1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion on machine instructions. We 10 // attempt to remove as much code from the body of a loop as possible. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegister.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <limits> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machinelicm" 60 61 static cl::opt<bool> 62 AvoidSpeculation("avoid-speculation", 63 cl::desc("MachineLICM should avoid speculation"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 HoistCheapInsts("hoist-cheap-insts", 68 cl::desc("MachineLICM should hoist even cheap instructions"), 69 cl::init(false), cl::Hidden); 70 71 static cl::opt<bool> 72 HoistConstStores("hoist-const-stores", 73 cl::desc("Hoist invariant stores"), 74 cl::init(true), cl::Hidden); 75 76 static cl::opt<bool> HoistConstLoads("hoist-const-loads", 77 cl::desc("Hoist invariant loads"), 78 cl::init(true), cl::Hidden); 79 80 // The default threshold of 100 (i.e. if target block is 100 times hotter) 81 // is based on empirical data on a single target and is subject to tuning. 82 static cl::opt<unsigned> 83 BlockFrequencyRatioThreshold("block-freq-ratio-threshold", 84 cl::desc("Do not hoist instructions if target" 85 "block is N times hotter than the source."), 86 cl::init(100), cl::Hidden); 87 88 enum class UseBFI { None, PGO, All }; 89 90 static cl::opt<UseBFI> 91 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks", 92 cl::desc("Disable hoisting instructions to" 93 " hotter blocks"), 94 cl::init(UseBFI::PGO), cl::Hidden, 95 cl::values(clEnumValN(UseBFI::None, "none", 96 "disable the feature"), 97 clEnumValN(UseBFI::PGO, "pgo", 98 "enable the feature when using profile data"), 99 clEnumValN(UseBFI::All, "all", 100 "enable the feature with/wo profile data"))); 101 102 STATISTIC(NumHoisted, 103 "Number of machine instructions hoisted out of loops"); 104 STATISTIC(NumLowRP, 105 "Number of instructions hoisted in low reg pressure situation"); 106 STATISTIC(NumHighLatency, 107 "Number of high latency instructions hoisted"); 108 STATISTIC(NumCSEed, 109 "Number of hoisted machine instructions CSEed"); 110 STATISTIC(NumPostRAHoisted, 111 "Number of machine instructions hoisted out of loops post regalloc"); 112 STATISTIC(NumStoreConst, 113 "Number of stores of const phys reg hoisted out of loops"); 114 STATISTIC(NumNotHoistedDueToHotness, 115 "Number of instructions not hoisted due to block frequency"); 116 117 namespace { 118 enum HoistResult { NotHoisted = 1, Hoisted = 2, ErasedMI = 4 }; 119 120 class MachineLICMBase : public MachineFunctionPass { 121 const TargetInstrInfo *TII = nullptr; 122 const TargetLoweringBase *TLI = nullptr; 123 const TargetRegisterInfo *TRI = nullptr; 124 const MachineFrameInfo *MFI = nullptr; 125 MachineRegisterInfo *MRI = nullptr; 126 TargetSchedModel SchedModel; 127 bool PreRegAlloc = false; 128 bool HasProfileData = false; 129 130 // Various analyses that we use... 131 AliasAnalysis *AA = nullptr; // Alias analysis info. 132 MachineBlockFrequencyInfo *MBFI = nullptr; // Machine block frequncy info 133 MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo 134 MachineDominatorTree *DT = nullptr; // Machine dominator tree for the cur loop 135 136 // State that is updated as we process loops 137 bool Changed = false; // True if a loop is changed. 138 bool FirstInLoop = false; // True if it's the first LICM in the loop. 139 140 // Holds information about whether it is allowed to move load instructions 141 // out of the loop 142 SmallDenseMap<MachineLoop *, bool> AllowedToHoistLoads; 143 144 // Exit blocks of each Loop. 145 DenseMap<MachineLoop *, SmallVector<MachineBasicBlock *, 8>> ExitBlockMap; 146 147 bool isExitBlock(MachineLoop *CurLoop, const MachineBasicBlock *MBB) { 148 if (ExitBlockMap.contains(CurLoop)) 149 return is_contained(ExitBlockMap[CurLoop], MBB); 150 151 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 152 CurLoop->getExitBlocks(ExitBlocks); 153 ExitBlockMap[CurLoop] = ExitBlocks; 154 return is_contained(ExitBlocks, MBB); 155 } 156 157 // Track 'estimated' register pressure. 158 SmallSet<Register, 32> RegSeen; 159 SmallVector<unsigned, 8> RegPressure; 160 161 // Register pressure "limit" per register pressure set. If the pressure 162 // is higher than the limit, then it's considered high. 163 SmallVector<unsigned, 8> RegLimit; 164 165 // Register pressure on path leading from loop preheader to current BB. 166 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 167 168 // For each opcode per preheader, keep a list of potential CSE instructions. 169 DenseMap<MachineBasicBlock *, 170 DenseMap<unsigned, std::vector<MachineInstr *>>> 171 CSEMap; 172 173 enum { 174 SpeculateFalse = 0, 175 SpeculateTrue = 1, 176 SpeculateUnknown = 2 177 }; 178 179 // If a MBB does not dominate loop exiting blocks then it may not safe 180 // to hoist loads from this block. 181 // Tri-state: 0 - false, 1 - true, 2 - unknown 182 unsigned SpeculationState = SpeculateUnknown; 183 184 public: 185 MachineLICMBase(char &PassID, bool PreRegAlloc) 186 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 187 188 bool runOnMachineFunction(MachineFunction &MF) override; 189 190 void getAnalysisUsage(AnalysisUsage &AU) const override { 191 AU.addRequired<MachineLoopInfo>(); 192 if (DisableHoistingToHotterBlocks != UseBFI::None) 193 AU.addRequired<MachineBlockFrequencyInfo>(); 194 AU.addRequired<MachineDominatorTree>(); 195 AU.addRequired<AAResultsWrapperPass>(); 196 AU.addPreserved<MachineLoopInfo>(); 197 MachineFunctionPass::getAnalysisUsage(AU); 198 } 199 200 void releaseMemory() override { 201 RegSeen.clear(); 202 RegPressure.clear(); 203 RegLimit.clear(); 204 BackTrace.clear(); 205 CSEMap.clear(); 206 ExitBlockMap.clear(); 207 } 208 209 private: 210 /// Keep track of information about hoisting candidates. 211 struct CandidateInfo { 212 MachineInstr *MI; 213 unsigned Def; 214 int FI; 215 216 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 217 : MI(mi), Def(def), FI(fi) {} 218 }; 219 220 void HoistRegionPostRA(MachineLoop *CurLoop, 221 MachineBasicBlock *CurPreheader); 222 223 void HoistPostRA(MachineInstr *MI, unsigned Def, MachineLoop *CurLoop, 224 MachineBasicBlock *CurPreheader); 225 226 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 227 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 228 SmallVectorImpl<CandidateInfo> &Candidates, 229 MachineLoop *CurLoop); 230 231 void AddToLiveIns(MCRegister Reg, MachineLoop *CurLoop); 232 233 bool IsLICMCandidate(MachineInstr &I, MachineLoop *CurLoop); 234 235 bool IsLoopInvariantInst(MachineInstr &I, MachineLoop *CurLoop); 236 237 bool HasLoopPHIUse(const MachineInstr *MI, MachineLoop *CurLoop); 238 239 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, Register Reg, 240 MachineLoop *CurLoop) const; 241 242 bool IsCheapInstruction(MachineInstr &MI) const; 243 244 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 245 bool Cheap); 246 247 void UpdateBackTraceRegPressure(const MachineInstr *MI); 248 249 bool IsProfitableToHoist(MachineInstr &MI, MachineLoop *CurLoop); 250 251 bool IsGuaranteedToExecute(MachineBasicBlock *BB, MachineLoop *CurLoop); 252 253 bool isTriviallyReMaterializable(const MachineInstr &MI) const; 254 255 void EnterScope(MachineBasicBlock *MBB); 256 257 void ExitScope(MachineBasicBlock *MBB); 258 259 void ExitScopeIfDone( 260 MachineDomTreeNode *Node, 261 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 262 const DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 263 264 void HoistOutOfLoop(MachineDomTreeNode *HeaderN, MachineLoop *CurLoop, 265 MachineBasicBlock *CurPreheader); 266 267 void InitRegPressure(MachineBasicBlock *BB); 268 269 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 270 bool ConsiderSeen, 271 bool ConsiderUnseenAsDef); 272 273 void UpdateRegPressure(const MachineInstr *MI, 274 bool ConsiderUnseenAsDef = false); 275 276 MachineInstr *ExtractHoistableLoad(MachineInstr *MI, MachineLoop *CurLoop); 277 278 MachineInstr *LookForDuplicate(const MachineInstr *MI, 279 std::vector<MachineInstr *> &PrevMIs); 280 281 bool 282 EliminateCSE(MachineInstr *MI, 283 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI); 284 285 bool MayCSE(MachineInstr *MI); 286 287 unsigned Hoist(MachineInstr *MI, MachineBasicBlock *Preheader, 288 MachineLoop *CurLoop); 289 290 void InitCSEMap(MachineBasicBlock *BB); 291 292 void InitializeLoadsHoistableLoops(); 293 294 bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 295 MachineBasicBlock *TgtBlock); 296 MachineBasicBlock *getCurPreheader(MachineLoop *CurLoop, 297 MachineBasicBlock *CurPreheader); 298 }; 299 300 class MachineLICM : public MachineLICMBase { 301 public: 302 static char ID; 303 MachineLICM() : MachineLICMBase(ID, false) { 304 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 305 } 306 }; 307 308 class EarlyMachineLICM : public MachineLICMBase { 309 public: 310 static char ID; 311 EarlyMachineLICM() : MachineLICMBase(ID, true) { 312 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 313 } 314 }; 315 316 } // end anonymous namespace 317 318 char MachineLICM::ID; 319 char EarlyMachineLICM::ID; 320 321 char &llvm::MachineLICMID = MachineLICM::ID; 322 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 323 324 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 325 "Machine Loop Invariant Code Motion", false, false) 326 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 327 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 328 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 329 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 330 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 331 "Machine Loop Invariant Code Motion", false, false) 332 333 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 334 "Early Machine Loop Invariant Code Motion", false, false) 335 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 336 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 337 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 338 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 339 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 340 "Early Machine Loop Invariant Code Motion", false, false) 341 342 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 343 if (skipFunction(MF.getFunction())) 344 return false; 345 346 Changed = FirstInLoop = false; 347 const TargetSubtargetInfo &ST = MF.getSubtarget(); 348 TII = ST.getInstrInfo(); 349 TLI = ST.getTargetLowering(); 350 TRI = ST.getRegisterInfo(); 351 MFI = &MF.getFrameInfo(); 352 MRI = &MF.getRegInfo(); 353 SchedModel.init(&ST); 354 355 PreRegAlloc = MRI->isSSA(); 356 HasProfileData = MF.getFunction().hasProfileData(); 357 358 if (PreRegAlloc) 359 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 360 else 361 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 362 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 363 364 if (PreRegAlloc) { 365 // Estimate register pressure during pre-regalloc pass. 366 unsigned NumRPS = TRI->getNumRegPressureSets(); 367 RegPressure.resize(NumRPS); 368 std::fill(RegPressure.begin(), RegPressure.end(), 0); 369 RegLimit.resize(NumRPS); 370 for (unsigned i = 0, e = NumRPS; i != e; ++i) 371 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 372 } 373 374 // Get our Loop information... 375 if (DisableHoistingToHotterBlocks != UseBFI::None) 376 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 377 MLI = &getAnalysis<MachineLoopInfo>(); 378 DT = &getAnalysis<MachineDominatorTree>(); 379 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 380 381 if (HoistConstLoads) 382 InitializeLoadsHoistableLoops(); 383 384 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 385 while (!Worklist.empty()) { 386 MachineLoop *CurLoop = Worklist.pop_back_val(); 387 MachineBasicBlock *CurPreheader = nullptr; 388 389 if (!PreRegAlloc) 390 HoistRegionPostRA(CurLoop, CurPreheader); 391 else { 392 // CSEMap is initialized for loop header when the first instruction is 393 // being hoisted. 394 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 395 FirstInLoop = true; 396 HoistOutOfLoop(N, CurLoop, CurPreheader); 397 CSEMap.clear(); 398 } 399 } 400 401 return Changed; 402 } 403 404 /// Return true if instruction stores to the specified frame. 405 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 406 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 407 // true since they have no memory operands. 408 if (!MI->mayStore()) 409 return false; 410 // If we lost memory operands, conservatively assume that the instruction 411 // writes to all slots. 412 if (MI->memoperands_empty()) 413 return true; 414 for (const MachineMemOperand *MemOp : MI->memoperands()) { 415 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 416 continue; 417 if (const FixedStackPseudoSourceValue *Value = 418 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 419 if (Value->getFrameIndex() == FI) 420 return true; 421 } 422 } 423 return false; 424 } 425 426 /// Examine the instruction for potentai LICM candidate. Also 427 /// gather register def and frame object update information. 428 void MachineLICMBase::ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 429 BitVector &PhysRegClobbers, 430 SmallSet<int, 32> &StoredFIs, 431 SmallVectorImpl<CandidateInfo> &Candidates, 432 MachineLoop *CurLoop) { 433 bool RuledOut = false; 434 bool HasNonInvariantUse = false; 435 unsigned Def = 0; 436 for (const MachineOperand &MO : MI->operands()) { 437 if (MO.isFI()) { 438 // Remember if the instruction stores to the frame index. 439 int FI = MO.getIndex(); 440 if (!StoredFIs.count(FI) && 441 MFI->isSpillSlotObjectIndex(FI) && 442 InstructionStoresToFI(MI, FI)) 443 StoredFIs.insert(FI); 444 HasNonInvariantUse = true; 445 continue; 446 } 447 448 // We can't hoist an instruction defining a physreg that is clobbered in 449 // the loop. 450 if (MO.isRegMask()) { 451 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 452 continue; 453 } 454 455 if (!MO.isReg()) 456 continue; 457 Register Reg = MO.getReg(); 458 if (!Reg) 459 continue; 460 assert(Reg.isPhysical() && "Not expecting virtual register!"); 461 462 if (!MO.isDef()) { 463 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 464 // If it's using a non-loop-invariant register, then it's obviously not 465 // safe to hoist. 