xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineLICM.cpp (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegister.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <limits>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "machinelicm"
60 
61 static cl::opt<bool>
62 AvoidSpeculation("avoid-speculation",
63                  cl::desc("MachineLICM should avoid speculation"),
64                  cl::init(true), cl::Hidden);
65 
66 static cl::opt<bool>
67 HoistCheapInsts("hoist-cheap-insts",
68                 cl::desc("MachineLICM should hoist even cheap instructions"),
69                 cl::init(false), cl::Hidden);
70 
71 static cl::opt<bool>
72 HoistConstStores("hoist-const-stores",
73                  cl::desc("Hoist invariant stores"),
74                  cl::init(true), cl::Hidden);
75 // The default threshold of 100 (i.e. if target block is 100 times hotter)
76 // is based on empirical data on a single target and is subject to tuning.
77 static cl::opt<unsigned>
78 BlockFrequencyRatioThreshold("block-freq-ratio-threshold",
79                              cl::desc("Do not hoist instructions if target"
80                              "block is N times hotter than the source."),
81                              cl::init(100), cl::Hidden);
82 
83 enum class UseBFI { None, PGO, All };
84 
85 static cl::opt<UseBFI>
86 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks",
87                               cl::desc("Disable hoisting instructions to"
88                               " hotter blocks"),
89                               cl::init(UseBFI::PGO), cl::Hidden,
90                               cl::values(clEnumValN(UseBFI::None, "none",
91                               "disable the feature"),
92                               clEnumValN(UseBFI::PGO, "pgo",
93                               "enable the feature when using profile data"),
94                               clEnumValN(UseBFI::All, "all",
95                               "enable the feature with/wo profile data")));
96 
97 STATISTIC(NumHoisted,
98           "Number of machine instructions hoisted out of loops");
99 STATISTIC(NumLowRP,
100           "Number of instructions hoisted in low reg pressure situation");
101 STATISTIC(NumHighLatency,
102           "Number of high latency instructions hoisted");
103 STATISTIC(NumCSEed,
104           "Number of hoisted machine instructions CSEed");
105 STATISTIC(NumPostRAHoisted,
106           "Number of machine instructions hoisted out of loops post regalloc");
107 STATISTIC(NumStoreConst,
108           "Number of stores of const phys reg hoisted out of loops");
109 STATISTIC(NumNotHoistedDueToHotness,
110           "Number of instructions not hoisted due to block frequency");
111 
112 namespace {
113 
114   class MachineLICMBase : public MachineFunctionPass {
115     const TargetInstrInfo *TII = nullptr;
116     const TargetLoweringBase *TLI = nullptr;
117     const TargetRegisterInfo *TRI = nullptr;
118     const MachineFrameInfo *MFI = nullptr;
119     MachineRegisterInfo *MRI = nullptr;
120     TargetSchedModel SchedModel;
121     bool PreRegAlloc = false;
122     bool HasProfileData = false;
123 
124     // Various analyses that we use...
125     AliasAnalysis *AA = nullptr;               // Alias analysis info.
126     MachineBlockFrequencyInfo *MBFI = nullptr; // Machine block frequncy info
127     MachineLoopInfo *MLI = nullptr;            // Current MachineLoopInfo
128     MachineDominatorTree *DT = nullptr; // Machine dominator tree for the cur loop
129 
130     // State that is updated as we process loops
131     bool Changed = false;           // True if a loop is changed.
132     bool FirstInLoop = false;       // True if it's the first LICM in the loop.
133     MachineLoop *CurLoop = nullptr; // The current loop we are working on.
134     MachineBasicBlock *CurPreheader = nullptr; // The preheader for CurLoop.
135 
136     // Exit blocks for CurLoop.
137     SmallVector<MachineBasicBlock *, 8> ExitBlocks;
138 
139     bool isExitBlock(const MachineBasicBlock *MBB) const {
140       return is_contained(ExitBlocks, MBB);
141     }
142 
143     // Track 'estimated' register pressure.
144     SmallSet<Register, 32> RegSeen;
145     SmallVector<unsigned, 8> RegPressure;
146 
147     // Register pressure "limit" per register pressure set. If the pressure
148     // is higher than the limit, then it's considered high.
149     SmallVector<unsigned, 8> RegLimit;
150 
151     // Register pressure on path leading from loop preheader to current BB.
152     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
153 
154     // For each opcode, keep a list of potential CSE instructions.
155     DenseMap<unsigned, std::vector<MachineInstr *>> CSEMap;
156 
157     enum {
158       SpeculateFalse   = 0,
159       SpeculateTrue    = 1,
160       SpeculateUnknown = 2
161     };
162 
163     // If a MBB does not dominate loop exiting blocks then it may not safe
164     // to hoist loads from this block.
165     // Tri-state: 0 - false, 1 - true, 2 - unknown
166     unsigned SpeculationState = SpeculateUnknown;
167 
168   public:
169     MachineLICMBase(char &PassID, bool PreRegAlloc)
170         : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
171 
172     bool runOnMachineFunction(MachineFunction &MF) override;
173 
174     void getAnalysisUsage(AnalysisUsage &AU) const override {
175       AU.addRequired<MachineLoopInfo>();
176       if (DisableHoistingToHotterBlocks != UseBFI::None)
177         AU.addRequired<MachineBlockFrequencyInfo>();
178       AU.addRequired<MachineDominatorTree>();
179       AU.addRequired<AAResultsWrapperPass>();
180       AU.addPreserved<MachineLoopInfo>();
181       MachineFunctionPass::getAnalysisUsage(AU);
182     }
183 
184     void releaseMemory() override {
185       RegSeen.clear();
186       RegPressure.clear();
187       RegLimit.clear();
188       BackTrace.clear();
189       CSEMap.clear();
190     }
191 
192   private:
193     /// Keep track of information about hoisting candidates.
