xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineLICM.cpp (revision e92ffd9b626833ebdbf2742c8ffddc6cd94b963e)
1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegister.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <limits>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "machinelicm"
60 
61 static cl::opt<bool>
62 AvoidSpeculation("avoid-speculation",
63                  cl::desc("MachineLICM should avoid speculation"),
64                  cl::init(true), cl::Hidden);
65 
66 static cl::opt<bool>
67 HoistCheapInsts("hoist-cheap-insts",
68                 cl::desc("MachineLICM should hoist even cheap instructions"),
69                 cl::init(false), cl::Hidden);
70 
71 static cl::opt<bool>
72 HoistConstStores("hoist-const-stores",
73                  cl::desc("Hoist invariant stores"),
74                  cl::init(true), cl::Hidden);
75 // The default threshold of 100 (i.e. if target block is 100 times hotter)
76 // is based on empirical data on a single target and is subject to tuning.
77 static cl::opt<unsigned>
78 BlockFrequencyRatioThreshold("block-freq-ratio-threshold",
79                              cl::desc("Do not hoist instructions if target"
80                              "block is N times hotter than the source."),
81                              cl::init(100), cl::Hidden);
82 
83 enum class UseBFI { None, PGO, All };
84 
85 static cl::opt<UseBFI>
86 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks",
87                               cl::desc("Disable hoisting instructions to"
88                               " hotter blocks"),
89                               cl::init(UseBFI::PGO), cl::Hidden,
90                               cl::values(clEnumValN(UseBFI::None, "none",
91                               "disable the feature"),
92                               clEnumValN(UseBFI::PGO, "pgo",
93                               "enable the feature when using profile data"),
94                               clEnumValN(UseBFI::All, "all",
95                               "enable the feature with/wo profile data")));
96 
97 STATISTIC(NumHoisted,
98           "Number of machine instructions hoisted out of loops");
99 STATISTIC(NumLowRP,
100           "Number of instructions hoisted in low reg pressure situation");
101 STATISTIC(NumHighLatency,
102           "Number of high latency instructions hoisted");
103 STATISTIC(NumCSEed,
104           "Number of hoisted machine instructions CSEed");
105 STATISTIC(NumPostRAHoisted,
106           "Number of machine instructions hoisted out of loops post regalloc");
107 STATISTIC(NumStoreConst,
108           "Number of stores of const phys reg hoisted out of loops");
109 STATISTIC(NumNotHoistedDueToHotness,
110           "Number of instructions not hoisted due to block frequency");
111 
112 namespace {
113 
114   class MachineLICMBase : public MachineFunctionPass {
115     const TargetInstrInfo *TII;
116     const TargetLoweringBase *TLI;
117     const TargetRegisterInfo *TRI;
118     const MachineFrameInfo *MFI;
119     MachineRegisterInfo *MRI;
120     TargetSchedModel SchedModel;
121     bool PreRegAlloc;
122     bool HasProfileData;
123 
124     // Various analyses that we use...
125     AliasAnalysis        *AA;      // Alias analysis info.
126     MachineBlockFrequencyInfo *MBFI; // Machine block frequncy info
127     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
128     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
129 
130     // State that is updated as we process loops
131     bool         Changed;          // True if a loop is changed.
132     bool         FirstInLoop;      // True if it's the first LICM in the loop.
133     MachineLoop *CurLoop;          // The current loop we are working on.
134     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
135 
136     // Exit blocks for CurLoop.
137     SmallVector<MachineBasicBlock *, 8> ExitBlocks;
138 
139     bool isExitBlock(const MachineBasicBlock *MBB) const {
140       return is_contained(ExitBlocks, MBB);
141     }
142 
143     // Track 'estimated' register pressure.
144     SmallSet<Register, 32> RegSeen;
145     SmallVector<unsigned, 8> RegPressure;
146 
147     // Register pressure "limit" per register pressure set. If the pressure
148     // is higher than the limit, then it's considered high.
149     SmallVector<unsigned, 8> RegLimit;
150 
151     // Register pressure on path leading from loop preheader to current BB.
152     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
153 
154     // For each opcode, keep a list of potential CSE instructions.
155     DenseMap<unsigned, std::vector<MachineInstr *>> CSEMap;
156 
157     enum {
158       SpeculateFalse   = 0,
159       SpeculateTrue    = 1,
160       SpeculateUnknown = 2
161     };
162 
163     // If a MBB does not dominate loop exiting blocks then it may not safe
164     // to hoist loads from this block.
165     // Tri-state: 0 - false, 1 - true, 2 - unknown
166     unsigned SpeculationState;
167 
168   public:
169     MachineLICMBase(char &PassID, bool PreRegAlloc)
170         : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
171 
172     bool runOnMachineFunction(MachineFunction &MF) override;
173 
174     void getAnalysisUsage(AnalysisUsage &AU) const override {
175       AU.addRequired<MachineLoopInfo>();
176       if (DisableHoistingToHotterBlocks != UseBFI::None)
177         AU.addRequired<MachineBlockFrequencyInfo>();
178       AU.addRequired<MachineDominatorTree>();
179       AU.addRequired<AAResultsWrapperPass>();
180       AU.addPreserved<MachineLoopInfo>();
181       MachineFunctionPass::getAnalysisUsage(AU);
182     }
183 
184     void releaseMemory() override {
185       RegSeen.clear();
186       RegPressure.clear();
187       RegLimit.clear();
188       BackTrace.clear();
189       CSEMap.clear();
190     }
191 
192   private:
193     /// Keep track of information about hoisting candidates.
