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1174         Unit /* File */,
1175         0 /* Line 0 is reserved for compiler-generated code. */,
1176         DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
1177         0, /* Line 0 is reserved for compiler-generated code. */
1178         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1179         /* Outlined code is optimized code by definition. */
1180         DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
1181 
1182     // Don't add any new variables to the subprogram.
1183     DB.finalizeSubprogram(OutlinedSP);
1184 
1185     // Attach subprogram to the function.
1186     F->setSubprogram(OutlinedSP);
1187     // We're done with the DIBuilder.
1188     DB.finalize();
1189   }
1190 
1191   return &MF;
1192 }
1193 
1194 bool MachineOutliner::outline(Module &M,
1195                               std::vector<OutlinedFunction> &FunctionList,
1196                               InstructionMapper &Mapper,
1197                               unsigned &OutlinedFunctionNum) {
1198 
1199   bool OutlinedSomething = false;
1200 
1201   // Sort by benefit. The most beneficial functions should be outlined first.
1202   llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS,
1203                                      const OutlinedFunction &RHS) {
1204     return LHS.getBenefit() > RHS.getBenefit();
1205   });
1206 
1207   // Walk over each function, outlining them as we go along. Functions are
1208   // outlined greedily, based off the sort above.
1209   for (OutlinedFunction &OF : FunctionList) {
1210     // If we outlined something that overlapped with a candidate in a previous
1211     // step, then we can't outline from it.
1212     erase_if(OF.Candidates, [&Mapper](Candidate &C) {
1213       return std::any_of(
1214           Mapper.UnsignedVec.begin() + C.getStartIdx(),
1215           Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
1216           [](unsigned I) { return (I == static_cast<unsigned>(-1)); });
1217     });
1218 
1219     // If we made it unbeneficial to outline this function, skip it.
1220     if (OF.getBenefit() < 1)
1221       continue;
1222 
1223     // It's beneficial. Create the function and outline its sequence's
1224     // occurrences.
1225     OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
1226     emitOutlinedFunctionRemark(OF);
1227     FunctionsCreated++;
1228     OutlinedFunctionNum++; // Created a function, move to the next name.
1229     MachineFunction *MF = OF.MF;
1230     const TargetSubtargetInfo &STI = MF->getSubtarget();
1231     const TargetInstrInfo &TII = *STI.getInstrInfo();
1232 
1233     // Replace occurrences of the sequence with calls to the new function.
1234     for (Candidate &C : OF.Candidates) {
1235       MachineBasicBlock &MBB = *C.getMBB();
1236       MachineBasicBlock::iterator StartIt = C.front();
1237       MachineBasicBlock::iterator EndIt = C.back();
1238 
1239       // Insert the call.
1240       auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C);
1241 
1242       // If the caller tracks liveness, then we need to make sure that
1243       // anything we outline doesn't break liveness assumptions. The outlined
1244       // functions themselves currently don't track liveness, but we should
1245       // make sure that the ranges we yank things out of aren't wrong.
1246       if (MBB.getParent()->getProperties().hasProperty(
1247               MachineFunctionProperties::Property::TracksLiveness)) {
1248         // Helper lambda for adding implicit def operands to the call
1249         // instruction. It also updates call site information for moved
1250         // code.
1251         auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) {
1252           for (MachineOperand &MOP : MI.operands()) {
1253             // Skip over anything that isn't a register.
1254             if (!MOP.isReg())
1255               continue;
1256 
1257             // If it's a def, add it to the call instruction.
1258             if (MOP.isDef())
1259               CallInst->addOperand(MachineOperand::CreateReg(
1260                   MOP.getReg(), true, /* isDef = true */
1261                   true /* isImp = true */));
1262           }
1263           if (MI.isCall())
1264             MI.getMF()->eraseCallSiteInfo(&MI);
1265         };
1266         // Copy over the defs in the outlined range.