194     struct CandidateInfo {
195       MachineInstr *MI;
196       unsigned      Def;
197       int           FI;
198 
199       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
200         : MI(mi), Def(def), FI(fi) {}
201     };
202 
203     void HoistRegionPostRA();
204 
205     void HoistPostRA(MachineInstr *MI, unsigned Def);
206 
207     void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
208                    BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
209                    SmallVectorImpl<CandidateInfo> &Candidates);
210 
211     void AddToLiveIns(MCRegister Reg);
212 
213     bool IsLICMCandidate(MachineInstr &I);
214 
215     bool IsLoopInvariantInst(MachineInstr &I);
216 
217     bool HasLoopPHIUse(const MachineInstr *MI) const;
218 
219     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
220                                Register Reg) const;
221 
222     bool IsCheapInstruction(MachineInstr &MI) const;
223 
224     bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
225                                  bool Cheap);
226 
227     void UpdateBackTraceRegPressure(const MachineInstr *MI);
228 
229     bool IsProfitableToHoist(MachineInstr &MI);
230 
231     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
232 
233     bool isTriviallyReMaterializable(const MachineInstr &MI) const;
234 
235     void EnterScope(MachineBasicBlock *MBB);
236 
237     void ExitScope(MachineBasicBlock *MBB);
238 
239     void ExitScopeIfDone(
240         MachineDomTreeNode *Node,
241         DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
242         const DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
243 
244     void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
245 
246     void InitRegPressure(MachineBasicBlock *BB);
247 
248     DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
249                                              bool ConsiderSeen,
250                                              bool ConsiderUnseenAsDef);
251 
252     void UpdateRegPressure(const MachineInstr *MI,
253                            bool ConsiderUnseenAsDef = false);
254 
255     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
256 
257     MachineInstr *LookForDuplicate(const MachineInstr *MI,
258                                    std::vector<MachineInstr *> &PrevMIs);
259 
260     bool
261     EliminateCSE(MachineInstr *MI,
262                  DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI);
263 
264     bool MayCSE(MachineInstr *MI);
265 
266     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
267 
268     void InitCSEMap(MachineBasicBlock *BB);
269 
270     bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
271                             MachineBasicBlock *TgtBlock);
272     MachineBasicBlock *getCurPreheader();
273   };
274 
275   class MachineLICM : public MachineLICMBase {
276   public:
277     static char ID;
278     MachineLICM() : MachineLICMBase(ID, false) {
279       initializeMachineLICMPass(*PassRegistry::getPassRegistry());
280     }
281   };
282 
283   class EarlyMachineLICM : public MachineLICMBase {
284   public:
285     static char ID;
286     EarlyMachineLICM() : MachineLICMBase(ID, true) {
287       initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
288     }
289   };
290 
291 } // end anonymous namespace
292 
293 char MachineLICM::ID;
294 char EarlyMachineLICM::ID;
295 
296 char &llvm::MachineLICMID = MachineLICM::ID;
297 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
298 
299 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
300                       "Machine Loop Invariant Code Motion", false, false)
301 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
302 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
303 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
304 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
305 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
306                     "Machine Loop Invariant Code Motion", false, false)
307 
308 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
309                       "Early Machine Loop Invariant Code Motion", false, false)
310 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
311 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
312 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
313 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
314 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
315                     "Early Machine Loop Invariant Code Motion", false, false)
316 
317 /// Test if the given loop is the outer-most loop that has a unique predecessor.
318 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
319   // Check whether this loop even has a unique predecessor.
320   if (!CurLoop->getLoopPredecessor())
321     return false;
322   // Ok, now check to see if any of its outer loops do.
323   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
324     if (L->getLoopPredecessor())
325       return false;
326   // None of them did, so this is the outermost with a unique predecessor.
327   return true;
328 }
329 
330 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
331   if (skipFunction(MF.getFunction()))
332     return false;
333 
334   Changed = FirstInLoop = false;
335   const TargetSubtargetInfo &ST = MF.getSubtarget();
336   TII = ST.getInstrInfo();
337   TLI = ST.getTargetLowering();
338   TRI = ST.getRegisterInfo();
339   MFI = &MF.getFrameInfo();
340   MRI = &MF.getRegInfo();
341   SchedModel.init(&ST);
342 
343   PreRegAlloc = MRI->isSSA();
344   HasProfileData = MF.getFunction().hasProfileData();
345 
346   if (PreRegAlloc)
347     LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
348   else
349     LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
350   LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
351 
352   if (PreRegAlloc) {
353     // Estimate register pressure during pre-regalloc pass.
354     unsigned NumRPS = TRI->getNumRegPressureSets();
355     RegPressure.resize(NumRPS);
356     std::fill(RegPressure.begin(), RegPressure.end(), 0);
357     RegLimit.resize(NumRPS);
358     for (unsigned i = 0, e = NumRPS; i != e; ++i)
359       RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
360   }
361 
362   // Get our Loop information...
363   if (DisableHoistingToHotterBlocks != UseBFI::None)
364     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
365   MLI = &getAnalysis<MachineLoopInfo>();
366   DT  = &getAnalysis<MachineDominatorTree>();
367   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
368 
369   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
370   while (!Worklist.empty()) {
371     CurLoop = Worklist.pop_back_val();
372     CurPreheader = nullptr;
373     ExitBlocks.clear();
374 
375     // If this is done before regalloc, only visit outer-most preheader-sporting
376     // loops.
377     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
378       Worklist.append(CurLoop->begin(), CurLoop->end());
379       continue;
380     }
381 
382     CurLoop->getExitBlocks(ExitBlocks);
383 
384     if (!PreRegAlloc)
385       HoistRegionPostRA();
386     else {
387       // CSEMap is initialized for loop header when the first instruction is
388       // being hoisted.
389       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
390       FirstInLoop = true;
391       HoistOutOfLoop(N);
392       CSEMap.clear();
393     }
394   }
395 
396   return Changed;
397 }
398 
399 /// Return true if instruction stores to the specified frame.
400 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
401   // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
402   // true since they have no memory operands.
403   if (!MI->mayStore())
404      return false;
405   // If we lost memory operands, conservatively assume that the instruction
406   // writes to all slots.
407   if (MI->memoperands_empty())
408     return true;
409   for (const MachineMemOperand *MemOp : MI->memoperands()) {
410     if (!MemOp->isStore() || !MemOp->getPseudoValue())
411       continue;
412     if (const FixedStackPseudoSourceValue *Value =
413         dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
414       if (Value->getFrameIndex() == FI)
415         return true;
416     }
417   }
418   return false;
419 }
420 
421 /// Examine the instruction for potentai LICM candidate. Also
422 /// gather register def and frame object update information.
