1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion on machine instructions. We 10 // attempt to remove as much code from the body of a loop as possible. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegisterInfo.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <limits> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "machinelicm" 59 60 static cl::opt<bool> 61 AvoidSpeculation("avoid-speculation", 62 cl::desc("MachineLICM should avoid speculation"), 63 cl::init(true), cl::Hidden); 64 65 static cl::opt<bool> 66 HoistCheapInsts("hoist-cheap-insts", 67 cl::desc("MachineLICM should hoist even cheap instructions"), 68 cl::init(false), cl::Hidden); 69 70 static cl::opt<bool> 71 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 72 cl::desc("MachineLICM should sink instructions into " 73 "loops to avoid register spills"), 74 cl::init(false), cl::Hidden); 75 static cl::opt<bool> 76 HoistConstStores("hoist-const-stores", 77 cl::desc("Hoist invariant stores"), 78 cl::init(true), cl::Hidden); 79 // The default threshold of 100 (i.e. if target block is 100 times hotter) 80 // is based on empirical data on a single target and is subject to tuning. 81 static cl::opt<unsigned> 82 BlockFrequencyRatioThreshold("block-freq-ratio-threshold", 83 cl::desc("Do not hoist instructions if target" 84 "block is N times hotter than the source."), 85 cl::init(100), cl::Hidden); 86 87 enum class UseBFI { None, PGO, All }; 88 89 static cl::opt<UseBFI> 90 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks", 91 cl::desc("Disable hoisting instructions to" 92 " hotter blocks"), 93 cl::init(UseBFI::None), cl::Hidden, 94 cl::values(clEnumValN(UseBFI::None, "none", 95 "disable the feature"), 96 clEnumValN(UseBFI::PGO, "pgo", 97 "enable the feature when using profile data"), 98 clEnumValN(UseBFI::All, "all", 99 "enable the feature with/wo profile data"))); 100 101 STATISTIC(NumHoisted, 102 "Number of machine instructions hoisted out of loops"); 103 STATISTIC(NumLowRP, 104 "Number of instructions hoisted in low reg pressure situation"); 105 STATISTIC(NumHighLatency, 106 "Number of high latency instructions hoisted"); 107 STATISTIC(NumCSEed, 108 "Number of hoisted machine instructions CSEed"); 109 STATISTIC(NumPostRAHoisted, 110 "Number of machine instructions hoisted out of loops post regalloc"); 111 STATISTIC(NumStoreConst, 112 "Number of stores of const phys reg hoisted out of loops"); 113 STATISTIC(NumNotHoistedDueToHotness, 114 "Number of instructions not hoisted due to block frequency"); 115 116 namespace { 117 118 class MachineLICMBase : public MachineFunctionPass { 119 const TargetInstrInfo *TII; 120 const TargetLoweringBase *TLI; 121 const TargetRegisterInfo *TRI; 122 const MachineFrameInfo *MFI; 123 MachineRegisterInfo *MRI; 124 TargetSchedModel SchedModel; 125 bool PreRegAlloc; 126 bool HasProfileData; 127 128 // Various analyses that we use... 129 AliasAnalysis *AA; // Alias analysis info. 130 MachineBlockFrequencyInfo *MBFI; // Machine block frequncy info 131 MachineLoopInfo *MLI; // Current MachineLoopInfo 132 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 133 134 // State that is updated as we process loops 135 bool Changed; // True if a loop is changed. 136 bool FirstInLoop; // True if it's the first LICM in the loop. 137 MachineLoop *CurLoop; // The current loop we are working on. 138 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 139 140 // Exit blocks for CurLoop. 141 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 142 143 bool isExitBlock(const MachineBasicBlock *MBB) const { 144 return is_contained(ExitBlocks, MBB); 145 } 146 147 // Track 'estimated' register pressure. 148 SmallSet<unsigned, 32> RegSeen; 149 SmallVector<unsigned, 8> RegPressure; 150 151 // Register pressure "limit" per register pressure set. If the pressure 152 // is higher than the limit, then it's considered high. 153 SmallVector<unsigned, 8> RegLimit; 154 155 // Register pressure on path leading from loop preheader to current BB. 156 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 157 158 // For each opcode, keep a list of potential CSE instructions. 159 DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap; 160 161 enum { 162 SpeculateFalse = 0, 163 SpeculateTrue = 1, 164 SpeculateUnknown = 2 165 }; 166 167 // If a MBB does not dominate loop exiting blocks then it may not safe 168 // to hoist loads from this block. 169 // Tri-state: 0 - false, 1 - true, 2 - unknown 170 unsigned SpeculationState; 171 172 public: 173 MachineLICMBase(char &PassID, bool PreRegAlloc) 174 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 175 176 bool runOnMachineFunction(MachineFunction &MF) override; 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override { 179 AU.addRequired<MachineLoopInfo>(); 180 if (DisableHoistingToHotterBlocks != UseBFI::None) 181 AU.addRequired<MachineBlockFrequencyInfo>(); 182 AU.addRequired<MachineDominatorTree>(); 183 AU.addRequired<AAResultsWrapperPass>(); 184 AU.addPreserved<MachineLoopInfo>(); 185 MachineFunctionPass::getAnalysisUsage(AU); 186 } 187 188 void releaseMemory() override { 189 RegSeen.clear(); 190 RegPressure.clear(); 191 RegLimit.clear(); 192 BackTrace.clear(); 193 CSEMap.clear(); 194 } 195 196 private: 197 /// Keep track of information about hoisting candidates. 198 struct CandidateInfo { 199 MachineInstr *MI; 200 unsigned Def; 201 int FI; 202 203 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 204 : MI(mi), Def(def), FI(fi) {} 205 }; 206 207 void HoistRegionPostRA(); 208 209 void HoistPostRA(MachineInstr *MI, unsigned Def); 210 211 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 212 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 213 SmallVectorImpl<CandidateInfo> &Candidates); 214 215 void AddToLiveIns(unsigned Reg); 216 217 bool IsLICMCandidate(MachineInstr &I); 218 219 bool IsLoopInvariantInst(MachineInstr &I); 220 221 bool HasLoopPHIUse(const MachineInstr *MI) const; 222 223 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 224 unsigned Reg) const; 225 226 bool IsCheapInstruction(MachineInstr &MI) const; 227 228 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 229 bool Cheap); 230 231 void UpdateBackTraceRegPressure(const MachineInstr *MI); 232 233 bool IsProfitableToHoist(MachineInstr &MI); 234 235 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 236 237 void EnterScope(MachineBasicBlock *MBB); 238 239 void ExitScope(MachineBasicBlock *MBB); 240 241 void ExitScopeIfDone( 242 MachineDomTreeNode *Node, 243 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 244 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 245 246 void HoistOutOfLoop(MachineDomTreeNode *HeaderN); 247 248 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 249 250 void SinkIntoLoop(); 251 252 void InitRegPressure(MachineBasicBlock *BB); 253 254 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 255 bool ConsiderSeen, 