1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion on machine instructions. We 10 // attempt to remove as much code from the body of a loop as possible. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSchedule.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCInstrDesc.h" 43 #include "llvm/MC/MCRegisterInfo.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <limits> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "machinelicm" 57 58 static cl::opt<bool> 59 AvoidSpeculation("avoid-speculation", 60 cl::desc("MachineLICM should avoid speculation"), 61 cl::init(true), cl::Hidden); 62 63 static cl::opt<bool> 64 HoistCheapInsts("hoist-cheap-insts", 65 cl::desc("MachineLICM should hoist even cheap instructions"), 66 cl::init(false), cl::Hidden); 67 68 static cl::opt<bool> 69 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 70 cl::desc("MachineLICM should sink instructions into " 71 "loops to avoid register spills"), 72 cl::init(false), cl::Hidden); 73 static cl::opt<bool> 74 HoistConstStores("hoist-const-stores", 75 cl::desc("Hoist invariant stores"), 76 cl::init(true), cl::Hidden); 77 78 STATISTIC(NumHoisted, 79 "Number of machine instructions hoisted out of loops"); 80 STATISTIC(NumLowRP, 81 "Number of instructions hoisted in low reg pressure situation"); 82 STATISTIC(NumHighLatency, 83 "Number of high latency instructions hoisted"); 84 STATISTIC(NumCSEed, 85 "Number of hoisted machine instructions CSEed"); 86 STATISTIC(NumPostRAHoisted, 87 "Number of machine instructions hoisted out of loops post regalloc"); 88 STATISTIC(NumStoreConst, 89 "Number of stores of const phys reg hoisted out of loops"); 90 91 namespace { 92 93 class MachineLICMBase : public MachineFunctionPass { 94 const TargetInstrInfo *TII; 95 const TargetLoweringBase *TLI; 96 const TargetRegisterInfo *TRI; 97 const MachineFrameInfo *MFI; 98 MachineRegisterInfo *MRI; 99 TargetSchedModel SchedModel; 100 bool PreRegAlloc; 101 102 // Various analyses that we use... 103 AliasAnalysis *AA; // Alias analysis info. 104 MachineLoopInfo *MLI; // Current MachineLoopInfo 105 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 106 107 // State that is updated as we process loops 108 bool Changed; // True if a loop is changed. 109 bool FirstInLoop; // True if it's the first LICM in the loop. 110 MachineLoop *CurLoop; // The current loop we are working on. 111 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 112 113 // Exit blocks for CurLoop. 114 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 115 116 bool isExitBlock(const MachineBasicBlock *MBB) const { 117 return is_contained(ExitBlocks, MBB); 118 } 119 120 // Track 'estimated' register pressure. 121 SmallSet<unsigned, 32> RegSeen; 122 SmallVector<unsigned, 8> RegPressure; 123 124 // Register pressure "limit" per register pressure set. If the pressure 125 // is higher than the limit, then it's considered high. 126 SmallVector<unsigned, 8> RegLimit; 127 128 // Register pressure on path leading from loop preheader to current BB. 129 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 130 131 // For each opcode, keep a list of potential CSE instructions. 132 DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap; 133 134 enum { 135 SpeculateFalse = 0, 136 SpeculateTrue = 1, 137 SpeculateUnknown = 2 138 }; 139 140 // If a MBB does not dominate loop exiting blocks then it may not safe 141 // to hoist loads from this block. 142 // Tri-state: 0 - false, 1 - true, 2 - unknown 143 unsigned SpeculationState; 144 145 public: 146 MachineLICMBase(char &PassID, bool PreRegAlloc) 147 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 148 149 bool runOnMachineFunction(MachineFunction &MF) override; 150 151 void getAnalysisUsage(AnalysisUsage &AU) const override { 152 AU.addRequired<MachineLoopInfo>(); 153 AU.addRequired<MachineDominatorTree>(); 154 AU.addRequired<AAResultsWrapperPass>(); 155 AU.addPreserved<MachineLoopInfo>(); 156 AU.addPreserved<MachineDominatorTree>(); 157 MachineFunctionPass::getAnalysisUsage(AU); 158 } 159 160 void releaseMemory() override { 161 RegSeen.clear(); 162 RegPressure.clear(); 163 RegLimit.clear(); 164 BackTrace.clear(); 165 CSEMap.clear(); 166 } 167 168 private: 169 /// Keep track of information about hoisting candidates. 170 struct CandidateInfo { 171 MachineInstr *MI; 172 unsigned Def; 173 int FI; 174 175 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 176 : MI(mi), Def(def), FI(fi) {} 177 }; 178 179 void HoistRegionPostRA(); 180 181 void HoistPostRA(MachineInstr *MI, unsigned Def); 182 183 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 184 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 185 SmallVectorImpl<CandidateInfo> &Candidates); 186 187 void AddToLiveIns(unsigned Reg); 188 189 bool IsLICMCandidate(MachineInstr &I); 190 191 bool IsLoopInvariantInst(MachineInstr &I); 192 193 bool HasLoopPHIUse(const MachineInstr *MI) const; 194 195 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 196 unsigned Reg) const; 197 198 bool IsCheapInstruction(MachineInstr &MI) const; 199 200 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 201 bool Cheap); 202 203 void UpdateBackTraceRegPressure(const MachineInstr *MI); 204 205 bool IsProfitableToHoist(MachineInstr &MI); 206 207 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 208 209 void EnterScope(MachineBasicBlock *MBB); 210 211 void ExitScope(MachineBasicBlock *MBB); 212 213 void ExitScopeIfDone( 214 MachineDomTreeNode *Node, 215 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 216 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 217 218 void HoistOutOfLoop(MachineDomTreeNode *HeaderN); 219 220 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 221 222 void SinkIntoLoop(); 223 224 void InitRegPressure(MachineBasicBlock *BB); 225 226 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 227 bool ConsiderSeen, 228 bool ConsiderUnseenAsDef); 229 230 void UpdateRegPressure(const MachineInstr *MI, 231 bool ConsiderUnseenAsDef = false); 232 233 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 234 235 const MachineInstr * 236 LookForDuplicate(const MachineInstr *MI, 237 std::vector<const MachineInstr *> &PrevMIs); 238 239 bool EliminateCSE( 240 MachineInstr *MI, 241 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); 242 243 bool MayCSE(MachineInstr *MI); 244 245 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 246 247 void InitCSEMap(MachineBasicBlock *BB); 248 249 MachineBasicBlock *getCurPreheader(); 250 }; 251 252 class