1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Replaces repeated sequences of instructions with function calls. 11 /// 12 /// This works by placing every instruction from every basic block in a 13 /// suffix tree, and repeatedly querying that tree for repeated sequences of 14 /// instructions. If a sequence of instructions appears often, then it ought 15 /// to be beneficial to pull out into a function. 16 /// 17 /// The MachineOutliner communicates with a given target using hooks defined in 18 /// TargetInstrInfo.h. The target supplies the outliner with information on how 19 /// a specific sequence of instructions should be outlined. This information 20 /// is used to deduce the number of instructions necessary to 21 /// 22 /// * Create an outlined function 23 /// * Call that outlined function 24 /// 25 /// Targets must implement 26 /// * getOutliningCandidateInfo 27 /// * buildOutlinedFrame 28 /// * insertOutlinedCall 29 /// * isFunctionSafeToOutlineFrom 30 /// 31 /// in order to make use of the MachineOutliner. 32 /// 33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 35 /// how this pass works, the talk is available on YouTube at 36 /// 37 /// https://www.youtube.com/watch?v=yorld-WSOeU 38 /// 39 /// The slides for the talk are available at 40 /// 41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 42 /// 43 /// The talk provides an overview of how the outliner finds candidates and 44 /// ultimately outlines them. It describes how the main data structure for this 45 /// pass, the suffix tree, is queried and purged for candidates. It also gives 46 /// a simplified suffix tree construction algorithm for suffix trees based off 47 /// of the algorithm actually used here, Ukkonen's algorithm. 48 /// 49 /// For the original RFC for this pass, please see 50 /// 51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 52 /// 53 /// For more information on the suffix tree data structure, please see 54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 55 /// 56 //===----------------------------------------------------------------------===// 57 #include "llvm/CodeGen/MachineOutliner.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/CodeGen/MachineFunction.h" 62 #include "llvm/CodeGen/MachineModuleInfo.h" 63 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 64 #include "llvm/CodeGen/MachineRegisterInfo.h" 65 #include "llvm/CodeGen/Passes.h" 66 #include "llvm/CodeGen/TargetInstrInfo.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/IR/DIBuilder.h" 69 #include "llvm/IR/IRBuilder.h" 70 #include "llvm/IR/Mangler.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Support/Allocator.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <functional> 77 #include <tuple> 78 #include <vector> 79 80 #define DEBUG_TYPE "machine-outliner" 81 82 using namespace llvm; 83 using namespace ore; 84 using namespace outliner; 85 86 STATISTIC(NumOutlined, "Number of candidates outlined"); 87 STATISTIC(FunctionsCreated, "Number of functions created"); 88 89 // Set to true if the user wants the outliner to run on linkonceodr linkage 90 // functions. This is false by default because the linker can dedupe linkonceodr 91 // functions. Since the outliner is confined to a single module (modulo LTO), 92 // this is off by default. It should, however, be the default behaviour in 93 // LTO. 94 static cl::opt<bool> EnableLinkOnceODROutlining( 95 "enable-linkonceodr-outlining", cl::Hidden, 96 cl::desc("Enable the machine outliner on linkonceodr functions"), 97 cl::init(false)); 98 99 namespace { 100 101 /// Represents an undefined index in the suffix tree. 102 const unsigned EmptyIdx = -1; 103 104 /// A node in a suffix tree which represents a substring or suffix. 105 /// 106 /// Each node has either no children or at least two children, with the root 107 /// being a exception in the empty tree. 108 /// 109 /// Children are represented as a map between unsigned integers and nodes. If 110 /// a node N has a child M on unsigned integer k, then the mapping represented 111 /// by N is a proper prefix of the mapping represented by M. Note that this, 112 /// although similar to a trie is somewhat different: each node stores a full 113 /// substring of the full mapping rather than a single character state. 114 /// 115 /// Each internal node contains a pointer to the internal node representing 116 /// the same string, but with the first character chopped off. This is stored 117 /// in \p Link. Each leaf node stores the start index of its respective 118 /// suffix in \p SuffixIdx. 119 struct SuffixTreeNode { 120 121 /// The children of this node. 122 /// 123 /// A child existing on an unsigned integer implies that from the mapping 124 /// represented by the current node, there is a way to reach another 125 /// mapping by tacking that character on the end of the current string. 126 DenseMap<unsigned, SuffixTreeNode *> Children; 127 128 /// The start index of this node's substring in the main string. 129 unsigned StartIdx = EmptyIdx; 130 131 /// The end index of this node's substring in the main string. 132 /// 133 /// Every leaf node must have its \p EndIdx incremented at the end of every 134 /// step in the construction algorithm. To avoid having to update O(N) 135 /// nodes individually at the end of every step, the end index is stored 136 /// as a pointer. 137 unsigned *EndIdx = nullptr; 138 139 /// For leaves, the start index of the suffix represented by this node. 140 /// 141 /// For all other nodes, this is ignored. 142 unsigned SuffixIdx = EmptyIdx; 143 144 /// For internal nodes, a pointer to the internal node representing 145 /// the same sequence with the first character chopped off. 146 /// 147 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 148 /// Ukkonen's algorithm does to achieve linear-time construction is 149 /// keep track of which node the next insert should be at. This makes each 150 /// insert O(1), and there are a total of O(N) inserts. The suffix link 151 /// helps with inserting children of internal nodes. 152 /// 153 /// Say we add a child to an internal node with associated mapping S. The 154 /// next insertion must be at the node representing S - its first character. 155 /// This is given by the way that we iteratively build the tree in Ukkonen's 156 /// algorithm. The main idea is to look at the suffixes of each prefix in the 157 /// string, starting with the longest suffix of the prefix, and ending with 158 /// the shortest. Therefore, if we keep pointers between such nodes, we can 159 /// move to the next insertion point in O(1) time. If we don't, then we'd 160 /// have to query from the root, which takes O(N) time. This would make the 161 /// construction algorithm O(N^2) rather than O(N). 162 SuffixTreeNode *Link = nullptr; 163 164 /// The length of the string formed by concatenating the edge labels from the 165 /// root to this node. 166 unsigned ConcatLen = 0; 167 168 /// Returns true if this node is a leaf. 169 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 170 171 /// Returns true if this node is the root of its owning \p SuffixTree. 