1267         // First inst in outlined range <-- Anything that's defined in this
1268         // ...                           .. range has to be added as an
1269         // implicit Last inst in outlined range  <-- def to the call
1270         // instruction. Also remove call site information for outlined block
1271         // of code.
1272         std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls);
1273       }
1274 
1275       // Erase from the point after where the call was inserted up to, and
1276       // including, the final instruction in the sequence.
1277       // Erase needs one past the end, so we need std::next there too.
1278       MBB.erase(std::next(StartIt), std::next(EndIt));
1279 
1280       // Keep track of what we removed by marking them all as -1.
1281       std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(),
1282                     Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
1283                     [](unsigned &I) { I = static_cast<unsigned>(-1); });
1284       OutlinedSomething = true;
1285 
1286       // Statistics.
1287       NumOutlined++;
1288     }
1289   }
1290 
1291   LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1292 
1293   return OutlinedSomething;
1294 }
1295 
1296 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
1297                                      MachineModuleInfo &MMI) {
1298   // Build instruction mappings for each function in the module. Start by
1299   // iterating over each Function in M.
1300   for (Function &F : M) {
1301 
1302     // If there's nothing in F, then there's no reason to try and outline from
1303     // it.
1304     if (F.empty())
1305       continue;
1306 
1307     // There's something in F. Check if it has a MachineFunction associated with
1308     // it.
1309     MachineFunction *MF = MMI.getMachineFunction(F);
1310 
1311     // If it doesn't, then there's nothing to outline from. Move to the next
1312     // Function.
1313     if (!MF)
1314       continue;
1315 
1316     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1317 
1318     if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
1319       continue;
1320 
1321     // We have a MachineFunction. Ask the target if it's suitable for outlining.
1322     // If it isn't, then move on to the next Function in the module.
1323     if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
1324       continue;
1325 
1326     // We have a function suitable for outlining. Iterate over every
1327     // MachineBasicBlock in MF and try to map its instructions to a list of
1328     // unsigned integers.
1329     for (MachineBasicBlock &MBB : *MF) {
1330       // If there isn't anything in MBB, then there's no point in outlining from
1331       // it.
1332       // If there are fewer than 2 instructions in the MBB, then it can't ever
1333       // contain something worth outlining.
1334       // FIXME: This should be based off of the maximum size in B of an outlined
1335       // call versus the size in B of the MBB.
1336       if (MBB.empty() || MBB.size() < 2)
1337         continue;
1338 
1339       // Check if MBB could be the target of an indirect branch. If it is, then
1340       // we don't want to outline from it.
1341       if (MBB.hasAddressTaken())
1342         continue;
1343 
1344       // MBB is suitable for outlining. Map it to a list of unsigneds.
1345       Mapper.convertToUnsignedVec(MBB, *TII);
1346     }
1347   }
1348 }
1349 
1350 void MachineOutliner::initSizeRemarkInfo(
1351     const Module &M, const MachineModuleInfo &MMI,
1352     StringMap<unsigned> &FunctionToInstrCount) {
1353   // Collect instruction counts for every function. We'll use this to emit
1354   // per-function size remarks later.
1355   for (const Function &F : M) {
1356     MachineFunction *MF = MMI.getMachineFunction(F);
1357 
1358     // We only care about MI counts here. If there's no MachineFunction at this
1359     // point, then there won't be after the outliner runs, so let's move on.
1360     if (!MF)
1361       continue;
1362     FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
1363   }
1364 }
1365 
1366 void MachineOutliner::emitInstrCountChangedRemark(
1367     const Module &M, const MachineModuleInfo &MMI,
1368     const StringMap<unsigned> &FunctionToInstrCount) {
1369   // Iterate over each function in the module and emit remarks.
1370   // Note that we won't miss anything by doing this, because the outliner never
1371   // deletes functions.
1372   for (const Function &F : M) {
1373     MachineFunction *MF = MMI.getMachineFunction(F);
1374 
1375     // The outliner never deletes functions. If we don't have a MF here, then we
1376     // didn't have one prior to outlining either.
