xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineLICM.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <limits>
54 #include <vector>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "machinelicm"
59 
60 static cl::opt<bool>
61 AvoidSpeculation("avoid-speculation",
62                  cl::desc("MachineLICM should avoid speculation"),
63                  cl::init(true), cl::Hidden);
64 
65 static cl::opt<bool>
66 HoistCheapInsts("hoist-cheap-insts",
67                 cl::desc("MachineLICM should hoist even cheap instructions"),
68                 cl::init(false), cl::Hidden);
69 
70 static cl::opt<bool>
71 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
72                        cl::desc("MachineLICM should sink instructions into "
73                                 "loops to avoid register spills"),
74                        cl::init(false), cl::Hidden);
75 static cl::opt<bool>
76 HoistConstStores("hoist-const-stores",
77                  cl::desc("Hoist invariant stores"),
78                  cl::init(true), cl::Hidden);
79 // The default threshold of 100 (i.e. if target block is 100 times hotter)
80 // is based on empirical data on a single target and is subject to tuning.
81 static cl::opt<unsigned>
82 BlockFrequencyRatioThreshold("block-freq-ratio-threshold",
83                              cl::desc("Do not hoist instructions if target"
84                              "block is N times hotter than the source."),
85                              cl::init(100), cl::Hidden);
86 
87 enum class UseBFI { None, PGO, All };
88 
89 static cl::opt<UseBFI>
90 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks",
91                               cl::desc("Disable hoisting instructions to"
92                               " hotter blocks"),
93                               cl::init(UseBFI::None), cl::Hidden,
94                               cl::values(clEnumValN(UseBFI::None, "none",
95                               "disable the feature"),
96                               clEnumValN(UseBFI::PGO, "pgo",
97                               "enable the feature when using profile data"),
98                               clEnumValN(UseBFI::All, "all",
99                               "enable the feature with/wo profile data")));
100 
101 STATISTIC(NumHoisted,
102           "Number of machine instructions hoisted out of loops");
103 STATISTIC(NumLowRP,
104           "Number of instructions hoisted in low reg pressure situation");
105 STATISTIC(NumHighLatency,
106           "Number of high latency instructions hoisted");
107 STATISTIC(NumCSEed,
108           "Number of hoisted machine instructions CSEed");
109 STATISTIC(NumPostRAHoisted,
110           "Number of machine instructions hoisted out of loops post regalloc");
111 STATISTIC(NumStoreConst,
112           "Number of stores of const phys reg hoisted out of loops");
113 STATISTIC(NumNotHoistedDueToHotness,
114           "Number of instructions not hoisted due to block frequency");
115 
116 namespace {
117 
118   class MachineLICMBase : public MachineFunctionPass {
119     const TargetInstrInfo *TII;
120     const TargetLoweringBase *TLI;
121     const TargetRegisterInfo *TRI;
122     const MachineFrameInfo *MFI;
123     MachineRegisterInfo *MRI;
124     TargetSchedModel SchedModel;
125     bool PreRegAlloc;
126     bool HasProfileData;
127 
128     // Various analyses that we use...
129     AliasAnalysis        *AA;      // Alias analysis info.
130     MachineBlockFrequencyInfo *MBFI; // Machine block frequncy info
131     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
132     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
133 
134     // State that is updated as we process loops
135     bool         Changed;          // True if a loop is changed.
136     bool         FirstInLoop;      // True if it's the first LICM in the loop.
137     MachineLoop *CurLoop;          // The current loop we are working on.
138     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
139 
140     // Exit blocks for CurLoop.
141     SmallVector<MachineBasicBlock *, 8> ExitBlocks;
142 
143     bool isExitBlock(const MachineBasicBlock *MBB) const {
144       return is_contained(ExitBlocks, MBB);
145     }
146 
147     // Track 'estimated' register pressure.
148     SmallSet<unsigned, 32> RegSeen;
149     SmallVector<unsigned, 8> RegPressure;
150 
151     // Register pressure "limit" per register pressure set. If the pressure
152     // is higher than the limit, then it's considered high.
153     SmallVector<unsigned, 8> RegLimit;
154 
155     // Register pressure on path leading from loop preheader to current BB.
156     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
157 
158     // For each opcode, keep a list of potential CSE instructions.
159     DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;
160 
161     enum {
162       SpeculateFalse   = 0,
163       SpeculateTrue    = 1,
164       SpeculateUnknown = 2
165     };
166 
167     // If a MBB does not dominate loop exiting blocks then it may not safe
168     // to hoist loads from this block.
169     // Tri-state: 0 - false, 1 - true, 2 - unknown
170     unsigned SpeculationState;
171 
172   public:
173     MachineLICMBase(char &PassID, bool PreRegAlloc)
174         : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
175 
176     bool runOnMachineFunction(MachineFunction &MF) override;
177 
178     void getAnalysisUsage(AnalysisUsage &AU) const override {
179       AU.addRequired<MachineLoopInfo>();
180       if (DisableHoistingToHotterBlocks != UseBFI::None)
181         AU.addRequired<MachineBlockFrequencyInfo>();
182       AU.addRequired<MachineDominatorTree>();
183       AU.addRequired<AAResultsWrapperPass>();
184       AU.addPreserved<MachineLoopInfo>();
185       MachineFunctionPass::getAnalysisUsage(AU);
186     }
187 
188     void releaseMemory() override {
189       RegSeen.clear();
190       RegPressure.clear();
191       RegLimit.clear();
192       BackTrace.clear();
193       CSEMap.clear();
194     }
195 
196   private:
197     /// Keep track of information about hoisting candidates.