466 HasNonInvariantUse = true; 467 continue; 468 } 469 470 if (MO.isImplicit()) { 471 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 472 PhysRegClobbers.set(*AI); 473 if (!MO.isDead()) 474 // Non-dead implicit def? This cannot be hoisted. 475 RuledOut = true; 476 // No need to check if a dead implicit def is also defined by 477 // another instruction. 478 continue; 479 } 480 481 // FIXME: For now, avoid instructions with multiple defs, unless 482 // it's a dead implicit def. 483 if (Def) 484 RuledOut = true; 485 else 486 Def = Reg; 487 488 // If we have already seen another instruction that defines the same 489 // register, then this is not safe. Two defs is indicated by setting a 490 // PhysRegClobbers bit. 491 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 492 if (PhysRegDefs.test(*AS)) 493 PhysRegClobbers.set(*AS); 494 } 495 // Need a second loop because MCRegAliasIterator can visit the same 496 // register twice. 497 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) 498 PhysRegDefs.set(*AS); 499 500 if (PhysRegClobbers.test(Reg)) 501 // MI defined register is seen defined by another instruction in 502 // the loop, it cannot be a LICM candidate. 503 RuledOut = true; 504 } 505 506 // Only consider reloads for now and remats which do not have register 507 // operands. FIXME: Consider unfold load folding instructions. 508 if (Def && !RuledOut) { 509 int FI = std::numeric_limits<int>::min(); 510 if ((!HasNonInvariantUse && IsLICMCandidate(*MI, CurLoop)) || 511 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 512 Candidates.push_back(CandidateInfo(MI, Def, FI)); 513 } 514 } 515 516 /// Walk the specified region of the CFG and hoist loop invariants out to the 517 /// preheader. 518 void MachineLICMBase::HoistRegionPostRA(MachineLoop *CurLoop, 519 MachineBasicBlock *CurPreheader) { 520 MachineBasicBlock *Preheader = getCurPreheader(CurLoop, CurPreheader); 521 if (!Preheader) 522 return; 523 524 unsigned NumRegs = TRI->getNumRegs(); 525 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 526 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 527 528 SmallVector<CandidateInfo, 32> Candidates; 529 SmallSet<int, 32> StoredFIs; 530 531 // Walk the entire region, count number of defs for each register, and 532 // collect potential LICM candidates. 533 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 534 // If the header of the loop containing this basic block is a landing pad, 535 // then don't try to hoist instructions out of this loop. 536 const MachineLoop *ML = MLI->getLoopFor(BB); 537 if (ML && ML->getHeader()->isEHPad()) continue; 538 539 // Conservatively treat live-in's as an external def. 540 // FIXME: That means a reload that're reused in successor block(s) will not 541 // be LICM'ed. 542 for (const auto &LI : BB->liveins()) { 543 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 544 PhysRegDefs.set(*AI); 545 } 546 547 // Funclet entry blocks will clobber all registers 548 if (const uint32_t *Mask = BB->getBeginClobberMask(TRI)) 549 PhysRegClobbers.setBitsNotInMask(Mask); 550 551 SpeculationState = SpeculateUnknown; 552 for (MachineInstr &MI : *BB) 553 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates, 554 CurLoop); 555 } 556 557 // Gather the registers read / clobbered by the terminator. 558 BitVector TermRegs(NumRegs); 559 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 560 if (TI != Preheader->end()) { 561 for (const MachineOperand &MO : TI->operands()) { 562 if (!MO.isReg()) 563 continue; 564 Register Reg = MO.getReg(); 565 if (!Reg) 566 continue; 567 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 568 TermRegs.set(*AI); 569 } 570 } 571 572 // Now evaluate whether the potential candidates qualify. 573 // 1. Check if the candidate defined register is defined by another 574 // instruction in the loop. 575 // 2. If the candidate is a load from stack slot (always true for now), 576 // check if the slot is stored anywhere in the loop. 577 // 3. Make sure candidate def should not clobber 578 // registers read by the terminator. Similarly its def should not be 579 // clobbered by the terminator. 580 for (CandidateInfo &Candidate : Candidates) { 581 if (Candidate.FI != std::numeric_limits<int>::min() && 582 StoredFIs.count(Candidate.FI)) 583 continue; 584 585 unsigned Def = Candidate.Def; 586 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 587 bool Safe = true; 588 MachineInstr *MI = Candidate.MI; 589 for (const MachineOperand &MO : MI->all_uses()) { 590 if (!MO.getReg()) 591 continue; 592 Register Reg = MO.getReg(); 593 if (PhysRegDefs.test(Reg) || 594 PhysRegClobbers.test(Reg)) { 595 // If it's using a non-loop-invariant register, then it's obviously 596 // not safe to hoist. 597 Safe = false; 598 break; 599 } 600 } 601 if (Safe) 602 HoistPostRA(MI, Candidate.Def, CurLoop, CurPreheader); 603 } 604 } 605 } 606 607 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 608 /// sure it is not killed by any instructions in the loop. 609 void MachineLICMBase::AddToLiveIns(MCRegister Reg, MachineLoop *CurLoop) { 610 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 611 if (!BB->isLiveIn(Reg)) 612 BB->addLiveIn(Reg); 613 for (MachineInstr &MI : *BB) { 614 for (MachineOperand &MO : MI.all_uses()) { 615 if (!MO.getReg()) 616 continue; 617 if (TRI->regsOverlap(Reg, MO.getReg())) 618 MO.setIsKill(false); 619 } 620 } 621 } 622 } 623 624 /// When an instruction is found to only use loop invariant operands that is 625 /// safe to hoist, this instruction is called to do the dirty work. 626 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def, 627 MachineLoop *CurLoop, 628 MachineBasicBlock *CurPreheader) { 629 MachineBasicBlock *Preheader = getCurPreheader(CurLoop, CurPreheader); 630 631 // Now move the instructions to the predecessor, inserting it before any 632 // terminator instructions. 633 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 634 << " from " << printMBBReference(*MI->getParent()) << ": " 635 << *MI); 636 637 // Splice the instruction to the preheader. 638 MachineBasicBlock *MBB = MI->getParent(); 639 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 640 641 // Since we are moving the instruction out of its basic block, we do not 642 // retain its debug location. Doing so would degrade the debugging 643 // experience and adversely affect the accuracy of profiling information. 644 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 645 MI->setDebugLoc(DebugLoc()); 646 647 // Add register to livein list to all the BBs in the current loop since a 648 // loop invariant must be kept live throughout the whole loop. This is 649 // important to ensure later passes do not scavenge the def register. 650 AddToLiveIns(Def, CurLoop); 651 652 ++NumPostRAHoisted; 653 Changed = true; 654 } 655 656 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 657 /// may not be safe to hoist. 658 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB, 659 MachineLoop *CurLoop) { 660 if (SpeculationState != SpeculateUnknown) 661 return SpeculationState == SpeculateFalse; 662 663 if (BB != CurLoop->getHeader()) { 664 // Check loop exiting blocks. 