423 void MachineLICMBase::ProcessMI(MachineInstr *MI,
424                                 BitVector &PhysRegDefs,
425                                 BitVector &PhysRegClobbers,
426                                 SmallSet<int, 32> &StoredFIs,
427                                 SmallVectorImpl<CandidateInfo> &Candidates) {
428   bool RuledOut = false;
429   bool HasNonInvariantUse = false;
430   unsigned Def = 0;
431   for (const MachineOperand &MO : MI->operands()) {
432     if (MO.isFI()) {
433       // Remember if the instruction stores to the frame index.
434       int FI = MO.getIndex();
435       if (!StoredFIs.count(FI) &&
436           MFI->isSpillSlotObjectIndex(FI) &&
437           InstructionStoresToFI(MI, FI))
438         StoredFIs.insert(FI);
439       HasNonInvariantUse = true;
440       continue;
441     }
442 
443     // We can't hoist an instruction defining a physreg that is clobbered in
444     // the loop.
445     if (MO.isRegMask()) {
446       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
447       continue;
448     }
449 
450     if (!MO.isReg())
451       continue;
452     Register Reg = MO.getReg();
453     if (!Reg)
454       continue;
455     assert(Reg.isPhysical() && "Not expecting virtual register!");
456 
457     if (!MO.isDef()) {
458       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
459         // If it's using a non-loop-invariant register, then it's obviously not
460         // safe to hoist.
461         HasNonInvariantUse = true;
462       continue;
463     }
464 
465     if (MO.isImplicit()) {
466       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
467         PhysRegClobbers.set(*AI);
468       if (!MO.isDead())
469         // Non-dead implicit def? This cannot be hoisted.
470         RuledOut = true;
471       // No need to check if a dead implicit def is also defined by
472       // another instruction.
473       continue;
474     }
475 
476     // FIXME: For now, avoid instructions with multiple defs, unless
477     // it's a dead implicit def.
478     if (Def)
479       RuledOut = true;
480     else
481       Def = Reg;
482 
483     // If we have already seen another instruction that defines the same
484     // register, then this is not safe.  Two defs is indicated by setting a
485     // PhysRegClobbers bit.
486     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
487       if (PhysRegDefs.test(*AS))
488         PhysRegClobbers.set(*AS);
489     }
490     // Need a second loop because MCRegAliasIterator can visit the same
491     // register twice.
492     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
493       PhysRegDefs.set(*AS);
494 
495     if (PhysRegClobbers.test(Reg))
496       // MI defined register is seen defined by another instruction in
497       // the loop, it cannot be a LICM candidate.
498       RuledOut = true;
499   }
500 
501   // Only consider reloads for now and remats which do not have register
502   // operands. FIXME: Consider unfold load folding instructions.
503   if (Def && !RuledOut) {
504     int FI = std::numeric_limits<int>::min();
505     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
506         (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
507       Candidates.push_back(CandidateInfo(MI, Def, FI));
508   }
509 }
510 
511 /// Walk the specified region of the CFG and hoist loop invariants out to the
512 /// preheader.
513 void MachineLICMBase::HoistRegionPostRA() {
514   MachineBasicBlock *Preheader = getCurPreheader();
515   if (!Preheader)
516     return;
517 
518   unsigned NumRegs = TRI->getNumRegs();
519   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
520   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
521 
522   SmallVector<CandidateInfo, 32> Candidates;
523   SmallSet<int, 32> StoredFIs;
524 
525   // Walk the entire region, count number of defs for each register, and
526   // collect potential LICM candidates.
527   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
528     // If the header of the loop containing this basic block is a landing pad,
529     // then don't try to hoist instructions out of this loop.
530     const MachineLoop *ML = MLI->getLoopFor(BB);
531     if (ML && ML->getHeader()->isEHPad()) continue;
532 
533     // Conservatively treat live-in's as an external def.
534     // FIXME: That means a reload that're reused in successor block(s) will not
535     // be LICM'ed.
536     for (const auto &LI : BB->liveins()) {
537       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
538         PhysRegDefs.set(*AI);
539     }
540 
541     // Funclet entry blocks will clobber all registers
542     if (const uint32_t *Mask = BB->getBeginClobberMask(TRI))
543       PhysRegClobbers.setBitsNotInMask(Mask);
544 
545     SpeculationState = SpeculateUnknown;
546     for (MachineInstr &MI : *BB)
547       ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
548   }
549 
550   // Gather the registers read / clobbered by the terminator.
551   BitVector TermRegs(NumRegs);
552   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
553   if (TI != Preheader->end()) {
554     for (const MachineOperand &MO : TI->operands()) {
555       if (!MO.isReg())
556         continue;
557       Register Reg = MO.getReg();
558       if (!Reg)
559         continue;
560       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
561         TermRegs.set(*AI);
562     }
563   }
564 
565   // Now evaluate whether the potential candidates qualify.
566   // 1. Check if the candidate defined register is defined by another
567   //    instruction in the loop.
568   // 2. If the candidate is a load from stack slot (always true for now),
569   //    check if the slot is stored anywhere in the loop.
570   // 3. Make sure candidate def should not clobber
571   //    registers read by the terminator. Similarly its def should not be
572   //    clobbered by the terminator.
573   for (CandidateInfo &Candidate : Candidates) {
574     if (Candidate.FI != std::numeric_limits<int>::min() &&
575         StoredFIs.count(Candidate.FI))
576       continue;
577 
578     unsigned Def = Candidate.Def;
579     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
580       bool Safe = true;
581       MachineInstr *MI = Candidate.MI;
582       for (const MachineOperand &MO : MI->all_uses()) {
583         if (!MO.getReg())
584           continue;
585         Register Reg = MO.getReg();
586         if (PhysRegDefs.test(Reg) ||
587             PhysRegClobbers.test(Reg)) {
588           // If it's using a non-loop-invariant register, then it's obviously
589           // not safe to hoist.
590           Safe = false;
591           break;
592         }
593       }
594       if (Safe)
595         HoistPostRA(MI, Candidate.Def);
596     }
597   }
598 }
599 
600 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
601 /// sure it is not killed by any instructions in the loop.