194     struct CandidateInfo {
195       MachineInstr *MI;
196       unsigned      Def;
197       int           FI;
198 
199       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
200         : MI(mi), Def(def), FI(fi) {}
201     };
202 
203     void HoistRegionPostRA();
204 
205     void HoistPostRA(MachineInstr *MI, unsigned Def);
206 
207     void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
208                    BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
209                    SmallVectorImpl<CandidateInfo> &Candidates);
210 
211     void AddToLiveIns(MCRegister Reg);
212 
213     bool IsLICMCandidate(MachineInstr &I);
214 
215     bool IsLoopInvariantInst(MachineInstr &I);
216 
217     bool HasLoopPHIUse(const MachineInstr *MI) const;
218 
219     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
220                                Register Reg) const;
221 
222     bool IsCheapInstruction(MachineInstr &MI) const;
223 
224     bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
225                                  bool Cheap);
226 
227     void UpdateBackTraceRegPressure(const MachineInstr *MI);
228 
229     bool IsProfitableToHoist(MachineInstr &MI);
230 
231     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
232 
233     void EnterScope(MachineBasicBlock *MBB);
234 
235     void ExitScope(MachineBasicBlock *MBB);
236 
237     void ExitScopeIfDone(
238         MachineDomTreeNode *Node,
239         DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
240         DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
241 
242     void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
243 
244     void InitRegPressure(MachineBasicBlock *BB);
245 
246     DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
247                                              bool ConsiderSeen,
248                                              bool ConsiderUnseenAsDef);
249 
250     void UpdateRegPressure(const MachineInstr *MI,
251                            bool ConsiderUnseenAsDef = false);
252 
253     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
254 
255     MachineInstr *LookForDuplicate(const MachineInstr *MI,
256                                    std::vector<MachineInstr *> &PrevMIs);
257 
258     bool
259     EliminateCSE(MachineInstr *MI,
260                  DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI);
261 
262     bool MayCSE(MachineInstr *MI);
263 
264     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
265 
266     void InitCSEMap(MachineBasicBlock *BB);
267 
268     bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
269                             MachineBasicBlock *TgtBlock);
270     MachineBasicBlock *getCurPreheader();
271   };
272 
273   class MachineLICM : public MachineLICMBase {
274   public:
275     static char ID;
276     MachineLICM() : MachineLICMBase(ID, false) {
277       initializeMachineLICMPass(*PassRegistry::getPassRegistry());
278     }
279   };
280 
281   class EarlyMachineLICM : public MachineLICMBase {
282   public:
283     static char ID;
284     EarlyMachineLICM() : MachineLICMBase(ID, true) {
285       initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
286     }
287   };
288 
289 } // end anonymous namespace
290 
291 char MachineLICM::ID;
292 char EarlyMachineLICM::ID;
293 
294 char &llvm::MachineLICMID = MachineLICM::ID;
295 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
296 
297 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
298                       "Machine Loop Invariant Code Motion", false, false)
299 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
300 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
301 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
302 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
303 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
304                     "Machine Loop Invariant Code Motion", false, false)
305 
306 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
307                       "Early Machine Loop Invariant Code Motion", false, false)
308 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
309 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
310 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
311 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
312 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
313                     "Early Machine Loop Invariant Code Motion", false, false)
314 
315 /// Test if the given loop is the outer-most loop that has a unique predecessor.
316 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
317   // Check whether this loop even has a unique predecessor.
318   if (!CurLoop->getLoopPredecessor())
319     return false;
320   // Ok, now check to see if any of its outer loops do.
321   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
322     if (L->getLoopPredecessor())
323       return false;
324   // None of them did, so this is the outermost with a unique predecessor.
325   return true;
326 }
327 
328 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
329   if (skipFunction(MF.getFunction()))
330     return false;
331 
332   Changed = FirstInLoop = false;
333   const TargetSubtargetInfo &ST = MF.getSubtarget();
334   TII = ST.getInstrInfo();
335   TLI = ST.getTargetLowering();
336   TRI = ST.getRegisterInfo();
337   MFI = &MF.getFrameInfo();
338   MRI = &MF.getRegInfo();
339   SchedModel.init(&ST);
340 
341   PreRegAlloc = MRI->isSSA();
342   HasProfileData = MF.getFunction().hasProfileData();
343 
344   if (PreRegAlloc)
345     LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
346   else
347     LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
348   LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
349 
350   if (PreRegAlloc) {
351     // Estimate register pressure during pre-regalloc pass.
352     unsigned NumRPS = TRI->getNumRegPressureSets();
353     RegPressure.resize(NumRPS);
354     std::fill(RegPressure.begin(), RegPressure.end(), 0);
355     RegLimit.resize(NumRPS);
356     for (unsigned i = 0, e = NumRPS; i != e; ++i)
357       RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
358   }
359 
360   // Get our Loop information...
361   if (DisableHoistingToHotterBlocks != UseBFI::None)
362     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
363   MLI = &getAnalysis<MachineLoopInfo>();
364   DT  = &getAnalysis<MachineDominatorTree>();
365   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
366 
367   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
368   while (!Worklist.empty()) {
369     CurLoop = Worklist.pop_back_val();
370     CurPreheader = nullptr;
371     ExitBlocks.clear();
372 
373     // If this is done before regalloc, only visit outer-most preheader-sporting
374     // loops.
375     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
376       Worklist.append(CurLoop->begin(), CurLoop->end());
377       continue;
378     }
379 
380     CurLoop->getExitBlocks(ExitBlocks);
381 
382     if (!PreRegAlloc)
383       HoistRegionPostRA();
384     else {
385       // CSEMap is initialized for loop header when the first instruction is
386       // being hoisted.
387       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
388       FirstInLoop = true;
389       HoistOutOfLoop(N);
390       CSEMap.clear();
391     }
392   }
393 
394   return Changed;
395 }
396 
397 /// Return true if instruction stores to the specified frame.
398 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
399   // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
400   // true since they have no memory operands.
401   if (!MI->mayStore())
402      return false;
403   // If we lost memory operands, conservatively assume that the instruction
404   // writes to all slots.
405   if (MI->memoperands_empty())
406     return true;
407   for (const MachineMemOperand *MemOp : MI->memoperands()) {
408     if (!MemOp->isStore() || !MemOp->getPseudoValue())
409       continue;
410     if (const FixedStackPseudoSourceValue *Value =
411         dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
412       if (Value->getFrameIndex() == FI)
413         return true;
414     }
415   }
416   return false;
417 }
418 
419 /// Examine the instruction for potentai LICM candidate. Also
420 /// gather register def and frame object update information.