256 bool ConsiderUnseenAsDef); 257 258 void UpdateRegPressure(const MachineInstr *MI, 259 bool ConsiderUnseenAsDef = false); 260 261 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 262 263 const MachineInstr * 264 LookForDuplicate(const MachineInstr *MI, 265 std::vector<const MachineInstr *> &PrevMIs); 266 267 bool EliminateCSE( 268 MachineInstr *MI, 269 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); 270 271 bool MayCSE(MachineInstr *MI); 272 273 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 274 275 void InitCSEMap(MachineBasicBlock *BB); 276 277 bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 278 MachineBasicBlock *TgtBlock); 279 MachineBasicBlock *getCurPreheader(); 280 }; 281 282 class MachineLICM : public MachineLICMBase { 283 public: 284 static char ID; 285 MachineLICM() : MachineLICMBase(ID, false) { 286 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 287 } 288 }; 289 290 class EarlyMachineLICM : public MachineLICMBase { 291 public: 292 static char ID; 293 EarlyMachineLICM() : MachineLICMBase(ID, true) { 294 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 295 } 296 }; 297 298 } // end anonymous namespace 299 300 char MachineLICM::ID; 301 char EarlyMachineLICM::ID; 302 303 char &llvm::MachineLICMID = MachineLICM::ID; 304 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 305 306 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 307 "Machine Loop Invariant Code Motion", false, false) 308 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 309 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 310 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 311 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 312 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 313 "Machine Loop Invariant Code Motion", false, false) 314 315 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 316 "Early Machine Loop Invariant Code Motion", false, false) 317 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 318 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 319 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 320 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 321 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 322 "Early Machine Loop Invariant Code Motion", false, false) 323 324 /// Test if the given loop is the outer-most loop that has a unique predecessor. 325 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 326 // Check whether this loop even has a unique predecessor. 327 if (!CurLoop->getLoopPredecessor()) 328 return false; 329 // Ok, now check to see if any of its outer loops do. 330 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 331 if (L->getLoopPredecessor()) 332 return false; 333 // None of them did, so this is the outermost with a unique predecessor. 334 return true; 335 } 336 337 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 338 if (skipFunction(MF.getFunction())) 339 return false; 340 341 Changed = FirstInLoop = false; 342 const TargetSubtargetInfo &ST = MF.getSubtarget(); 343 TII = ST.getInstrInfo(); 344 TLI = ST.getTargetLowering(); 345 TRI = ST.getRegisterInfo(); 346 MFI = &MF.getFrameInfo(); 347 MRI = &MF.getRegInfo(); 348 SchedModel.init(&ST); 349 350 PreRegAlloc = MRI->isSSA(); 351 HasProfileData = MF.getFunction().hasProfileData(); 352 353 if (PreRegAlloc) 354 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 355 else 356 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 357 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 358 359 if (PreRegAlloc) { 360 // Estimate register pressure during pre-regalloc pass. 361 unsigned NumRPS = TRI->getNumRegPressureSets(); 362 RegPressure.resize(NumRPS); 363 std::fill(RegPressure.begin(), RegPressure.end(), 0); 364 RegLimit.resize(NumRPS); 365 for (unsigned i = 0, e = NumRPS; i != e; ++i) 366 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 367 } 368 369 // Get our Loop information... 370 if (DisableHoistingToHotterBlocks != UseBFI::None) 371 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 372 MLI = &getAnalysis<MachineLoopInfo>(); 373 DT = &getAnalysis<MachineDominatorTree>(); 374 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 375 376 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 377 while (!Worklist.empty()) { 378 CurLoop = Worklist.pop_back_val(); 379 CurPreheader = nullptr; 380 ExitBlocks.clear(); 381 382 // If this is done before regalloc, only visit outer-most preheader-sporting 383 // loops. 384 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 385 Worklist.append(CurLoop->begin(), CurLoop->end()); 386 continue; 387 } 388 389 CurLoop->getExitBlocks(ExitBlocks); 390 391 if (!PreRegAlloc) 392 HoistRegionPostRA(); 393 else { 394 // CSEMap is initialized for loop header when the first instruction is 395 // being hoisted. 396 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 397 FirstInLoop = true; 398 HoistOutOfLoop(N); 399 CSEMap.clear(); 400 401 if (SinkInstsToAvoidSpills) 402 SinkIntoLoop(); 403 } 404 } 405 406 return Changed; 407 } 408 409 /// Return true if instruction stores to the specified frame. 410 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 411 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 412 // true since they have no memory operands. 413 if (!MI->mayStore()) 414 return false; 415 // If we lost memory operands, conservatively assume that the instruction 416 // writes to all slots. 417 if (MI->memoperands_empty()) 418 return true; 419 for (const MachineMemOperand *MemOp : MI->memoperands()) { 420 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 421 continue; 422 if (const FixedStackPseudoSourceValue *Value = 423 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 424 if (Value->getFrameIndex() == FI) 425 return true; 426 } 427 } 428 return false; 429 } 430 431 /// Examine the instruction for potentai LICM candidate. Also 432 /// gather register def and frame object update information. 433 void MachineLICMBase::ProcessMI(MachineInstr *MI, 434 BitVector &PhysRegDefs, 435 BitVector &PhysRegClobbers, 436 SmallSet<int, 32> &StoredFIs, 437 SmallVectorImpl<CandidateInfo> &Candidates) { 438 bool RuledOut = false; 439 bool HasNonInvariantUse = false; 440 unsigned Def = 0; 441 for (const MachineOperand &MO : MI->operands()) { 442 if (MO.isFI()) { 443 // Remember if the instruction stores to the frame index. 444 int FI = MO.getIndex(); 445 if (!StoredFIs.count(FI) && 446 MFI->isSpillSlotObjectIndex(FI) && 447 InstructionStoresToFI(MI, FI)) 448 StoredFIs.insert(FI); 449 HasNonInvariantUse = true; 450 continue; 451 } 452 453 // We can't hoist an instruction defining a physreg that is clobbered in 454 // the loop. 455 if (MO.isRegMask()) { 456 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 457 continue; 458 } 459 460 if (!MO.isReg()) 461 continue; 462 Register Reg = MO.getReg(); 463 if (!Reg) 464 continue; 465 assert(Register::isPhysicalRegister(Reg) && 466 "Not expecting virtual register!"); 467 468 if (!MO.isDef()) { 469 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 470 // If it's using a non-loop-invariant register, then it's obviously not 471 // safe to hoist. 