602 void MachineLICMBase::AddToLiveIns(MCRegister Reg) {
603   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
604     if (!BB->isLiveIn(Reg))
605       BB->addLiveIn(Reg);
606     for (MachineInstr &MI : *BB) {
607       for (MachineOperand &MO : MI.all_uses()) {
608         if (!MO.getReg())
609           continue;
610         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
611           MO.setIsKill(false);
612       }
613     }
614   }
615 }
616 
617 /// When an instruction is found to only use loop invariant operands that is
618 /// safe to hoist, this instruction is called to do the dirty work.
619 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
620   MachineBasicBlock *Preheader = getCurPreheader();
621 
622   // Now move the instructions to the predecessor, inserting it before any
623   // terminator instructions.
624   LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
625                     << " from " << printMBBReference(*MI->getParent()) << ": "
626                     << *MI);
627 
628   // Splice the instruction to the preheader.
629   MachineBasicBlock *MBB = MI->getParent();
630   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
631 
632   // Since we are moving the instruction out of its basic block, we do not
633   // retain its debug location. Doing so would degrade the debugging
634   // experience and adversely affect the accuracy of profiling information.
635   assert(!MI->isDebugInstr() && "Should not hoist debug inst");
636   MI->setDebugLoc(DebugLoc());
637 
638   // Add register to livein list to all the BBs in the current loop since a
639   // loop invariant must be kept live throughout the whole loop. This is
640   // important to ensure later passes do not scavenge the def register.
641   AddToLiveIns(Def);
642 
643   ++NumPostRAHoisted;
644   Changed = true;
645 }
646 
647 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
648 /// may not be safe to hoist.
649 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
650   if (SpeculationState != SpeculateUnknown)
651     return SpeculationState == SpeculateFalse;
652 
653   if (BB != CurLoop->getHeader()) {
654     // Check loop exiting blocks.
655     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
656     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
657     for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
658       if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
659         SpeculationState = SpeculateTrue;
660         return false;
661       }
662   }
663 
664   SpeculationState = SpeculateFalse;
665   return true;
666 }
667 
668 /// Check if \p MI is trivially remateralizable and if it does not have any
669 /// virtual register uses. Even though rematerializable RA might not actually
670 /// rematerialize it in this scenario. In that case we do not want to hoist such
671 /// instruction out of the loop in a belief RA will sink it back if needed.
672 bool MachineLICMBase::isTriviallyReMaterializable(
673     const MachineInstr &MI) const {
674   if (!TII->isTriviallyReMaterializable(MI))
675     return false;
676 
677   for (const MachineOperand &MO : MI.all_uses()) {
678     if (MO.getReg().isVirtual())
679       return false;
680   }
681 
682   return true;
683 }
684 
685 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
686   LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
687 
688   // Remember livein register pressure.
689   BackTrace.push_back(RegPressure);
690 }
691 
692 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
693   LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
694   BackTrace.pop_back();
695 }
696 
697 /// Destroy scope for the MBB that corresponds to the given dominator tree node
698 /// if its a leaf or all of its children are done. Walk up the dominator tree to
699 /// destroy ancestors which are now done.
700 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
701     DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
702     const DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
703   if (OpenChildren[Node])
704     return;
705 
706   for(;;) {
707     ExitScope(Node->getBlock());
708     // Now traverse upwards to pop ancestors whose offsprings are all done.
709     MachineDomTreeNode *Parent = ParentMap.lookup(Node);
710     if (!Parent || --OpenChildren[Parent] != 0)
711       break;
712     Node = Parent;
713   }
714 }
715 
716 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
717 /// specified header block, and that are in the current loop) in depth first
718 /// order w.r.t the DominatorTree. This allows us to visit definitions before
719 /// uses, allowing us to hoist a loop body in one pass without iteration.
720 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
721   MachineBasicBlock *Preheader = getCurPreheader();
722   if (!Preheader)
723     return;
724 
725   SmallVector<MachineDomTreeNode*, 32> Scopes;
726   SmallVector<MachineDomTreeNode*, 8> WorkList;
727   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
728   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
729 
730   // Perform a DFS walk to determine the order of visit.
731   WorkList.push_back(HeaderN);
732   while (!WorkList.empty()) {
733     MachineDomTreeNode *Node = WorkList.pop_back_val();
734     assert(Node && "Null dominator tree node?");
735     MachineBasicBlock *BB = Node->getBlock();
736 
737     // If the header of the loop containing this basic block is a landing pad,
738     // then don't try to hoist instructions out of this loop.
739     const MachineLoop *ML = MLI->getLoopFor(BB);
740     if (ML && ML->getHeader()->isEHPad())
741       continue;
742 
743     // If this subregion is not in the top level loop at all, exit.
744     if (!CurLoop->contains(BB))
745       continue;
746 
747     Scopes.push_back(Node);
748     unsigned NumChildren = Node->getNumChildren();
749 
750     // Don't hoist things out of a large switch statement.  This often causes
751     // code to be hoisted that wasn't going to be executed, and increases
752     // register pressure in a situation where it's likely to matter.
753     if (BB->succ_size() >= 25)
754       NumChildren = 0;
755 
756     OpenChildren[Node] = NumChildren;
757     if (NumChildren) {
758       // Add children in reverse order as then the next popped worklist node is
759       // the first child of this node.  This means we ultimately traverse the
760       // DOM tree in exactly the same order as if we'd recursed.
761       for (MachineDomTreeNode *Child : reverse(Node->children())) {
762         ParentMap[Child] = Node;
763         WorkList.push_back(Child);
764       }
765     }
766   }
767 
768   if (Scopes.size() == 0)
769     return;
770 
771   // Compute registers which are livein into the loop headers.
772   RegSeen.clear();
773   BackTrace.clear();
774   InitRegPressure(Preheader);
775 
776   // Now perform LICM.
777   for (MachineDomTreeNode *Node : Scopes) {
778     MachineBasicBlock *MBB = Node->getBlock();
779 
780     EnterScope(MBB);
781 
782     // Process the block
783     SpeculationState = SpeculateUnknown;
784     for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
785       if (!Hoist(&MI, Preheader))
786         UpdateRegPressure(&MI);
787       // If we have hoisted an instruction that may store, it can only be a
788       // constant store.