421 void MachineLICMBase::ProcessMI(MachineInstr *MI,
422                                 BitVector &PhysRegDefs,
423                                 BitVector &PhysRegClobbers,
424                                 SmallSet<int, 32> &StoredFIs,
425                                 SmallVectorImpl<CandidateInfo> &Candidates) {
426   bool RuledOut = false;
427   bool HasNonInvariantUse = false;
428   unsigned Def = 0;
429   for (const MachineOperand &MO : MI->operands()) {
430     if (MO.isFI()) {
431       // Remember if the instruction stores to the frame index.
432       int FI = MO.getIndex();
433       if (!StoredFIs.count(FI) &&
434           MFI->isSpillSlotObjectIndex(FI) &&
435           InstructionStoresToFI(MI, FI))
436         StoredFIs.insert(FI);
437       HasNonInvariantUse = true;
438       continue;
439     }
440 
441     // We can't hoist an instruction defining a physreg that is clobbered in
442     // the loop.
443     if (MO.isRegMask()) {
444       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
445       continue;
446     }
447 
448     if (!MO.isReg())
449       continue;
450     Register Reg = MO.getReg();
451     if (!Reg)
452       continue;
453     assert(Register::isPhysicalRegister(Reg) &&
454            "Not expecting virtual register!");
455 
456     if (!MO.isDef()) {
457       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
458         // If it's using a non-loop-invariant register, then it's obviously not
459         // safe to hoist.
460         HasNonInvariantUse = true;
461       continue;
462     }
463 
464     if (MO.isImplicit()) {
465       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
466         PhysRegClobbers.set(*AI);
467       if (!MO.isDead())
468         // Non-dead implicit def? This cannot be hoisted.
469         RuledOut = true;
470       // No need to check if a dead implicit def is also defined by
471       // another instruction.
472       continue;
473     }
474 
475     // FIXME: For now, avoid instructions with multiple defs, unless
476     // it's a dead implicit def.
477     if (Def)
478       RuledOut = true;
479     else
480       Def = Reg;
481 
482     // If we have already seen another instruction that defines the same
483     // register, then this is not safe.  Two defs is indicated by setting a
484     // PhysRegClobbers bit.
485     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
486       if (PhysRegDefs.test(*AS))
487         PhysRegClobbers.set(*AS);
488     }
489     // Need a second loop because MCRegAliasIterator can visit the same
490     // register twice.
491     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
492       PhysRegDefs.set(*AS);
493 
494     if (PhysRegClobbers.test(Reg))
495       // MI defined register is seen defined by another instruction in
496       // the loop, it cannot be a LICM candidate.
497       RuledOut = true;
498   }
499 
500   // Only consider reloads for now and remats which do not have register
501   // operands. FIXME: Consider unfold load folding instructions.
502   if (Def && !RuledOut) {
503     int FI = std::numeric_limits<int>::min();
504     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
505         (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
506       Candidates.push_back(CandidateInfo(MI, Def, FI));
507   }
508 }
509 
510 /// Walk the specified region of the CFG and hoist loop invariants out to the
511 /// preheader.
512 void MachineLICMBase::HoistRegionPostRA() {
513   MachineBasicBlock *Preheader = getCurPreheader();
514   if (!Preheader)
515     return;
516 
517   unsigned NumRegs = TRI->getNumRegs();
518   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
519   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
520 
521   SmallVector<CandidateInfo, 32> Candidates;
522   SmallSet<int, 32> StoredFIs;
523 
524   // Walk the entire region, count number of defs for each register, and
525   // collect potential LICM candidates.
526   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
527     // If the header of the loop containing this basic block is a landing pad,
528     // then don't try to hoist instructions out of this loop.
529     const MachineLoop *ML = MLI->getLoopFor(BB);
530     if (ML && ML->getHeader()->isEHPad()) continue;
531 
532     // Conservatively treat live-in's as an external def.
533     // FIXME: That means a reload that're reused in successor block(s) will not
534     // be LICM'ed.
535     for (const auto &LI : BB->liveins()) {
536       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
537         PhysRegDefs.set(*AI);
538     }
539 
540     SpeculationState = SpeculateUnknown;
541     for (MachineInstr &MI : *BB)
542       ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
543   }
544 
545   // Gather the registers read / clobbered by the terminator.
546   BitVector TermRegs(NumRegs);
547   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
548   if (TI != Preheader->end()) {
549     for (const MachineOperand &MO : TI->operands()) {
550       if (!MO.isReg())
551         continue;
552       Register Reg = MO.getReg();
553       if (!Reg)
554         continue;
555       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
556         TermRegs.set(*AI);
557     }
558   }
559 
560   // Now evaluate whether the potential candidates qualify.
561   // 1. Check if the candidate defined register is defined by another
562   //    instruction in the loop.
563   // 2. If the candidate is a load from stack slot (always true for now),
564   //    check if the slot is stored anywhere in the loop.
565   // 3. Make sure candidate def should not clobber
566   //    registers read by the terminator. Similarly its def should not be
567   //    clobbered by the terminator.
568   for (CandidateInfo &Candidate : Candidates) {
569     if (Candidate.FI != std::numeric_limits<int>::min() &&
570         StoredFIs.count(Candidate.FI))
571       continue;
572 
573     unsigned Def = Candidate.Def;
574     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
575       bool Safe = true;
576       MachineInstr *MI = Candidate.MI;
577       for (const MachineOperand &MO : MI->operands()) {
578         if (!MO.isReg() || MO.isDef() || !MO.getReg())
579           continue;
580         Register Reg = MO.getReg();
581         if (PhysRegDefs.test(Reg) ||
582             PhysRegClobbers.test(Reg)) {
583           // If it's using a non-loop-invariant register, then it's obviously
584           // not safe to hoist.
585           Safe = false;
586           break;
587         }
588       }
589       if (Safe)
590         HoistPostRA(MI, Candidate.Def);
591     }
592   }
593 }
594 
595 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
596 /// sure it is not killed by any instructions in the loop.