198     struct CandidateInfo {
199       MachineInstr *MI;
200       unsigned      Def;
201       int           FI;
202 
203       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
204         : MI(mi), Def(def), FI(fi) {}
205     };
206 
207     void HoistRegionPostRA();
208 
209     void HoistPostRA(MachineInstr *MI, unsigned Def);
210 
211     void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
212                    BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
213                    SmallVectorImpl<CandidateInfo> &Candidates);
214 
215     void AddToLiveIns(unsigned Reg);
216 
217     bool IsLICMCandidate(MachineInstr &I);
218 
219     bool IsLoopInvariantInst(MachineInstr &I);
220 
221     bool HasLoopPHIUse(const MachineInstr *MI) const;
222 
223     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
224                                unsigned Reg) const;
225 
226     bool IsCheapInstruction(MachineInstr &MI) const;
227 
228     bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
229                                  bool Cheap);
230 
231     void UpdateBackTraceRegPressure(const MachineInstr *MI);
232 
233     bool IsProfitableToHoist(MachineInstr &MI);
234 
235     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
236 
237     void EnterScope(MachineBasicBlock *MBB);
238 
239     void ExitScope(MachineBasicBlock *MBB);
240 
241     void ExitScopeIfDone(
242         MachineDomTreeNode *Node,
243         DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
244         DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
245 
246     void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
247 
248     void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
249 
250     void SinkIntoLoop();
251 
252     void InitRegPressure(MachineBasicBlock *BB);
253 
254     DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
255                                              bool ConsiderSeen,
256                                              bool ConsiderUnseenAsDef);
257 
258     void UpdateRegPressure(const MachineInstr *MI,
259                            bool ConsiderUnseenAsDef = false);
260 
261     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
262 
263     const MachineInstr *
264     LookForDuplicate(const MachineInstr *MI,
265                      std::vector<const MachineInstr *> &PrevMIs);
266 
267     bool EliminateCSE(
268         MachineInstr *MI,
269         DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
270 
271     bool MayCSE(MachineInstr *MI);
272 
273     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
274 
275     void InitCSEMap(MachineBasicBlock *BB);
276 
277     bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
278                             MachineBasicBlock *TgtBlock);
279     MachineBasicBlock *getCurPreheader();
280   };
281 
282   class MachineLICM : public MachineLICMBase {
283   public:
284     static char ID;
285     MachineLICM() : MachineLICMBase(ID, false) {
286       initializeMachineLICMPass(*PassRegistry::getPassRegistry());
287     }
288   };
289 
290   class EarlyMachineLICM : public MachineLICMBase {
291   public:
292     static char ID;
293     EarlyMachineLICM() : MachineLICMBase(ID, true) {
294       initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
295     }
296   };
297 
298 } // end anonymous namespace
299 
300 char MachineLICM::ID;
301 char EarlyMachineLICM::ID;
302 
303 char &llvm::MachineLICMID = MachineLICM::ID;
304 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
305 
306 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
307                       "Machine Loop Invariant Code Motion", false, false)
308 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
309 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
310 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
311 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
312 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
313                     "Machine Loop Invariant Code Motion", false, false)
314 
315 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
316                       "Early Machine Loop Invariant Code Motion", false, false)
317 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
318 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
319 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
320 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
321 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
322                     "Early Machine Loop Invariant Code Motion", false, false)
323 
324 /// Test if the given loop is the outer-most loop that has a unique predecessor.
325 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
326   // Check whether this loop even has a unique predecessor.
327   if (!CurLoop->getLoopPredecessor())
328     return false;
329   // Ok, now check to see if any of its outer loops do.
330   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
331     if (L->getLoopPredecessor())
332       return false;
333   // None of them did, so this is the outermost with a unique predecessor.
334   return true;
335 }
336 
337 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
338   if (skipFunction(MF.getFunction()))
339     return false;
340 
341   Changed = FirstInLoop = false;
342   const TargetSubtargetInfo &ST = MF.getSubtarget();
343   TII = ST.getInstrInfo();
344   TLI = ST.getTargetLowering();
345   TRI = ST.getRegisterInfo();
346   MFI = &MF.getFrameInfo();
347   MRI = &MF.getRegInfo();
348   SchedModel.init(&ST);
349 
350   PreRegAlloc = MRI->isSSA();
351   HasProfileData = MF.getFunction().hasProfileData();
352 
353   if (PreRegAlloc)
354     LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
355   else
356     LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
357   LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
358 
359   if (PreRegAlloc) {
360     // Estimate register pressure during pre-regalloc pass.
361     unsigned NumRPS = TRI->getNumRegPressureSets();
362     RegPressure.resize(NumRPS);
363     std::fill(RegPressure.begin(), RegPressure.end(), 0);
364     RegLimit.resize(NumRPS);
365     for (unsigned i = 0, e = NumRPS; i != e; ++i)
366       RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
367   }
368 
369   // Get our Loop information...
370   if (DisableHoistingToHotterBlocks != UseBFI::None)
371     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
372   MLI = &getAnalysis<MachineLoopInfo>();
373   DT  = &getAnalysis<MachineDominatorTree>();
374   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
375 
376   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
377   while (!Worklist.empty()) {
378     CurLoop = Worklist.pop_back_val();
379     CurPreheader = nullptr;
380     ExitBlocks.clear();
381 
382     // If this is done before regalloc, only visit outer-most preheader-sporting
383     // loops.
384     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
385       Worklist.append(CurLoop->begin(), CurLoop->end());
386       continue;
387     }
388 
389     CurLoop->getExitBlocks(ExitBlocks);
390 
391     if (!PreRegAlloc)
392       HoistRegionPostRA();
393     else {
394       // CSEMap is initialized for loop header when the first instruction is
395       // being hoisted.
396       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
397       FirstInLoop = true;
398       HoistOutOfLoop(N);
399       CSEMap.clear();
400 
401       if (SinkInstsToAvoidSpills)
402         SinkIntoLoop();
403     }
404   }
405 
406   return Changed;
407 }
408 
409 /// Return true if instruction stores to the specified frame.
410 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
411   // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
412   // true since they have no memory operands.
413   if (!MI->mayStore())
414      return false;
415   // If we lost memory operands, conservatively assume that the instruction
416   // writes to all slots.
417   if (MI->memoperands_empty())
418     return true;
419   for (const MachineMemOperand *MemOp : MI->memoperands()) {
420     if (!MemOp->isStore() || !MemOp->getPseudoValue())
421       continue;
422     if (const FixedStackPseudoSourceValue *Value =
423         dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
424       if (Value->getFrameIndex() == FI)
425         return true;
426     }
427   }
428   return false;
429 }
430 
431 /// Examine the instruction for potentai LICM candidate. Also
432 /// gather register def and frame object update information.
433 void MachineLICMBase::ProcessMI(MachineInstr *MI,
434                                 BitVector &PhysRegDefs,
435                                 BitVector &PhysRegClobbers,
436                                 SmallSet<int, 32> &StoredFIs,
437                                 SmallVectorImpl<CandidateInfo> &Candidates) {
438   bool RuledOut = false;
439   bool HasNonInvariantUse = false;
440   unsigned Def = 0;
441   for (const MachineOperand &MO : MI->operands()) {
442     if (MO.isFI()) {
443       // Remember if the instruction stores to the frame index.