MachineLICM : public MachineLICMBase { 253 public: 254 static char ID; 255 MachineLICM() : MachineLICMBase(ID, false) { 256 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 257 } 258 }; 259 260 class EarlyMachineLICM : public MachineLICMBase { 261 public: 262 static char ID; 263 EarlyMachineLICM() : MachineLICMBase(ID, true) { 264 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 265 } 266 }; 267 268 } // end anonymous namespace 269 270 char MachineLICM::ID; 271 char EarlyMachineLICM::ID; 272 273 char &llvm::MachineLICMID = MachineLICM::ID; 274 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 275 276 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 277 "Machine Loop Invariant Code Motion", false, false) 278 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 279 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 280 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 281 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 282 "Machine Loop Invariant Code Motion", false, false) 283 284 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 285 "Early Machine Loop Invariant Code Motion", false, false) 286 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 287 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 288 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 289 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 290 "Early Machine Loop Invariant Code Motion", false, false) 291 292 /// Test if the given loop is the outer-most loop that has a unique predecessor. 293 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 294 // Check whether this loop even has a unique predecessor. 295 if (!CurLoop->getLoopPredecessor()) 296 return false; 297 // Ok, now check to see if any of its outer loops do. 298 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 299 if (L->getLoopPredecessor()) 300 return false; 301 // None of them did, so this is the outermost with a unique predecessor. 302 return true; 303 } 304 305 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 306 if (skipFunction(MF.getFunction())) 307 return false; 308 309 Changed = FirstInLoop = false; 310 const TargetSubtargetInfo &ST = MF.getSubtarget(); 311 TII = ST.getInstrInfo(); 312 TLI = ST.getTargetLowering(); 313 TRI = ST.getRegisterInfo(); 314 MFI = &MF.getFrameInfo(); 315 MRI = &MF.getRegInfo(); 316 SchedModel.init(&ST); 317 318 PreRegAlloc = MRI->isSSA(); 319 320 if (PreRegAlloc) 321 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 322 else 323 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 324 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 325 326 if (PreRegAlloc) { 327 // Estimate register pressure during pre-regalloc pass. 328 unsigned NumRPS = TRI->getNumRegPressureSets(); 329 RegPressure.resize(NumRPS); 330 std::fill(RegPressure.begin(), RegPressure.end(), 0); 331 RegLimit.resize(NumRPS); 332 for (unsigned i = 0, e = NumRPS; i != e; ++i) 333 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 334 } 335 336 // Get our Loop information... 337 MLI = &getAnalysis<MachineLoopInfo>(); 338 DT = &getAnalysis<MachineDominatorTree>(); 339 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 340 341 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 342 while (!Worklist.empty()) { 343 CurLoop = Worklist.pop_back_val(); 344 CurPreheader = nullptr; 345 ExitBlocks.clear(); 346 347 // If this is done before regalloc, only visit outer-most preheader-sporting 348 // loops. 349 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 350 Worklist.append(CurLoop->begin(), CurLoop->end()); 351 continue; 352 } 353 354 CurLoop->getExitBlocks(ExitBlocks); 355 356 if (!PreRegAlloc) 357 HoistRegionPostRA(); 358 else { 359 // CSEMap is initialized for loop header when the first instruction is 360 // being hoisted. 361 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 362 FirstInLoop = true; 363 HoistOutOfLoop(N); 364 CSEMap.clear(); 365 366 if (SinkInstsToAvoidSpills) 367 SinkIntoLoop(); 368 } 369 } 370 371 return Changed; 372 } 373 374 /// Return true if instruction stores to the specified frame. 375 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 376 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 377 // true since they have no memory operands. 378 if (!MI->mayStore()) 379 return false; 380 // If we lost memory operands, conservatively assume that the instruction 381 // writes to all slots. 382 if (MI->memoperands_empty()) 383 return true; 384 for (const MachineMemOperand *MemOp : MI->memoperands()) { 385 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 386 continue; 387 if (const FixedStackPseudoSourceValue *Value = 388 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 389 if (Value->getFrameIndex() == FI) 390 return true; 391 } 392 } 393 return false; 394 } 395 396 /// Examine the instruction for potentai LICM candidate. Also 397 /// gather register def and frame object update information. 398 void MachineLICMBase::ProcessMI(MachineInstr *MI, 399 BitVector &PhysRegDefs, 400 BitVector &PhysRegClobbers, 401 SmallSet<int, 32> &StoredFIs, 402 SmallVectorImpl<CandidateInfo> &Candidates) { 403 bool RuledOut = false; 404 bool HasNonInvariantUse = false; 405 unsigned Def = 0; 406 for (const MachineOperand &MO : MI->operands()) { 407 if (MO.isFI()) { 408 // Remember if the instruction stores to the frame index. 409 int FI = MO.getIndex(); 410 if (!StoredFIs.count(FI) && 411 MFI->isSpillSlotObjectIndex(FI) && 412 InstructionStoresToFI(MI, FI)) 413 StoredFIs.insert(FI); 414 HasNonInvariantUse = true; 415 continue; 416 } 417 418 // We can't hoist an instruction defining a physreg that is clobbered in 419 // the loop. 420 if (MO.isRegMask()) { 421 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 422 continue; 423 } 424 425 if (!MO.isReg()) 426 continue; 427 unsigned Reg = MO.getReg(); 428 if (!Reg) 429 continue; 430 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 431 "Not expecting virtual register!"); 432 433 if (!MO.isDef()) { 434 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 435 // If it's using a non-loop-invariant register, then it's obviously not 436 // safe to hoist. 437 HasNonInvariantUse = true; 438 continue; 439 } 440 441 if (MO.isImplicit()) { 442 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 443 PhysRegClobbers.set(*AI); 444 if (!MO.isDead()) 445 // Non-dead implicit def? This cannot be hoisted. 446 RuledOut = true; 447 // No need to check if a dead implicit def is also defined by 448 // another instruction. 