472 HasNonInvariantUse = true; 473 continue; 474 } 475 476 if (MO.isImplicit()) { 477 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 478 PhysRegClobbers.set(*AI); 479 if (!MO.isDead()) 480 // Non-dead implicit def? This cannot be hoisted. 481 RuledOut = true; 482 // No need to check if a dead implicit def is also defined by 483 // another instruction. 484 continue; 485 } 486 487 // FIXME: For now, avoid instructions with multiple defs, unless 488 // it's a dead implicit def. 489 if (Def) 490 RuledOut = true; 491 else 492 Def = Reg; 493 494 // If we have already seen another instruction that defines the same 495 // register, then this is not safe. Two defs is indicated by setting a 496 // PhysRegClobbers bit. 497 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 498 if (PhysRegDefs.test(*AS)) 499 PhysRegClobbers.set(*AS); 500 } 501 // Need a second loop because MCRegAliasIterator can visit the same 502 // register twice. 503 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) 504 PhysRegDefs.set(*AS); 505 506 if (PhysRegClobbers.test(Reg)) 507 // MI defined register is seen defined by another instruction in 508 // the loop, it cannot be a LICM candidate. 509 RuledOut = true; 510 } 511 512 // Only consider reloads for now and remats which do not have register 513 // operands. FIXME: Consider unfold load folding instructions. 514 if (Def && !RuledOut) { 515 int FI = std::numeric_limits<int>::min(); 516 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 517 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 518 Candidates.push_back(CandidateInfo(MI, Def, FI)); 519 } 520 } 521 522 /// Walk the specified region of the CFG and hoist loop invariants out to the 523 /// preheader. 524 void MachineLICMBase::HoistRegionPostRA() { 525 MachineBasicBlock *Preheader = getCurPreheader(); 526 if (!Preheader) 527 return; 528 529 unsigned NumRegs = TRI->getNumRegs(); 530 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 531 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 532 533 SmallVector<CandidateInfo, 32> Candidates; 534 SmallSet<int, 32> StoredFIs; 535 536 // Walk the entire region, count number of defs for each register, and 537 // collect potential LICM candidates. 538 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 539 // If the header of the loop containing this basic block is a landing pad, 540 // then don't try to hoist instructions out of this loop. 541 const MachineLoop *ML = MLI->getLoopFor(BB); 542 if (ML && ML->getHeader()->isEHPad()) continue; 543 544 // Conservatively treat live-in's as an external def. 545 // FIXME: That means a reload that're reused in successor block(s) will not 546 // be LICM'ed. 547 for (const auto &LI : BB->liveins()) { 548 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 549 PhysRegDefs.set(*AI); 550 } 551 552 SpeculationState = SpeculateUnknown; 553 for (MachineInstr &MI : *BB) 554 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 555 } 556 557 // Gather the registers read / clobbered by the terminator. 558 BitVector TermRegs(NumRegs); 559 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 560 if (TI != Preheader->end()) { 561 for (const MachineOperand &MO : TI->operands()) { 562 if (!MO.isReg()) 563 continue; 564 Register Reg = MO.getReg(); 565 if (!Reg) 566 continue; 567 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 568 TermRegs.set(*AI); 569 } 570 } 571 572 // Now evaluate whether the potential candidates qualify. 573 // 1. Check if the candidate defined register is defined by another 574 // instruction in the loop. 575 // 2. If the candidate is a load from stack slot (always true for now), 576 // check if the slot is stored anywhere in the loop. 577 // 3. Make sure candidate def should not clobber 578 // registers read by the terminator. Similarly its def should not be 579 // clobbered by the terminator. 580 for (CandidateInfo &Candidate : Candidates) { 581 if (Candidate.FI != std::numeric_limits<int>::min() && 582 StoredFIs.count(Candidate.FI)) 583 continue; 584 585 unsigned Def = Candidate.Def; 586 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 587 bool Safe = true; 588 MachineInstr *MI = Candidate.MI; 589 for (const MachineOperand &MO : MI->operands()) { 590 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 591 continue; 592 Register Reg = MO.getReg(); 593 if (PhysRegDefs.test(Reg) || 594 PhysRegClobbers.test(Reg)) { 595 // If it's using a non-loop-invariant register, then it's obviously 596 // not safe to hoist. 597 Safe = false; 598 break; 599 } 600 } 601 if (Safe) 602 HoistPostRA(MI, Candidate.Def); 603 } 604 } 605 } 606 607 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 608 /// sure it is not killed by any instructions in the loop. 609 void MachineLICMBase::AddToLiveIns(unsigned Reg) { 610 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 611 if (!BB->isLiveIn(Reg)) 612 BB->addLiveIn(Reg); 613 for (MachineInstr &MI : *BB) { 614 for (MachineOperand &MO : MI.operands()) { 615 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 616 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 617 MO.setIsKill(false); 618 } 619 } 620 } 621 } 622 623 /// When an instruction is found to only use loop invariant operands that is 624 /// safe to hoist, this instruction is called to do the dirty work. 625 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) { 626 MachineBasicBlock *Preheader = getCurPreheader(); 627 628 // Now move the instructions to the predecessor, inserting it before any 629 // terminator instructions. 630 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 631 << " from " << printMBBReference(*MI->getParent()) << ": " 632 << *MI); 633 634 // Splice the instruction to the preheader. 635 MachineBasicBlock *MBB = MI->getParent(); 636 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 637 638 // Since we are moving the instruction out of its basic block, we do not 639 // retain its debug location. Doing so would degrade the debugging 640 // experience and adversely affect the accuracy of profiling information. 641 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 642 MI->setDebugLoc(DebugLoc()); 643 644 // Add register to livein list to all the BBs in the current loop since a 645 // loop invariant must be kept live throughout the whole loop. This is 646 // important to ensure later passes do not scavenge the def register. 647 AddToLiveIns(Def); 648 649 ++NumPostRAHoisted; 650 Changed = true; 651 } 652 653 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 654 /// may not be safe to hoist. 655 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) { 656 if (SpeculationState != SpeculateUnknown) 657 return SpeculationState == SpeculateFalse; 658 659 if (BB != CurLoop->getHeader()) { 660 // Check loop exiting blocks. 