172 bool isRoot() const { return StartIdx == EmptyIdx; } 173 174 /// Return the number of elements in the substring associated with this node. 175 size_t size() const { 176 177 // Is it the root? If so, it's the empty string so return 0. 178 if (isRoot()) 179 return 0; 180 181 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 182 183 // Size = the number of elements in the string. 184 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 185 return *EndIdx - StartIdx + 1; 186 } 187 188 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) 189 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} 190 191 SuffixTreeNode() {} 192 }; 193 194 /// A data structure for fast substring queries. 195 /// 196 /// Suffix trees represent the suffixes of their input strings in their leaves. 197 /// A suffix tree is a type of compressed trie structure where each node 198 /// represents an entire substring rather than a single character. Each leaf 199 /// of the tree is a suffix. 200 /// 201 /// A suffix tree can be seen as a type of state machine where each state is a 202 /// substring of the full string. The tree is structured so that, for a string 203 /// of length N, there are exactly N leaves in the tree. This structure allows 204 /// us to quickly find repeated substrings of the input string. 205 /// 206 /// In this implementation, a "string" is a vector of unsigned integers. 207 /// These integers may result from hashing some data type. A suffix tree can 208 /// contain 1 or many strings, which can then be queried as one large string. 209 /// 210 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 211 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 212 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 213 /// paper is available at 214 /// 215 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 216 class SuffixTree { 217 public: 218 /// Each element is an integer representing an instruction in the module. 219 ArrayRef<unsigned> Str; 220 221 /// A repeated substring in the tree. 222 struct RepeatedSubstring { 223 /// The length of the string. 224 unsigned Length; 225 226 /// The start indices of each occurrence. 227 std::vector<unsigned> StartIndices; 228 }; 229 230 private: 231 /// Maintains each node in the tree. 232 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 233 234 /// The root of the suffix tree. 235 /// 236 /// The root represents the empty string. It is maintained by the 237 /// \p NodeAllocator like every other node in the tree. 238 SuffixTreeNode *Root = nullptr; 239 240 /// Maintains the end indices of the internal nodes in the tree. 241 /// 242 /// Each internal node is guaranteed to never have its end index change 243 /// during the construction algorithm; however, leaves must be updated at 244 /// every step. Therefore, we need to store leaf end indices by reference 245 /// to avoid updating O(N) leaves at every step of construction. Thus, 246 /// every internal node must be allocated its own end index. 247 BumpPtrAllocator InternalEndIdxAllocator; 248 249 /// The end index of each leaf in the tree. 250 unsigned LeafEndIdx = -1; 251 252 /// Helper struct which keeps track of the next insertion point in 253 /// Ukkonen's algorithm. 254 struct ActiveState { 255 /// The next node to insert at. 256 SuffixTreeNode *Node = nullptr; 257 258 /// The index of the first character in the substring currently being added. 259 unsigned Idx = EmptyIdx; 260 261 /// The length of the substring we have to add at the current step. 262 unsigned Len = 0; 263 }; 264 265 /// The point the next insertion will take place at in the 266 /// construction algorithm. 267 ActiveState Active; 268 269 /// Allocate a leaf node and add it to the tree. 270 /// 271 /// \param Parent The parent of this node. 272 /// \param StartIdx The start index of this node's associated string. 273 /// \param Edge The label on the edge leaving \p Parent to this node. 274 /// 275 /// \returns A pointer to the allocated leaf node. 276 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 277 unsigned Edge) { 278 279 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 280 281 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 282 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); 283 Parent.Children[Edge] = N; 284 285 return N; 286 } 287 288 /// Allocate an internal node and add it to the tree. 289 /// 290 /// \param Parent The parent of this node. Only null when allocating the root. 291 /// \param StartIdx The start index of this node's associated string. 292 /// \param EndIdx The end index of this node's associated string. 293 /// \param Edge The label on the edge leaving \p Parent to this node. 294 /// 295 /// \returns A pointer to the allocated internal node. 296 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 297 unsigned EndIdx, unsigned Edge) { 298 299 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 300 assert(!(!Parent && StartIdx != EmptyIdx) && 301 "Non-root internal nodes must have parents!"); 302 303 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 304 SuffixTreeNode *N = 305 new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, E, Root); 306 if (Parent) 307 Parent->Children[Edge] = N; 308 309 return N; 310 } 311 312 /// Set the suffix indices of the leaves to the start indices of their 313 /// respective suffixes. 314 void setSuffixIndices() { 315 // List of nodes we need to visit along with the current length of the 316 // string. 317 std::vector<std::pair<SuffixTreeNode *, unsigned>> ToVisit; 318 319 // Current node being visited. 320 SuffixTreeNode *CurrNode = Root; 321 322 // Sum of the lengths of the nodes down the path to the current one. 323 unsigned CurrNodeLen = 0; 324 ToVisit.push_back({CurrNode, CurrNodeLen}); 325 while (!ToVisit.empty()) { 326 std::tie(CurrNode, CurrNodeLen) = ToVisit.back(); 327 ToVisit.pop_back(); 328 CurrNode->ConcatLen = CurrNodeLen; 329 for (auto &ChildPair : CurrNode->Children) { 330 assert(ChildPair.second && "Node had a null child!"); 331 ToVisit.push_back( 332 {ChildPair.second, CurrNodeLen + ChildPair.second->size()}); 333 } 334 335 // No children, so we are at the end of the string. 336 if (CurrNode->Children.size() == 0 && !CurrNode->isRoot()) 337 CurrNode->SuffixIdx = Str.size() - CurrNodeLen; 338 } 339 } 340 341 /// Construct the suffix tree for the prefix of the input ending at 342 /// \p EndIdx. 343 /// 344 /// Used to construct the full suffix tree iteratively. At the end of each 345 /// step, the constructed suffix tree is either a valid suffix tree, or a 346 /// suffix tree with implicit suffixes. At the end of the final step, the 347 /// suffix tree is a valid tree. 348 /// 349 /// \param EndIdx The end index of the current prefix in the main string. 350 /// \param SuffixesToAdd The number of suffixes that must be added 351 /// to complete the suffix tree at the current phase. 