449 continue; 450 } 451 452 // FIXME: For now, avoid instructions with multiple defs, unless 453 // it's a dead implicit def. 454 if (Def) 455 RuledOut = true; 456 else 457 Def = Reg; 458 459 // If we have already seen another instruction that defines the same 460 // register, then this is not safe. Two defs is indicated by setting a 461 // PhysRegClobbers bit. 462 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 463 if (PhysRegDefs.test(*AS)) 464 PhysRegClobbers.set(*AS); 465 } 466 // Need a second loop because MCRegAliasIterator can visit the same 467 // register twice. 468 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) 469 PhysRegDefs.set(*AS); 470 471 if (PhysRegClobbers.test(Reg)) 472 // MI defined register is seen defined by another instruction in 473 // the loop, it cannot be a LICM candidate. 474 RuledOut = true; 475 } 476 477 // Only consider reloads for now and remats which do not have register 478 // operands. FIXME: Consider unfold load folding instructions. 479 if (Def && !RuledOut) { 480 int FI = std::numeric_limits<int>::min(); 481 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 482 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 483 Candidates.push_back(CandidateInfo(MI, Def, FI)); 484 } 485 } 486 487 /// Walk the specified region of the CFG and hoist loop invariants out to the 488 /// preheader. 489 void MachineLICMBase::HoistRegionPostRA() { 490 MachineBasicBlock *Preheader = getCurPreheader(); 491 if (!Preheader) 492 return; 493 494 unsigned NumRegs = TRI->getNumRegs(); 495 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 496 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 497 498 SmallVector<CandidateInfo, 32> Candidates; 499 SmallSet<int, 32> StoredFIs; 500 501 // Walk the entire region, count number of defs for each register, and 502 // collect potential LICM candidates. 503 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 504 // If the header of the loop containing this basic block is a landing pad, 505 // then don't try to hoist instructions out of this loop. 506 const MachineLoop *ML = MLI->getLoopFor(BB); 507 if (ML && ML->getHeader()->isEHPad()) continue; 508 509 // Conservatively treat live-in's as an external def. 510 // FIXME: That means a reload that're reused in successor block(s) will not 511 // be LICM'ed. 512 for (const auto &LI : BB->liveins()) { 513 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 514 PhysRegDefs.set(*AI); 515 } 516 517 SpeculationState = SpeculateUnknown; 518 for (MachineInstr &MI : *BB) 519 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 520 } 521 522 // Gather the registers read / clobbered by the terminator. 523 BitVector TermRegs(NumRegs); 524 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 525 if (TI != Preheader->end()) { 526 for (const MachineOperand &MO : TI->operands()) { 527 if (!MO.isReg()) 528 continue; 529 unsigned Reg = MO.getReg(); 530 if (!Reg) 531 continue; 532 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 533 TermRegs.set(*AI); 534 } 535 } 536 537 // Now evaluate whether the potential candidates qualify. 538 // 1. Check if the candidate defined register is defined by another 539 // instruction in the loop. 540 // 2. If the candidate is a load from stack slot (always true for now), 541 // check if the slot is stored anywhere in the loop. 542 // 3. Make sure candidate def should not clobber 543 // registers read by the terminator. Similarly its def should not be 544 // clobbered by the terminator. 545 for (CandidateInfo &Candidate : Candidates) { 546 if (Candidate.FI != std::numeric_limits<int>::min() && 547 StoredFIs.count(Candidate.FI)) 548 continue; 549 550 unsigned Def = Candidate.Def; 551 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 552 bool Safe = true; 553 MachineInstr *MI = Candidate.MI; 554 for (const MachineOperand &MO : MI->operands()) { 555 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 556 continue; 557 unsigned Reg = MO.getReg(); 558 if (PhysRegDefs.test(Reg) || 559 PhysRegClobbers.test(Reg)) { 560 // If it's using a non-loop-invariant register, then it's obviously 561 // not safe to hoist. 562 Safe = false; 563 break; 564 } 565 } 566 if (Safe) 567 HoistPostRA(MI, Candidate.Def); 568 } 569 } 570 } 571 572 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 573 /// sure it is not killed by any instructions in the loop. 574 void MachineLICMBase::AddToLiveIns(unsigned Reg) { 575 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 576 if (!BB->isLiveIn(Reg)) 577 BB->addLiveIn(Reg); 578 for (MachineInstr &MI : *BB) { 579 for (MachineOperand &MO : MI.operands()) { 580 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 581 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 582 MO.setIsKill(false); 583 } 584 } 585 } 586 } 587 588 /// When an instruction is found to only use loop invariant operands that is 589 /// safe to hoist, this instruction is called to do the dirty work. 590 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) { 591 MachineBasicBlock *Preheader = getCurPreheader(); 592 593 // Now move the instructions to the predecessor, inserting it before any 594 // terminator instructions. 595 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 596 << " from " << printMBBReference(*MI->getParent()) << ": " 597 << *MI); 598 599 // Splice the instruction to the preheader. 600 MachineBasicBlock *MBB = MI->getParent(); 601 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 602 603 // Add register to livein list to all the BBs in the current loop since a 604 // loop invariant must be kept live throughout the whole loop. This is 605 // important to ensure later passes do not scavenge the def register. 606 AddToLiveIns(Def); 607 608 ++NumPostRAHoisted; 609 Changed = true; 610 } 611 612 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 613 /// may not be safe to hoist. 614 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) { 615 if (SpeculationState != SpeculateUnknown) 616 return SpeculationState == SpeculateFalse; 617 618 if (BB != CurLoop->getHeader()) { 619 // Check loop exiting blocks. 620 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 621 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 622 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 623 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 624 SpeculationState = SpeculateTrue; 625 return false; 626 } 627 } 628 629 SpeculationState = SpeculateFalse; 630 return true; 631 } 632 633 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 634 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 635 636 // Remember livein register pressure. 