661 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 662 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 663 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 664 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 665 SpeculationState = SpeculateTrue; 666 return false; 667 } 668 } 669 670 SpeculationState = SpeculateFalse; 671 return true; 672 } 673 674 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 675 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 676 677 // Remember livein register pressure. 678 BackTrace.push_back(RegPressure); 679 } 680 681 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 682 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 683 BackTrace.pop_back(); 684 } 685 686 /// Destroy scope for the MBB that corresponds to the given dominator tree node 687 /// if its a leaf or all of its children are done. Walk up the dominator tree to 688 /// destroy ancestors which are now done. 689 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 690 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 691 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 692 if (OpenChildren[Node]) 693 return; 694 695 // Pop scope. 696 ExitScope(Node->getBlock()); 697 698 // Now traverse upwards to pop ancestors whose offsprings are all done. 699 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 700 unsigned Left = --OpenChildren[Parent]; 701 if (Left != 0) 702 break; 703 ExitScope(Parent->getBlock()); 704 Node = Parent; 705 } 706 } 707 708 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 709 /// specified header block, and that are in the current loop) in depth first 710 /// order w.r.t the DominatorTree. This allows us to visit definitions before 711 /// uses, allowing us to hoist a loop body in one pass without iteration. 712 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 713 MachineBasicBlock *Preheader = getCurPreheader(); 714 if (!Preheader) 715 return; 716 717 SmallVector<MachineDomTreeNode*, 32> Scopes; 718 SmallVector<MachineDomTreeNode*, 8> WorkList; 719 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 720 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 721 722 // Perform a DFS walk to determine the order of visit. 723 WorkList.push_back(HeaderN); 724 while (!WorkList.empty()) { 725 MachineDomTreeNode *Node = WorkList.pop_back_val(); 726 assert(Node && "Null dominator tree node?"); 727 MachineBasicBlock *BB = Node->getBlock(); 728 729 // If the header of the loop containing this basic block is a landing pad, 730 // then don't try to hoist instructions out of this loop. 731 const MachineLoop *ML = MLI->getLoopFor(BB); 732 if (ML && ML->getHeader()->isEHPad()) 733 continue; 734 735 // If this subregion is not in the top level loop at all, exit. 736 if (!CurLoop->contains(BB)) 737 continue; 738 739 Scopes.push_back(Node); 740 unsigned NumChildren = Node->getNumChildren(); 741 742 // Don't hoist things out of a large switch statement. This often causes 743 // code to be hoisted that wasn't going to be executed, and increases 744 // register pressure in a situation where it's likely to matter. 745 if (BB->succ_size() >= 25) 746 NumChildren = 0; 747 748 OpenChildren[Node] = NumChildren; 749 if (NumChildren) { 750 // Add children in reverse order as then the next popped worklist node is 751 // the first child of this node. This means we ultimately traverse the 752 // DOM tree in exactly the same order as if we'd recursed. 753 for (MachineDomTreeNode *Child : reverse(Node->children())) { 754 ParentMap[Child] = Node; 755 WorkList.push_back(Child); 756 } 757 } 758 } 759 760 if (Scopes.size() == 0) 761 return; 762 763 // Compute registers which are livein into the loop headers. 764 RegSeen.clear(); 765 BackTrace.clear(); 766 InitRegPressure(Preheader); 767 768 // Now perform LICM. 769 for (MachineDomTreeNode *Node : Scopes) { 770 MachineBasicBlock *MBB = Node->getBlock(); 771 772 EnterScope(MBB); 773 774 // Process the block 775 SpeculationState = SpeculateUnknown; 776 for (MachineBasicBlock::iterator 777 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 778 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 779 MachineInstr *MI = &*MII; 780 if (!Hoist(MI, Preheader)) 781 UpdateRegPressure(MI); 782 // If we have hoisted an instruction that may store, it can only be a 783 // constant store. 784 MII = NextMII; 785 } 786 787 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 788 ExitScopeIfDone(Node, OpenChildren, ParentMap); 789 } 790 } 791 792 /// Sink instructions into loops if profitable. This especially tries to prevent 793 /// register spills caused by register pressure if there is little to no 794 /// overhead moving instructions into loops. 795 void MachineLICMBase::SinkIntoLoop() { 796 MachineBasicBlock *Preheader = getCurPreheader(); 797 if (!Preheader) 798 return; 799 800 SmallVector<MachineInstr *, 8> Candidates; 801 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 802 I != Preheader->instr_end(); ++I) { 803 // We need to ensure that we can safely move this instruction into the loop. 804 // As such, it must not have side-effects, e.g. such as a call has. 805 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) 806 Candidates.push_back(&*I); 807 } 808 809 for (MachineInstr *I : Candidates) { 810 const MachineOperand &MO = I->getOperand(0); 811 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 812 continue; 813 if (!MRI->hasOneDef(MO.getReg())) 814 continue; 815 bool CanSink = true; 816 MachineBasicBlock *B = nullptr; 817 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 818 // FIXME: Come up with a proper cost model that estimates whether sinking 819 // the instruction (and thus possibly executing it on every loop 820 // iteration) is more expensive than a register. 821 // For now assumes that copies are cheap and thus almost always worth it. 822 if (!MI.isCopy()) { 823 CanSink = false; 824 break; 825 } 826 if (!B) { 827 B = MI.getParent(); 828 continue; 829 } 830 B = DT->findNearestCommonDominator(B, MI.getParent()); 831 if (!B) { 832 CanSink = false; 833 break; 834 } 835 } 836 if (!CanSink || !B || B == Preheader) 837 continue; 838 839 LLVM_DEBUG(dbgs() << "Sinking to " << printMBBReference(*B) << " from " 840 << printMBBReference(*I->getParent()) << ": " << *I); 841 B->splice(B->getFirstNonPHI(), Preheader, I); 842 843 // The instruction is is moved from its basic block, so do not retain the 844 // debug information. 845 assert(!I->isDebugInstr() && "Should not sink debug inst"); 846 I->setDebugLoc(DebugLoc()); 847 } 848 } 849 850 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 851 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 852 } 853 854 /// Find all virtual register references that are liveout of the preheader to 855 /// initialize the starting "register pressure". Note this does not count live 856 /// through (livein but not used) registers. 