444       int FI = MO.getIndex();
445       if (!StoredFIs.count(FI) &&
446           MFI->isSpillSlotObjectIndex(FI) &&
447           InstructionStoresToFI(MI, FI))
448         StoredFIs.insert(FI);
449       HasNonInvariantUse = true;
450       continue;
451     }
452 
453     // We can't hoist an instruction defining a physreg that is clobbered in
454     // the loop.
455     if (MO.isRegMask()) {
456       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
457       continue;
458     }
459 
460     if (!MO.isReg())
461       continue;
462     Register Reg = MO.getReg();
463     if (!Reg)
464       continue;
465     assert(Register::isPhysicalRegister(Reg) &&
466            "Not expecting virtual register!");
467 
468     if (!MO.isDef()) {
469       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
470         // If it's using a non-loop-invariant register, then it's obviously not
471         // safe to hoist.
472         HasNonInvariantUse = true;
473       continue;
474     }
475 
476     if (MO.isImplicit()) {
477       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
478         PhysRegClobbers.set(*AI);
479       if (!MO.isDead())
480         // Non-dead implicit def? This cannot be hoisted.
481         RuledOut = true;
482       // No need to check if a dead implicit def is also defined by
483       // another instruction.
484       continue;
485     }
486 
487     // FIXME: For now, avoid instructions with multiple defs, unless
488     // it's a dead implicit def.
489     if (Def)
490       RuledOut = true;
491     else
492       Def = Reg;
493 
494     // If we have already seen another instruction that defines the same
495     // register, then this is not safe.  Two defs is indicated by setting a
496     // PhysRegClobbers bit.
497     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
498       if (PhysRegDefs.test(*AS))
499         PhysRegClobbers.set(*AS);
500     }
501     // Need a second loop because MCRegAliasIterator can visit the same
502     // register twice.
503     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
504       PhysRegDefs.set(*AS);
505 
506     if (PhysRegClobbers.test(Reg))
507       // MI defined register is seen defined by another instruction in
508       // the loop, it cannot be a LICM candidate.
509       RuledOut = true;
510   }
511 
512   // Only consider reloads for now and remats which do not have register
513   // operands. FIXME: Consider unfold load folding instructions.
514   if (Def && !RuledOut) {
515     int FI = std::numeric_limits<int>::min();
516     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
517         (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
518       Candidates.push_back(CandidateInfo(MI, Def, FI));
519   }
520 }
521 
522 /// Walk the specified region of the CFG and hoist loop invariants out to the
523 /// preheader.
524 void MachineLICMBase::HoistRegionPostRA() {
525   MachineBasicBlock *Preheader = getCurPreheader();
526   if (!Preheader)
527     return;
528 
529   unsigned NumRegs = TRI->getNumRegs();
530   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
531   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
532 
533   SmallVector<CandidateInfo, 32> Candidates;
534   SmallSet<int, 32> StoredFIs;
535 
536   // Walk the entire region, count number of defs for each register, and
537   // collect potential LICM candidates.
538   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
539     // If the header of the loop containing this basic block is a landing pad,
540     // then don't try to hoist instructions out of this loop.
541     const MachineLoop *ML = MLI->getLoopFor(BB);
542     if (ML && ML->getHeader()->isEHPad()) continue;
543 
544     // Conservatively treat live-in's as an external def.
545     // FIXME: That means a reload that're reused in successor block(s) will not
546     // be LICM'ed.
547     for (const auto &LI : BB->liveins()) {
548       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
549         PhysRegDefs.set(*AI);
550     }
551 
552     SpeculationState = SpeculateUnknown;
553     for (MachineInstr &MI : *BB)
554       ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
555   }
556 
557   // Gather the registers read / clobbered by the terminator.
558   BitVector TermRegs(NumRegs);
559   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
560   if (TI != Preheader->end()) {
561     for (const MachineOperand &MO : TI->operands()) {
562       if (!MO.isReg())
563         continue;
564       Register Reg = MO.getReg();
565       if (!Reg)
566         continue;
567       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
568         TermRegs.set(*AI);
569     }
570   }
571 
572   // Now evaluate whether the potential candidates qualify.
573   // 1. Check if the candidate defined register is defined by another
574   //    instruction in the loop.
575   // 2. If the candidate is a load from stack slot (always true for now),
576   //    check if the slot is stored anywhere in the loop.
577   // 3. Make sure candidate def should not clobber
578   //    registers read by the terminator. Similarly its def should not be
579   //    clobbered by the terminator.
580   for (CandidateInfo &Candidate : Candidates) {
581     if (Candidate.FI != std::numeric_limits<int>::min() &&
582         StoredFIs.count(Candidate.FI))
583       continue;
584 
585     unsigned Def = Candidate.Def;
586     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
587       bool Safe = true;
588       MachineInstr *MI = Candidate.MI;
589       for (const MachineOperand &MO : MI->operands()) {
590         if (!MO.isReg() || MO.isDef() || !MO.getReg())
591           continue;
592         Register Reg = MO.getReg();
593         if (PhysRegDefs.test(Reg) ||
594             PhysRegClobbers.test(Reg)) {
595           // If it's using a non-loop-invariant register, then it's obviously
596           // not safe to hoist.
597           Safe = false;
598           break;
599         }
600       }
601       if (Safe)
602         HoistPostRA(MI, Candidate.Def);
603     }
604   }
605 }
606 
607 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
608 /// sure it is not killed by any instructions in the loop.
609 void MachineLICMBase::AddToLiveIns(unsigned Reg) {
610   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
611     if (!BB->isLiveIn(Reg))
612       BB->addLiveIn(Reg);
613     for (MachineInstr &MI : *BB) {
614       for (MachineOperand &MO : MI.operands()) {
615         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
616         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
617           MO.setIsKill(false);
618       }
619     }
620   }
621 }
622 
623 /// When an instruction is found to only use loop invariant operands that is
624 /// safe to hoist, this instruction is called to do the dirty work.
625 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
626   MachineBasicBlock *Preheader = getCurPreheader();
627 
628   // Now move the instructions to the predecessor, inserting it before any
629   // terminator instructions.
630   LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
631                     << " from " << printMBBReference(*MI->getParent()) << ": "
632                     << *MI);
633 
634   // Splice the instruction to the preheader.
635   MachineBasicBlock *MBB = MI->getParent();
636   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
637 
638   // Add register to livein list to all the BBs in the current loop since a
639   // loop invariant must be kept live throughout the whole loop. This is
640   // important to ensure later passes do not scavenge the def register.