1377     if (!MF)
1378       continue;
1379 
1380     std::string Fname = F.getName();
1381     unsigned FnCountAfter = MF->getInstructionCount();
1382     unsigned FnCountBefore = 0;
1383 
1384     // Check if the function was recorded before.
1385     auto It = FunctionToInstrCount.find(Fname);
1386 
1387     // Did we have a previously-recorded size? If yes, then set FnCountBefore
1388     // to that.
1389     if (It != FunctionToInstrCount.end())
1390       FnCountBefore = It->second;
1391 
1392     // Compute the delta and emit a remark if there was a change.
1393     int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
1394                       static_cast<int64_t>(FnCountBefore);
1395     if (FnDelta == 0)
1396       continue;
1397 
1398     MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
1399     MORE.emit([&]() {
1400       MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
1401                                           DiagnosticLocation(), &MF->front());
1402       R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
1403         << ": Function: "
1404         << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
1405         << ": MI instruction count changed from "
1406         << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
1407                                                     FnCountBefore)
1408         << " to "
1409         << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
1410                                                     FnCountAfter)
1411         << "; Delta: "
1412         << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
1413       return R;
1414     });
1415   }
1416 }
1417 
1418 bool MachineOutliner::runOnModule(Module &M) {
1419   // Check if there's anything in the module. If it's empty, then there's
1420   // nothing to outline.
1421   if (M.empty())
1422     return false;
1423 
1424   // Number to append to the current outlined function.
1425   unsigned OutlinedFunctionNum = 0;
1426 
1427   if (!doOutline(M, OutlinedFunctionNum))
1428     return false;
1429   return true;
1430 }
1431 
1432 bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) {
1433   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1434 
1435   // If the user passed -enable-machine-outliner=always or
1436   // -enable-machine-outliner, the pass will run on all functions in the module.
1437   // Otherwise, if the target supports default outlining, it will run on all
1438   // functions deemed by the target to be worth outlining from by default. Tell
1439   // the user how the outliner is running.
1440   LLVM_DEBUG({
1441     dbgs() << "Machine Outliner: Running on ";
1442     if (RunOnAllFunctions)
1443       dbgs() << "all functions";
1444     else
1445       dbgs() << "target-default functions";
1446     dbgs() << "\n";
1447   });
1448 
1449   // If the user specifies that they want to outline from linkonceodrs, set
1450   // it here.
1451   OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
1452   InstructionMapper Mapper;
1453 
1454   // Prepare instruction mappings for the suffix tree.
1455   populateMapper(Mapper, M, MMI);
1456   std::vector<OutlinedFunction> FunctionList;
1457 
1458   // Find all of the outlining candidates.
1459   findCandidates(Mapper, FunctionList);
1460 
1461   // If we've requested size remarks, then collect the MI counts of every
1462   // function before outlining, and the MI counts after outlining.
1463   // FIXME: This shouldn't be in the outliner at all; it should ultimately be
1464   // the pass manager's responsibility.
1465   // This could pretty easily be placed in outline instead, but because we
1466   // really ultimately *don't* want this here, it's done like this for now
1467   // instead.
1468 
1469   // Check if we want size remarks.
1470   bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
1471   StringMap<unsigned> FunctionToInstrCount;
1472   if (ShouldEmitSizeRemarks)
1473     initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
1474 
1475   // Outline each of the candidates and return true if something was outlined.
1476   bool OutlinedSomething =
1477       outline(M, FunctionList, Mapper, OutlinedFunctionNum);
1478 
1479   // If we outlined something, we definitely changed the MI count of the
1480   // module. If we've asked for size remarks, then output them.
1481   // FIXME: This should be in the pass manager.
1482   if (ShouldEmitSizeRemarks && OutlinedSomething)
1483     emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
1484 
1485   return OutlinedSomething;
1486 }
1487