857 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 858 std::fill(RegPressure.begin(), RegPressure.end(), 0); 859 860 // If the preheader has only a single predecessor and it ends with a 861 // fallthrough or an unconditional branch, then scan its predecessor for live 862 // defs as well. This happens whenever the preheader is created by splitting 863 // the critical edge from the loop predecessor to the loop header. 864 if (BB->pred_size() == 1) { 865 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 866 SmallVector<MachineOperand, 4> Cond; 867 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 868 InitRegPressure(*BB->pred_begin()); 869 } 870 871 for (const MachineInstr &MI : *BB) 872 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 873 } 874 875 /// Update estimate of register pressure after the specified instruction. 876 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 877 bool ConsiderUnseenAsDef) { 878 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 879 for (const auto &RPIdAndCost : Cost) { 880 unsigned Class = RPIdAndCost.first; 881 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 882 RegPressure[Class] = 0; 883 else 884 RegPressure[Class] += RPIdAndCost.second; 885 } 886 } 887 888 /// Calculate the additional register pressure that the registers used in MI 889 /// cause. 890 /// 891 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 892 /// figure out which usages are live-ins. 893 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 894 DenseMap<unsigned, int> 895 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 896 bool ConsiderUnseenAsDef) { 897 DenseMap<unsigned, int> Cost; 898 if (MI->isImplicitDef()) 899 return Cost; 900 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 901 const MachineOperand &MO = MI->getOperand(i); 902 if (!MO.isReg() || MO.isImplicit()) 903 continue; 904 Register Reg = MO.getReg(); 905 if (!Register::isVirtualRegister(Reg)) 906 continue; 907 908 // FIXME: It seems bad to use RegSeen only for some of these calculations. 909 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 910 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 911 912 RegClassWeight W = TRI->getRegClassWeight(RC); 913 int RCCost = 0; 914 if (MO.isDef()) 915 RCCost = W.RegWeight; 916 else { 917 bool isKill = isOperandKill(MO, MRI); 918 if (isNew && !isKill && ConsiderUnseenAsDef) 919 // Haven't seen this, it must be a livein. 920 RCCost = W.RegWeight; 921 else if (!isNew && isKill) 922 RCCost = -W.RegWeight; 923 } 924 if (RCCost == 0) 925 continue; 926 const int *PS = TRI->getRegClassPressureSets(RC); 927 for (; *PS != -1; ++PS) { 928 if (Cost.find(*PS) == Cost.end()) 929 Cost[*PS] = RCCost; 930 else 931 Cost[*PS] += RCCost; 932 } 933 } 934 return Cost; 935 } 936 937 /// Return true if this machine instruction loads from global offset table or 938 /// constant pool. 939 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 940 assert(MI.mayLoad() && "Expected MI that loads!"); 941 942 // If we lost memory operands, conservatively assume that the instruction 943 // reads from everything.. 944 if (MI.memoperands_empty()) 945 return true; 946 947 for (MachineMemOperand *MemOp : MI.memoperands()) 948 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 949 if (PSV->isGOT() || PSV->isConstantPool()) 950 return true; 951 952 return false; 953 } 954 955 // This function iterates through all the operands of the input store MI and 956 // checks that each register operand statisfies isCallerPreservedPhysReg. 957 // This means, the value being stored and the address where it is being stored 958 // is constant throughout the body of the function (not including prologue and 959 // epilogue). When called with an MI that isn't a store, it returns false. 960 // A future improvement can be to check if the store registers are constant 961 // throughout the loop rather than throughout the funtion. 962 static bool isInvariantStore(const MachineInstr &MI, 963 const TargetRegisterInfo *TRI, 964 const MachineRegisterInfo *MRI) { 965 966 bool FoundCallerPresReg = false; 967 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 968 (MI.getNumOperands() == 0)) 969 return false; 970 971 // Check that all register operands are caller-preserved physical registers. 972 for (const MachineOperand &MO : MI.operands()) { 973 if (MO.isReg()) { 974 Register Reg = MO.getReg(); 975 // If operand is a virtual register, check if it comes from a copy of a 976 // physical register. 977 if (Register::isVirtualRegister(Reg)) 978 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 979 if (Register::isVirtualRegister(Reg)) 980 return false; 981 if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF())) 982 return false; 983 else 984 FoundCallerPresReg = true; 985 } else if (!MO.isImm()) { 986 return false; 987 } 988 } 989 return FoundCallerPresReg; 990 } 991 992 // Return true if the input MI is a copy instruction that feeds an invariant 993 // store instruction. This means that the src of the copy has to satisfy 994 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 995 // isInvariantStore. 996 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 997 const MachineRegisterInfo *MRI, 998 const TargetRegisterInfo *TRI) { 999 1000 // FIXME: If targets would like to look through instructions that aren't 1001 // pure copies, this can be updated to a query. 1002 if (!MI.isCopy()) 1003 return false; 1004 1005 const MachineFunction *MF = MI.getMF(); 1006 // Check that we are copying a constant physical register. 1007 Register CopySrcReg = MI.getOperand(1).getReg(); 1008 if (Register::isVirtualRegister(CopySrcReg)) 1009 return false; 1010 1011 if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF)) 1012 return false; 1013 1014 Register CopyDstReg = MI.getOperand(0).getReg(); 1015 // Check if any of the uses of the copy are invariant stores. 1016 assert(Register::isVirtualRegister(CopyDstReg) && 1017 "copy dst is not a virtual reg"); 1018 1019 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 1020 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 1021 return true; 1022 } 1023 return false; 1024 } 1025 1026 /// Returns true if the instruction may be a suitable candidate for LICM. 1027 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 1028 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) { 1029 // Check if it's safe to move the instruction. 1030 bool DontMoveAcrossStore = true; 1031 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 1032 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 1033 return false; 1034 } 1035 1036 // If it is load then check if it is guaranteed to execute by making sure that 1037 // it dominates all exiting blocks. If it doesn't, then there is a path out of 1038 // the loop which does not execute this load, so we can't hoist it. Loads 1039 // from constant memory are not safe to speculate all the time, for example 1040 // indexed load from a jump table. 