637 BackTrace.push_back(RegPressure); 638 } 639 640 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 641 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 642 BackTrace.pop_back(); 643 } 644 645 /// Destroy scope for the MBB that corresponds to the given dominator tree node 646 /// if its a leaf or all of its children are done. Walk up the dominator tree to 647 /// destroy ancestors which are now done. 648 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 649 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 650 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 651 if (OpenChildren[Node]) 652 return; 653 654 // Pop scope. 655 ExitScope(Node->getBlock()); 656 657 // Now traverse upwards to pop ancestors whose offsprings are all done. 658 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 659 unsigned Left = --OpenChildren[Parent]; 660 if (Left != 0) 661 break; 662 ExitScope(Parent->getBlock()); 663 Node = Parent; 664 } 665 } 666 667 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 668 /// specified header block, and that are in the current loop) in depth first 669 /// order w.r.t the DominatorTree. This allows us to visit definitions before 670 /// uses, allowing us to hoist a loop body in one pass without iteration. 671 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 672 MachineBasicBlock *Preheader = getCurPreheader(); 673 if (!Preheader) 674 return; 675 676 SmallVector<MachineDomTreeNode*, 32> Scopes; 677 SmallVector<MachineDomTreeNode*, 8> WorkList; 678 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 679 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 680 681 // Perform a DFS walk to determine the order of visit. 682 WorkList.push_back(HeaderN); 683 while (!WorkList.empty()) { 684 MachineDomTreeNode *Node = WorkList.pop_back_val(); 685 assert(Node && "Null dominator tree node?"); 686 MachineBasicBlock *BB = Node->getBlock(); 687 688 // If the header of the loop containing this basic block is a landing pad, 689 // then don't try to hoist instructions out of this loop. 690 const MachineLoop *ML = MLI->getLoopFor(BB); 691 if (ML && ML->getHeader()->isEHPad()) 692 continue; 693 694 // If this subregion is not in the top level loop at all, exit. 695 if (!CurLoop->contains(BB)) 696 continue; 697 698 Scopes.push_back(Node); 699 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 700 unsigned NumChildren = Children.size(); 701 702 // Don't hoist things out of a large switch statement. This often causes 703 // code to be hoisted that wasn't going to be executed, and increases 704 // register pressure in a situation where it's likely to matter. 705 if (BB->succ_size() >= 25) 706 NumChildren = 0; 707 708 OpenChildren[Node] = NumChildren; 709 // Add children in reverse order as then the next popped worklist node is 710 // the first child of this node. This means we ultimately traverse the 711 // DOM tree in exactly the same order as if we'd recursed. 712 for (int i = (int)NumChildren-1; i >= 0; --i) { 713 MachineDomTreeNode *Child = Children[i]; 714 ParentMap[Child] = Node; 715 WorkList.push_back(Child); 716 } 717 } 718 719 if (Scopes.size() == 0) 720 return; 721 722 // Compute registers which are livein into the loop headers. 723 RegSeen.clear(); 724 BackTrace.clear(); 725 InitRegPressure(Preheader); 726 727 // Now perform LICM. 728 for (MachineDomTreeNode *Node : Scopes) { 729 MachineBasicBlock *MBB = Node->getBlock(); 730 731 EnterScope(MBB); 732 733 // Process the block 734 SpeculationState = SpeculateUnknown; 735 for (MachineBasicBlock::iterator 736 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 737 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 738 MachineInstr *MI = &*MII; 739 if (!Hoist(MI, Preheader)) 740 UpdateRegPressure(MI); 741 // If we have hoisted an instruction that may store, it can only be a 742 // constant store. 743 MII = NextMII; 744 } 745 746 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 747 ExitScopeIfDone(Node, OpenChildren, ParentMap); 748 } 749 } 750 751 /// Sink instructions into loops if profitable. This especially tries to prevent 752 /// register spills caused by register pressure if there is little to no 753 /// overhead moving instructions into loops. 754 void MachineLICMBase::SinkIntoLoop() { 755 MachineBasicBlock *Preheader = getCurPreheader(); 756 if (!Preheader) 757 return; 758 759 SmallVector<MachineInstr *, 8> Candidates; 760 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 761 I != Preheader->instr_end(); ++I) { 762 // We need to ensure that we can safely move this instruction into the loop. 763 // As such, it must not have side-effects, e.g. such as a call has. 764 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) 765 Candidates.push_back(&*I); 766 } 767 768 for (MachineInstr *I : Candidates) { 769 const MachineOperand &MO = I->getOperand(0); 770 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 771 continue; 772 if (!MRI->hasOneDef(MO.getReg())) 773 continue; 774 bool CanSink = true; 775 MachineBasicBlock *B = nullptr; 776 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 777 // FIXME: Come up with a proper cost model that estimates whether sinking 778 // the instruction (and thus possibly executing it on every loop 779 // iteration) is more expensive than a register. 780 // For now assumes that copies are cheap and thus almost always worth it. 781 if (!MI.isCopy()) { 782 CanSink = false; 783 break; 784 } 785 if (!B) { 786 B = MI.getParent(); 787 continue; 788 } 789 B = DT->findNearestCommonDominator(B, MI.getParent()); 790 if (!B) { 791 CanSink = false; 792 break; 793 } 794 } 795 if (!CanSink || !B || B == Preheader) 796 continue; 797 B->splice(B->getFirstNonPHI(), Preheader, I); 798 } 799 } 800 801 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 802 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 803 } 804 805 /// Find all virtual register references that are liveout of the preheader to 806 /// initialize the starting "register pressure". Note this does not count live 807 /// through (livein but not used) registers. 808 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 809 std::fill(RegPressure.begin(), RegPressure.end(), 0); 810 811 // If the preheader has only a single predecessor and it ends with a 812 // fallthrough or an unconditional branch, then scan its predecessor for live 813 // defs as well. This happens whenever the preheader is created by splitting 814 // the critical edge from the loop predecessor to the loop header. 