789     }
790 
791     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
792     ExitScopeIfDone(Node, OpenChildren, ParentMap);
793   }
794 }
795 
796 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
797   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
798 }
799 
800 /// Find all virtual register references that are liveout of the preheader to
801 /// initialize the starting "register pressure". Note this does not count live
802 /// through (livein but not used) registers.
803 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
804   std::fill(RegPressure.begin(), RegPressure.end(), 0);
805 
806   // If the preheader has only a single predecessor and it ends with a
807   // fallthrough or an unconditional branch, then scan its predecessor for live
808   // defs as well. This happens whenever the preheader is created by splitting
809   // the critical edge from the loop predecessor to the loop header.
810   if (BB->pred_size() == 1) {
811     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
812     SmallVector<MachineOperand, 4> Cond;
813     if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
814       InitRegPressure(*BB->pred_begin());
815   }
816 
817   for (const MachineInstr &MI : *BB)
818     UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
819 }
820 
821 /// Update estimate of register pressure after the specified instruction.
822 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
823                                         bool ConsiderUnseenAsDef) {
824   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
825   for (const auto &RPIdAndCost : Cost) {
826     unsigned Class = RPIdAndCost.first;
827     if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
828       RegPressure[Class] = 0;
829     else
830       RegPressure[Class] += RPIdAndCost.second;
831   }
832 }
833 
834 /// Calculate the additional register pressure that the registers used in MI
835 /// cause.
836 ///
837 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
838 /// figure out which usages are live-ins.
839 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
840 DenseMap<unsigned, int>
841 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
842                                   bool ConsiderUnseenAsDef) {
843   DenseMap<unsigned, int> Cost;
844   if (MI->isImplicitDef())
845     return Cost;
846   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
847     const MachineOperand &MO = MI->getOperand(i);
848     if (!MO.isReg() || MO.isImplicit())
849       continue;
850     Register Reg = MO.getReg();
851     if (!Reg.isVirtual())
852       continue;
853 
854     // FIXME: It seems bad to use RegSeen only for some of these calculations.
855     bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
856     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
857 
858     RegClassWeight W = TRI->getRegClassWeight(RC);
859     int RCCost = 0;
860     if (MO.isDef())
861       RCCost = W.RegWeight;
862     else {
863       bool isKill = isOperandKill(MO, MRI);
864       if (isNew && !isKill && ConsiderUnseenAsDef)
865         // Haven't seen this, it must be a livein.
866         RCCost = W.RegWeight;
867       else if (!isNew && isKill)
868         RCCost = -W.RegWeight;
869     }
870     if (RCCost == 0)
871       continue;
872     const int *PS = TRI->getRegClassPressureSets(RC);
873     for (; *PS != -1; ++PS) {
874       if (!Cost.contains(*PS))
875         Cost[*PS] = RCCost;
876       else
877         Cost[*PS] += RCCost;
878     }
879   }
880   return Cost;
881 }
882 
883 /// Return true if this machine instruction loads from global offset table or
884 /// constant pool.
885 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
886   assert(MI.mayLoad() && "Expected MI that loads!");
887 
888   // If we lost memory operands, conservatively assume that the instruction
889   // reads from everything..
890   if (MI.memoperands_empty())
891     return true;
892 
893   for (MachineMemOperand *MemOp : MI.memoperands())
894     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
895       if (PSV->isGOT() || PSV->isConstantPool())
896         return true;
897 
898   return false;
899 }
900 
901 // This function iterates through all the operands of the input store MI and
902 // checks that each register operand statisfies isCallerPreservedPhysReg.
903 // This means, the value being stored and the address where it is being stored
904 // is constant throughout the body of the function (not including prologue and
905 // epilogue). When called with an MI that isn't a store, it returns false.
906 // A future improvement can be to check if the store registers are constant
907 // throughout the loop rather than throughout the funtion.
908 static bool isInvariantStore(const MachineInstr &MI,
909                              const TargetRegisterInfo *TRI,
910                              const MachineRegisterInfo *MRI) {
911 
912   bool FoundCallerPresReg = false;
913   if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
914       (MI.getNumOperands() == 0))
915     return false;
916 
917   // Check that all register operands are caller-preserved physical registers.
918   for (const MachineOperand &MO : MI.operands()) {
919     if (MO.isReg()) {
920       Register Reg = MO.getReg();
921       // If operand is a virtual register, check if it comes from a copy of a
922       // physical register.
923       if (Reg.isVirtual())
924         Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
925       if (Reg.isVirtual())
926         return false;
927       if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF()))
928         return false;
929       else
930         FoundCallerPresReg = true;
931     } else if (!MO.isImm()) {
932         return false;
933     }
934   }
935   return FoundCallerPresReg;
936 }
937 
938 // Return true if the input MI is a copy instruction that feeds an invariant
939 // store instruction. This means that the src of the copy has to satisfy
940 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
941 // isInvariantStore.
942 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
943                                         const MachineRegisterInfo *MRI,
944                                         const TargetRegisterInfo *TRI) {
945 
946   // FIXME: If targets would like to look through instructions that aren't
947   // pure copies, this can be updated to a query.
948   if (!MI.isCopy())
949     return false;
950 
951   const MachineFunction *MF = MI.getMF();
952   // Check that we are copying a constant physical register.
953   Register CopySrcReg = MI.getOperand(1).getReg();
954   if (CopySrcReg.isVirtual())
955     return false;
956 
957   if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF))
958     return false;
959 
960   Register CopyDstReg = MI.getOperand(0).getReg();
961   // Check if any of the uses of the copy are invariant stores.
962   assert(CopyDstReg.isVirtual() && "copy dst is not a virtual reg");
963 
964   for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
965     if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
966       return true;
967   }
968   return false;
969 }
970 
971 /// Returns true if the instruction may be a suitable candidate for LICM.
972 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
973 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
974   // Check if it's safe to move the instruction.
975   bool DontMoveAcrossStore = true;
976   if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
977       !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
978     LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n");
979     return false;
980   }
981 
982   // If it is a load then check if it is guaranteed to execute by making sure
983   // that it dominates all exiting blocks. If it doesn't, then there is a path
984   // out of the loop which does not execute this load, so we can't hoist it.