665 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 666 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 667 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 668 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 669 SpeculationState = SpeculateTrue; 670 return false; 671 } 672 } 673 674 SpeculationState = SpeculateFalse; 675 return true; 676 } 677 678 /// Check if \p MI is trivially remateralizable and if it does not have any 679 /// virtual register uses. Even though rematerializable RA might not actually 680 /// rematerialize it in this scenario. In that case we do not want to hoist such 681 /// instruction out of the loop in a belief RA will sink it back if needed. 682 bool MachineLICMBase::isTriviallyReMaterializable( 683 const MachineInstr &MI) const { 684 if (!TII->isTriviallyReMaterializable(MI)) 685 return false; 686 687 for (const MachineOperand &MO : MI.all_uses()) { 688 if (MO.getReg().isVirtual()) 689 return false; 690 } 691 692 return true; 693 } 694 695 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 696 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 697 698 // Remember livein register pressure. 699 BackTrace.push_back(RegPressure); 700 } 701 702 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 703 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 704 BackTrace.pop_back(); 705 } 706 707 /// Destroy scope for the MBB that corresponds to the given dominator tree node 708 /// if its a leaf or all of its children are done. Walk up the dominator tree to 709 /// destroy ancestors which are now done. 710 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 711 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 712 const DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 713 if (OpenChildren[Node]) 714 return; 715 716 for(;;) { 717 ExitScope(Node->getBlock()); 718 // Now traverse upwards to pop ancestors whose offsprings are all done. 719 MachineDomTreeNode *Parent = ParentMap.lookup(Node); 720 if (!Parent || --OpenChildren[Parent] != 0) 721 break; 722 Node = Parent; 723 } 724 } 725 726 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 727 /// specified header block, and that are in the current loop) in depth first 728 /// order w.r.t the DominatorTree. This allows us to visit definitions before 729 /// uses, allowing us to hoist a loop body in one pass without iteration. 730 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN, 731 MachineLoop *CurLoop, 732 MachineBasicBlock *CurPreheader) { 733 MachineBasicBlock *Preheader = getCurPreheader(CurLoop, CurPreheader); 734 if (!Preheader) 735 return; 736 737 SmallVector<MachineDomTreeNode*, 32> Scopes; 738 SmallVector<MachineDomTreeNode*, 8> WorkList; 739 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 740 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 741 742 // Perform a DFS walk to determine the order of visit. 743 WorkList.push_back(HeaderN); 744 while (!WorkList.empty()) { 745 MachineDomTreeNode *Node = WorkList.pop_back_val(); 746 assert(Node && "Null dominator tree node?"); 747 MachineBasicBlock *BB = Node->getBlock(); 748 749 // If the header of the loop containing this basic block is a landing pad, 750 // then don't try to hoist instructions out of this loop. 751 const MachineLoop *ML = MLI->getLoopFor(BB); 752 if (ML && ML->getHeader()->isEHPad()) 753 continue; 754 755 // If this subregion is not in the top level loop at all, exit. 756 if (!CurLoop->contains(BB)) 757 continue; 758 759 Scopes.push_back(Node); 760 unsigned NumChildren = Node->getNumChildren(); 761 762 // Don't hoist things out of a large switch statement. This often causes 763 // code to be hoisted that wasn't going to be executed, and increases 764 // register pressure in a situation where it's likely to matter. 765 if (BB->succ_size() >= 25) 766 NumChildren = 0; 767 768 OpenChildren[Node] = NumChildren; 769 if (NumChildren) { 770 // Add children in reverse order as then the next popped worklist node is 771 // the first child of this node. This means we ultimately traverse the 772 // DOM tree in exactly the same order as if we'd recursed. 773 for (MachineDomTreeNode *Child : reverse(Node->children())) { 774 ParentMap[Child] = Node; 775 WorkList.push_back(Child); 776 } 777 } 778 } 779 780 if (Scopes.size() == 0) 781 return; 782 783 // Compute registers which are livein into the loop headers. 784 RegSeen.clear(); 785 BackTrace.clear(); 786 InitRegPressure(Preheader); 787 788 // Now perform LICM. 789 for (MachineDomTreeNode *Node : Scopes) { 790 MachineBasicBlock *MBB = Node->getBlock(); 791 792 EnterScope(MBB); 793 794 // Process the block 795 SpeculationState = SpeculateUnknown; 796 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 797 unsigned HoistRes = HoistResult::NotHoisted; 798 HoistRes = Hoist(&MI, Preheader, CurLoop); 799 if (HoistRes & HoistResult::NotHoisted) { 800 // We have failed to hoist MI to outermost loop's preheader. If MI is in 801 // a subloop, try to hoist it to subloop's preheader. 802 SmallVector<MachineLoop *> InnerLoopWorkList; 803 for (MachineLoop *L = MLI->getLoopFor(MI.getParent()); L != CurLoop; 804 L = L->getParentLoop()) 805 InnerLoopWorkList.push_back(L); 806 807 while (!InnerLoopWorkList.empty()) { 808 MachineLoop *InnerLoop = InnerLoopWorkList.pop_back_val(); 809 MachineBasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 810 if (InnerLoopPreheader) { 811 HoistRes = Hoist(&MI, InnerLoopPreheader, InnerLoop); 812 if (HoistRes & HoistResult::Hoisted) 813 break; 814 } 815 } 816 } 817 818 if (HoistRes & HoistResult::ErasedMI) 819 continue; 820 821 UpdateRegPressure(&MI); 822 } 823 824 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 825 ExitScopeIfDone(Node, OpenChildren, ParentMap); 826 } 827 } 828 829 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 830 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 831 } 832 833 /// Find all virtual register references that are liveout of the preheader to 834 /// initialize the starting "register pressure". Note this does not count live 835 /// through (livein but not used) registers. 836 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 837 std::fill(RegPressure.begin(), RegPressure.end(), 0); 838 839 // If the preheader has only a single predecessor and it ends with a 840 // fallthrough or an unconditional branch, then scan its predecessor for live 841 // defs as well. This happens whenever the preheader is created by splitting 842 // the critical edge from the loop predecessor to the loop header. 843 if (BB->pred_size() == 1) { 844 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 845 SmallVector<MachineOperand, 4> Cond; 846 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 847 InitRegPressure(*BB->pred_begin()); 848 } 849 850 for (const MachineInstr &MI : *BB) 851 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 852 } 853 854 /// Update estimate of register pressure after the specified instruction. 