352 /// 353 /// \returns The number of suffixes that have not been added at the end of 354 /// this step. 355 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 356 SuffixTreeNode *NeedsLink = nullptr; 357 358 while (SuffixesToAdd > 0) { 359 360 // Are we waiting to add anything other than just the last character? 361 if (Active.Len == 0) { 362 // If not, then say the active index is the end index. 363 Active.Idx = EndIdx; 364 } 365 366 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 367 368 // The first character in the current substring we're looking at. 369 unsigned FirstChar = Str[Active.Idx]; 370 371 // Have we inserted anything starting with FirstChar at the current node? 372 if (Active.Node->Children.count(FirstChar) == 0) { 373 // If not, then we can just insert a leaf and move too the next step. 374 insertLeaf(*Active.Node, EndIdx, FirstChar); 375 376 // The active node is an internal node, and we visited it, so it must 377 // need a link if it doesn't have one. 378 if (NeedsLink) { 379 NeedsLink->Link = Active.Node; 380 NeedsLink = nullptr; 381 } 382 } else { 383 // There's a match with FirstChar, so look for the point in the tree to 384 // insert a new node. 385 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 386 387 unsigned SubstringLen = NextNode->size(); 388 389 // Is the current suffix we're trying to insert longer than the size of 390 // the child we want to move to? 391 if (Active.Len >= SubstringLen) { 392 // If yes, then consume the characters we've seen and move to the next 393 // node. 394 Active.Idx += SubstringLen; 395 Active.Len -= SubstringLen; 396 Active.Node = NextNode; 397 continue; 398 } 399 400 // Otherwise, the suffix we're trying to insert must be contained in the 401 // next node we want to move to. 402 unsigned LastChar = Str[EndIdx]; 403 404 // Is the string we're trying to insert a substring of the next node? 405 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 406 // If yes, then we're done for this step. Remember our insertion point 407 // and move to the next end index. At this point, we have an implicit 408 // suffix tree. 409 if (NeedsLink && !Active.Node->isRoot()) { 410 NeedsLink->Link = Active.Node; 411 NeedsLink = nullptr; 412 } 413 414 Active.Len++; 415 break; 416 } 417 418 // The string we're trying to insert isn't a substring of the next node, 419 // but matches up to a point. Split the node. 420 // 421 // For example, say we ended our search at a node n and we're trying to 422 // insert ABD. Then we'll create a new node s for AB, reduce n to just 423 // representing C, and insert a new leaf node l to represent d. This 424 // allows us to ensure that if n was a leaf, it remains a leaf. 425 // 426 // | ABC ---split---> | AB 427 // n s 428 // C / \ D 429 // n l 430 431 // The node s from the diagram 432 SuffixTreeNode *SplitNode = 433 insertInternalNode(Active.Node, NextNode->StartIdx, 434 NextNode->StartIdx + Active.Len - 1, FirstChar); 435 436 // Insert the new node representing the new substring into the tree as 437 // a child of the split node. This is the node l from the diagram. 438 insertLeaf(*SplitNode, EndIdx, LastChar); 439 440 // Make the old node a child of the split node and update its start 441 // index. This is the node n from the diagram. 442 NextNode->StartIdx += Active.Len; 443 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 444 445 // SplitNode is an internal node, update the suffix link. 446 if (NeedsLink) 447 NeedsLink->Link = SplitNode; 448 449 NeedsLink = SplitNode; 450 } 451 452 // We've added something new to the tree, so there's one less suffix to 453 // add. 454 SuffixesToAdd--; 455 456 if (Active.Node->isRoot()) { 457 if (Active.Len > 0) { 458 Active.Len--; 459 Active.Idx = EndIdx - SuffixesToAdd + 1; 460 } 461 } else { 462 // Start the next phase at the next smallest suffix. 463 Active.Node = Active.Node->Link; 464 } 465 } 466 467 return SuffixesToAdd; 468 } 469 470 public: 471 /// Construct a suffix tree from a sequence of unsigned integers. 472 /// 473 /// \param Str The string to construct the suffix tree for. 474 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 475 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 476 Active.Node = Root; 477 478 // Keep track of the number of suffixes we have to add of the current 479 // prefix. 480 unsigned SuffixesToAdd = 0; 481 482 // Construct the suffix tree iteratively on each prefix of the string. 483 // PfxEndIdx is the end index of the current prefix. 484 // End is one past the last element in the string. 485 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 486 PfxEndIdx++) { 487 SuffixesToAdd++; 488 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 489 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 490 } 491 492 // Set the suffix indices of each leaf. 493 assert(Root && "Root node can't be nullptr!"); 494 setSuffixIndices(); 495 } 496 497 /// Iterator for finding all repeated substrings in the suffix tree. 498 struct RepeatedSubstringIterator { 499 private: 500 /// The current node we're visiting. 501 SuffixTreeNode *N = nullptr; 502 503 /// The repeated substring associated with this node. 504 RepeatedSubstring RS; 505 506 /// The nodes left to visit. 507 std::vector<SuffixTreeNode *> ToVisit; 508 509 /// The minimum length of a repeated substring to find. 510 /// Since we're outlining, we want at least two instructions in the range. 511 /// FIXME: This may not be true for targets like X86 which support many 512 /// instruction lengths. 513 const unsigned MinLength = 2; 514 515 /// Move the iterator to the next repeated substring. 516 void advance() { 517 // Clear the current state. If we're at the end of the range, then this 518 // is the state we want to be in. 519 RS = RepeatedSubstring(); 520 N = nullptr; 521 522 // Each leaf node represents a repeat of a string. 523 std::vector<SuffixTreeNode *> LeafChildren; 524 525 // Continue visiting nodes until we find one which repeats more than once. 526 while (!ToVisit.empty()) { 527 SuffixTreeNode *Curr = ToVisit.back(); 528 ToVisit.pop_back(); 529 LeafChildren.clear(); 530 531 // Keep track of the length of the string associated with the node. If 532 // it's too short, we'll quit. 533 unsigned Length = Curr->ConcatLen; 534 535 // Iterate over each child, saving internal nodes for visiting, and 536 // leaf nodes in LeafChildren. Internal nodes represent individual 537 // strings, which may repeat. 538 for (auto &ChildPair : Curr->Children) { 539 // Save all of this node's children for processing. 540 if (!ChildPair.second->isLeaf()) 541 ToVisit.push_back(ChildPair.second); 542 543 // It's not an internal node, so it must be a leaf. If we have a 544 // long enough string, then save the leaf children. 545 else if (Length >= MinLength) 546 LeafChildren.push_back(ChildPair.second); 547 } 548 549 // The root never represents a repeated substring. If we're looking at 550 // that, then skip it. 551 if (Curr->isRoot()) 552 continue; 553 554 // Do we have any repeated substrings? 