597 void MachineLICMBase::AddToLiveIns(MCRegister Reg) {
598   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
599     if (!BB->isLiveIn(Reg))
600       BB->addLiveIn(Reg);
601     for (MachineInstr &MI : *BB) {
602       for (MachineOperand &MO : MI.operands()) {
603         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
604         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
605           MO.setIsKill(false);
606       }
607     }
608   }
609 }
610 
611 /// When an instruction is found to only use loop invariant operands that is
612 /// safe to hoist, this instruction is called to do the dirty work.
613 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
614   MachineBasicBlock *Preheader = getCurPreheader();
615 
616   // Now move the instructions to the predecessor, inserting it before any
617   // terminator instructions.
618   LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
619                     << " from " << printMBBReference(*MI->getParent()) << ": "
620                     << *MI);
621 
622   // Splice the instruction to the preheader.
623   MachineBasicBlock *MBB = MI->getParent();
624   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
625 
626   // Since we are moving the instruction out of its basic block, we do not
627   // retain its debug location. Doing so would degrade the debugging
628   // experience and adversely affect the accuracy of profiling information.
629   assert(!MI->isDebugInstr() && "Should not hoist debug inst");
630   MI->setDebugLoc(DebugLoc());
631 
632   // Add register to livein list to all the BBs in the current loop since a
633   // loop invariant must be kept live throughout the whole loop. This is
634   // important to ensure later passes do not scavenge the def register.
635   AddToLiveIns(Def);
636 
637   ++NumPostRAHoisted;
638   Changed = true;
639 }
640 
641 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
642 /// may not be safe to hoist.
643 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
644   if (SpeculationState != SpeculateUnknown)
645     return SpeculationState == SpeculateFalse;
646 
647   if (BB != CurLoop->getHeader()) {
648     // Check loop exiting blocks.
649     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
650     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
651     for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
652       if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
653         SpeculationState = SpeculateTrue;
654         return false;
655       }
656   }
657 
658   SpeculationState = SpeculateFalse;
659   return true;
660 }
661 
662 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
663   LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
664 
665   // Remember livein register pressure.
666   BackTrace.push_back(RegPressure);
667 }
668 
669 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
670   LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
671   BackTrace.pop_back();
672 }
673 
674 /// Destroy scope for the MBB that corresponds to the given dominator tree node
675 /// if its a leaf or all of its children are done. Walk up the dominator tree to
676 /// destroy ancestors which are now done.
677 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
678     DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
679     DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
680   if (OpenChildren[Node])
681     return;
682 
683   // Pop scope.
684   ExitScope(Node->getBlock());
685 
686   // Now traverse upwards to pop ancestors whose offsprings are all done.
687   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
688     unsigned Left = --OpenChildren[Parent];
689     if (Left != 0)
690       break;
691     ExitScope(Parent->getBlock());
692     Node = Parent;
693   }
694 }
695 
696 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
697 /// specified header block, and that are in the current loop) in depth first
698 /// order w.r.t the DominatorTree. This allows us to visit definitions before
699 /// uses, allowing us to hoist a loop body in one pass without iteration.
700 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
701   MachineBasicBlock *Preheader = getCurPreheader();
702   if (!Preheader)
703     return;
704 
705   SmallVector<MachineDomTreeNode*, 32> Scopes;
706   SmallVector<MachineDomTreeNode*, 8> WorkList;
707   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
708   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
709 
710   // Perform a DFS walk to determine the order of visit.
711   WorkList.push_back(HeaderN);
712   while (!WorkList.empty()) {
713     MachineDomTreeNode *Node = WorkList.pop_back_val();
714     assert(Node && "Null dominator tree node?");
715     MachineBasicBlock *BB = Node->getBlock();
716 
717     // If the header of the loop containing this basic block is a landing pad,
718     // then don't try to hoist instructions out of this loop.
719     const MachineLoop *ML = MLI->getLoopFor(BB);
720     if (ML && ML->getHeader()->isEHPad())
721       continue;
722 
723     // If this subregion is not in the top level loop at all, exit.
724     if (!CurLoop->contains(BB))
725       continue;
726 
727     Scopes.push_back(Node);
728     unsigned NumChildren = Node->getNumChildren();
729 
730     // Don't hoist things out of a large switch statement.  This often causes
731     // code to be hoisted that wasn't going to be executed, and increases
732     // register pressure in a situation where it's likely to matter.
733     if (BB->succ_size() >= 25)
734       NumChildren = 0;
735 
736     OpenChildren[Node] = NumChildren;
737     if (NumChildren) {
738       // Add children in reverse order as then the next popped worklist node is
739       // the first child of this node.  This means we ultimately traverse the
740       // DOM tree in exactly the same order as if we'd recursed.
741       for (MachineDomTreeNode *Child : reverse(Node->children())) {
742         ParentMap[Child] = Node;
743         WorkList.push_back(Child);
744       }
745     }
746   }
747 
748   if (Scopes.size() == 0)
749     return;
750 
751   // Compute registers which are livein into the loop headers.
752   RegSeen.clear();
753   BackTrace.clear();
754   InitRegPressure(Preheader);
755 
756   // Now perform LICM.
757   for (MachineDomTreeNode *Node : Scopes) {
758     MachineBasicBlock *MBB = Node->getBlock();
759 
760     EnterScope(MBB);
761 
762     // Process the block
763     SpeculationState = SpeculateUnknown;
764     for (MachineBasicBlock::iterator
765          MII = MBB->begin(), E = MBB->end(); MII != E; ) {
766       MachineBasicBlock::iterator NextMII = MII; ++NextMII;
767       MachineInstr *MI = &*MII;
768       if (!Hoist(MI, Preheader))
769         UpdateRegPressure(MI);
770       // If we have hoisted an instruction that may store, it can only be a
771       // constant store.
772       MII = NextMII;
773     }
774 
775     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
776     ExitScopeIfDone(Node, OpenChildren, ParentMap);
777   }
778 }
779 
780 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
781   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
782 }
783 
784 /// Find all virtual register references that are liveout of the preheader to
785 /// initialize the starting "register pressure". Note this does not count live
786 /// through (livein but not used) registers.