855 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 856 bool ConsiderUnseenAsDef) { 857 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 858 for (const auto &RPIdAndCost : Cost) { 859 unsigned Class = RPIdAndCost.first; 860 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 861 RegPressure[Class] = 0; 862 else 863 RegPressure[Class] += RPIdAndCost.second; 864 } 865 } 866 867 /// Calculate the additional register pressure that the registers used in MI 868 /// cause. 869 /// 870 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 871 /// figure out which usages are live-ins. 872 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 873 DenseMap<unsigned, int> 874 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 875 bool ConsiderUnseenAsDef) { 876 DenseMap<unsigned, int> Cost; 877 if (MI->isImplicitDef()) 878 return Cost; 879 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 880 const MachineOperand &MO = MI->getOperand(i); 881 if (!MO.isReg() || MO.isImplicit()) 882 continue; 883 Register Reg = MO.getReg(); 884 if (!Reg.isVirtual()) 885 continue; 886 887 // FIXME: It seems bad to use RegSeen only for some of these calculations. 888 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 889 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 890 891 RegClassWeight W = TRI->getRegClassWeight(RC); 892 int RCCost = 0; 893 if (MO.isDef()) 894 RCCost = W.RegWeight; 895 else { 896 bool isKill = isOperandKill(MO, MRI); 897 if (isNew && !isKill && ConsiderUnseenAsDef) 898 // Haven't seen this, it must be a livein. 899 RCCost = W.RegWeight; 900 else if (!isNew && isKill) 901 RCCost = -W.RegWeight; 902 } 903 if (RCCost == 0) 904 continue; 905 const int *PS = TRI->getRegClassPressureSets(RC); 906 for (; *PS != -1; ++PS) { 907 if (!Cost.contains(*PS)) 908 Cost[*PS] = RCCost; 909 else 910 Cost[*PS] += RCCost; 911 } 912 } 913 return Cost; 914 } 915 916 /// Return true if this machine instruction loads from global offset table or 917 /// constant pool. 918 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 919 assert(MI.mayLoad() && "Expected MI that loads!"); 920 921 // If we lost memory operands, conservatively assume that the instruction 922 // reads from everything.. 923 if (MI.memoperands_empty()) 924 return true; 925 926 for (MachineMemOperand *MemOp : MI.memoperands()) 927 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 928 if (PSV->isGOT() || PSV->isConstantPool()) 929 return true; 930 931 return false; 932 } 933 934 // This function iterates through all the operands of the input store MI and 935 // checks that each register operand statisfies isCallerPreservedPhysReg. 936 // This means, the value being stored and the address where it is being stored 937 // is constant throughout the body of the function (not including prologue and 938 // epilogue). When called with an MI that isn't a store, it returns false. 939 // A future improvement can be to check if the store registers are constant 940 // throughout the loop rather than throughout the funtion. 941 static bool isInvariantStore(const MachineInstr &MI, 942 const TargetRegisterInfo *TRI, 943 const MachineRegisterInfo *MRI) { 944 945 bool FoundCallerPresReg = false; 946 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 947 (MI.getNumOperands() == 0)) 948 return false; 949 950 // Check that all register operands are caller-preserved physical registers. 951 for (const MachineOperand &MO : MI.operands()) { 952 if (MO.isReg()) { 953 Register Reg = MO.getReg(); 954 // If operand is a virtual register, check if it comes from a copy of a 955 // physical register. 956 if (Reg.isVirtual()) 957 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 958 if (Reg.isVirtual()) 959 return false; 960 if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF())) 961 return false; 962 else 963 FoundCallerPresReg = true; 964 } else if (!MO.isImm()) { 965 return false; 966 } 967 } 968 return FoundCallerPresReg; 969 } 970 971 // Return true if the input MI is a copy instruction that feeds an invariant 972 // store instruction. This means that the src of the copy has to satisfy 973 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 974 // isInvariantStore. 975 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 976 const MachineRegisterInfo *MRI, 977 const TargetRegisterInfo *TRI) { 978 979 // FIXME: If targets would like to look through instructions that aren't 980 // pure copies, this can be updated to a query. 981 if (!MI.isCopy()) 982 return false; 983 984 const MachineFunction *MF = MI.getMF(); 985 // Check that we are copying a constant physical register. 986 Register CopySrcReg = MI.getOperand(1).getReg(); 987 if (CopySrcReg.isVirtual()) 988 return false; 989 990 if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF)) 991 return false; 992 993 Register CopyDstReg = MI.getOperand(0).getReg(); 994 // Check if any of the uses of the copy are invariant stores. 995 assert(CopyDstReg.isVirtual() && "copy dst is not a virtual reg"); 996 997 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 998 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 999 return true; 1000 } 1001 return false; 1002 } 1003 1004 /// Returns true if the instruction may be a suitable candidate for LICM. 1005 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 1006 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I, MachineLoop *CurLoop) { 1007 // Check if it's safe to move the instruction. 1008 bool DontMoveAcrossStore = !HoistConstLoads || !AllowedToHoistLoads[CurLoop]; 1009 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 1010 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 1011 LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n"); 1012 return false; 1013 } 1014 1015 // If it is a load then check if it is guaranteed to execute by making sure 1016 // that it dominates all exiting blocks. If it doesn't, then there is a path 1017 // out of the loop which does not execute this load, so we can't hoist it. 1018 // Loads from constant memory are safe to speculate, for example indexed load 1019 // from a jump table. 1020 // Stores and side effects are already checked by isSafeToMove. 1021 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 1022 !IsGuaranteedToExecute(I.getParent(), CurLoop)) { 1023 LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n"); 1024 return false; 1025 } 1026 1027 // Convergent attribute has been used on operations that involve inter-thread 1028 // communication which results are implicitly affected by the enclosing 1029 // control flows. It is not safe to hoist or sink such operations across 1030 // control flow. 1031 if (I.isConvergent()) 1032 return false; 1033 1034 if (!TII->shouldHoist(I, CurLoop)) 1035 return false; 1036 1037 return true; 1038 } 1039 1040 /// Returns true if the instruction is loop invariant. 1041 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I, 1042 MachineLoop *CurLoop) { 1043 if (!IsLICMCandidate(I, CurLoop)) { 1044 LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n"); 1045 return false; 1046 } 1047 return CurLoop->isLoopInvariant(I); 1048 } 1049 1050 /// Return true if the specified instruction is used by a phi node and hoisting 1051 /// it could cause a copy to be inserted. 