1041 // Stores and side effects are already checked by isSafeToMove. 1042 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 1043 !IsGuaranteedToExecute(I.getParent())) 1044 return false; 1045 1046 return true; 1047 } 1048 1049 /// Returns true if the instruction is loop invariant. 1050 /// I.e., all virtual register operands are defined outside of the loop, 1051 /// physical registers aren't accessed explicitly, and there are no side 1052 /// effects that aren't captured by the operands or other flags. 1053 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) { 1054 if (!IsLICMCandidate(I)) 1055 return false; 1056 1057 // The instruction is loop invariant if all of its operands are. 1058 for (const MachineOperand &MO : I.operands()) { 1059 if (!MO.isReg()) 1060 continue; 1061 1062 Register Reg = MO.getReg(); 1063 if (Reg == 0) continue; 1064 1065 // Don't hoist an instruction that uses or defines a physical register. 1066 if (Register::isPhysicalRegister(Reg)) { 1067 if (MO.isUse()) { 1068 // If the physreg has no defs anywhere, it's just an ambient register 1069 // and we can freely move its uses. Alternatively, if it's allocatable, 1070 // it could get allocated to something with a def during allocation. 1071 // However, if the physreg is known to always be caller saved/restored 1072 // then this use is safe to hoist. 1073 if (!MRI->isConstantPhysReg(Reg) && 1074 !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF()))) 1075 return false; 1076 // Otherwise it's safe to move. 1077 continue; 1078 } else if (!MO.isDead()) { 1079 // A def that isn't dead. We can't move it. 1080 return false; 1081 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 1082 // If the reg is live into the loop, we can't hoist an instruction 1083 // which would clobber it. 1084 return false; 1085 } 1086 } 1087 1088 if (!MO.isUse()) 1089 continue; 1090 1091 assert(MRI->getVRegDef(Reg) && 1092 "Machine instr not mapped for this vreg?!"); 1093 1094 // If the loop contains the definition of an operand, then the instruction 1095 // isn't loop invariant. 1096 if (CurLoop->contains(MRI->getVRegDef(Reg))) 1097 return false; 1098 } 1099 1100 // If we got this far, the instruction is loop invariant! 1101 return true; 1102 } 1103 1104 /// Return true if the specified instruction is used by a phi node and hoisting 1105 /// it could cause a copy to be inserted. 1106 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const { 1107 SmallVector<const MachineInstr*, 8> Work(1, MI); 1108 do { 1109 MI = Work.pop_back_val(); 1110 for (const MachineOperand &MO : MI->operands()) { 1111 if (!MO.isReg() || !MO.isDef()) 1112 continue; 1113 Register Reg = MO.getReg(); 1114 if (!Register::isVirtualRegister(Reg)) 1115 continue; 1116 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1117 // A PHI may cause a copy to be inserted. 1118 if (UseMI.isPHI()) { 1119 // A PHI inside the loop causes a copy because the live range of Reg is 1120 // extended across the PHI. 1121 if (CurLoop->contains(&UseMI)) 1122 return true; 1123 // A PHI in an exit block can cause a copy to be inserted if the PHI 1124 // has multiple predecessors in the loop with different values. 1125 // For now, approximate by rejecting all exit blocks. 1126 if (isExitBlock(UseMI.getParent())) 1127 return true; 1128 continue; 1129 } 1130 // Look past copies as well. 1131 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1132 Work.push_back(&UseMI); 1133 } 1134 } 1135 } while (!Work.empty()); 1136 return false; 1137 } 1138 1139 /// Compute operand latency between a def of 'Reg' and an use in the current 1140 /// loop, return true if the target considered it high. 1141 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, 1142 unsigned DefIdx, 1143 unsigned Reg) const { 1144 if (MRI->use_nodbg_empty(Reg)) 1145 return false; 1146 1147 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1148 if (UseMI.isCopyLike()) 1149 continue; 1150 if (!CurLoop->contains(UseMI.getParent())) 1151 continue; 1152 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1153 const MachineOperand &MO = UseMI.getOperand(i); 1154 if (!MO.isReg() || !MO.isUse()) 1155 continue; 1156 Register MOReg = MO.getReg(); 1157 if (MOReg != Reg) 1158 continue; 1159 1160 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1161 return true; 1162 } 1163 1164 // Only look at the first in loop use. 1165 break; 1166 } 1167 1168 return false; 1169 } 1170 1171 /// Return true if the instruction is marked "cheap" or the operand latency 1172 /// between its def and a use is one or less. 1173 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1174 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1175 return true; 1176 1177 bool isCheap = false; 1178 unsigned NumDefs = MI.getDesc().getNumDefs(); 1179 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1180 MachineOperand &DefMO = MI.getOperand(i); 1181 if (!DefMO.isReg() || !DefMO.isDef()) 1182 continue; 1183 --NumDefs; 1184 Register Reg = DefMO.getReg(); 1185 if (Register::isPhysicalRegister(Reg)) 1186 continue; 1187 1188 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1189 return false; 1190 isCheap = true; 1191 } 1192 1193 return isCheap; 1194 } 1195 1196 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1197 /// given cost matrix can cause high register pressure. 1198 bool 1199 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1200 bool CheapInstr) { 1201 for (const auto &RPIdAndCost : Cost) { 1202 if (RPIdAndCost.second <= 0) 1203 continue; 1204 1205 unsigned Class = RPIdAndCost.first; 1206 int Limit = RegLimit[Class]; 1207 1208 // Don't hoist cheap instructions if they would increase register pressure, 1209 // even if we're under the limit. 1210 if (CheapInstr && !HoistCheapInsts) 1211 return true; 1212 1213 for (const auto &RP : BackTrace) 1214 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1215 return true; 1216 } 1217 1218 return false; 1219 } 1220 1221 /// Traverse the back trace from header to the current block and update their 1222 /// register pressures to reflect the effect of hoisting MI from the current 1223 /// block to the preheader. 1224 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1225 // First compute the 'cost' of the instruction, i.e. its contribution 1226 // to register pressure. 1227 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1228 /*ConsiderUnseenAsDef=*/false); 1229 1230 // Update register pressure of blocks from loop header to current block. 1231 for (auto &RP : BackTrace) 1232 for (const auto &RPIdAndCost : Cost) 1233 RP[RPIdAndCost.first] += RPIdAndCost.second; 1234 } 1235 1236 /// Return true if it is potentially profitable to hoist the given loop 1237 /// invariant. 