815 if (BB->pred_size() == 1) { 816 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 817 SmallVector<MachineOperand, 4> Cond; 818 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 819 InitRegPressure(*BB->pred_begin()); 820 } 821 822 for (const MachineInstr &MI : *BB) 823 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 824 } 825 826 /// Update estimate of register pressure after the specified instruction. 827 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 828 bool ConsiderUnseenAsDef) { 829 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 830 for (const auto &RPIdAndCost : Cost) { 831 unsigned Class = RPIdAndCost.first; 832 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 833 RegPressure[Class] = 0; 834 else 835 RegPressure[Class] += RPIdAndCost.second; 836 } 837 } 838 839 /// Calculate the additional register pressure that the registers used in MI 840 /// cause. 841 /// 842 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 843 /// figure out which usages are live-ins. 844 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 845 DenseMap<unsigned, int> 846 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 847 bool ConsiderUnseenAsDef) { 848 DenseMap<unsigned, int> Cost; 849 if (MI->isImplicitDef()) 850 return Cost; 851 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 852 const MachineOperand &MO = MI->getOperand(i); 853 if (!MO.isReg() || MO.isImplicit()) 854 continue; 855 unsigned Reg = MO.getReg(); 856 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 857 continue; 858 859 // FIXME: It seems bad to use RegSeen only for some of these calculations. 860 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 861 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 862 863 RegClassWeight W = TRI->getRegClassWeight(RC); 864 int RCCost = 0; 865 if (MO.isDef()) 866 RCCost = W.RegWeight; 867 else { 868 bool isKill = isOperandKill(MO, MRI); 869 if (isNew && !isKill && ConsiderUnseenAsDef) 870 // Haven't seen this, it must be a livein. 871 RCCost = W.RegWeight; 872 else if (!isNew && isKill) 873 RCCost = -W.RegWeight; 874 } 875 if (RCCost == 0) 876 continue; 877 const int *PS = TRI->getRegClassPressureSets(RC); 878 for (; *PS != -1; ++PS) { 879 if (Cost.find(*PS) == Cost.end()) 880 Cost[*PS] = RCCost; 881 else 882 Cost[*PS] += RCCost; 883 } 884 } 885 return Cost; 886 } 887 888 /// Return true if this machine instruction loads from global offset table or 889 /// constant pool. 890 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 891 assert(MI.mayLoad() && "Expected MI that loads!"); 892 893 // If we lost memory operands, conservatively assume that the instruction 894 // reads from everything.. 895 if (MI.memoperands_empty()) 896 return true; 897 898 for (MachineMemOperand *MemOp : MI.memoperands()) 899 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 900 if (PSV->isGOT() || PSV->isConstantPool()) 901 return true; 902 903 return false; 904 } 905 906 // This function iterates through all the operands of the input store MI and 907 // checks that each register operand statisfies isCallerPreservedPhysReg. 908 // This means, the value being stored and the address where it is being stored 909 // is constant throughout the body of the function (not including prologue and 910 // epilogue). When called with an MI that isn't a store, it returns false. 911 // A future improvement can be to check if the store registers are constant 912 // throughout the loop rather than throughout the funtion. 913 static bool isInvariantStore(const MachineInstr &MI, 914 const TargetRegisterInfo *TRI, 915 const MachineRegisterInfo *MRI) { 916 917 bool FoundCallerPresReg = false; 918 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 919 (MI.getNumOperands() == 0)) 920 return false; 921 922 // Check that all register operands are caller-preserved physical registers. 923 for (const MachineOperand &MO : MI.operands()) { 924 if (MO.isReg()) { 925 unsigned Reg = MO.getReg(); 926 // If operand is a virtual register, check if it comes from a copy of a 927 // physical register. 928 if (TargetRegisterInfo::isVirtualRegister(Reg)) 929 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 930 if (TargetRegisterInfo::isVirtualRegister(Reg)) 931 return false; 932 if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF())) 933 return false; 934 else 935 FoundCallerPresReg = true; 936 } else if (!MO.isImm()) { 937 return false; 938 } 939 } 940 return FoundCallerPresReg; 941 } 942 943 // Return true if the input MI is a copy instruction that feeds an invariant 944 // store instruction. This means that the src of the copy has to satisfy 945 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 946 // isInvariantStore. 947 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 948 const MachineRegisterInfo *MRI, 949 const TargetRegisterInfo *TRI) { 950 951 // FIXME: If targets would like to look through instructions that aren't 952 // pure copies, this can be updated to a query. 953 if (!MI.isCopy()) 954 return false; 955 956 const MachineFunction *MF = MI.getMF(); 957 // Check that we are copying a constant physical register. 958 unsigned CopySrcReg = MI.getOperand(1).getReg(); 959 if (TargetRegisterInfo::isVirtualRegister(CopySrcReg)) 960 return false; 961 962 if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF)) 963 return false; 964 965 unsigned CopyDstReg = MI.getOperand(0).getReg(); 966 // Check if any of the uses of the copy are invariant stores. 967 assert (TargetRegisterInfo::isVirtualRegister(CopyDstReg) && 968 "copy dst is not a virtual reg"); 969 970 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 971 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 972 return true; 973 } 974 return false; 975 } 976 977 /// Returns true if the instruction may be a suitable candidate for LICM. 978 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 979 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) { 980 // Check if it's safe to move the instruction. 981 bool DontMoveAcrossStore = true; 982 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 983 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 984 return false; 985 } 986 987 // If it is load then check if it is guaranteed to execute by making sure that 988 // it dominates all exiting blocks. If it doesn't, then there is a path out of 989 // the loop which does not execute this load, so we can't hoist it. Loads 990 // from constant memory are not safe to speculate all the time, for example 991 // indexed load from a jump table. 