1052 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI, 1053 MachineLoop *CurLoop) { 1054 SmallVector<const MachineInstr *, 8> Work(1, MI); 1055 do { 1056 MI = Work.pop_back_val(); 1057 for (const MachineOperand &MO : MI->all_defs()) { 1058 Register Reg = MO.getReg(); 1059 if (!Reg.isVirtual()) 1060 continue; 1061 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1062 // A PHI may cause a copy to be inserted. 1063 if (UseMI.isPHI()) { 1064 // A PHI inside the loop causes a copy because the live range of Reg is 1065 // extended across the PHI. 1066 if (CurLoop->contains(&UseMI)) 1067 return true; 1068 // A PHI in an exit block can cause a copy to be inserted if the PHI 1069 // has multiple predecessors in the loop with different values. 1070 // For now, approximate by rejecting all exit blocks. 1071 if (isExitBlock(CurLoop, UseMI.getParent())) 1072 return true; 1073 continue; 1074 } 1075 // Look past copies as well. 1076 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1077 Work.push_back(&UseMI); 1078 } 1079 } 1080 } while (!Work.empty()); 1081 return false; 1082 } 1083 1084 /// Compute operand latency between a def of 'Reg' and an use in the current 1085 /// loop, return true if the target considered it high. 1086 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 1087 Register Reg, 1088 MachineLoop *CurLoop) const { 1089 if (MRI->use_nodbg_empty(Reg)) 1090 return false; 1091 1092 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1093 if (UseMI.isCopyLike()) 1094 continue; 1095 if (!CurLoop->contains(UseMI.getParent())) 1096 continue; 1097 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1098 const MachineOperand &MO = UseMI.getOperand(i); 1099 if (!MO.isReg() || !MO.isUse()) 1100 continue; 1101 Register MOReg = MO.getReg(); 1102 if (MOReg != Reg) 1103 continue; 1104 1105 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1106 return true; 1107 } 1108 1109 // Only look at the first in loop use. 1110 break; 1111 } 1112 1113 return false; 1114 } 1115 1116 /// Return true if the instruction is marked "cheap" or the operand latency 1117 /// between its def and a use is one or less. 1118 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1119 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1120 return true; 1121 1122 bool isCheap = false; 1123 unsigned NumDefs = MI.getDesc().getNumDefs(); 1124 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1125 MachineOperand &DefMO = MI.getOperand(i); 1126 if (!DefMO.isReg() || !DefMO.isDef()) 1127 continue; 1128 --NumDefs; 1129 Register Reg = DefMO.getReg(); 1130 if (Reg.isPhysical()) 1131 continue; 1132 1133 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1134 return false; 1135 isCheap = true; 1136 } 1137 1138 return isCheap; 1139 } 1140 1141 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1142 /// given cost matrix can cause high register pressure. 1143 bool 1144 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1145 bool CheapInstr) { 1146 for (const auto &RPIdAndCost : Cost) { 1147 if (RPIdAndCost.second <= 0) 1148 continue; 1149 1150 unsigned Class = RPIdAndCost.first; 1151 int Limit = RegLimit[Class]; 1152 1153 // Don't hoist cheap instructions if they would increase register pressure, 1154 // even if we're under the limit. 1155 if (CheapInstr && !HoistCheapInsts) 1156 return true; 1157 1158 for (const auto &RP : BackTrace) 1159 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1160 return true; 1161 } 1162 1163 return false; 1164 } 1165 1166 /// Traverse the back trace from header to the current block and update their 1167 /// register pressures to reflect the effect of hoisting MI from the current 1168 /// block to the preheader. 1169 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1170 // First compute the 'cost' of the instruction, i.e. its contribution 1171 // to register pressure. 1172 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1173 /*ConsiderUnseenAsDef=*/false); 1174 1175 // Update register pressure of blocks from loop header to current block. 1176 for (auto &RP : BackTrace) 1177 for (const auto &RPIdAndCost : Cost) 1178 RP[RPIdAndCost.first] += RPIdAndCost.second; 1179 } 1180 1181 /// Return true if it is potentially profitable to hoist the given loop 1182 /// invariant. 1183 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI, 1184 MachineLoop *CurLoop) { 1185 if (MI.isImplicitDef()) 1186 return true; 1187 1188 // Besides removing computation from the loop, hoisting an instruction has 1189 // these effects: 1190 // 1191 // - The value defined by the instruction becomes live across the entire 1192 // loop. This increases register pressure in the loop. 1193 // 1194 // - If the value is used by a PHI in the loop, a copy will be required for 1195 // lowering the PHI after extending the live range. 1196 // 1197 // - When hoisting the last use of a value in the loop, that value no longer 1198 // needs to be live in the loop. This lowers register pressure in the loop. 1199 1200 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1201 return true; 1202 1203 bool CheapInstr = IsCheapInstruction(MI); 1204 bool CreatesCopy = HasLoopPHIUse(&MI, CurLoop); 1205 1206 // Don't hoist a cheap instruction if it would create a copy in the loop. 1207 if (CheapInstr && CreatesCopy) { 1208 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1209 return false; 1210 } 1211 1212 // Rematerializable instructions should always be hoisted providing the 1213 // register allocator can just pull them down again when needed. 1214 if (isTriviallyReMaterializable(MI)) 1215 return true; 1216 1217 // FIXME: If there are long latency loop-invariant instructions inside the 1218 // loop at this point, why didn't the optimizer's LICM hoist them? 1219 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1220 const MachineOperand &MO = MI.getOperand(i); 1221 if (!MO.isReg() || MO.isImplicit()) 1222 continue; 1223 Register Reg = MO.getReg(); 1224 if (!Reg.isVirtual()) 1225 continue; 1226 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg, CurLoop)) { 1227 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1228 ++NumHighLatency; 1229 return true; 1230 } 1231 } 1232 1233 // Estimate register pressure to determine whether to LICM the instruction. 1234 // In low register pressure situation, we can be more aggressive about 1235 // hoisting. Also, favors hoisting long latency instructions even in 1236 // moderately high pressure situation. 1237 // Cheap instructions will only be hoisted if they don't increase register 1238 // pressure at all. 1239 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1240 /*ConsiderUnseenAsDef=*/false); 1241 1242 // Visit BBs from header to current BB, if hoisting this doesn't cause 1243 // high register pressure, then it's safe to proceed. 1244 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1245 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1246 ++NumLowRP; 1247 return true; 1248 } 1249 1250 // Don't risk increasing register pressure if it would create copies. 1251 if (CreatesCopy) { 1252 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1253 return false; 1254 } 1255 1256 // Do not "speculate" in high register pressure situation. If an 1257 // instruction is not guaranteed to be executed in the loop, it's best to be 1258 // conservative. 