1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion on machine instructions. We 10 // attempt to remove as much code from the body of a loop as possible. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegister.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <limits> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machinelicm" 60 61 static cl::opt<bool> 62 AvoidSpeculation("avoid-speculation", 63 cl::desc("MachineLICM should avoid speculation"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 HoistCheapInsts("hoist-cheap-insts", 68 cl::desc("MachineLICM should hoist even cheap instructions"), 69 cl::init(false), cl::Hidden); 70 71 static cl::opt<bool> 72 HoistConstStores("hoist-const-stores", 73 cl::desc("Hoist invariant stores"), 74 cl::init(true), cl::Hidden); 75 76 static cl::opt<bool> HoistConstLoads("hoist-const-loads", 77 cl::desc("Hoist invariant loads"), 78 cl::init(true), cl::Hidden); 79 80 // The default threshold of 100 (i.e. if target block is 100 times hotter) 81 // is based on empirical data on a single target and is subject to tuning. 82 static cl::opt<unsigned> 83 BlockFrequencyRatioThreshold("block-freq-ratio-threshold", 84 cl::desc("Do not hoist instructions if target" 85 "block is N times hotter than the source."), 86 cl::init(100), cl::Hidden); 87 88 enum class UseBFI { None, PGO, All }; 89 90 static cl::opt<UseBFI> 91 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks", 92 cl::desc("Disable hoisting instructions to" 93 " hotter blocks"), 94 cl::init(UseBFI::PGO), cl::Hidden, 95 cl::values(clEnumValN(UseBFI::None, "none", 96 "disable the feature"), 97 clEnumValN(UseBFI::PGO, "pgo", 98 "enable the feature when using profile data"), 99 clEnumValN(UseBFI::All, "all", 100 "enable the feature with/wo profile data"))); 101 102 STATISTIC(NumHoisted, 103 "Number of machine instructions hoisted out of loops"); 104 STATISTIC(NumLowRP, 105 "Number of instructions hoisted in low reg pressure situation"); 106 STATISTIC(NumHighLatency, 107 "Number of high latency instructions hoisted"); 108 STATISTIC(NumCSEed, 109 "Number of hoisted machine instructions CSEed"); 110 STATISTIC(NumPostRAHoisted, 111 "Number of machine instructions hoisted out of loops post regalloc"); 112 STATISTIC(NumStoreConst, 113 "Number of stores of const phys reg hoisted out of loops"); 114 STATISTIC(NumNotHoistedDueToHotness, 115 "Number of instructions not hoisted due to block frequency"); 116 117 namespace { 118 enum HoistResult { NotHoisted = 1, Hoisted = 2, ErasedMI = 4 }; 119 120 class MachineLICMBase : public MachineFunctionPass { 121 const TargetInstrInfo *TII = nullptr; 122 const TargetLoweringBase *TLI = nullptr; 123 const TargetRegisterInfo *TRI = nullptr; 124 const MachineFrameInfo *MFI = nullptr; 125 MachineRegisterInfo *MRI = nullptr; 126 TargetSchedModel SchedModel; 127 bool PreRegAlloc = false; 128 bool HasProfileData = false; 129 130 // Various analyses that we use... 131 AliasAnalysis *AA = nullptr; // Alias analysis info. 132 MachineBlockFrequencyInfo *MBFI = nullptr; // Machine block frequncy info 133 MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo 134 MachineDominatorTree *DT = nullptr; // Machine dominator tree for the cur loop 135 136 // State that is updated as we process loops 137 bool Changed = false; // True if a loop is changed. 138 bool FirstInLoop = false; // True if it's the first LICM in the loop. 139 140 // Holds information about whether it is allowed to move load instructions 141 // out of the loop 142 SmallDenseMap<MachineLoop *, bool> AllowedToHoistLoads; 143 144 // Exit blocks of each Loop. 145 DenseMap<MachineLoop *, SmallVector<MachineBasicBlock *, 8>> ExitBlockMap; 146 147 bool isExitBlock(MachineLoop *CurLoop, const MachineBasicBlock *MBB) { 148 if (ExitBlockMap.contains(CurLoop)) 149 return is_contained(ExitBlockMap[CurLoop], MBB); 150 151 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 152 CurLoop->getExitBlocks(ExitBlocks); 153 ExitBlockMap[CurLoop] = ExitBlocks; 154 return is_contained(ExitBlocks, MBB); 155 } 156 157 // Track 'estimated' register pressure. 158 SmallDenseSet<Register> RegSeen; 159 SmallVector<unsigned, 8> RegPressure; 160 161 // Register pressure "limit" per register pressure set. If the pressure 162 // is higher than the limit, then it's considered high. 163 SmallVector<unsigned, 8> RegLimit; 164 165 // Register pressure on path leading from loop preheader to current BB. 166 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 167 168 // For each opcode per preheader, keep a list of potential CSE instructions. 169 DenseMap<MachineBasicBlock *, 170 DenseMap<unsigned, std::vector<MachineInstr *>>> 171 CSEMap; 172 173 enum { 174 SpeculateFalse = 0, 175 SpeculateTrue = 1, 176 SpeculateUnknown = 2 177 }; 178 179 // If a MBB does not dominate loop exiting blocks then it may not safe 180 // to hoist loads from this block. 