787 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
788   std::fill(RegPressure.begin(), RegPressure.end(), 0);
789 
790   // If the preheader has only a single predecessor and it ends with a
791   // fallthrough or an unconditional branch, then scan its predecessor for live
792   // defs as well. This happens whenever the preheader is created by splitting
793   // the critical edge from the loop predecessor to the loop header.
794   if (BB->pred_size() == 1) {
795     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
796     SmallVector<MachineOperand, 4> Cond;
797     if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
798       InitRegPressure(*BB->pred_begin());
799   }
800 
801   for (const MachineInstr &MI : *BB)
802     UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
803 }
804 
805 /// Update estimate of register pressure after the specified instruction.
806 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
807                                         bool ConsiderUnseenAsDef) {
808   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
809   for (const auto &RPIdAndCost : Cost) {
810     unsigned Class = RPIdAndCost.first;
811     if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
812       RegPressure[Class] = 0;
813     else
814       RegPressure[Class] += RPIdAndCost.second;
815   }
816 }
817 
818 /// Calculate the additional register pressure that the registers used in MI
819 /// cause.
820 ///
821 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
822 /// figure out which usages are live-ins.
823 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
824 DenseMap<unsigned, int>
825 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
826                                   bool ConsiderUnseenAsDef) {
827   DenseMap<unsigned, int> Cost;
828   if (MI->isImplicitDef())
829     return Cost;
830   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
831     const MachineOperand &MO = MI->getOperand(i);
832     if (!MO.isReg() || MO.isImplicit())
833       continue;
834     Register Reg = MO.getReg();
835     if (!Register::isVirtualRegister(Reg))
836       continue;
837 
838     // FIXME: It seems bad to use RegSeen only for some of these calculations.
839     bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
840     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
841 
842     RegClassWeight W = TRI->getRegClassWeight(RC);
843     int RCCost = 0;
844     if (MO.isDef())
845       RCCost = W.RegWeight;
846     else {
847       bool isKill = isOperandKill(MO, MRI);
848       if (isNew && !isKill && ConsiderUnseenAsDef)
849         // Haven't seen this, it must be a livein.
850         RCCost = W.RegWeight;
851       else if (!isNew && isKill)
852         RCCost = -W.RegWeight;
853     }
854     if (RCCost == 0)
855       continue;
856     const int *PS = TRI->getRegClassPressureSets(RC);
857     for (; *PS != -1; ++PS) {
858       if (Cost.find(*PS) == Cost.end())
859         Cost[*PS] = RCCost;
860       else
861         Cost[*PS] += RCCost;
862     }
863   }
864   return Cost;
865 }
866 
867 /// Return true if this machine instruction loads from global offset table or
868 /// constant pool.
869 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
870   assert(MI.mayLoad() && "Expected MI that loads!");
871 
872   // If we lost memory operands, conservatively assume that the instruction
873   // reads from everything..
874   if (MI.memoperands_empty())
875     return true;
876 
877   for (MachineMemOperand *MemOp : MI.memoperands())
878     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
879       if (PSV->isGOT() || PSV->isConstantPool())
880         return true;
881 
882   return false;
883 }
884 
885 // This function iterates through all the operands of the input store MI and
886 // checks that each register operand statisfies isCallerPreservedPhysReg.
887 // This means, the value being stored and the address where it is being stored
888 // is constant throughout the body of the function (not including prologue and
889 // epilogue). When called with an MI that isn't a store, it returns false.
890 // A future improvement can be to check if the store registers are constant
891 // throughout the loop rather than throughout the funtion.
892 static bool isInvariantStore(const MachineInstr &MI,
893                              const TargetRegisterInfo *TRI,
894                              const MachineRegisterInfo *MRI) {
895 
896   bool FoundCallerPresReg = false;
897   if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
898       (MI.getNumOperands() == 0))
899     return false;
900 
901   // Check that all register operands are caller-preserved physical registers.
902   for (const MachineOperand &MO : MI.operands()) {
903     if (MO.isReg()) {
904       Register Reg = MO.getReg();
905       // If operand is a virtual register, check if it comes from a copy of a
906       // physical register.
907       if (Register::isVirtualRegister(Reg))
908         Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
909       if (Register::isVirtualRegister(Reg))
910         return false;
911       if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF()))
912         return false;
913       else
914         FoundCallerPresReg = true;
915     } else if (!MO.isImm()) {
916         return false;
917     }
918   }
919   return FoundCallerPresReg;
920 }
921 
922 // Return true if the input MI is a copy instruction that feeds an invariant
923 // store instruction. This means that the src of the copy has to satisfy
924 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
925 // isInvariantStore.
926 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
927                                         const MachineRegisterInfo *MRI,
928                                         const TargetRegisterInfo *TRI) {
929 
930   // FIXME: If targets would like to look through instructions that aren't
931   // pure copies, this can be updated to a query.
932   if (!MI.isCopy())
933     return false;
934 
935   const MachineFunction *MF = MI.getMF();
936   // Check that we are copying a constant physical register.
937   Register CopySrcReg = MI.getOperand(1).getReg();
938   if (Register::isVirtualRegister(CopySrcReg))
939     return false;
940 
941   if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF))
942     return false;
943 
944   Register CopyDstReg = MI.getOperand(0).getReg();
945   // Check if any of the uses of the copy are invariant stores.
946   assert(Register::isVirtualRegister(CopyDstReg) &&
947          "copy dst is not a virtual reg");
948 
949   for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
950     if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
951       return true;
952   }
953   return false;
954 }
955 
956 /// Returns true if the instruction may be a suitable candidate for LICM.
957 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
958 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
959   // Check if it's safe to move the instruction.
960   bool DontMoveAcrossStore = true;
961   if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
962       !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
963     LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n");
964     return false;
965   }
966 
967   // If it is a load then check if it is guaranteed to execute by making sure
968   // that it dominates all exiting blocks. If it doesn't, then there is a path
969   // out of the loop which does not execute this load, so we can't hoist it.
970   // Loads from constant memory are safe to speculate, for example indexed load
971   // from a jump table.
972   // Stores and side effects are already checked by isSafeToMove.