992 // Stores and side effects are already checked by isSafeToMove. 993 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 994 !IsGuaranteedToExecute(I.getParent())) 995 return false; 996 997 return true; 998 } 999 1000 /// Returns true if the instruction is loop invariant. 1001 /// I.e., all virtual register operands are defined outside of the loop, 1002 /// physical registers aren't accessed explicitly, and there are no side 1003 /// effects that aren't captured by the operands or other flags. 1004 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) { 1005 if (!IsLICMCandidate(I)) 1006 return false; 1007 1008 // The instruction is loop invariant if all of its operands are. 1009 for (const MachineOperand &MO : I.operands()) { 1010 if (!MO.isReg()) 1011 continue; 1012 1013 unsigned Reg = MO.getReg(); 1014 if (Reg == 0) continue; 1015 1016 // Don't hoist an instruction that uses or defines a physical register. 1017 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1018 if (MO.isUse()) { 1019 // If the physreg has no defs anywhere, it's just an ambient register 1020 // and we can freely move its uses. Alternatively, if it's allocatable, 1021 // it could get allocated to something with a def during allocation. 1022 // However, if the physreg is known to always be caller saved/restored 1023 // then this use is safe to hoist. 1024 if (!MRI->isConstantPhysReg(Reg) && 1025 !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF()))) 1026 return false; 1027 // Otherwise it's safe to move. 1028 continue; 1029 } else if (!MO.isDead()) { 1030 // A def that isn't dead. We can't move it. 1031 return false; 1032 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 1033 // If the reg is live into the loop, we can't hoist an instruction 1034 // which would clobber it. 1035 return false; 1036 } 1037 } 1038 1039 if (!MO.isUse()) 1040 continue; 1041 1042 assert(MRI->getVRegDef(Reg) && 1043 "Machine instr not mapped for this vreg?!"); 1044 1045 // If the loop contains the definition of an operand, then the instruction 1046 // isn't loop invariant. 1047 if (CurLoop->contains(MRI->getVRegDef(Reg))) 1048 return false; 1049 } 1050 1051 // If we got this far, the instruction is loop invariant! 1052 return true; 1053 } 1054 1055 /// Return true if the specified instruction is used by a phi node and hoisting 1056 /// it could cause a copy to be inserted. 1057 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const { 1058 SmallVector<const MachineInstr*, 8> Work(1, MI); 1059 do { 1060 MI = Work.pop_back_val(); 1061 for (const MachineOperand &MO : MI->operands()) { 1062 if (!MO.isReg() || !MO.isDef()) 1063 continue; 1064 unsigned Reg = MO.getReg(); 1065 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1066 continue; 1067 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1068 // A PHI may cause a copy to be inserted. 1069 if (UseMI.isPHI()) { 1070 // A PHI inside the loop causes a copy because the live range of Reg is 1071 // extended across the PHI. 1072 if (CurLoop->contains(&UseMI)) 1073 return true; 1074 // A PHI in an exit block can cause a copy to be inserted if the PHI 1075 // has multiple predecessors in the loop with different values. 1076 // For now, approximate by rejecting all exit blocks. 1077 if (isExitBlock(UseMI.getParent())) 1078 return true; 1079 continue; 1080 } 1081 // Look past copies as well. 1082 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1083 Work.push_back(&UseMI); 1084 } 1085 } 1086 } while (!Work.empty()); 1087 return false; 1088 } 1089 1090 /// Compute operand latency between a def of 'Reg' and an use in the current 1091 /// loop, return true if the target considered it high. 1092 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, 1093 unsigned DefIdx, 1094 unsigned Reg) const { 1095 if (MRI->use_nodbg_empty(Reg)) 1096 return false; 1097 1098 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1099 if (UseMI.isCopyLike()) 1100 continue; 1101 if (!CurLoop->contains(UseMI.getParent())) 1102 continue; 1103 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1104 const MachineOperand &MO = UseMI.getOperand(i); 1105 if (!MO.isReg() || !MO.isUse()) 1106 continue; 1107 unsigned MOReg = MO.getReg(); 1108 if (MOReg != Reg) 1109 continue; 1110 1111 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1112 return true; 1113 } 1114 1115 // Only look at the first in loop use. 1116 break; 1117 } 1118 1119 return false; 1120 } 1121 1122 /// Return true if the instruction is marked "cheap" or the operand latency 1123 /// between its def and a use is one or less. 1124 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1125 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1126 return true; 1127 1128 bool isCheap = false; 1129 unsigned NumDefs = MI.getDesc().getNumDefs(); 1130 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1131 MachineOperand &DefMO = MI.getOperand(i); 1132 if (!DefMO.isReg() || !DefMO.isDef()) 1133 continue; 1134 --NumDefs; 1135 unsigned Reg = DefMO.getReg(); 1136 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1137 continue; 1138 1139 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1140 return false; 1141 isCheap = true; 1142 } 1143 1144 return isCheap; 1145 } 1146 1147 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1148 /// given cost matrix can cause high register pressure. 1149 bool 1150 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1151 bool CheapInstr) { 1152 for (const auto &RPIdAndCost : Cost) { 1153 if (RPIdAndCost.second <= 0) 1154 continue; 1155 1156 unsigned Class = RPIdAndCost.first; 1157 int Limit = RegLimit[Class]; 1158 1159 // Don't hoist cheap instructions if they would increase register pressure, 1160 // even if we're under the limit. 1161 if (CheapInstr && !HoistCheapInsts) 1162 return true; 1163 1164 for (const auto &RP : BackTrace) 1165 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1166 return true; 1167 } 1168 1169 return false; 1170 } 1171 1172 /// Traverse the back trace from header to the current block and update their 1173 /// register pressures to reflect the effect of hoisting MI from the current 1174 /// block to the preheader. 1175 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1176 // First compute the 'cost' of the instruction, i.e. its contribution 1177 // to register pressure. 