555 if (LeafChildren.size() >= 2) { 556 // Yes. Update the state to reflect this, and then bail out. 557 N = Curr; 558 RS.Length = Length; 559 for (SuffixTreeNode *Leaf : LeafChildren) 560 RS.StartIndices.push_back(Leaf->SuffixIdx); 561 break; 562 } 563 } 564 565 // At this point, either NewRS is an empty RepeatedSubstring, or it was 566 // set in the above loop. Similarly, N is either nullptr, or the node 567 // associated with NewRS. 568 } 569 570 public: 571 /// Return the current repeated substring. 572 RepeatedSubstring &operator*() { return RS; } 573 574 RepeatedSubstringIterator &operator++() { 575 advance(); 576 return *this; 577 } 578 579 RepeatedSubstringIterator operator++(int I) { 580 RepeatedSubstringIterator It(*this); 581 advance(); 582 return It; 583 } 584 585 bool operator==(const RepeatedSubstringIterator &Other) { 586 return N == Other.N; 587 } 588 bool operator!=(const RepeatedSubstringIterator &Other) { 589 return !(*this == Other); 590 } 591 592 RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { 593 // Do we have a non-null node? 594 if (N) { 595 // Yes. At the first step, we need to visit all of N's children. 596 // Note: This means that we visit N last. 597 ToVisit.push_back(N); 598 advance(); 599 } 600 } 601 }; 602 603 typedef RepeatedSubstringIterator iterator; 604 iterator begin() { return iterator(Root); } 605 iterator end() { return iterator(nullptr); } 606 }; 607 608 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 609 struct InstructionMapper { 610 611 /// The next available integer to assign to a \p MachineInstr that 612 /// cannot be outlined. 613 /// 614 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 615 unsigned IllegalInstrNumber = -3; 616 617 /// The next available integer to assign to a \p MachineInstr that can 618 /// be outlined. 619 unsigned LegalInstrNumber = 0; 620 621 /// Correspondence from \p MachineInstrs to unsigned integers. 622 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 623 InstructionIntegerMap; 624 625 /// Correspondence between \p MachineBasicBlocks and target-defined flags. 626 DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; 627 628 /// The vector of unsigned integers that the module is mapped to. 629 std::vector<unsigned> UnsignedVec; 630 631 /// Stores the location of the instruction associated with the integer 632 /// at index i in \p UnsignedVec for each index i. 633 std::vector<MachineBasicBlock::iterator> InstrList; 634 635 // Set if we added an illegal number in the previous step. 636 // Since each illegal number is unique, we only need one of them between 637 // each range of legal numbers. This lets us make sure we don't add more 638 // than one illegal number per range. 639 bool AddedIllegalLastTime = false; 640 641 /// Maps \p *It to a legal integer. 642 /// 643 /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, 644 /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. 645 /// 646 /// \returns The integer that \p *It was mapped to. 647 unsigned mapToLegalUnsigned( 648 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 649 bool &HaveLegalRange, unsigned &NumLegalInBlock, 650 std::vector<unsigned> &UnsignedVecForMBB, 651 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 652 // We added something legal, so we should unset the AddedLegalLastTime 653 // flag. 654 AddedIllegalLastTime = false; 655 656 // If we have at least two adjacent legal instructions (which may have 657 // invisible instructions in between), remember that. 658 if (CanOutlineWithPrevInstr) 659 HaveLegalRange = true; 660 CanOutlineWithPrevInstr = true; 661 662 // Keep track of the number of legal instructions we insert. 663 NumLegalInBlock++; 664 665 // Get the integer for this instruction or give it the current 666 // LegalInstrNumber. 667 InstrListForMBB.push_back(It); 668 MachineInstr &MI = *It; 669 bool WasInserted; 670 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 671 ResultIt; 672 std::tie(ResultIt, WasInserted) = 673 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 674 unsigned MINumber = ResultIt->second; 675 676 // There was an insertion. 677 if (WasInserted) 678 LegalInstrNumber++; 679 680 UnsignedVecForMBB.push_back(MINumber); 681 682 // Make sure we don't overflow or use any integers reserved by the DenseMap. 683 if (LegalInstrNumber >= IllegalInstrNumber) 684 report_fatal_error("Instruction mapping overflow!"); 685 686 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 687 "Tried to assign DenseMap tombstone or empty key to instruction."); 688 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 689 "Tried to assign DenseMap tombstone or empty key to instruction."); 690 691 return MINumber; 692 } 693 694 /// Maps \p *It to an illegal integer. 695 /// 696 /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p 697 /// IllegalInstrNumber. 698 /// 699 /// \returns The integer that \p *It was mapped to. 700 unsigned mapToIllegalUnsigned( 701 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 702 std::vector<unsigned> &UnsignedVecForMBB, 703 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 704 // Can't outline an illegal instruction. Set the flag. 705 CanOutlineWithPrevInstr = false; 706 707 // Only add one illegal number per range of legal numbers. 708 if (AddedIllegalLastTime) 709 return IllegalInstrNumber; 710 711 // Remember that we added an illegal number last time. 712 AddedIllegalLastTime = true; 713 unsigned MINumber = IllegalInstrNumber; 714 715 InstrListForMBB.push_back(It); 716 UnsignedVecForMBB.push_back(IllegalInstrNumber); 717 IllegalInstrNumber--; 718 719 assert(LegalInstrNumber < IllegalInstrNumber && 720 "Instruction mapping overflow!"); 721 722 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 723 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 724 725 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 726 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 727 728 return MINumber; 729 } 730 731 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 732 /// and appends it to \p UnsignedVec and \p InstrList. 733 /// 734 /// Two instructions are assigned the same integer if they are identical. 735 /// If an instruction is deemed unsafe to outline, then it will be assigned an 736 /// unique integer. The resulting mapping is placed into a suffix tree and 737 /// queried for candidates. 738 /// 739 /// \param MBB The \p MachineBasicBlock to be translated into integers. 740 /// \param TII \p TargetInstrInfo for the function. 741 void convertToUnsignedVec(MachineBasicBlock &MBB, 742 const TargetInstrInfo &TII) { 743 unsigned Flags = 0; 744 745 // Don't even map in this case. 746 if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) 747 return; 748 749 // Store info for the MBB for later outlining. 750 MBBFlagsMap[&MBB] = Flags; 751 752 MachineBasicBlock::iterator It = MBB.begin(); 753 754 // The number of instructions in this block that will be considered for 755 // outlining. 756 unsigned NumLegalInBlock = 0; 757 758 // True if we have at least two legal instructions which aren't separated 759 // by an illegal instruction. 760 bool HaveLegalRange = false; 761 762 // True if we can perform outlining given the last mapped (non-invisible) 763 // instruction. This lets us know if we have a legal range. 