985   // Loads from constant memory are safe to speculate, for example indexed load
986   // from a jump table.
987   // Stores and side effects are already checked by isSafeToMove.
988   if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
989       !IsGuaranteedToExecute(I.getParent())) {
990     LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n");
991     return false;
992   }
993 
994   // Convergent attribute has been used on operations that involve inter-thread
995   // communication which results are implicitly affected by the enclosing
996   // control flows. It is not safe to hoist or sink such operations across
997   // control flow.
998   if (I.isConvergent())
999     return false;
1000 
1001   if (!TII->shouldHoist(I, CurLoop))
1002     return false;
1003 
1004   return true;
1005 }
1006 
1007 /// Returns true if the instruction is loop invariant.
1008 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1009   if (!IsLICMCandidate(I)) {
1010     LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n");
1011     return false;
1012   }
1013   return CurLoop->isLoopInvariant(I);
1014 }
1015 
1016 /// Return true if the specified instruction is used by a phi node and hoisting
1017 /// it could cause a copy to be inserted.
1018 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1019   SmallVector<const MachineInstr*, 8> Work(1, MI);
1020   do {
1021     MI = Work.pop_back_val();
1022     for (const MachineOperand &MO : MI->all_defs()) {
1023       Register Reg = MO.getReg();
1024       if (!Reg.isVirtual())
1025         continue;
1026       for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1027         // A PHI may cause a copy to be inserted.
1028         if (UseMI.isPHI()) {
1029           // A PHI inside the loop causes a copy because the live range of Reg is
1030           // extended across the PHI.
1031           if (CurLoop->contains(&UseMI))
1032             return true;
1033           // A PHI in an exit block can cause a copy to be inserted if the PHI
1034           // has multiple predecessors in the loop with different values.
1035           // For now, approximate by rejecting all exit blocks.
1036           if (isExitBlock(UseMI.getParent()))
1037             return true;
1038           continue;
1039         }
1040         // Look past copies as well.
1041         if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1042           Work.push_back(&UseMI);
1043       }
1044     }
1045   } while (!Work.empty());
1046   return false;
1047 }
1048 
1049 /// Compute operand latency between a def of 'Reg' and an use in the current
1050 /// loop, return true if the target considered it high.
1051 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
1052                                             Register Reg) const {
1053   if (MRI->use_nodbg_empty(Reg))
1054     return false;
1055 
1056   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1057     if (UseMI.isCopyLike())
1058       continue;
1059     if (!CurLoop->contains(UseMI.getParent()))
1060       continue;
1061     for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1062       const MachineOperand &MO = UseMI.getOperand(i);
1063       if (!MO.isReg() || !MO.isUse())
1064         continue;
1065       Register MOReg = MO.getReg();
1066       if (MOReg != Reg)
1067         continue;
1068 
1069       if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1070         return true;
1071     }
1072 
1073     // Only look at the first in loop use.
1074     break;
1075   }
1076 
1077   return false;
1078 }
1079 
1080 /// Return true if the instruction is marked "cheap" or the operand latency
1081 /// between its def and a use is one or less.
1082 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1083   if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1084     return true;
1085 
1086   bool isCheap = false;
1087   unsigned NumDefs = MI.getDesc().getNumDefs();
1088   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1089     MachineOperand &DefMO = MI.getOperand(i);
1090     if (!DefMO.isReg() || !DefMO.isDef())
1091       continue;
1092     --NumDefs;
1093     Register Reg = DefMO.getReg();
1094     if (Reg.isPhysical())
1095       continue;
1096 
1097     if (!TII->hasLowDefLatency(SchedModel, MI, i))
1098       return false;
1099     isCheap = true;
1100   }
1101 
1102   return isCheap;
1103 }
1104 
1105 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1106 /// given cost matrix can cause high register pressure.
1107 bool
1108 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1109                                          bool CheapInstr) {
1110   for (const auto &RPIdAndCost : Cost) {
1111     if (RPIdAndCost.second <= 0)
1112       continue;
1113 
1114     unsigned Class = RPIdAndCost.first;
1115     int Limit = RegLimit[Class];
1116 
1117     // Don't hoist cheap instructions if they would increase register pressure,
1118     // even if we're under the limit.
1119     if (CheapInstr && !HoistCheapInsts)
1120       return true;
1121 
1122     for (const auto &RP : BackTrace)
1123       if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1124         return true;
1125   }
1126 
1127   return false;
1128 }
1129 
1130 /// Traverse the back trace from header to the current block and update their
1131 /// register pressures to reflect the effect of hoisting MI from the current
1132 /// block to the preheader.
1133 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1134   // First compute the 'cost' of the instruction, i.e. its contribution
1135   // to register pressure.
1136   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1137                                /*ConsiderUnseenAsDef=*/false);
1138 
1139   // Update register pressure of blocks from loop header to current block.
1140   for (auto &RP : BackTrace)
1141     for (const auto &RPIdAndCost : Cost)
1142       RP[RPIdAndCost.first] += RPIdAndCost.second;
1143 }
1144 
1145 /// Return true if it is potentially profitable to hoist the given loop
1146 /// invariant.
1147 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1148   if (MI.isImplicitDef())
1149     return true;
1150 
1151   // Besides removing computation from the loop, hoisting an instruction has
1152   // these effects:
1153   //
1154   // - The value defined by the instruction becomes live across the entire
1155   //   loop. This increases register pressure in the loop.
1156   //
1157   // - If the value is used by a PHI in the loop, a copy will be required for
1158   //   lowering the PHI after extending the live range.
1159   //
1160   // - When hoisting the last use of a value in the loop, that value no longer
1161   //   needs to be live in the loop. This lowers register pressure in the loop.
1162 
1163   if (HoistConstStores &&  isCopyFeedingInvariantStore(MI, MRI, TRI))
1164     return true;
1165 
1166   bool CheapInstr = IsCheapInstruction(MI);
1167   bool CreatesCopy = HasLoopPHIUse(&MI);
1168 
1169   // Don't hoist a cheap instruction if it would create a copy in the loop.