1178 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1179 /*ConsiderUnseenAsDef=*/false); 1180 1181 // Update register pressure of blocks from loop header to current block. 1182 for (auto &RP : BackTrace) 1183 for (const auto &RPIdAndCost : Cost) 1184 RP[RPIdAndCost.first] += RPIdAndCost.second; 1185 } 1186 1187 /// Return true if it is potentially profitable to hoist the given loop 1188 /// invariant. 1189 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) { 1190 if (MI.isImplicitDef()) 1191 return true; 1192 1193 // Besides removing computation from the loop, hoisting an instruction has 1194 // these effects: 1195 // 1196 // - The value defined by the instruction becomes live across the entire 1197 // loop. This increases register pressure in the loop. 1198 // 1199 // - If the value is used by a PHI in the loop, a copy will be required for 1200 // lowering the PHI after extending the live range. 1201 // 1202 // - When hoisting the last use of a value in the loop, that value no longer 1203 // needs to be live in the loop. This lowers register pressure in the loop. 1204 1205 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1206 return true; 1207 1208 bool CheapInstr = IsCheapInstruction(MI); 1209 bool CreatesCopy = HasLoopPHIUse(&MI); 1210 1211 // Don't hoist a cheap instruction if it would create a copy in the loop. 1212 if (CheapInstr && CreatesCopy) { 1213 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1214 return false; 1215 } 1216 1217 // Rematerializable instructions should always be hoisted since the register 1218 // allocator can just pull them down again when needed. 1219 if (TII->isTriviallyReMaterializable(MI, AA)) 1220 return true; 1221 1222 // FIXME: If there are long latency loop-invariant instructions inside the 1223 // loop at this point, why didn't the optimizer's LICM hoist them? 1224 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1225 const MachineOperand &MO = MI.getOperand(i); 1226 if (!MO.isReg() || MO.isImplicit()) 1227 continue; 1228 unsigned Reg = MO.getReg(); 1229 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1230 continue; 1231 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1232 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1233 ++NumHighLatency; 1234 return true; 1235 } 1236 } 1237 1238 // Estimate register pressure to determine whether to LICM the instruction. 1239 // In low register pressure situation, we can be more aggressive about 1240 // hoisting. Also, favors hoisting long latency instructions even in 1241 // moderately high pressure situation. 1242 // Cheap instructions will only be hoisted if they don't increase register 1243 // pressure at all. 1244 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1245 /*ConsiderUnseenAsDef=*/false); 1246 1247 // Visit BBs from header to current BB, if hoisting this doesn't cause 1248 // high register pressure, then it's safe to proceed. 1249 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1250 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1251 ++NumLowRP; 1252 return true; 1253 } 1254 1255 // Don't risk increasing register pressure if it would create copies. 1256 if (CreatesCopy) { 1257 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1258 return false; 1259 } 1260 1261 // Do not "speculate" in high register pressure situation. If an 1262 // instruction is not guaranteed to be executed in the loop, it's best to be 1263 // conservative. 1264 if (AvoidSpeculation && 1265 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1266 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1267 return false; 1268 } 1269 1270 // High register pressure situation, only hoist if the instruction is going 1271 // to be remat'ed. 1272 if (!TII->isTriviallyReMaterializable(MI, AA) && 1273 !MI.isDereferenceableInvariantLoad(AA)) { 1274 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 1281 /// Unfold a load from the given machineinstr if the load itself could be 1282 /// hoisted. Return the unfolded and hoistable load, or null if the load 1283 /// couldn't be unfolded or if it wouldn't be hoistable. 1284 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) { 1285 // Don't unfold simple loads. 1286 if (MI->canFoldAsLoad()) 1287 return nullptr; 1288 1289 // If not, we may be able to unfold a load and hoist that. 1290 // First test whether the instruction is loading from an amenable 1291 // memory location. 1292 if (!MI->isDereferenceableInvariantLoad(AA)) 1293 return nullptr; 1294 1295 // Next determine the register class for a temporary register. 1296 unsigned LoadRegIndex; 1297 unsigned NewOpc = 1298 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1299 /*UnfoldLoad=*/true, 1300 /*UnfoldStore=*/false, 1301 &LoadRegIndex); 1302 if (NewOpc == 0) return nullptr; 1303 const MCInstrDesc &MID = TII->get(NewOpc); 1304 MachineFunction &MF = *MI->getMF(); 1305 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1306 // Ok, we're unfolding. Create a temporary register and do the unfold. 1307 unsigned Reg = MRI->createVirtualRegister(RC); 1308 1309 SmallVector<MachineInstr *, 2> NewMIs; 1310 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1311 /*UnfoldLoad=*/true, 1312 /*UnfoldStore=*/false, NewMIs); 1313 (void)Success; 1314 assert(Success && 1315 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1316 "succeeded!"); 1317 assert(NewMIs.size() == 2 && 1318 "Unfolded a load into multiple instructions!"); 1319 MachineBasicBlock *MBB = MI->getParent(); 1320 MachineBasicBlock::iterator Pos = MI; 1321 MBB->insert(Pos, NewMIs[0]); 1322 MBB->insert(Pos, NewMIs[1]); 1323 // If unfolding produced a load that wasn't loop-invariant or profitable to 1324 // hoist, discard the new instructions and bail. 1325 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1326 NewMIs[0]->eraseFromParent(); 1327 NewMIs[1]->eraseFromParent(); 1328 return nullptr; 1329 } 1330 1331 // Update register pressure for the unfolded instruction. 1332 UpdateRegPressure(NewMIs[1]); 1333 1334 // Otherwise we successfully unfolded a load that we can hoist. 1335 MI->eraseFromParent(); 1336 return NewMIs[0]; 1337 } 1338 1339 /// Initialize the CSE map with instructions that are in the current loop 1340 /// preheader that may become duplicates of instructions that are hoisted 1341 /// out of the loop. 1342 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1343 for (MachineInstr &MI : *BB) 1344 CSEMap[MI.getOpcode()].push_back(&MI); 1345 } 1346 1347 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1348 /// Return this instruction if it's found. 