764 bool CanOutlineWithPrevInstr = false; 765 766 // FIXME: Should this all just be handled in the target, rather than using 767 // repeated calls to getOutliningType? 768 std::vector<unsigned> UnsignedVecForMBB; 769 std::vector<MachineBasicBlock::iterator> InstrListForMBB; 770 771 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; ++It) { 772 // Keep track of where this instruction is in the module. 773 switch (TII.getOutliningType(It, Flags)) { 774 case InstrType::Illegal: 775 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 776 InstrListForMBB); 777 break; 778 779 case InstrType::Legal: 780 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 781 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 782 break; 783 784 case InstrType::LegalTerminator: 785 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 786 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 787 // The instruction also acts as a terminator, so we have to record that 788 // in the string. 789 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 790 InstrListForMBB); 791 break; 792 793 case InstrType::Invisible: 794 // Normally this is set by mapTo(Blah)Unsigned, but we just want to 795 // skip this instruction. So, unset the flag here. 796 AddedIllegalLastTime = false; 797 break; 798 } 799 } 800 801 // Are there enough legal instructions in the block for outlining to be 802 // possible? 803 if (HaveLegalRange) { 804 // After we're done every insertion, uniquely terminate this part of the 805 // "string". This makes sure we won't match across basic block or function 806 // boundaries since the "end" is encoded uniquely and thus appears in no 807 // repeated substring. 808 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 809 InstrListForMBB); 810 InstrList.insert(InstrList.end(), InstrListForMBB.begin(), 811 InstrListForMBB.end()); 812 UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), 813 UnsignedVecForMBB.end()); 814 } 815 } 816 817 InstructionMapper() { 818 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 819 // changed. 820 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 821 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 822 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 823 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 824 } 825 }; 826 827 /// An interprocedural pass which finds repeated sequences of 828 /// instructions and replaces them with calls to functions. 829 /// 830 /// Each instruction is mapped to an unsigned integer and placed in a string. 831 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 832 /// is then repeatedly queried for repeated sequences of instructions. Each 833 /// non-overlapping repeated sequence is then placed in its own 834 /// \p MachineFunction and each instance is then replaced with a call to that 835 /// function. 836 struct MachineOutliner : public ModulePass { 837 838 static char ID; 839 840 /// Set to true if the outliner should consider functions with 841 /// linkonceodr linkage. 842 bool OutlineFromLinkOnceODRs = false; 843 844 /// Set to true if the outliner should run on all functions in the module 845 /// considered safe for outlining. 846 /// Set to true by default for compatibility with llc's -run-pass option. 847 /// Set when the pass is constructed in TargetPassConfig. 848 bool RunOnAllFunctions = true; 849 850 StringRef getPassName() const override { return "Machine Outliner"; } 851 852 void getAnalysisUsage(AnalysisUsage &AU) const override { 853 AU.addRequired<MachineModuleInfoWrapperPass>(); 854 AU.addPreserved<MachineModuleInfoWrapperPass>(); 855 AU.setPreservesAll(); 856 ModulePass::getAnalysisUsage(AU); 857 } 858 859 MachineOutliner() : ModulePass(ID) { 860 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 861 } 862 863 /// Remark output explaining that not outlining a set of candidates would be 864 /// better than outlining that set. 865 void emitNotOutliningCheaperRemark( 866 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 867 OutlinedFunction &OF); 868 869 /// Remark output explaining that a function was outlined. 870 void emitOutlinedFunctionRemark(OutlinedFunction &OF); 871 872 /// Find all repeated substrings that satisfy the outlining cost model by 873 /// constructing a suffix tree. 874 /// 875 /// If a substring appears at least twice, then it must be represented by 876 /// an internal node which appears in at least two suffixes. Each suffix 877 /// is represented by a leaf node. To do this, we visit each internal node 878 /// in the tree, using the leaf children of each internal node. If an 879 /// internal node represents a beneficial substring, then we use each of 880 /// its leaf children to find the locations of its substring. 881 /// 882 /// \param Mapper Contains outlining mapping information. 883 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions 884 /// each type of candidate. 885 void findCandidates(InstructionMapper &Mapper, 886 std::vector<OutlinedFunction> &FunctionList); 887 888 /// Replace the sequences of instructions represented by \p OutlinedFunctions 889 /// with calls to functions. 890 /// 891 /// \param M The module we are outlining from. 892 /// \param FunctionList A list of functions to be inserted into the module. 893 /// \param Mapper Contains the instruction mappings for the module. 894 bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, 895 InstructionMapper &Mapper, unsigned &OutlinedFunctionNum); 896 897 /// Creates a function for \p OF and inserts it into the module. 898 MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, 899 InstructionMapper &Mapper, 900 unsigned Name); 901 902 /// Calls 'doOutline()'. 903 bool runOnModule(Module &M) override; 904 905 /// Construct a suffix tree on the instructions in \p M and outline repeated 906 /// strings from that tree. 907 bool doOutline(Module &M, unsigned &OutlinedFunctionNum); 908 909 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 910 /// function for remark emission. 911 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 912 for (const Candidate &C : OF.Candidates) 913 if (MachineFunction *MF = C.getMF()) 914 if (DISubprogram *SP = MF->getFunction().getSubprogram()) 915 return SP; 916 return nullptr; 917 } 918 919 /// Populate and \p InstructionMapper with instruction-to-integer mappings. 920 /// These are used to construct a suffix tree. 921 void populateMapper(InstructionMapper &Mapper, Module &M, 922 MachineModuleInfo &MMI); 923 924 /// Initialize information necessary to output a size remark. 925 /// FIXME: This should be handled by the pass manager, not the outliner. 926 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy 927 /// pass manager. 928 void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI, 929 StringMap<unsigned> &FunctionToInstrCount); 930 931 /// Emit the remark. 932 // FIXME: This should be handled by the pass manager, not the outliner. 933 void 934 emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI, 935 const StringMap<unsigned> &FunctionToInstrCount); 936 }; 937 } // Anonymous namespace. 