1259 if (AvoidSpeculation && 1260 (!IsGuaranteedToExecute(MI.getParent(), CurLoop) && !MayCSE(&MI))) { 1261 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1262 return false; 1263 } 1264 1265 // If we have a COPY with other uses in the loop, hoist to allow the users to 1266 // also be hoisted. 1267 if (MI.isCopy() && MI.getOperand(0).isReg() && 1268 MI.getOperand(0).getReg().isVirtual() && MI.getOperand(1).isReg() && 1269 MI.getOperand(1).getReg().isVirtual() && 1270 IsLoopInvariantInst(MI, CurLoop) && 1271 any_of(MRI->use_nodbg_instructions(MI.getOperand(0).getReg()), 1272 [&CurLoop](MachineInstr &UseMI) { 1273 return CurLoop->contains(&UseMI); 1274 })) 1275 return true; 1276 1277 // High register pressure situation, only hoist if the instruction is going 1278 // to be remat'ed. 1279 if (!isTriviallyReMaterializable(MI) && 1280 !MI.isDereferenceableInvariantLoad()) { 1281 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1282 return false; 1283 } 1284 1285 return true; 1286 } 1287 1288 /// Unfold a load from the given machineinstr if the load itself could be 1289 /// hoisted. Return the unfolded and hoistable load, or null if the load 1290 /// couldn't be unfolded or if it wouldn't be hoistable. 1291 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI, 1292 MachineLoop *CurLoop) { 1293 // Don't unfold simple loads. 1294 if (MI->canFoldAsLoad()) 1295 return nullptr; 1296 1297 // If not, we may be able to unfold a load and hoist that. 1298 // First test whether the instruction is loading from an amenable 1299 // memory location. 1300 if (!MI->isDereferenceableInvariantLoad()) 1301 return nullptr; 1302 1303 // Next determine the register class for a temporary register. 1304 unsigned LoadRegIndex; 1305 unsigned NewOpc = 1306 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1307 /*UnfoldLoad=*/true, 1308 /*UnfoldStore=*/false, 1309 &LoadRegIndex); 1310 if (NewOpc == 0) return nullptr; 1311 const MCInstrDesc &MID = TII->get(NewOpc); 1312 MachineFunction &MF = *MI->getMF(); 1313 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1314 // Ok, we're unfolding. Create a temporary register and do the unfold. 1315 Register Reg = MRI->createVirtualRegister(RC); 1316 1317 SmallVector<MachineInstr *, 2> NewMIs; 1318 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1319 /*UnfoldLoad=*/true, 1320 /*UnfoldStore=*/false, NewMIs); 1321 (void)Success; 1322 assert(Success && 1323 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1324 "succeeded!"); 1325 assert(NewMIs.size() == 2 && 1326 "Unfolded a load into multiple instructions!"); 1327 MachineBasicBlock *MBB = MI->getParent(); 1328 MachineBasicBlock::iterator Pos = MI; 1329 MBB->insert(Pos, NewMIs[0]); 1330 MBB->insert(Pos, NewMIs[1]); 1331 // If unfolding produced a load that wasn't loop-invariant or profitable to 1332 // hoist, discard the new instructions and bail. 1333 if (!IsLoopInvariantInst(*NewMIs[0], CurLoop) || 1334 !IsProfitableToHoist(*NewMIs[0], CurLoop)) { 1335 NewMIs[0]->eraseFromParent(); 1336 NewMIs[1]->eraseFromParent(); 1337 return nullptr; 1338 } 1339 1340 // Update register pressure for the unfolded instruction. 1341 UpdateRegPressure(NewMIs[1]); 1342 1343 // Otherwise we successfully unfolded a load that we can hoist. 1344 1345 // Update the call site info. 1346 if (MI->shouldUpdateCallSiteInfo()) 1347 MF.eraseCallSiteInfo(MI); 1348 1349 MI->eraseFromParent(); 1350 return NewMIs[0]; 1351 } 1352 1353 /// Initialize the CSE map with instructions that are in the current loop 1354 /// preheader that may become duplicates of instructions that are hoisted 1355 /// out of the loop. 1356 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1357 for (MachineInstr &MI : *BB) 1358 CSEMap[BB][MI.getOpcode()].push_back(&MI); 1359 } 1360 1361 /// Initialize AllowedToHoistLoads with information about whether invariant 1362 /// loads can be moved outside a given loop 1363 void MachineLICMBase::InitializeLoadsHoistableLoops() { 1364 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 1365 SmallVector<MachineLoop *, 8> LoopsInPreOrder; 1366 1367 // Mark all loops as hoistable initially and prepare a list of loops in 1368 // pre-order DFS. 1369 while (!Worklist.empty()) { 1370 auto *L = Worklist.pop_back_val(); 1371 AllowedToHoistLoads[L] = true; 1372 LoopsInPreOrder.push_back(L); 1373 Worklist.insert(Worklist.end(), L->getSubLoops().begin(), 1374 L->getSubLoops().end()); 1375 } 1376 1377 // Going from the innermost to outermost loops, check if a loop has 1378 // instructions preventing invariant load hoisting. If such instruction is 1379 // found, mark this loop and its parent as non-hoistable and continue 1380 // investigating the next loop. 1381 // Visiting in a reversed pre-ordered DFS manner 1382 // allows us to not process all the instructions of the outer loop if the 1383 // inner loop is proved to be non-load-hoistable. 1384 for (auto *Loop : reverse(LoopsInPreOrder)) { 1385 for (auto *MBB : Loop->blocks()) { 1386 // If this loop has already been marked as non-hoistable, skip it. 1387 if (!AllowedToHoistLoads[Loop]) 1388 continue; 1389 for (auto &MI : *MBB) { 1390 if (!MI.mayStore() && !MI.isCall() && 1391 !(MI.mayLoad() && MI.hasOrderedMemoryRef())) 1392 continue; 1393 for (MachineLoop *L = Loop; L != nullptr; L = L->getParentLoop()) 1394 AllowedToHoistLoads[L] = false; 1395 break; 1396 } 1397 } 1398 } 1399 } 1400 1401 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1402 /// Return this instruction if it's found. 1403 MachineInstr * 1404 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1405 std::vector<MachineInstr *> &PrevMIs) { 1406 for (MachineInstr *PrevMI : PrevMIs) 1407 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1408 return PrevMI; 1409 1410 return nullptr; 1411 } 1412 1413 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1414 /// computes the same value. If it's found, do a RAU on with the definition of 1415 /// the existing instruction rather than hoisting the instruction to the 1416 /// preheader. 