181 // Tri-state: 0 - false, 1 - true, 2 - unknown 182 unsigned SpeculationState = SpeculateUnknown; 183 184 public: 185 MachineLICMBase(char &PassID, bool PreRegAlloc) 186 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 187 188 bool runOnMachineFunction(MachineFunction &MF) override; 189 190 void getAnalysisUsage(AnalysisUsage &AU) const override { 191 AU.addRequired<MachineLoopInfoWrapperPass>(); 192 if (DisableHoistingToHotterBlocks != UseBFI::None) 193 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 194 AU.addRequired<MachineDominatorTreeWrapperPass>(); 195 AU.addRequired<AAResultsWrapperPass>(); 196 AU.addPreserved<MachineLoopInfoWrapperPass>(); 197 MachineFunctionPass::getAnalysisUsage(AU); 198 } 199 200 void releaseMemory() override { 201 RegSeen.clear(); 202 RegPressure.clear(); 203 RegLimit.clear(); 204 BackTrace.clear(); 205 CSEMap.clear(); 206 ExitBlockMap.clear(); 207 } 208 209 private: 210 /// Keep track of information about hoisting candidates. 211 struct CandidateInfo { 212 MachineInstr *MI; 213 unsigned Def; 214 int FI; 215 216 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 217 : MI(mi), Def(def), FI(fi) {} 218 }; 219 220 void HoistRegionPostRA(MachineLoop *CurLoop, 221 MachineBasicBlock *CurPreheader); 222 223 void HoistPostRA(MachineInstr *MI, unsigned Def, MachineLoop *CurLoop, 224 MachineBasicBlock *CurPreheader); 225 226 void ProcessMI(MachineInstr *MI, BitVector &RUDefs, BitVector &RUClobbers, 227 SmallDenseSet<int> &StoredFIs, 228 SmallVectorImpl<CandidateInfo> &Candidates, 229 MachineLoop *CurLoop); 230 231 void AddToLiveIns(MCRegister Reg, MachineLoop *CurLoop); 232 233 bool IsLICMCandidate(MachineInstr &I, MachineLoop *CurLoop); 234 235 bool IsLoopInvariantInst(MachineInstr &I, MachineLoop *CurLoop); 236 237 bool HasLoopPHIUse(const MachineInstr *MI, MachineLoop *CurLoop); 238 239 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, Register Reg, 240 MachineLoop *CurLoop) const; 241 242 bool IsCheapInstruction(MachineInstr &MI) const; 243 244 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 245 bool Cheap); 246 247 void UpdateBackTraceRegPressure(const MachineInstr *MI); 248 249 bool IsProfitableToHoist(MachineInstr &MI, MachineLoop *CurLoop); 250 251 bool IsGuaranteedToExecute(MachineBasicBlock *BB, MachineLoop *CurLoop); 252 253 bool isTriviallyReMaterializable(const MachineInstr &MI) const; 254 255 void EnterScope(MachineBasicBlock *MBB); 256 257 void ExitScope(MachineBasicBlock *MBB); 258 259 void ExitScopeIfDone( 260 MachineDomTreeNode *Node, 261 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 262 const DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 263 264 void HoistOutOfLoop(MachineDomTreeNode *HeaderN, MachineLoop *CurLoop, 265 MachineBasicBlock *CurPreheader); 266 267 void InitRegPressure(MachineBasicBlock *BB); 268 269 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 270 bool ConsiderSeen, 271 bool ConsiderUnseenAsDef); 272 273 void UpdateRegPressure(const MachineInstr *MI, 274 bool ConsiderUnseenAsDef = false); 275 276 MachineInstr *ExtractHoistableLoad(MachineInstr *MI, MachineLoop *CurLoop); 277 278 MachineInstr *LookForDuplicate(const MachineInstr *MI, 279 std::vector<MachineInstr *> &PrevMIs); 280 281 bool 282 EliminateCSE(MachineInstr *MI, 283 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI); 284 285 bool MayCSE(MachineInstr *MI); 286 287 unsigned Hoist(MachineInstr *MI, MachineBasicBlock *Preheader, 288 MachineLoop *CurLoop); 289 290 void InitCSEMap(MachineBasicBlock *BB); 291 292 void InitializeLoadsHoistableLoops(); 293 294 bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 295 MachineBasicBlock *TgtBlock); 296 MachineBasicBlock *getCurPreheader(MachineLoop *CurLoop, 297 MachineBasicBlock *CurPreheader); 298 }; 299 300 class MachineLICM : public MachineLICMBase { 301 public: 302 static char ID; 303 MachineLICM() : MachineLICMBase(ID, false) { 304 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 305 } 306 }; 307 308 class EarlyMachineLICM : public MachineLICMBase { 309 public: 310 static char ID; 311 EarlyMachineLICM() : MachineLICMBase(ID, true) { 312 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 313 } 314 }; 315 316 } // end anonymous namespace 317 318 char MachineLICM::ID; 319 char EarlyMachineLICM::ID; 320 321 char &llvm::MachineLICMID = MachineLICM::ID; 322 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 323 324 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 325 "Machine Loop Invariant Code Motion", false, false) 326 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 327 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 328 