938 939 char MachineOutliner::ID = 0; 940 941 namespace llvm { 942 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { 943 MachineOutliner *OL = new MachineOutliner(); 944 OL->RunOnAllFunctions = RunOnAllFunctions; 945 return OL; 946 } 947 948 } // namespace llvm 949 950 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 951 false) 952 953 void MachineOutliner::emitNotOutliningCheaperRemark( 954 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 955 OutlinedFunction &OF) { 956 // FIXME: Right now, we arbitrarily choose some Candidate from the 957 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. 958 // We should probably sort these by function name or something to make sure 959 // the remarks are stable. 960 Candidate &C = CandidatesForRepeatedSeq.front(); 961 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 962 MORE.emit([&]() { 963 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 964 C.front()->getDebugLoc(), C.getMBB()); 965 R << "Did not outline " << NV("Length", StringLen) << " instructions" 966 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 967 << " locations." 968 << " Bytes from outlining all occurrences (" 969 << NV("OutliningCost", OF.getOutliningCost()) << ")" 970 << " >= Unoutlined instruction bytes (" 971 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 972 << " (Also found at: "; 973 974 // Tell the user the other places the candidate was found. 975 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 976 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 977 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 978 if (i != e - 1) 979 R << ", "; 980 } 981 982 R << ")"; 983 return R; 984 }); 985 } 986 987 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { 988 MachineBasicBlock *MBB = &*OF.MF->begin(); 989 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 990 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 991 MBB->findDebugLoc(MBB->begin()), MBB); 992 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " 993 << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " 994 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 995 << " locations. " 996 << "(Found at: "; 997 998 // Tell the user the other places the candidate was found. 999 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 1000 1001 R << NV((Twine("StartLoc") + Twine(i)).str(), 1002 OF.Candidates[i].front()->getDebugLoc()); 1003 if (i != e - 1) 1004 R << ", "; 1005 } 1006 1007 R << ")"; 1008 1009 MORE.emit(R); 1010 } 1011 1012 void MachineOutliner::findCandidates( 1013 InstructionMapper &Mapper, std::vector<OutlinedFunction> &FunctionList) { 1014 FunctionList.clear(); 1015 SuffixTree ST(Mapper.UnsignedVec); 1016 1017 // First, find all of the repeated substrings in the tree of minimum length 1018 // 2. 1019 std::vector<Candidate> CandidatesForRepeatedSeq; 1020 for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { 1021 CandidatesForRepeatedSeq.clear(); 1022 SuffixTree::RepeatedSubstring RS = *It; 1023 unsigned StringLen = RS.Length; 1024 for (const unsigned &StartIdx : RS.StartIndices) { 1025 unsigned EndIdx = StartIdx + StringLen - 1; 1026 // Trick: Discard some candidates that would be incompatible with the 1027 // ones we've already found for this sequence. This will save us some 1028 // work in candidate selection. 1029 // 1030 // If two candidates overlap, then we can't outline them both. This 1031 // happens when we have candidates that look like, say 1032 // 1033 // AA (where each "A" is an instruction). 1034 // 1035 // We might have some portion of the module that looks like this: 1036 // AAAAAA (6 A's) 1037 // 1038 // In this case, there are 5 different copies of "AA" in this range, but 1039 // at most 3 can be outlined. If only outlining 3 of these is going to 1040 // be unbeneficial, then we ought to not bother. 1041 // 1042 // Note that two things DON'T overlap when they look like this: 1043 // start1...end1 .... start2...end2 1044 // That is, one must either 1045 // * End before the other starts 1046 // * Start after the other ends 1047 if (std::all_of( 1048 CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), 1049 [&StartIdx, &EndIdx](const Candidate &C) { 1050 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); 1051 })) { 1052 // It doesn't overlap with anything, so we can outline it. 1053 // Each sequence is over [StartIt, EndIt]. 1054 // Save the candidate and its location. 1055 1056 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 1057 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1058 MachineBasicBlock *MBB = StartIt->getParent(); 1059 1060 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 1061 EndIt, MBB, FunctionList.size(), 1062 Mapper.MBBFlagsMap[MBB]); 1063 } 1064 } 1065 1066 // We've found something we might want to outline. 1067 // Create an OutlinedFunction to store it and check if it'd be beneficial 1068 // to outline. 1069 if (CandidatesForRepeatedSeq.size() < 2) 1070 continue; 1071 1072 // Arbitrarily choose a TII from the first candidate. 1073 // FIXME: Should getOutliningCandidateInfo move to TargetMachine? 1074 const TargetInstrInfo *TII = 1075 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); 1076 1077 OutlinedFunction OF = 1078 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); 1079 1080 // If we deleted too many candidates, then there's nothing worth outlining. 1081 // FIXME: This should take target-specified instruction sizes into account. 1082 if (OF.Candidates.size() < 2) 1083 continue; 1084 1085 // Is it better to outline this candidate than not? 1086 if (OF.getBenefit() < 1) { 1087 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); 1088 continue; 1089 } 1090 1091 FunctionList.push_back(OF); 1092 } 1093 } 1094 1095 MachineFunction *MachineOutliner::createOutlinedFunction( 1096 Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) { 1097 1098 // Create the function name. This should be unique. 1099 // FIXME: We should have a better naming scheme. This should be stable, 1100 // regardless of changes to the outliner's cost model/traversal order. 1101 std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str(); 1102 1103 // Create the function using an IR-level function. 1104 LLVMContext &C = M.getContext(); 1105 Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false), 1106 Function::ExternalLinkage, FunctionName, M); 1107 1108 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1109 // which gives us better results when we outline from linkonceodr functions. 1110 F->setLinkage(GlobalValue::InternalLinkage); 1111 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1112 1113 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1114 // necessary. 1115 1116 // Set optsize/minsize, so we don't insert padding between outlined 1117 // functions. 1118 F->addFnAttr(Attribute::OptimizeForSize); 1119 F->addFnAttr(Attribute::MinSize); 1120 1121 // Include target features from an arbitrary candidate for the outlined 1122 // function. This makes sure the outlined function knows what kinds of 1123 // instructions are going into it. This is fine, since all parent functions 1124 // must necessarily support the instructions that are in the outlined region. 