1417 bool MachineLICMBase::EliminateCSE( 1418 MachineInstr *MI, 1419 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) { 1420 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1421 // the undef property onto uses. 1422 if (MI->isImplicitDef()) 1423 return false; 1424 1425 // Do not CSE normal loads because between them could be store instructions 1426 // that change the loaded value 1427 if (MI->mayLoad() && !MI->isDereferenceableInvariantLoad()) 1428 return false; 1429 1430 if (MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1431 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1432 1433 // Replace virtual registers defined by MI by their counterparts defined 1434 // by Dup. 1435 SmallVector<unsigned, 2> Defs; 1436 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1437 const MachineOperand &MO = MI->getOperand(i); 1438 1439 // Physical registers may not differ here. 1440 assert((!MO.isReg() || MO.getReg() == 0 || !MO.getReg().isPhysical() || 1441 MO.getReg() == Dup->getOperand(i).getReg()) && 1442 "Instructions with different phys regs are not identical!"); 1443 1444 if (MO.isReg() && MO.isDef() && !MO.getReg().isPhysical()) 1445 Defs.push_back(i); 1446 } 1447 1448 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1449 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1450 unsigned Idx = Defs[i]; 1451 Register Reg = MI->getOperand(Idx).getReg(); 1452 Register DupReg = Dup->getOperand(Idx).getReg(); 1453 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1454 1455 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1456 // Restore old RCs if more than one defs. 1457 for (unsigned j = 0; j != i; ++j) 1458 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1459 return false; 1460 } 1461 } 1462 1463 for (unsigned Idx : Defs) { 1464 Register Reg = MI->getOperand(Idx).getReg(); 1465 Register DupReg = Dup->getOperand(Idx).getReg(); 1466 MRI->replaceRegWith(Reg, DupReg); 1467 MRI->clearKillFlags(DupReg); 1468 // Clear Dup dead flag if any, we reuse it for Reg. 1469 if (!MRI->use_nodbg_empty(DupReg)) 1470 Dup->getOperand(Idx).setIsDead(false); 1471 } 1472 1473 MI->eraseFromParent(); 1474 ++NumCSEed; 1475 return true; 1476 } 1477 return false; 1478 } 1479 1480 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1481 /// the loop. 1482 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1483 if (MI->mayLoad() && !MI->isDereferenceableInvariantLoad()) 1484 return false; 1485 1486 unsigned Opcode = MI->getOpcode(); 1487 for (auto &Map : CSEMap) { 1488 // Check this CSEMap's preheader dominates MI's basic block. 1489 if (DT->dominates(Map.first, MI->getParent())) { 1490 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = 1491 Map.second.find(Opcode); 1492 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1493 // the undef property onto uses. 1494 if (CI == Map.second.end() || MI->isImplicitDef()) 1495 continue; 1496 if (LookForDuplicate(MI, CI->second) != nullptr) 1497 return true; 1498 } 1499 } 1500 1501 return false; 1502 } 1503 1504 /// When an instruction is found to use only loop invariant operands 1505 /// that are safe to hoist, this instruction is called to do the dirty work. 1506 /// It returns true if the instruction is hoisted. 1507 unsigned MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader, 1508 MachineLoop *CurLoop) { 1509 MachineBasicBlock *SrcBlock = MI->getParent(); 1510 1511 // Disable the instruction hoisting due to block hotness 1512 if ((DisableHoistingToHotterBlocks == UseBFI::All || 1513 (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) && 1514 isTgtHotterThanSrc(SrcBlock, Preheader)) { 1515 ++NumNotHoistedDueToHotness; 1516 return HoistResult::NotHoisted; 1517 } 1518 // First check whether we should hoist this instruction. 1519 bool HasExtractHoistableLoad = false; 1520 if (!IsLoopInvariantInst(*MI, CurLoop) || 1521 !IsProfitableToHoist(*MI, CurLoop)) { 1522 // If not, try unfolding a hoistable load. 1523 MI = ExtractHoistableLoad(MI, CurLoop); 1524 if (!MI) 1525 return HoistResult::NotHoisted; 1526 HasExtractHoistableLoad = true; 1527 } 1528 1529 // If we have hoisted an instruction that may store, it can only be a constant 1530 // store. 1531 if (MI->mayStore()) 1532 NumStoreConst++; 1533 1534 // Now move the instructions to the predecessor, inserting it before any 1535 // terminator instructions. 1536 LLVM_DEBUG({ 1537 dbgs() << "Hoisting " << *MI; 1538 if (MI->getParent()->getBasicBlock()) 1539 dbgs() << " from " << printMBBReference(*MI->getParent()); 1540 if (Preheader->getBasicBlock()) 1541 dbgs() << " to " << printMBBReference(*Preheader); 1542 dbgs() << "\n"; 1543 }); 1544 1545 // If this is the first instruction being hoisted to the preheader, 1546 // initialize the CSE map with potential common expressions. 1547 if (FirstInLoop) { 1548 InitCSEMap(Preheader); 1549 FirstInLoop = false; 1550 } 1551 1552 // Look for opportunity to CSE the hoisted instruction. 1553 unsigned Opcode = MI->getOpcode(); 1554 bool HasCSEDone = false; 1555 for (auto &Map : CSEMap) { 1556 // Check this CSEMap's preheader dominates MI's basic block. 1557 if (DT->dominates(Map.first, MI->getParent())) { 1558 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = 1559 Map.second.find(Opcode); 1560 if (CI != Map.second.end()) { 1561 if (EliminateCSE(MI, CI)) { 1562 HasCSEDone = true; 1563 break; 1564 } 1565 } 1566 } 1567 } 1568 1569 if (!HasCSEDone) { 1570 // Otherwise, splice the instruction to the preheader. 1571 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1572 1573 // Since we are moving the instruction out of its basic block, we do not 1574 // retain its debug location. Doing so would degrade the debugging 1575 // experience and adversely affect the accuracy of profiling information. 1576 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 1577 MI->setDebugLoc(DebugLoc()); 1578 1579 // Update register pressure for BBs from header to this block. 1580 UpdateBackTraceRegPressure(MI); 1581 1582 // Clear the kill flags of any register this instruction defines, 1583 // since they may need to be live throughout the entire loop 1584 // rather than just live for part of it. 1585 for (MachineOperand &MO : MI->all_defs()) 1586 if (!MO.isDead()) 1587 MRI->clearKillFlags(MO.getReg()); 1588 1589 CSEMap[Preheader][Opcode].push_back(MI); 1590 } 1591 1592 ++NumHoisted; 1593 Changed = true; 1594 1595 if (HasCSEDone || HasExtractHoistableLoad) 1596 return HoistResult::Hoisted | HoistResult::ErasedMI; 1597 return HoistResult::Hoisted; 1598 } 1599 1600 /// Get the preheader for the current loop, splitting a critical edge if needed. 1601 MachineBasicBlock * 1602 MachineLICMBase::getCurPreheader(MachineLoop *CurLoop, 1603 MachineBasicBlock *CurPreheader) { 1604 // Determine the block to which to hoist instructions. If we can't find a 1605 // suitable loop predecessor, we can't do any hoisting. 1606 1607 // If we've tried to get a preheader and failed, don't try again. 1608 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1609 return nullptr; 1610 1611 if (!CurPreheader) { 1612 CurPreheader = CurLoop->getLoopPreheader(); 1613 if (!CurPreheader) { 1614 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1615 if (!Pred) { 1616 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1617 return nullptr; 1618 } 1619 1620 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1621 if (!CurPreheader) { 1622 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1623 return nullptr; 1624 } 1625 } 1626 } 1627 return CurPreheader; 1628 } 1629 1630 /// Is the target basic block at least "BlockFrequencyRatioThreshold" 1631 /// times hotter than the source basic block. 1632 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 1633 MachineBasicBlock *TgtBlock) { 1634 // Parse source and target basic block frequency from MBFI 1635 uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency(); 1636 uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency(); 1637 1638 // Disable the hoisting if source block frequency is zero 1639 if (!SrcBF) 1640 return true; 1641 1642 double Ratio = (double)DstBF / SrcBF; 1643 1644 // Compare the block frequency ratio with the threshold 1645 return Ratio > BlockFrequencyRatioThreshold; 1646 } 1647