641   AddToLiveIns(Def);
642 
643   ++NumPostRAHoisted;
644   Changed = true;
645 }
646 
647 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
648 /// may not be safe to hoist.
649 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
650   if (SpeculationState != SpeculateUnknown)
651     return SpeculationState == SpeculateFalse;
652 
653   if (BB != CurLoop->getHeader()) {
654     // Check loop exiting blocks.
655     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
656     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
657     for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
658       if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
659         SpeculationState = SpeculateTrue;
660         return false;
661       }
662   }
663 
664   SpeculationState = SpeculateFalse;
665   return true;
666 }
667 
668 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
669   LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
670 
671   // Remember livein register pressure.
672   BackTrace.push_back(RegPressure);
673 }
674 
675 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
676   LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
677   BackTrace.pop_back();
678 }
679 
680 /// Destroy scope for the MBB that corresponds to the given dominator tree node
681 /// if its a leaf or all of its children are done. Walk up the dominator tree to
682 /// destroy ancestors which are now done.
683 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
684     DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
685     DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
686   if (OpenChildren[Node])
687     return;
688 
689   // Pop scope.
690   ExitScope(Node->getBlock());
691 
692   // Now traverse upwards to pop ancestors whose offsprings are all done.
693   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
694     unsigned Left = --OpenChildren[Parent];
695     if (Left != 0)
696       break;
697     ExitScope(Parent->getBlock());
698     Node = Parent;
699   }
700 }
701 
702 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
703 /// specified header block, and that are in the current loop) in depth first
704 /// order w.r.t the DominatorTree. This allows us to visit definitions before
705 /// uses, allowing us to hoist a loop body in one pass without iteration.
706 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
707   MachineBasicBlock *Preheader = getCurPreheader();
708   if (!Preheader)
709     return;
710 
711   SmallVector<MachineDomTreeNode*, 32> Scopes;
712   SmallVector<MachineDomTreeNode*, 8> WorkList;
713   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
714   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
715 
716   // Perform a DFS walk to determine the order of visit.
717   WorkList.push_back(HeaderN);
718   while (!WorkList.empty()) {
719     MachineDomTreeNode *Node = WorkList.pop_back_val();
720     assert(Node && "Null dominator tree node?");
721     MachineBasicBlock *BB = Node->getBlock();
722 
723     // If the header of the loop containing this basic block is a landing pad,
724     // then don't try to hoist instructions out of this loop.
725     const MachineLoop *ML = MLI->getLoopFor(BB);
726     if (ML && ML->getHeader()->isEHPad())
727       continue;
728 
729     // If this subregion is not in the top level loop at all, exit.
730     if (!CurLoop->contains(BB))
731       continue;
732 
733     Scopes.push_back(Node);
734     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
735     unsigned NumChildren = Children.size();
736 
737     // Don't hoist things out of a large switch statement.  This often causes
738     // code to be hoisted that wasn't going to be executed, and increases
739     // register pressure in a situation where it's likely to matter.
740     if (BB->succ_size() >= 25)
741       NumChildren = 0;
742 
743     OpenChildren[Node] = NumChildren;
744     // Add children in reverse order as then the next popped worklist node is
745     // the first child of this node.  This means we ultimately traverse the
746     // DOM tree in exactly the same order as if we'd recursed.
747     for (int i = (int)NumChildren-1; i >= 0; --i) {
748       MachineDomTreeNode *Child = Children[i];
749       ParentMap[Child] = Node;
750       WorkList.push_back(Child);
751     }
752   }
753 
754   if (Scopes.size() == 0)
755     return;
756 
757   // Compute registers which are livein into the loop headers.
758   RegSeen.clear();
759   BackTrace.clear();
760   InitRegPressure(Preheader);
761 
762   // Now perform LICM.
763   for (MachineDomTreeNode *Node : Scopes) {
764     MachineBasicBlock *MBB = Node->getBlock();
765 
766     EnterScope(MBB);
767 
768     // Process the block
769     SpeculationState = SpeculateUnknown;
770     for (MachineBasicBlock::iterator
771          MII = MBB->begin(), E = MBB->end(); MII != E; ) {
772       MachineBasicBlock::iterator NextMII = MII; ++NextMII;
773       MachineInstr *MI = &*MII;
774       if (!Hoist(MI, Preheader))
775         UpdateRegPressure(MI);
776       // If we have hoisted an instruction that may store, it can only be a
777       // constant store.
778       MII = NextMII;
779     }
780 
781     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
782     ExitScopeIfDone(Node, OpenChildren, ParentMap);
783   }
784 }
785 
786 /// Sink instructions into loops if profitable. This especially tries to prevent
787 /// register spills caused by register pressure if there is little to no
788 /// overhead moving instructions into loops.
789 void MachineLICMBase::SinkIntoLoop() {
790   MachineBasicBlock *Preheader = getCurPreheader();
791   if (!Preheader)
792     return;
793 
794   SmallVector<MachineInstr *, 8> Candidates;
795   for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
796        I != Preheader->instr_end(); ++I) {
797     // We need to ensure that we can safely move this instruction into the loop.
798     // As such, it must not have side-effects, e.g. such as a call has.
799     if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
800       Candidates.push_back(&*I);
801   }
802 
803   for (MachineInstr *I : Candidates) {
804     const MachineOperand &MO = I->getOperand(0);
805     if (!MO.isDef() || !MO.isReg() || !MO.getReg())
806       continue;
807     if (!MRI->hasOneDef(MO.getReg()))
808       continue;
809     bool CanSink = true;
810     MachineBasicBlock *B = nullptr;
811     for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
812       // FIXME: Come up with a proper cost model that estimates whether sinking
813       // the instruction (and thus possibly executing it on every loop
814       // iteration) is more expensive than a register.
815       // For now assumes that copies are cheap and thus almost always worth it.
816       if (!MI.isCopy()) {
817         CanSink = false;
818         break;
819       }
820       if (!B) {
821         B = MI.getParent();
822         continue;
823       }
824       B = DT->findNearestCommonDominator(B, MI.getParent());
825       if (!B) {
826         CanSink = false;
827         break;
828       }
829     }
830     if (!CanSink || !B || B == Preheader)
831       continue;
832     B->splice(B->getFirstNonPHI(), Preheader, I);
833   }
834 }
835 
836 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
837   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
838 }
839 
840 /// Find all virtual register references that are liveout of the preheader to
841 /// initialize the starting "register pressure". Note this does not count live
842 /// through (livein but not used) registers.