1125 Candidate &FirstCand = OF.Candidates.front(); 1126 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1127 if (ParentFn.hasFnAttribute("target-features")) 1128 F->addFnAttr(ParentFn.getFnAttribute("target-features")); 1129 1130 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1131 IRBuilder<> Builder(EntryBB); 1132 Builder.CreateRetVoid(); 1133 1134 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1135 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1136 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1137 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1138 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1139 1140 // Insert the new function into the module. 1141 MF.insert(MF.begin(), &MBB); 1142 1143 for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; 1144 ++I) { 1145 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1146 NewMI->dropMemRefs(MF); 1147 1148 // Don't keep debug information for outlined instructions. 1149 NewMI->setDebugLoc(DebugLoc()); 1150 MBB.insert(MBB.end(), NewMI); 1151 } 1152 1153 TII.buildOutlinedFrame(MBB, MF, OF); 1154 1155 // Outlined functions shouldn't preserve liveness. 1156 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1157 MF.getRegInfo().freezeReservedRegs(MF); 1158 1159 // If there's a DISubprogram associated with this outlined function, then 1160 // emit debug info for the outlined function. 1161 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1162 // We have a DISubprogram. Get its DICompileUnit. 1163 DICompileUnit *CU = SP->getUnit(); 1164 DIBuilder DB(M, true, CU); 1165 DIFile *Unit = SP->getFile(); 1166 Mangler Mg; 1167 // Get the mangled name of the function for the linkage name. 1168 std::string Dummy; 1169 llvm::raw_string_ostream MangledNameStream(Dummy); 1170 Mg.getNameWithPrefix(MangledNameStream, F, false); 1171 1172 DISubprogram *OutlinedSP = DB.createFunction( 1173 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1174 Unit /* File */, 1175 0 /* Line 0 is reserved for compiler-generated code. */, 1176 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 1177 0, /* Line 0 is reserved for compiler-generated code. */ 1178 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1179 /* Outlined code is optimized code by definition. */ 1180 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 1181 1182 // Don't add any new variables to the subprogram. 1183 DB.finalizeSubprogram(OutlinedSP); 1184 1185 // Attach subprogram to the function. 1186 F->setSubprogram(OutlinedSP); 1187 // We're done with the DIBuilder. 1188 DB.finalize(); 1189 } 1190 1191 return &MF; 1192 } 1193 1194 bool MachineOutliner::outline(Module &M, 1195 std::vector<OutlinedFunction> &FunctionList, 1196 InstructionMapper &Mapper, 1197 unsigned &OutlinedFunctionNum) { 1198 1199 bool OutlinedSomething = false; 1200 1201 // Sort by benefit. The most beneficial functions should be outlined first. 1202 llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS, 1203 const OutlinedFunction &RHS) { 1204 return LHS.getBenefit() > RHS.getBenefit(); 1205 }); 1206 1207 // Walk over each function, outlining them as we go along. Functions are 1208 // outlined greedily, based off the sort above. 1209 for (OutlinedFunction &OF : FunctionList) { 1210 // If we outlined something that overlapped with a candidate in a previous 1211 // step, then we can't outline from it. 1212 erase_if(OF.Candidates, [&Mapper](Candidate &C) { 1213 return std::any_of( 1214 Mapper.UnsignedVec.begin() + C.getStartIdx(), 1215 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1216 [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); 1217 }); 1218 1219 // If we made it unbeneficial to outline this function, skip it. 1220 if (OF.getBenefit() < 1) 1221 continue; 1222 1223 // It's beneficial. Create the function and outline its sequence's 1224 // occurrences. 1225 OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); 1226 emitOutlinedFunctionRemark(OF); 1227 FunctionsCreated++; 1228 OutlinedFunctionNum++; // Created a function, move to the next name. 1229 MachineFunction *MF = OF.MF; 1230 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1231 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1232 1233 // Replace occurrences of the sequence with calls to the new function. 1234 for (Candidate &C : OF.Candidates) { 1235 MachineBasicBlock &MBB = *C.getMBB(); 1236 MachineBasicBlock::iterator StartIt = C.front(); 1237 MachineBasicBlock::iterator EndIt = C.back(); 1238 1239 // Insert the call. 1240 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); 1241 1242 // If the caller tracks liveness, then we need to make sure that 1243 // anything we outline doesn't break liveness assumptions. The outlined 1244 // functions themselves currently don't track liveness, but we should 1245 // make sure that the ranges we yank things out of aren't wrong. 1246 if (MBB.getParent()->getProperties().hasProperty( 1247 MachineFunctionProperties::Property::TracksLiveness)) { 1248 // Helper lambda for adding implicit def operands to the call 1249 // instruction. It also updates call site information for moved 1250 // code. 1251 auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) { 1252 for (MachineOperand &MOP : MI.operands()) { 1253 // Skip over anything that isn't a register. 1254 if (!MOP.isReg()) 1255 continue; 1256 1257 // If it's a def, add it to the call instruction. 1258 if (MOP.isDef()) 1259 CallInst->addOperand(MachineOperand::CreateReg( 1260 MOP.getReg(), true, /* isDef = true */ 1261 true /* isImp = true */)); 1262 } 1263 if (MI.isCall()) 1264 MI.getMF()->eraseCallSiteInfo(&MI); 1265 }; 1266 // Copy over the defs in the outlined range. 1267 // First inst in outlined range <-- Anything that's defined in this 1268 // ... .. range has to be added as an 1269 // implicit Last inst in outlined range <-- def to the call 1270 // instruction. Also remove call site information for outlined block 1271 // of code. 1272 std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls); 1273 } 1274 1275 // Erase from the point after where the call was inserted up to, and 1276 // including, the final instruction in the sequence. 1277 // Erase needs one past the end, so we need std::next there too. 1278 MBB.erase(std::next(StartIt), std::next(EndIt)); 1279 1280 // Keep track of what we removed by marking them all as -1. 1281 std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), 1282 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1283 [](unsigned &I) { I = static_cast<unsigned>(-1); }); 1284 OutlinedSomething = true; 1285 1286 // Statistics. 