1170   if (CheapInstr && CreatesCopy) {
1171     LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1172     return false;
1173   }
1174 
1175   // Rematerializable instructions should always be hoisted providing the
1176   // register allocator can just pull them down again when needed.
1177   if (isTriviallyReMaterializable(MI))
1178     return true;
1179 
1180   // FIXME: If there are long latency loop-invariant instructions inside the
1181   // loop at this point, why didn't the optimizer's LICM hoist them?
1182   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1183     const MachineOperand &MO = MI.getOperand(i);
1184     if (!MO.isReg() || MO.isImplicit())
1185       continue;
1186     Register Reg = MO.getReg();
1187     if (!Reg.isVirtual())
1188       continue;
1189     if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1190       LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1191       ++NumHighLatency;
1192       return true;
1193     }
1194   }
1195 
1196   // Estimate register pressure to determine whether to LICM the instruction.
1197   // In low register pressure situation, we can be more aggressive about
1198   // hoisting. Also, favors hoisting long latency instructions even in
1199   // moderately high pressure situation.
1200   // Cheap instructions will only be hoisted if they don't increase register
1201   // pressure at all.
1202   auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1203                                /*ConsiderUnseenAsDef=*/false);
1204 
1205   // Visit BBs from header to current BB, if hoisting this doesn't cause
1206   // high register pressure, then it's safe to proceed.
1207   if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1208     LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1209     ++NumLowRP;
1210     return true;
1211   }
1212 
1213   // Don't risk increasing register pressure if it would create copies.
1214   if (CreatesCopy) {
1215     LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1216     return false;
1217   }
1218 
1219   // Do not "speculate" in high register pressure situation. If an
1220   // instruction is not guaranteed to be executed in the loop, it's best to be
1221   // conservative.
1222   if (AvoidSpeculation &&
1223       (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1224     LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1225     return false;
1226   }
1227 
1228   // High register pressure situation, only hoist if the instruction is going
1229   // to be remat'ed.
1230   if (!isTriviallyReMaterializable(MI) &&
1231       !MI.isDereferenceableInvariantLoad()) {
1232     LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1233     return false;
1234   }
1235 
1236   return true;
1237 }
1238 
1239 /// Unfold a load from the given machineinstr if the load itself could be
1240 /// hoisted. Return the unfolded and hoistable load, or null if the load
1241 /// couldn't be unfolded or if it wouldn't be hoistable.
1242 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1243   // Don't unfold simple loads.
1244   if (MI->canFoldAsLoad())
1245     return nullptr;
1246 
1247   // If not, we may be able to unfold a load and hoist that.
1248   // First test whether the instruction is loading from an amenable
1249   // memory location.
1250   if (!MI->isDereferenceableInvariantLoad())
1251     return nullptr;
1252 
1253   // Next determine the register class for a temporary register.
1254   unsigned LoadRegIndex;
1255   unsigned NewOpc =
1256     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1257                                     /*UnfoldLoad=*/true,
1258                                     /*UnfoldStore=*/false,
1259                                     &LoadRegIndex);
1260   if (NewOpc == 0) return nullptr;
1261   const MCInstrDesc &MID = TII->get(NewOpc);
1262   MachineFunction &MF = *MI->getMF();
1263   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1264   // Ok, we're unfolding. Create a temporary register and do the unfold.
1265   Register Reg = MRI->createVirtualRegister(RC);
1266 
1267   SmallVector<MachineInstr *, 2> NewMIs;
1268   bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1269                                           /*UnfoldLoad=*/true,
1270                                           /*UnfoldStore=*/false, NewMIs);
1271   (void)Success;
1272   assert(Success &&
1273          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1274          "succeeded!");
1275   assert(NewMIs.size() == 2 &&
1276          "Unfolded a load into multiple instructions!");
1277   MachineBasicBlock *MBB = MI->getParent();
1278   MachineBasicBlock::iterator Pos = MI;
1279   MBB->insert(Pos, NewMIs[0]);
1280   MBB->insert(Pos, NewMIs[1]);
1281   // If unfolding produced a load that wasn't loop-invariant or profitable to
1282   // hoist, discard the new instructions and bail.
1283   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1284     NewMIs[0]->eraseFromParent();
1285     NewMIs[1]->eraseFromParent();
1286     return nullptr;
1287   }
1288 
1289   // Update register pressure for the unfolded instruction.
1290   UpdateRegPressure(NewMIs[1]);
1291 
1292   // Otherwise we successfully unfolded a load that we can hoist.
1293 
1294   // Update the call site info.
1295   if (MI->shouldUpdateCallSiteInfo())
1296     MF.eraseCallSiteInfo(MI);
1297 
1298   MI->eraseFromParent();
1299   return NewMIs[0];
1300 }
1301 
1302 /// Initialize the CSE map with instructions that are in the current loop
1303 /// preheader that may become duplicates of instructions that are hoisted
1304 /// out of the loop.
1305 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1306   for (MachineInstr &MI : *BB)
1307     CSEMap[MI.getOpcode()].push_back(&MI);
1308 }
1309 
1310 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1311 /// Return this instruction if it's found.
1312 MachineInstr *
1313 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1314                                   std::vector<MachineInstr *> &PrevMIs) {
1315   for (MachineInstr *PrevMI : PrevMIs)
1316     if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1317       return PrevMI;
1318 
1319   return nullptr;
1320 }
1321 
1322 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1323 /// computes the same value. If it's found, do a RAU on with the definition of
1324 /// the existing instruction rather than hoisting the instruction to the
1325 /// preheader.
1326 bool MachineLICMBase::EliminateCSE(
1327     MachineInstr *MI,
1328     DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) {
1329   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1330   // the undef property onto uses.
1331   if (CI == CSEMap.end() || MI->isImplicitDef())
1332     return false;
1333 
1334   if (MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1335     LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1336 
1337     // Replace virtual registers defined by MI by their counterparts defined
1338     // by Dup.
1339     SmallVector<unsigned, 2> Defs;
1340     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1341       const MachineOperand &MO = MI->getOperand(i);
1342 
1343       // Physical registers may not differ here.