973   if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
974       !IsGuaranteedToExecute(I.getParent())) {
975     LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n");
976     return false;
977   }
978 
979   // Convergent attribute has been used on operations that involve inter-thread
980   // communication which results are implicitly affected by the enclosing
981   // control flows. It is not safe to hoist or sink such operations across
982   // control flow.
983   if (I.isConvergent())
984     return false;
985 
986   return true;
987 }
988 
989 /// Returns true if the instruction is loop invariant.
990 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
991   if (!IsLICMCandidate(I)) {
992     LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n");
993     return false;
994   }
995   return CurLoop->isLoopInvariant(I);
996 }
997 
998 /// Return true if the specified instruction is used by a phi node and hoisting
999 /// it could cause a copy to be inserted.
1000 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1001   SmallVector<const MachineInstr*, 8> Work(1, MI);
1002   do {
1003     MI = Work.pop_back_val();
1004     for (const MachineOperand &MO : MI->operands()) {
1005       if (!MO.isReg() || !MO.isDef())
1006         continue;
1007       Register Reg = MO.getReg();
1008       if (!Register::isVirtualRegister(Reg))
1009         continue;
1010       for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1011         // A PHI may cause a copy to be inserted.
1012         if (UseMI.isPHI()) {
1013           // A PHI inside the loop causes a copy because the live range of Reg is
1014           // extended across the PHI.
1015           if (CurLoop->contains(&UseMI))
1016             return true;
1017           // A PHI in an exit block can cause a copy to be inserted if the PHI
1018           // has multiple predecessors in the loop with different values.
1019           // For now, approximate by rejecting all exit blocks.
1020           if (isExitBlock(UseMI.getParent()))
1021             return true;
1022           continue;
1023         }
1024         // Look past copies as well.
1025         if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1026           Work.push_back(&UseMI);
1027       }
1028     }
1029   } while (!Work.empty());
1030   return false;
1031 }
1032 
1033 /// Compute operand latency between a def of 'Reg' and an use in the current
1034 /// loop, return true if the target considered it high.
1035 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
1036                                             Register Reg) const {
1037   if (MRI->use_nodbg_empty(Reg))
1038     return false;
1039 
1040   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1041     if (UseMI.isCopyLike())
1042       continue;
1043     if (!CurLoop->contains(UseMI.getParent()))
1044       continue;
1045     for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1046       const MachineOperand &MO = UseMI.getOperand(i);
1047       if (!MO.isReg() || !MO.isUse())
1048         continue;
1049       Register MOReg = MO.getReg();
1050       if (MOReg != Reg)
1051         continue;
1052 
1053       if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1054         return true;
1055     }
1056 
1057     // Only look at the first in loop use.
1058     break;
1059   }
1060 
1061   return false;
1062 }
1063 
1064 /// Return true if the instruction is marked "cheap" or the operand latency
1065 /// between its def and a use is one or less.
1066 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1067   if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1068     return true;
1069 
1070   bool isCheap = false;
1071   unsigned NumDefs = MI.getDesc().getNumDefs();
1072   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1073     MachineOperand &DefMO = MI.getOperand(i);
1074     if (!DefMO.isReg() || !DefMO.isDef())
1075       continue;
1076     --NumDefs;
1077     Register Reg = DefMO.getReg();
1078     if (Register::isPhysicalRegister(Reg))
1079       continue;
1080 
1081     if (!TII->hasLowDefLatency(SchedModel, MI, i))
1082       return false;
1083     isCheap = true;
1084   }
1085 
1086   return isCheap;
1087 }
1088 
1089 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1090 /// given cost matrix can cause high register pressure.
1091 bool
1092 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1093                                          bool CheapInstr) {
1094   for (const auto &RPIdAndCost : Cost) {
1095     if (RPIdAndCost.second <= 0)
1096       continue;
1097 
1098     unsigned Class = RPIdAndCost.first;
1099     int Limit = RegLimit[Class];
1100 
1101     // Don't hoist cheap instructions if they would increase register pressure,
1102     // even if we're under the limit.
1103     if (CheapInstr && !HoistCheapInsts)
1104       return true;
1105 
1106     for (const auto &RP : BackTrace)
1107       if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1108         return true;
1109   }
1110 
1111   return false;
1112 }
1113 
1114 /// Traverse the back trace from header to the current block and update their
1115 /// register pressures to reflect the effect of hoisting MI from the current
1116 /// block to the preheader.
1117 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1118   // First compute the 'cost' of the instruction, i.e. its contribution
1119   // to register pressure.
1120   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1121                                /*ConsiderUnseenAsDef=*/false);
1122 
1123   // Update register pressure of blocks from loop header to current block.
1124   for (auto &RP : BackTrace)
1125     for (const auto &RPIdAndCost : Cost)
1126       RP[RPIdAndCost.first] += RPIdAndCost.second;
1127 }
1128 
1129 /// Return true if it is potentially profitable to hoist the given loop
1130 /// invariant.
1131 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1132   if (MI.isImplicitDef())
1133     return true;
1134 
1135   // Besides removing computation from the loop, hoisting an instruction has
1136   // these effects:
1137   //
1138   // - The value defined by the instruction becomes live across the entire
1139   //   loop. This increases register pressure in the loop.
1140   //
1141   // - If the value is used by a PHI in the loop, a copy will be required for
1142   //   lowering the PHI after extending the live range.
1143   //
1144   // - When hoisting the last use of a value in the loop, that value no longer
1145   //   needs to be live in the loop. This lowers register pressure in the loop.
1146 
1147   if (HoistConstStores &&  isCopyFeedingInvariantStore(MI, MRI, TRI))
1148     return true;
1149 
1150   bool CheapInstr = IsCheapInstruction(MI);
1151   bool CreatesCopy = HasLoopPHIUse(&MI);
1152 
1153   // Don't hoist a cheap instruction if it would create a copy in the loop.
1154   if (CheapInstr && CreatesCopy) {
1155     LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1156     return false;
1157   }
1158 
1159   // Rematerializable instructions should always be hoisted since the register
1160   // allocator can just pull them down again when needed.
1161   if (TII->isTriviallyReMaterializable(MI, AA))
1162     return true;
1163 
1164   // FIXME: If there are long latency loop-invariant instructions inside the
1165   // loop at this point, why didn't the optimizer's LICM hoist them?