843 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
844   std::fill(RegPressure.begin(), RegPressure.end(), 0);
845 
846   // If the preheader has only a single predecessor and it ends with a
847   // fallthrough or an unconditional branch, then scan its predecessor for live
848   // defs as well. This happens whenever the preheader is created by splitting
849   // the critical edge from the loop predecessor to the loop header.
850   if (BB->pred_size() == 1) {
851     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
852     SmallVector<MachineOperand, 4> Cond;
853     if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
854       InitRegPressure(*BB->pred_begin());
855   }
856 
857   for (const MachineInstr &MI : *BB)
858     UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
859 }
860 
861 /// Update estimate of register pressure after the specified instruction.
862 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
863                                         bool ConsiderUnseenAsDef) {
864   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
865   for (const auto &RPIdAndCost : Cost) {
866     unsigned Class = RPIdAndCost.first;
867     if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
868       RegPressure[Class] = 0;
869     else
870       RegPressure[Class] += RPIdAndCost.second;
871   }
872 }
873 
874 /// Calculate the additional register pressure that the registers used in MI
875 /// cause.
876 ///
877 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
878 /// figure out which usages are live-ins.
879 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
880 DenseMap<unsigned, int>
881 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
882                                   bool ConsiderUnseenAsDef) {
883   DenseMap<unsigned, int> Cost;
884   if (MI->isImplicitDef())
885     return Cost;
886   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
887     const MachineOperand &MO = MI->getOperand(i);
888     if (!MO.isReg() || MO.isImplicit())
889       continue;
890     Register Reg = MO.getReg();
891     if (!Register::isVirtualRegister(Reg))
892       continue;
893 
894     // FIXME: It seems bad to use RegSeen only for some of these calculations.
895     bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
896     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
897 
898     RegClassWeight W = TRI->getRegClassWeight(RC);
899     int RCCost = 0;
900     if (MO.isDef())
901       RCCost = W.RegWeight;
902     else {
903       bool isKill = isOperandKill(MO, MRI);
904       if (isNew && !isKill && ConsiderUnseenAsDef)
905         // Haven't seen this, it must be a livein.
906         RCCost = W.RegWeight;
907       else if (!isNew && isKill)
908         RCCost = -W.RegWeight;
909     }
910     if (RCCost == 0)
911       continue;
912     const int *PS = TRI->getRegClassPressureSets(RC);
913     for (; *PS != -1; ++PS) {
914       if (Cost.find(*PS) == Cost.end())
915         Cost[*PS] = RCCost;
916       else
917         Cost[*PS] += RCCost;
918     }
919   }
920   return Cost;
921 }
922 
923 /// Return true if this machine instruction loads from global offset table or
924 /// constant pool.
925 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
926   assert(MI.mayLoad() && "Expected MI that loads!");
927 
928   // If we lost memory operands, conservatively assume that the instruction
929   // reads from everything..
930   if (MI.memoperands_empty())
931     return true;
932 
933   for (MachineMemOperand *MemOp : MI.memoperands())
934     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
935       if (PSV->isGOT() || PSV->isConstantPool())
936         return true;
937 
938   return false;
939 }
940 
941 // This function iterates through all the operands of the input store MI and
942 // checks that each register operand statisfies isCallerPreservedPhysReg.
943 // This means, the value being stored and the address where it is being stored
944 // is constant throughout the body of the function (not including prologue and
945 // epilogue). When called with an MI that isn't a store, it returns false.
946 // A future improvement can be to check if the store registers are constant
947 // throughout the loop rather than throughout the funtion.
948 static bool isInvariantStore(const MachineInstr &MI,
949                              const TargetRegisterInfo *TRI,
950                              const MachineRegisterInfo *MRI) {
951 
952   bool FoundCallerPresReg = false;
953   if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
954       (MI.getNumOperands() == 0))
955     return false;
956 
957   // Check that all register operands are caller-preserved physical registers.
958   for (const MachineOperand &MO : MI.operands()) {
959     if (MO.isReg()) {
960       Register Reg = MO.getReg();
961       // If operand is a virtual register, check if it comes from a copy of a
962       // physical register.
963       if (Register::isVirtualRegister(Reg))
964         Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
965       if (Register::isVirtualRegister(Reg))
966         return false;
967       if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF()))
968         return false;
969       else
970         FoundCallerPresReg = true;
971     } else if (!MO.isImm()) {
972         return false;
973     }
974   }
975   return FoundCallerPresReg;
976 }
977 
978 // Return true if the input MI is a copy instruction that feeds an invariant
979 // store instruction. This means that the src of the copy has to satisfy
980 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
981 // isInvariantStore.
982 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
983                                         const MachineRegisterInfo *MRI,
984                                         const TargetRegisterInfo *TRI) {
985 
986   // FIXME: If targets would like to look through instructions that aren't
987   // pure copies, this can be updated to a query.
988   if (!MI.isCopy())
989     return false;
990 
991   const MachineFunction *MF = MI.getMF();
992   // Check that we are copying a constant physical register.
993   Register CopySrcReg = MI.getOperand(1).getReg();
994   if (Register::isVirtualRegister(CopySrcReg))
995     return false;
996 
997   if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF))
998     return false;
999 
1000   Register CopyDstReg = MI.getOperand(0).getReg();
1001   // Check if any of the uses of the copy are invariant stores.
1002   assert(Register::isVirtualRegister(CopyDstReg) &&
1003          "copy dst is not a virtual reg");
1004 
1005   for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
1006     if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
1007       return true;
1008   }
1009   return false;
1010 }
1011 
1012 /// Returns true if the instruction may be a suitable candidate for LICM.
1013 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
1014 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
1015   // Check if it's safe to move the instruction.
1016   bool DontMoveAcrossStore = true;
1017   if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
1018       !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
1019     return false;
1020   }
1021 
1022   // If it is load then check if it is guaranteed to execute by making sure that
1023   // it dominates all exiting blocks. If it doesn't, then there is a path out of
1024   // the loop which does not execute this load, so we can't hoist it. Loads
1025   // from constant memory are not safe to speculate all the time, for example
1026   // indexed load from a jump table.
1027   // Stores and side effects are already checked by isSafeToMove.
1028   if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
1029       !IsGuaranteedToExecute(I.getParent()))
1030     return false;
1031 
1032   return true;
1033 }
1034 
1035 /// Returns true if the instruction is loop invariant.