1349 const MachineInstr* 1350 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1351 std::vector<const MachineInstr*> &PrevMIs) { 1352 for (const MachineInstr *PrevMI : PrevMIs) 1353 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1354 return PrevMI; 1355 1356 return nullptr; 1357 } 1358 1359 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1360 /// computes the same value. If it's found, do a RAU on with the definition of 1361 /// the existing instruction rather than hoisting the instruction to the 1362 /// preheader. 1363 bool MachineLICMBase::EliminateCSE(MachineInstr *MI, 1364 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) { 1365 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1366 // the undef property onto uses. 1367 if (CI == CSEMap.end() || MI->isImplicitDef()) 1368 return false; 1369 1370 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1371 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1372 1373 // Replace virtual registers defined by MI by their counterparts defined 1374 // by Dup. 1375 SmallVector<unsigned, 2> Defs; 1376 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1377 const MachineOperand &MO = MI->getOperand(i); 1378 1379 // Physical registers may not differ here. 1380 assert((!MO.isReg() || MO.getReg() == 0 || 1381 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1382 MO.getReg() == Dup->getOperand(i).getReg()) && 1383 "Instructions with different phys regs are not identical!"); 1384 1385 if (MO.isReg() && MO.isDef() && 1386 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1387 Defs.push_back(i); 1388 } 1389 1390 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1391 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1392 unsigned Idx = Defs[i]; 1393 unsigned Reg = MI->getOperand(Idx).getReg(); 1394 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1395 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1396 1397 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1398 // Restore old RCs if more than one defs. 1399 for (unsigned j = 0; j != i; ++j) 1400 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1401 return false; 1402 } 1403 } 1404 1405 for (unsigned Idx : Defs) { 1406 unsigned Reg = MI->getOperand(Idx).getReg(); 1407 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1408 MRI->replaceRegWith(Reg, DupReg); 1409 MRI->clearKillFlags(DupReg); 1410 } 1411 1412 MI->eraseFromParent(); 1413 ++NumCSEed; 1414 return true; 1415 } 1416 return false; 1417 } 1418 1419 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1420 /// the loop. 1421 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1422 unsigned Opcode = MI->getOpcode(); 1423 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1424 CI = CSEMap.find(Opcode); 1425 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1426 // the undef property onto uses. 1427 if (CI == CSEMap.end() || MI->isImplicitDef()) 1428 return false; 1429 1430 return LookForDuplicate(MI, CI->second) != nullptr; 1431 } 1432 1433 /// When an instruction is found to use only loop invariant operands 1434 /// that are safe to hoist, this instruction is called to do the dirty work. 1435 /// It returns true if the instruction is hoisted. 1436 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1437 // First check whether we should hoist this instruction. 1438 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1439 // If not, try unfolding a hoistable load. 1440 MI = ExtractHoistableLoad(MI); 1441 if (!MI) return false; 1442 } 1443 1444 // If we have hoisted an instruction that may store, it can only be a constant 1445 // store. 1446 if (MI->mayStore()) 1447 NumStoreConst++; 1448 1449 // Now move the instructions to the predecessor, inserting it before any 1450 // terminator instructions. 1451 LLVM_DEBUG({ 1452 dbgs() << "Hoisting " << *MI; 1453 if (MI->getParent()->getBasicBlock()) 1454 dbgs() << " from " << printMBBReference(*MI->getParent()); 1455 if (Preheader->getBasicBlock()) 1456 dbgs() << " to " << printMBBReference(*Preheader); 1457 dbgs() << "\n"; 1458 }); 1459 1460 // If this is the first instruction being hoisted to the preheader, 1461 // initialize the CSE map with potential common expressions. 1462 if (FirstInLoop) { 1463 InitCSEMap(Preheader); 1464 FirstInLoop = false; 1465 } 1466 1467 // Look for opportunity to CSE the hoisted instruction. 1468 unsigned Opcode = MI->getOpcode(); 1469 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1470 CI = CSEMap.find(Opcode); 1471 if (!EliminateCSE(MI, CI)) { 1472 // Otherwise, splice the instruction to the preheader. 1473 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1474 1475 // Since we are moving the instruction out of its basic block, we do not 1476 // retain its debug location. Doing so would degrade the debugging 1477 // experience and adversely affect the accuracy of profiling information. 1478 MI->setDebugLoc(DebugLoc()); 1479 1480 // Update register pressure for BBs from header to this block. 1481 UpdateBackTraceRegPressure(MI); 1482 1483 // Clear the kill flags of any register this instruction defines, 1484 // since they may need to be live throughout the entire loop 1485 // rather than just live for part of it. 1486 for (MachineOperand &MO : MI->operands()) 1487 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1488 MRI->clearKillFlags(MO.getReg()); 1489 1490 // Add to the CSE map. 1491 if (CI != CSEMap.end()) 1492 CI->second.push_back(MI); 1493 else 1494 CSEMap[Opcode].push_back(MI); 1495 } 1496 1497 ++NumHoisted; 1498 Changed = true; 1499 1500 return true; 1501 } 1502 1503 /// Get the preheader for the current loop, splitting a critical edge if needed. 1504 MachineBasicBlock *MachineLICMBase::getCurPreheader() { 1505 // Determine the block to which to hoist instructions. If we can't find a 1506 // suitable loop predecessor, we can't do any hoisting. 1507 1508 // If we've tried to get a preheader and failed, don't try again. 1509 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1510 return nullptr; 1511 1512 if (!CurPreheader) { 1513 CurPreheader = CurLoop->getLoopPreheader(); 1514 if (!CurPreheader) { 1515 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1516 if (!Pred) { 1517 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1518 return nullptr; 1519 } 1520 1521 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1522 if (!CurPreheader) { 1523 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1524 return nullptr; 1525 } 1526 } 1527 } 1528 return CurPreheader; 1529 } 1530