1166   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1167     const MachineOperand &MO = MI.getOperand(i);
1168     if (!MO.isReg() || MO.isImplicit())
1169       continue;
1170     Register Reg = MO.getReg();
1171     if (!Register::isVirtualRegister(Reg))
1172       continue;
1173     if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1174       LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1175       ++NumHighLatency;
1176       return true;
1177     }
1178   }
1179 
1180   // Estimate register pressure to determine whether to LICM the instruction.
1181   // In low register pressure situation, we can be more aggressive about
1182   // hoisting. Also, favors hoisting long latency instructions even in
1183   // moderately high pressure situation.
1184   // Cheap instructions will only be hoisted if they don't increase register
1185   // pressure at all.
1186   auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1187                                /*ConsiderUnseenAsDef=*/false);
1188 
1189   // Visit BBs from header to current BB, if hoisting this doesn't cause
1190   // high register pressure, then it's safe to proceed.
1191   if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1192     LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1193     ++NumLowRP;
1194     return true;
1195   }
1196 
1197   // Don't risk increasing register pressure if it would create copies.
1198   if (CreatesCopy) {
1199     LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1200     return false;
1201   }
1202 
1203   // Do not "speculate" in high register pressure situation. If an
1204   // instruction is not guaranteed to be executed in the loop, it's best to be
1205   // conservative.
1206   if (AvoidSpeculation &&
1207       (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1208     LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1209     return false;
1210   }
1211 
1212   // High register pressure situation, only hoist if the instruction is going
1213   // to be remat'ed.
1214   if (!TII->isTriviallyReMaterializable(MI, AA) &&
1215       !MI.isDereferenceableInvariantLoad(AA)) {
1216     LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1217     return false;
1218   }
1219 
1220   return true;
1221 }
1222 
1223 /// Unfold a load from the given machineinstr if the load itself could be
1224 /// hoisted. Return the unfolded and hoistable load, or null if the load
1225 /// couldn't be unfolded or if it wouldn't be hoistable.
1226 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1227   // Don't unfold simple loads.
1228   if (MI->canFoldAsLoad())
1229     return nullptr;
1230 
1231   // If not, we may be able to unfold a load and hoist that.
1232   // First test whether the instruction is loading from an amenable
1233   // memory location.
1234   if (!MI->isDereferenceableInvariantLoad(AA))
1235     return nullptr;
1236 
1237   // Next determine the register class for a temporary register.
1238   unsigned LoadRegIndex;
1239   unsigned NewOpc =
1240     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1241                                     /*UnfoldLoad=*/true,
1242                                     /*UnfoldStore=*/false,
1243                                     &LoadRegIndex);
1244   if (NewOpc == 0) return nullptr;
1245   const MCInstrDesc &MID = TII->get(NewOpc);
1246   MachineFunction &MF = *MI->getMF();
1247   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1248   // Ok, we're unfolding. Create a temporary register and do the unfold.
1249   Register Reg = MRI->createVirtualRegister(RC);
1250 
1251   SmallVector<MachineInstr *, 2> NewMIs;
1252   bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1253                                           /*UnfoldLoad=*/true,
1254                                           /*UnfoldStore=*/false, NewMIs);
1255   (void)Success;
1256   assert(Success &&
1257          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1258          "succeeded!");
1259   assert(NewMIs.size() == 2 &&
1260          "Unfolded a load into multiple instructions!");
1261   MachineBasicBlock *MBB = MI->getParent();
1262   MachineBasicBlock::iterator Pos = MI;
1263   MBB->insert(Pos, NewMIs[0]);
1264   MBB->insert(Pos, NewMIs[1]);
1265   // If unfolding produced a load that wasn't loop-invariant or profitable to
1266   // hoist, discard the new instructions and bail.
1267   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1268     NewMIs[0]->eraseFromParent();
1269     NewMIs[1]->eraseFromParent();
1270     return nullptr;
1271   }
1272 
1273   // Update register pressure for the unfolded instruction.
1274   UpdateRegPressure(NewMIs[1]);
1275 
1276   // Otherwise we successfully unfolded a load that we can hoist.
1277 
1278   // Update the call site info.
1279   if (MI->shouldUpdateCallSiteInfo())
1280     MF.eraseCallSiteInfo(MI);
1281 
1282   MI->eraseFromParent();
1283   return NewMIs[0];
1284 }
1285 
1286 /// Initialize the CSE map with instructions that are in the current loop
1287 /// preheader that may become duplicates of instructions that are hoisted
1288 /// out of the loop.
1289 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1290   for (MachineInstr &MI : *BB)
1291     CSEMap[MI.getOpcode()].push_back(&MI);
1292 }
1293 
1294 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1295 /// Return this instruction if it's found.
1296 MachineInstr *
1297 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1298                                   std::vector<MachineInstr *> &PrevMIs) {
1299   for (MachineInstr *PrevMI : PrevMIs)
1300     if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1301       return PrevMI;
1302 
1303   return nullptr;
1304 }
1305 
1306 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1307 /// computes the same value. If it's found, do a RAU on with the definition of
1308 /// the existing instruction rather than hoisting the instruction to the
1309 /// preheader.
1310 bool MachineLICMBase::EliminateCSE(
1311     MachineInstr *MI,
1312     DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) {
1313   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1314   // the undef property onto uses.
1315   if (CI == CSEMap.end() || MI->isImplicitDef())
1316     return false;
1317 
1318   if (MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1319     LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1320 
1321     // Replace virtual registers defined by MI by their counterparts defined
1322     // by Dup.
1323     SmallVector<unsigned, 2> Defs;
1324     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1325       const MachineOperand &MO = MI->getOperand(i);
1326 
1327       // Physical registers may not differ here.