1344       assert((!MO.isReg() || MO.getReg() == 0 || !MO.getReg().isPhysical() ||
1345               MO.getReg() == Dup->getOperand(i).getReg()) &&
1346              "Instructions with different phys regs are not identical!");
1347 
1348       if (MO.isReg() && MO.isDef() && !MO.getReg().isPhysical())
1349         Defs.push_back(i);
1350     }
1351 
1352     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1353     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1354       unsigned Idx = Defs[i];
1355       Register Reg = MI->getOperand(Idx).getReg();
1356       Register DupReg = Dup->getOperand(Idx).getReg();
1357       OrigRCs.push_back(MRI->getRegClass(DupReg));
1358 
1359       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1360         // Restore old RCs if more than one defs.
1361         for (unsigned j = 0; j != i; ++j)
1362           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1363         return false;
1364       }
1365     }
1366 
1367     for (unsigned Idx : Defs) {
1368       Register Reg = MI->getOperand(Idx).getReg();
1369       Register DupReg = Dup->getOperand(Idx).getReg();
1370       MRI->replaceRegWith(Reg, DupReg);
1371       MRI->clearKillFlags(DupReg);
1372       // Clear Dup dead flag if any, we reuse it for Reg.
1373       if (!MRI->use_nodbg_empty(DupReg))
1374         Dup->getOperand(Idx).setIsDead(false);
1375     }
1376 
1377     MI->eraseFromParent();
1378     ++NumCSEed;
1379     return true;
1380   }
1381   return false;
1382 }
1383 
1384 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1385 /// the loop.
1386 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1387   unsigned Opcode = MI->getOpcode();
1388   DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI =
1389       CSEMap.find(Opcode);
1390   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1391   // the undef property onto uses.
1392   if (CI == CSEMap.end() || MI->isImplicitDef())
1393     return false;
1394 
1395   return LookForDuplicate(MI, CI->second) != nullptr;
1396 }
1397 
1398 /// When an instruction is found to use only loop invariant operands
1399 /// that are safe to hoist, this instruction is called to do the dirty work.
1400 /// It returns true if the instruction is hoisted.
1401 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1402   MachineBasicBlock *SrcBlock = MI->getParent();
1403 
1404   // Disable the instruction hoisting due to block hotness
1405   if ((DisableHoistingToHotterBlocks == UseBFI::All ||
1406       (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) &&
1407       isTgtHotterThanSrc(SrcBlock, Preheader)) {
1408     ++NumNotHoistedDueToHotness;
1409     return false;
1410   }
1411   // First check whether we should hoist this instruction.
1412   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1413     // If not, try unfolding a hoistable load.
1414     MI = ExtractHoistableLoad(MI);
1415     if (!MI) return false;
1416   }
1417 
1418   // If we have hoisted an instruction that may store, it can only be a constant
1419   // store.
1420   if (MI->mayStore())
1421     NumStoreConst++;
1422 
1423   // Now move the instructions to the predecessor, inserting it before any
1424   // terminator instructions.
1425   LLVM_DEBUG({
1426     dbgs() << "Hoisting " << *MI;
1427     if (MI->getParent()->getBasicBlock())
1428       dbgs() << " from " << printMBBReference(*MI->getParent());
1429     if (Preheader->getBasicBlock())
1430       dbgs() << " to " << printMBBReference(*Preheader);
1431     dbgs() << "\n";
1432   });
1433 
1434   // If this is the first instruction being hoisted to the preheader,
1435   // initialize the CSE map with potential common expressions.
1436   if (FirstInLoop) {
1437     InitCSEMap(Preheader);
1438     FirstInLoop = false;
1439   }
1440 
1441   // Look for opportunity to CSE the hoisted instruction.
1442   unsigned Opcode = MI->getOpcode();
1443   DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI =
1444       CSEMap.find(Opcode);
1445   if (!EliminateCSE(MI, CI)) {
1446     // Otherwise, splice the instruction to the preheader.
1447     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1448 
1449     // Since we are moving the instruction out of its basic block, we do not
1450     // retain its debug location. Doing so would degrade the debugging
1451     // experience and adversely affect the accuracy of profiling information.
1452     assert(!MI->isDebugInstr() && "Should not hoist debug inst");
1453     MI->setDebugLoc(DebugLoc());
1454 
1455     // Update register pressure for BBs from header to this block.
1456     UpdateBackTraceRegPressure(MI);
1457 
1458     // Clear the kill flags of any register this instruction defines,
1459     // since they may need to be live throughout the entire loop
1460     // rather than just live for part of it.
1461     for (MachineOperand &MO : MI->all_defs())
1462       if (!MO.isDead())
1463         MRI->clearKillFlags(MO.getReg());
1464 
1465     // Add to the CSE map.
1466     if (CI != CSEMap.end())
1467       CI->second.push_back(MI);
1468     else
1469       CSEMap[Opcode].push_back(MI);
1470   }
1471 
1472   ++NumHoisted;
1473   Changed = true;
1474 
1475   return true;
1476 }
1477 
1478 /// Get the preheader for the current loop, splitting a critical edge if needed.
1479 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1480   // Determine the block to which to hoist instructions. If we can't find a
1481   // suitable loop predecessor, we can't do any hoisting.
1482 
1483   // If we've tried to get a preheader and failed, don't try again.
1484   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1485     return nullptr;
1486 
1487   if (!CurPreheader) {
1488     CurPreheader = CurLoop->getLoopPreheader();
1489     if (!CurPreheader) {
1490       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1491       if (!Pred) {
1492         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1493         return nullptr;
1494       }
1495 
1496       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1497       if (!CurPreheader) {
1498         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1499         return nullptr;
1500       }
1501     }
1502   }
1503   return CurPreheader;
1504 }
1505 
1506 /// Is the target basic block at least "BlockFrequencyRatioThreshold"
1507 /// times hotter than the source basic block.
1508 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
1509                                          MachineBasicBlock *TgtBlock) {
1510   // Parse source and target basic block frequency from MBFI
1511   uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency();
1512   uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency();
1513 
1514   // Disable the hoisting if source block frequency is zero
1515   if (!SrcBF)
1516     return true;
1517 
1518   double Ratio = (double)DstBF / SrcBF;
1519 
1520   // Compare the block frequency ratio with the threshold
1521   return Ratio > BlockFrequencyRatioThreshold;
1522 }
1523