1036 /// I.e., all virtual register operands are defined outside of the loop,
1037 /// physical registers aren't accessed explicitly, and there are no side
1038 /// effects that aren't captured by the operands or other flags.
1039 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1040   if (!IsLICMCandidate(I))
1041     return false;
1042 
1043   // The instruction is loop invariant if all of its operands are.
1044   for (const MachineOperand &MO : I.operands()) {
1045     if (!MO.isReg())
1046       continue;
1047 
1048     Register Reg = MO.getReg();
1049     if (Reg == 0) continue;
1050 
1051     // Don't hoist an instruction that uses or defines a physical register.
1052     if (Register::isPhysicalRegister(Reg)) {
1053       if (MO.isUse()) {
1054         // If the physreg has no defs anywhere, it's just an ambient register
1055         // and we can freely move its uses. Alternatively, if it's allocatable,
1056         // it could get allocated to something with a def during allocation.
1057         // However, if the physreg is known to always be caller saved/restored
1058         // then this use is safe to hoist.
1059         if (!MRI->isConstantPhysReg(Reg) &&
1060             !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF())))
1061           return false;
1062         // Otherwise it's safe to move.
1063         continue;
1064       } else if (!MO.isDead()) {
1065         // A def that isn't dead. We can't move it.
1066         return false;
1067       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
1068         // If the reg is live into the loop, we can't hoist an instruction
1069         // which would clobber it.
1070         return false;
1071       }
1072     }
1073 
1074     if (!MO.isUse())
1075       continue;
1076 
1077     assert(MRI->getVRegDef(Reg) &&
1078            "Machine instr not mapped for this vreg?!");
1079 
1080     // If the loop contains the definition of an operand, then the instruction
1081     // isn't loop invariant.
1082     if (CurLoop->contains(MRI->getVRegDef(Reg)))
1083       return false;
1084   }
1085 
1086   // If we got this far, the instruction is loop invariant!
1087   return true;
1088 }
1089 
1090 /// Return true if the specified instruction is used by a phi node and hoisting
1091 /// it could cause a copy to be inserted.
1092 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1093   SmallVector<const MachineInstr*, 8> Work(1, MI);
1094   do {
1095     MI = Work.pop_back_val();
1096     for (const MachineOperand &MO : MI->operands()) {
1097       if (!MO.isReg() || !MO.isDef())
1098         continue;
1099       Register Reg = MO.getReg();
1100       if (!Register::isVirtualRegister(Reg))
1101         continue;
1102       for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1103         // A PHI may cause a copy to be inserted.
1104         if (UseMI.isPHI()) {
1105           // A PHI inside the loop causes a copy because the live range of Reg is
1106           // extended across the PHI.
1107           if (CurLoop->contains(&UseMI))
1108             return true;
1109           // A PHI in an exit block can cause a copy to be inserted if the PHI
1110           // has multiple predecessors in the loop with different values.
1111           // For now, approximate by rejecting all exit blocks.
1112           if (isExitBlock(UseMI.getParent()))
1113             return true;
1114           continue;
1115         }
1116         // Look past copies as well.
1117         if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1118           Work.push_back(&UseMI);
1119       }
1120     }
1121   } while (!Work.empty());
1122   return false;
1123 }
1124 
1125 /// Compute operand latency between a def of 'Reg' and an use in the current
1126 /// loop, return true if the target considered it high.
1127 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI,
1128                                             unsigned DefIdx,
1129                                             unsigned Reg) const {
1130   if (MRI->use_nodbg_empty(Reg))
1131     return false;
1132 
1133   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1134     if (UseMI.isCopyLike())
1135       continue;
1136     if (!CurLoop->contains(UseMI.getParent()))
1137       continue;
1138     for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1139       const MachineOperand &MO = UseMI.getOperand(i);
1140       if (!MO.isReg() || !MO.isUse())
1141         continue;
1142       Register MOReg = MO.getReg();
1143       if (MOReg != Reg)
1144         continue;
1145 
1146       if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1147         return true;
1148     }
1149 
1150     // Only look at the first in loop use.
1151     break;
1152   }
1153 
1154   return false;
1155 }
1156 
1157 /// Return true if the instruction is marked "cheap" or the operand latency
1158 /// between its def and a use is one or less.
1159 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1160   if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1161     return true;
1162 
1163   bool isCheap = false;
1164   unsigned NumDefs = MI.getDesc().getNumDefs();
1165   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1166     MachineOperand &DefMO = MI.getOperand(i);
1167     if (!DefMO.isReg() || !DefMO.isDef())
1168       continue;
1169     --NumDefs;
1170     Register Reg = DefMO.getReg();
1171     if (Register::isPhysicalRegister(Reg))
1172       continue;
1173 
1174     if (!TII->hasLowDefLatency(SchedModel, MI, i))
1175       return false;
1176     isCheap = true;
1177   }
1178 
1179   return isCheap;
1180 }
1181 
1182 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1183 /// given cost matrix can cause high register pressure.
1184 bool
1185 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1186                                          bool CheapInstr) {
1187   for (const auto &RPIdAndCost : Cost) {
1188     if (RPIdAndCost.second <= 0)
1189       continue;
1190 
1191     unsigned Class = RPIdAndCost.first;
1192     int Limit = RegLimit[Class];
1193 
1194     // Don't hoist cheap instructions if they would increase register pressure,
1195     // even if we're under the limit.
1196     if (CheapInstr && !HoistCheapInsts)
1197       return true;
1198 
1199     for (const auto &RP : BackTrace)
1200       if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1201         return true;
1202   }
1203 
1204   return false;
1205 }
1206 
1207 /// Traverse the back trace from header to the current block and update their
1208 /// register pressures to reflect the effect of hoisting MI from the current
1209 /// block to the preheader.
1210 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1211   // First compute the 'cost' of the instruction, i.e. its contribution
1212   // to register pressure.
1213   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1214                                /*ConsiderUnseenAsDef=*/false);
1215 
1216   // Update register pressure of blocks from loop header to current block.
1217   for (auto &RP : BackTrace)
1218     for (const auto &RPIdAndCost : Cost)
1219       RP[RPIdAndCost.first] += RPIdAndCost.second;
1220 }
1221 
1222 /// Return true if it is potentially profitable to hoist the given loop
1223 /// invariant.
1224 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1225   if (MI.isImplicitDef())
1226     return true;
1227 
1228   // Besides removing computation from the loop, hoisting an instruction has
1229   // these effects:
1230   //
1231   // - The value defined by the instruction becomes live across the entire
1232   //   loop. This increases register pressure in the loop.