1328       assert((!MO.isReg() || MO.getReg() == 0 ||
1329               !Register::isPhysicalRegister(MO.getReg()) ||
1330               MO.getReg() == Dup->getOperand(i).getReg()) &&
1331              "Instructions with different phys regs are not identical!");
1332 
1333       if (MO.isReg() && MO.isDef() &&
1334           !Register::isPhysicalRegister(MO.getReg()))
1335         Defs.push_back(i);
1336     }
1337 
1338     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1339     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1340       unsigned Idx = Defs[i];
1341       Register Reg = MI->getOperand(Idx).getReg();
1342       Register DupReg = Dup->getOperand(Idx).getReg();
1343       OrigRCs.push_back(MRI->getRegClass(DupReg));
1344 
1345       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1346         // Restore old RCs if more than one defs.
1347         for (unsigned j = 0; j != i; ++j)
1348           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1349         return false;
1350       }
1351     }
1352 
1353     for (unsigned Idx : Defs) {
1354       Register Reg = MI->getOperand(Idx).getReg();
1355       Register DupReg = Dup->getOperand(Idx).getReg();
1356       MRI->replaceRegWith(Reg, DupReg);
1357       MRI->clearKillFlags(DupReg);
1358       // Clear Dup dead flag if any, we reuse it for Reg.
1359       if (!MRI->use_nodbg_empty(DupReg))
1360         Dup->getOperand(Idx).setIsDead(false);
1361     }
1362 
1363     MI->eraseFromParent();
1364     ++NumCSEed;
1365     return true;
1366   }
1367   return false;
1368 }
1369 
1370 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1371 /// the loop.
1372 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1373   unsigned Opcode = MI->getOpcode();
1374   DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI =
1375       CSEMap.find(Opcode);
1376   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1377   // the undef property onto uses.
1378   if (CI == CSEMap.end() || MI->isImplicitDef())
1379     return false;
1380 
1381   return LookForDuplicate(MI, CI->second) != nullptr;
1382 }
1383 
1384 /// When an instruction is found to use only loop invariant operands
1385 /// that are safe to hoist, this instruction is called to do the dirty work.
1386 /// It returns true if the instruction is hoisted.
1387 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1388   MachineBasicBlock *SrcBlock = MI->getParent();
1389 
1390   // Disable the instruction hoisting due to block hotness
1391   if ((DisableHoistingToHotterBlocks == UseBFI::All ||
1392       (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) &&
1393       isTgtHotterThanSrc(SrcBlock, Preheader)) {
1394     ++NumNotHoistedDueToHotness;
1395     return false;
1396   }
1397   // First check whether we should hoist this instruction.
1398   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1399     // If not, try unfolding a hoistable load.
1400     MI = ExtractHoistableLoad(MI);
1401     if (!MI) return false;
1402   }
1403 
1404   // If we have hoisted an instruction that may store, it can only be a constant
1405   // store.
1406   if (MI->mayStore())
1407     NumStoreConst++;
1408 
1409   // Now move the instructions to the predecessor, inserting it before any
1410   // terminator instructions.
1411   LLVM_DEBUG({
1412     dbgs() << "Hoisting " << *MI;
1413     if (MI->getParent()->getBasicBlock())
1414       dbgs() << " from " << printMBBReference(*MI->getParent());
1415     if (Preheader->getBasicBlock())
1416       dbgs() << " to " << printMBBReference(*Preheader);
1417     dbgs() << "\n";
1418   });
1419 
1420   // If this is the first instruction being hoisted to the preheader,
1421   // initialize the CSE map with potential common expressions.
1422   if (FirstInLoop) {
1423     InitCSEMap(Preheader);
1424     FirstInLoop = false;
1425   }
1426 
1427   // Look for opportunity to CSE the hoisted instruction.
1428   unsigned Opcode = MI->getOpcode();
1429   DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI =
1430       CSEMap.find(Opcode);
1431   if (!EliminateCSE(MI, CI)) {
1432     // Otherwise, splice the instruction to the preheader.
1433     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1434 
1435     // Since we are moving the instruction out of its basic block, we do not
1436     // retain its debug location. Doing so would degrade the debugging
1437     // experience and adversely affect the accuracy of profiling information.
1438     assert(!MI->isDebugInstr() && "Should not hoist debug inst");
1439     MI->setDebugLoc(DebugLoc());
1440 
1441     // Update register pressure for BBs from header to this block.
1442     UpdateBackTraceRegPressure(MI);
1443 
1444     // Clear the kill flags of any register this instruction defines,
1445     // since they may need to be live throughout the entire loop
1446     // rather than just live for part of it.
1447     for (MachineOperand &MO : MI->operands())
1448       if (MO.isReg() && MO.isDef() && !MO.isDead())
1449         MRI->clearKillFlags(MO.getReg());
1450 
1451     // Add to the CSE map.
1452     if (CI != CSEMap.end())
1453       CI->second.push_back(MI);
1454     else
1455       CSEMap[Opcode].push_back(MI);
1456   }
1457 
1458   ++NumHoisted;
1459   Changed = true;
1460 
1461   return true;
1462 }
1463 
1464 /// Get the preheader for the current loop, splitting a critical edge if needed.
1465 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1466   // Determine the block to which to hoist instructions. If we can't find a
1467   // suitable loop predecessor, we can't do any hoisting.
1468 
1469   // If we've tried to get a preheader and failed, don't try again.
1470   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1471     return nullptr;
1472 
1473   if (!CurPreheader) {
1474     CurPreheader = CurLoop->getLoopPreheader();
1475     if (!CurPreheader) {
1476       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1477       if (!Pred) {
1478         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1479         return nullptr;
1480       }
1481 
1482       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1483       if (!CurPreheader) {
1484         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1485         return nullptr;
1486       }
1487     }
1488   }
1489   return CurPreheader;
1490 }
1491 
1492 /// Is the target basic block at least "BlockFrequencyRatioThreshold"
1493 /// times hotter than the source basic block.
1494 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
1495                                          MachineBasicBlock *TgtBlock) {
1496   // Parse source and target basic block frequency from MBFI
1497   uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency();
1498   uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency();
1499 
1500   // Disable the hoisting if source block frequency is zero
1501   if (!SrcBF)
1502     return true;
1503 
1504   double Ratio = (double)DstBF / SrcBF;
1505 
1506   // Compare the block frequency ratio with the threshold
1507   return Ratio > BlockFrequencyRatioThreshold;
1508 }
1509