1238 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) { 1239 if (MI.isImplicitDef()) 1240 return true; 1241 1242 // Besides removing computation from the loop, hoisting an instruction has 1243 // these effects: 1244 // 1245 // - The value defined by the instruction becomes live across the entire 1246 // loop. This increases register pressure in the loop. 1247 // 1248 // - If the value is used by a PHI in the loop, a copy will be required for 1249 // lowering the PHI after extending the live range. 1250 // 1251 // - When hoisting the last use of a value in the loop, that value no longer 1252 // needs to be live in the loop. This lowers register pressure in the loop. 1253 1254 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1255 return true; 1256 1257 bool CheapInstr = IsCheapInstruction(MI); 1258 bool CreatesCopy = HasLoopPHIUse(&MI); 1259 1260 // Don't hoist a cheap instruction if it would create a copy in the loop. 1261 if (CheapInstr && CreatesCopy) { 1262 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1263 return false; 1264 } 1265 1266 // Rematerializable instructions should always be hoisted since the register 1267 // allocator can just pull them down again when needed. 1268 if (TII->isTriviallyReMaterializable(MI, AA)) 1269 return true; 1270 1271 // FIXME: If there are long latency loop-invariant instructions inside the 1272 // loop at this point, why didn't the optimizer's LICM hoist them? 1273 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1274 const MachineOperand &MO = MI.getOperand(i); 1275 if (!MO.isReg() || MO.isImplicit()) 1276 continue; 1277 Register Reg = MO.getReg(); 1278 if (!Register::isVirtualRegister(Reg)) 1279 continue; 1280 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1281 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1282 ++NumHighLatency; 1283 return true; 1284 } 1285 } 1286 1287 // Estimate register pressure to determine whether to LICM the instruction. 1288 // In low register pressure situation, we can be more aggressive about 1289 // hoisting. Also, favors hoisting long latency instructions even in 1290 // moderately high pressure situation. 1291 // Cheap instructions will only be hoisted if they don't increase register 1292 // pressure at all. 1293 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1294 /*ConsiderUnseenAsDef=*/false); 1295 1296 // Visit BBs from header to current BB, if hoisting this doesn't cause 1297 // high register pressure, then it's safe to proceed. 1298 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1299 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1300 ++NumLowRP; 1301 return true; 1302 } 1303 1304 // Don't risk increasing register pressure if it would create copies. 1305 if (CreatesCopy) { 1306 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1307 return false; 1308 } 1309 1310 // Do not "speculate" in high register pressure situation. If an 1311 // instruction is not guaranteed to be executed in the loop, it's best to be 1312 // conservative. 1313 if (AvoidSpeculation && 1314 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1315 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1316 return false; 1317 } 1318 1319 // High register pressure situation, only hoist if the instruction is going 1320 // to be remat'ed. 1321 if (!TII->isTriviallyReMaterializable(MI, AA) && 1322 !MI.isDereferenceableInvariantLoad(AA)) { 1323 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1324 return false; 1325 } 1326 1327 return true; 1328 } 1329 1330 /// Unfold a load from the given machineinstr if the load itself could be 1331 /// hoisted. Return the unfolded and hoistable load, or null if the load 1332 /// couldn't be unfolded or if it wouldn't be hoistable. 1333 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) { 1334 // Don't unfold simple loads. 1335 if (MI->canFoldAsLoad()) 1336 return nullptr; 1337 1338 // If not, we may be able to unfold a load and hoist that. 1339 // First test whether the instruction is loading from an amenable 1340 // memory location. 1341 if (!MI->isDereferenceableInvariantLoad(AA)) 1342 return nullptr; 1343 1344 // Next determine the register class for a temporary register. 1345 unsigned LoadRegIndex; 1346 unsigned NewOpc = 1347 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1348 /*UnfoldLoad=*/true, 1349 /*UnfoldStore=*/false, 1350 &LoadRegIndex); 1351 if (NewOpc == 0) return nullptr; 1352 const MCInstrDesc &MID = TII->get(NewOpc); 1353 MachineFunction &MF = *MI->getMF(); 1354 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1355 // Ok, we're unfolding. Create a temporary register and do the unfold. 1356 Register Reg = MRI->createVirtualRegister(RC); 1357 1358 SmallVector<MachineInstr *, 2> NewMIs; 1359 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1360 /*UnfoldLoad=*/true, 1361 /*UnfoldStore=*/false, NewMIs); 1362 (void)Success; 1363 assert(Success && 1364 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1365 "succeeded!"); 1366 assert(NewMIs.size() == 2 && 1367 "Unfolded a load into multiple instructions!"); 1368 MachineBasicBlock *MBB = MI->getParent(); 1369 MachineBasicBlock::iterator Pos = MI; 1370 MBB->insert(Pos, NewMIs[0]); 1371 MBB->insert(Pos, NewMIs[1]); 1372 // If unfolding produced a load that wasn't loop-invariant or profitable to 1373 // hoist, discard the new instructions and bail. 1374 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1375 NewMIs[0]->eraseFromParent(); 1376 NewMIs[1]->eraseFromParent(); 1377 return nullptr; 1378 } 1379 1380 // Update register pressure for the unfolded instruction. 1381 UpdateRegPressure(NewMIs[1]); 1382 1383 // Otherwise we successfully unfolded a load that we can hoist. 1384 1385 // Update the call site info. 1386 if (MI->shouldUpdateCallSiteInfo()) 1387 MF.eraseCallSiteInfo(MI); 1388 1389 MI->eraseFromParent(); 1390 return NewMIs[0]; 1391 } 1392 1393 /// Initialize the CSE map with instructions that are in the current loop 1394 /// preheader that may become duplicates of instructions that are hoisted 1395 /// out of the loop. 1396 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1397 for (MachineInstr &MI : *BB) 1398 CSEMap[MI.getOpcode()].push_back(&MI); 1399 } 1400 1401 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1402 /// Return this instruction if it's found. 1403 const MachineInstr* 1404 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1405 std::vector<const MachineInstr*> &PrevMIs) { 1406 for (const MachineInstr *PrevMI : PrevMIs) 1407 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1408 return PrevMI; 1409 1410 return nullptr; 1411 } 1412 1413 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1414 /// computes the same value. If it's found, do a RAU on with the definition of 1415 /// the existing instruction rather than hoisting the instruction to the 1416 /// preheader. 