1233   //
1234   // - If the value is used by a PHI in the loop, a copy will be required for
1235   //   lowering the PHI after extending the live range.
1236   //
1237   // - When hoisting the last use of a value in the loop, that value no longer
1238   //   needs to be live in the loop. This lowers register pressure in the loop.
1239 
1240   if (HoistConstStores &&  isCopyFeedingInvariantStore(MI, MRI, TRI))
1241     return true;
1242 
1243   bool CheapInstr = IsCheapInstruction(MI);
1244   bool CreatesCopy = HasLoopPHIUse(&MI);
1245 
1246   // Don't hoist a cheap instruction if it would create a copy in the loop.
1247   if (CheapInstr && CreatesCopy) {
1248     LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1249     return false;
1250   }
1251 
1252   // Rematerializable instructions should always be hoisted since the register
1253   // allocator can just pull them down again when needed.
1254   if (TII->isTriviallyReMaterializable(MI, AA))
1255     return true;
1256 
1257   // FIXME: If there are long latency loop-invariant instructions inside the
1258   // loop at this point, why didn't the optimizer's LICM hoist them?
1259   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1260     const MachineOperand &MO = MI.getOperand(i);
1261     if (!MO.isReg() || MO.isImplicit())
1262       continue;
1263     Register Reg = MO.getReg();
1264     if (!Register::isVirtualRegister(Reg))
1265       continue;
1266     if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1267       LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1268       ++NumHighLatency;
1269       return true;
1270     }
1271   }
1272 
1273   // Estimate register pressure to determine whether to LICM the instruction.
1274   // In low register pressure situation, we can be more aggressive about
1275   // hoisting. Also, favors hoisting long latency instructions even in
1276   // moderately high pressure situation.
1277   // Cheap instructions will only be hoisted if they don't increase register
1278   // pressure at all.
1279   auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1280                                /*ConsiderUnseenAsDef=*/false);
1281 
1282   // Visit BBs from header to current BB, if hoisting this doesn't cause
1283   // high register pressure, then it's safe to proceed.
1284   if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1285     LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1286     ++NumLowRP;
1287     return true;
1288   }
1289 
1290   // Don't risk increasing register pressure if it would create copies.
1291   if (CreatesCopy) {
1292     LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1293     return false;
1294   }
1295 
1296   // Do not "speculate" in high register pressure situation. If an
1297   // instruction is not guaranteed to be executed in the loop, it's best to be
1298   // conservative.
1299   if (AvoidSpeculation &&
1300       (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1301     LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1302     return false;
1303   }
1304 
1305   // High register pressure situation, only hoist if the instruction is going
1306   // to be remat'ed.
1307   if (!TII->isTriviallyReMaterializable(MI, AA) &&
1308       !MI.isDereferenceableInvariantLoad(AA)) {
1309     LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1310     return false;
1311   }
1312 
1313   return true;
1314 }
1315 
1316 /// Unfold a load from the given machineinstr if the load itself could be
1317 /// hoisted. Return the unfolded and hoistable load, or null if the load
1318 /// couldn't be unfolded or if it wouldn't be hoistable.
1319 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1320   // Don't unfold simple loads.
1321   if (MI->canFoldAsLoad())
1322     return nullptr;
1323 
1324   // If not, we may be able to unfold a load and hoist that.
1325   // First test whether the instruction is loading from an amenable
1326   // memory location.
1327   if (!MI->isDereferenceableInvariantLoad(AA))
1328     return nullptr;
1329 
1330   // Next determine the register class for a temporary register.
1331   unsigned LoadRegIndex;
1332   unsigned NewOpc =
1333     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1334                                     /*UnfoldLoad=*/true,
1335                                     /*UnfoldStore=*/false,
1336                                     &LoadRegIndex);
1337   if (NewOpc == 0) return nullptr;
1338   const MCInstrDesc &MID = TII->get(NewOpc);
1339   MachineFunction &MF = *MI->getMF();
1340   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1341   // Ok, we're unfolding. Create a temporary register and do the unfold.
1342   Register Reg = MRI->createVirtualRegister(RC);
1343 
1344   SmallVector<MachineInstr *, 2> NewMIs;
1345   bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1346                                           /*UnfoldLoad=*/true,
1347                                           /*UnfoldStore=*/false, NewMIs);
1348   (void)Success;
1349   assert(Success &&
1350          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1351          "succeeded!");
1352   assert(NewMIs.size() == 2 &&
1353          "Unfolded a load into multiple instructions!");
1354   MachineBasicBlock *MBB = MI->getParent();
1355   MachineBasicBlock::iterator Pos = MI;
1356   MBB->insert(Pos, NewMIs[0]);
1357   MBB->insert(Pos, NewMIs[1]);
1358   // If unfolding produced a load that wasn't loop-invariant or profitable to
1359   // hoist, discard the new instructions and bail.
1360   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1361     NewMIs[0]->eraseFromParent();
1362     NewMIs[1]->eraseFromParent();
1363     return nullptr;
1364   }
1365 
1366   // Update register pressure for the unfolded instruction.
1367   UpdateRegPressure(NewMIs[1]);
1368 
1369   // Otherwise we successfully unfolded a load that we can hoist.
1370   MI->eraseFromParent();
1371   return NewMIs[0];
1372 }
1373 
1374 /// Initialize the CSE map with instructions that are in the current loop
1375 /// preheader that may become duplicates of instructions that are hoisted
1376 /// out of the loop.
1377 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1378   for (MachineInstr &MI : *BB)
1379     CSEMap[MI.getOpcode()].push_back(&MI);
1380 }
1381 
1382 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1383 /// Return this instruction if it's found.
1384 const MachineInstr*
1385 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1386                                   std::vector<const MachineInstr*> &PrevMIs) {
1387   for (const MachineInstr *PrevMI : PrevMIs)
1388     if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1389       return PrevMI;
1390 
1391   return nullptr;
1392 }
1393 
1394 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1395 /// computes the same value. If it's found, do a RAU on with the definition of
1396 /// the existing instruction rather than hoisting the instruction to the
1397 /// preheader.
1398 bool MachineLICMBase::EliminateCSE(MachineInstr *MI,
1399     DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
1400   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1401   // the undef property onto uses.
1402   if (CI == CSEMap.end() || MI->isImplicitDef())
1403     return false;
1404 
1405   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1406     LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1407 
1408     // Replace virtual registers defined by MI by their counterparts defined
1409     // by Dup.