1287 NumOutlined++; 1288 } 1289 } 1290 1291 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1292 1293 return OutlinedSomething; 1294 } 1295 1296 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, 1297 MachineModuleInfo &MMI) { 1298 // Build instruction mappings for each function in the module. Start by 1299 // iterating over each Function in M. 1300 for (Function &F : M) { 1301 1302 // If there's nothing in F, then there's no reason to try and outline from 1303 // it. 1304 if (F.empty()) 1305 continue; 1306 1307 // There's something in F. Check if it has a MachineFunction associated with 1308 // it. 1309 MachineFunction *MF = MMI.getMachineFunction(F); 1310 1311 // If it doesn't, then there's nothing to outline from. Move to the next 1312 // Function. 1313 if (!MF) 1314 continue; 1315 1316 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1317 1318 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) 1319 continue; 1320 1321 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1322 // If it isn't, then move on to the next Function in the module. 1323 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1324 continue; 1325 1326 // We have a function suitable for outlining. Iterate over every 1327 // MachineBasicBlock in MF and try to map its instructions to a list of 1328 // unsigned integers. 1329 for (MachineBasicBlock &MBB : *MF) { 1330 // If there isn't anything in MBB, then there's no point in outlining from 1331 // it. 1332 // If there are fewer than 2 instructions in the MBB, then it can't ever 1333 // contain something worth outlining. 1334 // FIXME: This should be based off of the maximum size in B of an outlined 1335 // call versus the size in B of the MBB. 1336 if (MBB.empty() || MBB.size() < 2) 1337 continue; 1338 1339 // Check if MBB could be the target of an indirect branch. If it is, then 1340 // we don't want to outline from it. 1341 if (MBB.hasAddressTaken()) 1342 continue; 1343 1344 // MBB is suitable for outlining. Map it to a list of unsigneds. 1345 Mapper.convertToUnsignedVec(MBB, *TII); 1346 } 1347 } 1348 } 1349 1350 void MachineOutliner::initSizeRemarkInfo( 1351 const Module &M, const MachineModuleInfo &MMI, 1352 StringMap<unsigned> &FunctionToInstrCount) { 1353 // Collect instruction counts for every function. We'll use this to emit 1354 // per-function size remarks later. 1355 for (const Function &F : M) { 1356 MachineFunction *MF = MMI.getMachineFunction(F); 1357 1358 // We only care about MI counts here. If there's no MachineFunction at this 1359 // point, then there won't be after the outliner runs, so let's move on. 1360 if (!MF) 1361 continue; 1362 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); 1363 } 1364 } 1365 1366 void MachineOutliner::emitInstrCountChangedRemark( 1367 const Module &M, const MachineModuleInfo &MMI, 1368 const StringMap<unsigned> &FunctionToInstrCount) { 1369 // Iterate over each function in the module and emit remarks. 1370 // Note that we won't miss anything by doing this, because the outliner never 1371 // deletes functions. 1372 for (const Function &F : M) { 1373 MachineFunction *MF = MMI.getMachineFunction(F); 1374 1375 // The outliner never deletes functions. If we don't have a MF here, then we 1376 // didn't have one prior to outlining either. 1377 if (!MF) 1378 continue; 1379 1380 std::string Fname = F.getName(); 1381 unsigned FnCountAfter = MF->getInstructionCount(); 1382 unsigned FnCountBefore = 0; 1383 1384 // Check if the function was recorded before. 1385 auto It = FunctionToInstrCount.find(Fname); 1386 1387 // Did we have a previously-recorded size? If yes, then set FnCountBefore 1388 // to that. 1389 if (It != FunctionToInstrCount.end()) 1390 FnCountBefore = It->second; 1391 1392 // Compute the delta and emit a remark if there was a change. 1393 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - 1394 static_cast<int64_t>(FnCountBefore); 1395 if (FnDelta == 0) 1396 continue; 1397 1398 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 1399 MORE.emit([&]() { 1400 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", 1401 DiagnosticLocation(), &MF->front()); 1402 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") 1403 << ": Function: " 1404 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) 1405 << ": MI instruction count changed from " 1406 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", 1407 FnCountBefore) 1408 << " to " 1409 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", 1410 FnCountAfter) 1411 << "; Delta: " 1412 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); 1413 return R; 1414 }); 1415 } 1416 } 1417 1418 bool MachineOutliner::runOnModule(Module &M) { 1419 // Check if there's anything in the module. If it's empty, then there's 1420 // nothing to outline. 1421 if (M.empty()) 1422 return false; 1423 1424 // Number to append to the current outlined function. 1425 unsigned OutlinedFunctionNum = 0; 1426 1427 if (!doOutline(M, OutlinedFunctionNum)) 1428 return false; 1429 return true; 1430 } 1431 1432 bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) { 1433 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1434 1435 // If the user passed -enable-machine-outliner=always or 1436 // -enable-machine-outliner, the pass will run on all functions in the module. 1437 // Otherwise, if the target supports default outlining, it will run on all 1438 // functions deemed by the target to be worth outlining from by default. Tell 1439 // the user how the outliner is running. 1440 LLVM_DEBUG({ 1441 dbgs() << "Machine Outliner: Running on "; 1442 if (RunOnAllFunctions) 1443 dbgs() << "all functions"; 1444 else 1445 dbgs() << "target-default functions"; 1446 dbgs() << "\n"; 1447 }); 1448 1449 // If the user specifies that they want to outline from linkonceodrs, set 1450 // it here. 1451 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1452 InstructionMapper Mapper; 1453 1454 // Prepare instruction mappings for the suffix tree. 1455 populateMapper(Mapper, M, MMI); 1456 std::vector<OutlinedFunction> FunctionList; 1457 1458 // Find all of the outlining candidates. 1459 findCandidates(Mapper, FunctionList); 1460 1461 // If we've requested size remarks, then collect the MI counts of every 1462 // function before outlining, and the MI counts after outlining. 1463 // FIXME: This shouldn't be in the outliner at all; it should ultimately be 1464 // the pass manager's responsibility. 1465 // This could pretty easily be placed in outline instead, but because we 1466 // really ultimately *don't* want this here, it's done like this for now 1467 // instead. 1468 1469 // Check if we want size remarks. 1470 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); 1471 StringMap<unsigned> FunctionToInstrCount; 1472 if (ShouldEmitSizeRemarks) 1473 initSizeRemarkInfo(M, MMI, FunctionToInstrCount); 1474 1475 // Outline each of the candidates and return true if something was outlined. 1476 bool OutlinedSomething = 1477 outline(M, FunctionList, Mapper, OutlinedFunctionNum); 1478 1479 // If we outlined something, we definitely changed the MI count of the 1480 // module. If we've asked for size remarks, then output them. 1481 // FIXME: This should be in the pass manager. 1482 if (ShouldEmitSizeRemarks && OutlinedSomething) 1483 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); 1484 1485 return OutlinedSomething; 1486 } 1487