1417 bool MachineLICMBase::EliminateCSE(MachineInstr *MI, 1418 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) { 1419 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1420 // the undef property onto uses. 1421 if (CI == CSEMap.end() || MI->isImplicitDef()) 1422 return false; 1423 1424 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1425 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1426 1427 // Replace virtual registers defined by MI by their counterparts defined 1428 // by Dup. 1429 SmallVector<unsigned, 2> Defs; 1430 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1431 const MachineOperand &MO = MI->getOperand(i); 1432 1433 // Physical registers may not differ here. 1434 assert((!MO.isReg() || MO.getReg() == 0 || 1435 !Register::isPhysicalRegister(MO.getReg()) || 1436 MO.getReg() == Dup->getOperand(i).getReg()) && 1437 "Instructions with different phys regs are not identical!"); 1438 1439 if (MO.isReg() && MO.isDef() && 1440 !Register::isPhysicalRegister(MO.getReg())) 1441 Defs.push_back(i); 1442 } 1443 1444 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1445 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1446 unsigned Idx = Defs[i]; 1447 Register Reg = MI->getOperand(Idx).getReg(); 1448 Register DupReg = Dup->getOperand(Idx).getReg(); 1449 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1450 1451 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1452 // Restore old RCs if more than one defs. 1453 for (unsigned j = 0; j != i; ++j) 1454 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1455 return false; 1456 } 1457 } 1458 1459 for (unsigned Idx : Defs) { 1460 Register Reg = MI->getOperand(Idx).getReg(); 1461 Register DupReg = Dup->getOperand(Idx).getReg(); 1462 MRI->replaceRegWith(Reg, DupReg); 1463 MRI->clearKillFlags(DupReg); 1464 } 1465 1466 MI->eraseFromParent(); 1467 ++NumCSEed; 1468 return true; 1469 } 1470 return false; 1471 } 1472 1473 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1474 /// the loop. 1475 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1476 unsigned Opcode = MI->getOpcode(); 1477 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1478 CI = CSEMap.find(Opcode); 1479 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1480 // the undef property onto uses. 1481 if (CI == CSEMap.end() || MI->isImplicitDef()) 1482 return false; 1483 1484 return LookForDuplicate(MI, CI->second) != nullptr; 1485 } 1486 1487 /// When an instruction is found to use only loop invariant operands 1488 /// that are safe to hoist, this instruction is called to do the dirty work. 1489 /// It returns true if the instruction is hoisted. 1490 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1491 MachineBasicBlock *SrcBlock = MI->getParent(); 1492 1493 // Disable the instruction hoisting due to block hotness 1494 if ((DisableHoistingToHotterBlocks == UseBFI::All || 1495 (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) && 1496 isTgtHotterThanSrc(SrcBlock, Preheader)) { 1497 ++NumNotHoistedDueToHotness; 1498 return false; 1499 } 1500 // First check whether we should hoist this instruction. 1501 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1502 // If not, try unfolding a hoistable load. 1503 MI = ExtractHoistableLoad(MI); 1504 if (!MI) return false; 1505 } 1506 1507 // If we have hoisted an instruction that may store, it can only be a constant 1508 // store. 1509 if (MI->mayStore()) 1510 NumStoreConst++; 1511 1512 // Now move the instructions to the predecessor, inserting it before any 1513 // terminator instructions. 1514 LLVM_DEBUG({ 1515 dbgs() << "Hoisting " << *MI; 1516 if (MI->getParent()->getBasicBlock()) 1517 dbgs() << " from " << printMBBReference(*MI->getParent()); 1518 if (Preheader->getBasicBlock()) 1519 dbgs() << " to " << printMBBReference(*Preheader); 1520 dbgs() << "\n"; 1521 }); 1522 1523 // If this is the first instruction being hoisted to the preheader, 1524 // initialize the CSE map with potential common expressions. 1525 if (FirstInLoop) { 1526 InitCSEMap(Preheader); 1527 FirstInLoop = false; 1528 } 1529 1530 // Look for opportunity to CSE the hoisted instruction. 1531 unsigned Opcode = MI->getOpcode(); 1532 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1533 CI = CSEMap.find(Opcode); 1534 if (!EliminateCSE(MI, CI)) { 1535 // Otherwise, splice the instruction to the preheader. 1536 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1537 1538 // Since we are moving the instruction out of its basic block, we do not 1539 // retain its debug location. Doing so would degrade the debugging 1540 // experience and adversely affect the accuracy of profiling information. 1541 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 1542 MI->setDebugLoc(DebugLoc()); 1543 1544 // Update register pressure for BBs from header to this block. 1545 UpdateBackTraceRegPressure(MI); 1546 1547 // Clear the kill flags of any register this instruction defines, 1548 // since they may need to be live throughout the entire loop 1549 // rather than just live for part of it. 1550 for (MachineOperand &MO : MI->operands()) 1551 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1552 MRI->clearKillFlags(MO.getReg()); 1553 1554 // Add to the CSE map. 1555 if (CI != CSEMap.end()) 1556 CI->second.push_back(MI); 1557 else 1558 CSEMap[Opcode].push_back(MI); 1559 } 1560 1561 ++NumHoisted; 1562 Changed = true; 1563 1564 return true; 1565 } 1566 1567 /// Get the preheader for the current loop, splitting a critical edge if needed. 1568 MachineBasicBlock *MachineLICMBase::getCurPreheader() { 1569 // Determine the block to which to hoist instructions. If we can't find a 1570 // suitable loop predecessor, we can't do any hoisting. 1571 1572 // If we've tried to get a preheader and failed, don't try again. 1573 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1574 return nullptr; 1575 1576 if (!CurPreheader) { 1577 CurPreheader = CurLoop->getLoopPreheader(); 1578 if (!CurPreheader) { 1579 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1580 if (!Pred) { 1581 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1582 return nullptr; 1583 } 1584 1585 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1586 if (!CurPreheader) { 1587 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1588 return nullptr; 1589 } 1590 } 1591 } 1592 return CurPreheader; 1593 } 1594 1595 /// Is the target basic block at least "BlockFrequencyRatioThreshold" 1596 /// times hotter than the source basic block. 1597 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 1598 MachineBasicBlock *TgtBlock) { 1599 // Parse source and target basic block frequency from MBFI 1600 uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency(); 1601 uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency(); 1602 1603 // Disable the hoisting if source block frequency is zero 1604 if (!SrcBF) 1605 return true; 1606 1607 double Ratio = (double)DstBF / SrcBF; 1608 1609 // Compare the block frequency ratio with the threshold 1610 return Ratio > BlockFrequencyRatioThreshold; 1611 } 1612