1410     SmallVector<unsigned, 2> Defs;
1411     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1412       const MachineOperand &MO = MI->getOperand(i);
1413 
1414       // Physical registers may not differ here.
1415       assert((!MO.isReg() || MO.getReg() == 0 ||
1416               !Register::isPhysicalRegister(MO.getReg()) ||
1417               MO.getReg() == Dup->getOperand(i).getReg()) &&
1418              "Instructions with different phys regs are not identical!");
1419 
1420       if (MO.isReg() && MO.isDef() &&
1421           !Register::isPhysicalRegister(MO.getReg()))
1422         Defs.push_back(i);
1423     }
1424 
1425     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1426     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1427       unsigned Idx = Defs[i];
1428       Register Reg = MI->getOperand(Idx).getReg();
1429       Register DupReg = Dup->getOperand(Idx).getReg();
1430       OrigRCs.push_back(MRI->getRegClass(DupReg));
1431 
1432       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1433         // Restore old RCs if more than one defs.
1434         for (unsigned j = 0; j != i; ++j)
1435           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1436         return false;
1437       }
1438     }
1439 
1440     for (unsigned Idx : Defs) {
1441       Register Reg = MI->getOperand(Idx).getReg();
1442       Register DupReg = Dup->getOperand(Idx).getReg();
1443       MRI->replaceRegWith(Reg, DupReg);
1444       MRI->clearKillFlags(DupReg);
1445     }
1446 
1447     MI->eraseFromParent();
1448     ++NumCSEed;
1449     return true;
1450   }
1451   return false;
1452 }
1453 
1454 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1455 /// the loop.
1456 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1457   unsigned Opcode = MI->getOpcode();
1458   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1459     CI = CSEMap.find(Opcode);
1460   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1461   // the undef property onto uses.
1462   if (CI == CSEMap.end() || MI->isImplicitDef())
1463     return false;
1464 
1465   return LookForDuplicate(MI, CI->second) != nullptr;
1466 }
1467 
1468 /// When an instruction is found to use only loop invariant operands
1469 /// that are safe to hoist, this instruction is called to do the dirty work.
1470 /// It returns true if the instruction is hoisted.
1471 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1472   MachineBasicBlock *SrcBlock = MI->getParent();
1473 
1474   // Disable the instruction hoisting due to block hotness
1475   if ((DisableHoistingToHotterBlocks == UseBFI::All ||
1476       (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) &&
1477       isTgtHotterThanSrc(SrcBlock, Preheader)) {
1478     ++NumNotHoistedDueToHotness;
1479     return false;
1480   }
1481   // First check whether we should hoist this instruction.
1482   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1483     // If not, try unfolding a hoistable load.
1484     MI = ExtractHoistableLoad(MI);
1485     if (!MI) return false;
1486   }
1487 
1488   // If we have hoisted an instruction that may store, it can only be a constant
1489   // store.
1490   if (MI->mayStore())
1491     NumStoreConst++;
1492 
1493   // Now move the instructions to the predecessor, inserting it before any
1494   // terminator instructions.
1495   LLVM_DEBUG({
1496     dbgs() << "Hoisting " << *MI;
1497     if (MI->getParent()->getBasicBlock())
1498       dbgs() << " from " << printMBBReference(*MI->getParent());
1499     if (Preheader->getBasicBlock())
1500       dbgs() << " to " << printMBBReference(*Preheader);
1501     dbgs() << "\n";
1502   });
1503 
1504   // If this is the first instruction being hoisted to the preheader,
1505   // initialize the CSE map with potential common expressions.
1506   if (FirstInLoop) {
1507     InitCSEMap(Preheader);
1508     FirstInLoop = false;
1509   }
1510 
1511   // Look for opportunity to CSE the hoisted instruction.
1512   unsigned Opcode = MI->getOpcode();
1513   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1514     CI = CSEMap.find(Opcode);
1515   if (!EliminateCSE(MI, CI)) {
1516     // Otherwise, splice the instruction to the preheader.
1517     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1518 
1519     // Since we are moving the instruction out of its basic block, we do not
1520     // retain its debug location. Doing so would degrade the debugging
1521     // experience and adversely affect the accuracy of profiling information.
1522     MI->setDebugLoc(DebugLoc());
1523 
1524     // Update register pressure for BBs from header to this block.
1525     UpdateBackTraceRegPressure(MI);
1526 
1527     // Clear the kill flags of any register this instruction defines,
1528     // since they may need to be live throughout the entire loop
1529     // rather than just live for part of it.
1530     for (MachineOperand &MO : MI->operands())
1531       if (MO.isReg() && MO.isDef() && !MO.isDead())
1532         MRI->clearKillFlags(MO.getReg());
1533 
1534     // Add to the CSE map.
1535     if (CI != CSEMap.end())
1536       CI->second.push_back(MI);
1537     else
1538       CSEMap[Opcode].push_back(MI);
1539   }
1540 
1541   ++NumHoisted;
1542   Changed = true;
1543 
1544   return true;
1545 }
1546 
1547 /// Get the preheader for the current loop, splitting a critical edge if needed.
1548 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1549   // Determine the block to which to hoist instructions. If we can't find a
1550   // suitable loop predecessor, we can't do any hoisting.
1551 
1552   // If we've tried to get a preheader and failed, don't try again.
1553   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1554     return nullptr;
1555 
1556   if (!CurPreheader) {
1557     CurPreheader = CurLoop->getLoopPreheader();
1558     if (!CurPreheader) {
1559       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1560       if (!Pred) {
1561         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1562         return nullptr;
1563       }
1564 
1565       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1566       if (!CurPreheader) {
1567         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1568         return nullptr;
1569       }
1570     }
1571   }
1572   return CurPreheader;
1573 }
1574 
1575 /// Is the target basic block at least "BlockFrequencyRatioThreshold"
1576 /// times hotter than the source basic block.
1577 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
1578                                          MachineBasicBlock *TgtBlock) {
1579   // Parse source and target basic block frequency from MBFI
1580   uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency();
1581   uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency();
1582 
1583   // Disable the hoisting if source block frequency is zero
1584   if (!SrcBF)
1585     return true;
1586 
1587   double Ratio = (double)DstBF / SrcBF;
1588 
1589   // Compare the block frequency ratio with the threshold
1590   return Ratio > BlockFrequencyRatioThreshold;
1591 }
1592