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 329 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 330 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 331 "Machine Loop Invariant Code Motion", false, false) 332 333 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 334 "Early Machine Loop Invariant Code Motion", false, false) 335 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 336 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) 337 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 338 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 339 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 340 "Early Machine Loop Invariant Code Motion", false, false) 341 342 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 343 if (skipFunction(MF.getFunction())) 344 return false; 345 346 Changed = FirstInLoop = false; 347 const TargetSubtargetInfo &ST = MF.getSubtarget(); 348 TII = ST.getInstrInfo(); 349 TLI = ST.getTargetLowering(); 350 TRI = ST.getRegisterInfo(); 351 MFI = &MF.getFrameInfo(); 352 MRI = &MF.getRegInfo(); 353 SchedModel.init(&ST); 354 355 PreRegAlloc = MRI->isSSA(); 356 HasProfileData = MF.getFunction().hasProfileData(); 357 358 if (PreRegAlloc) 359 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 360 else 361 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 362 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 363 364 if (PreRegAlloc) { 365 // Estimate register pressure during pre-regalloc pass. 366 unsigned NumRPS = TRI->getNumRegPressureSets(); 367 RegPressure.resize(NumRPS); 368 std::fill(RegPressure.begin(), RegPressure.end(), 0); 369 RegLimit.resize(NumRPS); 370 for (unsigned i = 0, e = NumRPS; i != e; ++i) 371 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 372 } 373 374 // Get our Loop information... 375 if (DisableHoistingToHotterBlocks != UseBFI::None) 376 MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); 377 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 378 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 379 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 380 381 if (HoistConstLoads) 382 InitializeLoadsHoistableLoops(); 383 384 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 385 while (!Worklist.empty()) { 386 MachineLoop *CurLoop = Worklist.pop_back_val(); 387 MachineBasicBlock *CurPreheader = nullptr; 388 389 if (!PreRegAlloc) 390 HoistRegionPostRA(CurLoop, CurPreheader); 391 else { 392 // CSEMap is initialized for loop header when the first instruction is 393 // being hoisted. 394 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 395 FirstInLoop = true; 396 HoistOutOfLoop(N, CurLoop, CurPreheader); 397 CSEMap.clear(); 398 } 399 } 400 401 return Changed; 402 } 403 404 /// Return true if instruction stores to the specified frame. 405 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 406 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 407 // true since they have no memory operands. 408 if (!MI->mayStore()) 409 return false; 410 // If we lost memory operands, conservatively assume that the instruction 411 // writes to all slots. 412 if (MI->memoperands_empty()) 413 return true; 414 for (const MachineMemOperand *MemOp : MI->memoperands()) { 415 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 416 continue; 417 if (const FixedStackPseudoSourceValue *Value = 418 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 419 if (Value->getFrameIndex() == FI) 420 return true; 421 } 422 } 423 return false; 424 } 425 426 static void applyBitsNotInRegMaskToRegUnitsMask(const TargetRegisterInfo &TRI, 427 BitVector &RUs, 428 const uint32_t *Mask) { 429 // FIXME: This intentionally works in reverse due to some issues with the 430 // Register Units infrastructure. 431 // 432 // This is used to apply callee-saved-register masks to the clobbered regunits 433 // mask. 434 // 435 // The right way to approach this is to start with a BitVector full of ones, 436 // then reset all the bits of the regunits of each register that is set in the 437 // mask (registers preserved), then OR the resulting bits with the Clobbers 438 // mask. This correctly prioritizes the saved registers, so if a RU is shared 439 // between a register that is preserved, and one that is NOT preserved, that 440 // RU will not be set in the output vector (the clobbers). 441 // 442 // What we have to do for now is the opposite: we have to assume that the 443 // regunits of all registers that are NOT preserved are clobbered, even if 444 // those regunits are preserved by another register. So if a RU is shared 445 // like described previously, that RU will be set. 446 // 447 // This is to work around an issue which appears in AArch64, but isn't 448 // exclusive to that target: AArch64's Qn registers (128 bits) have Dn 449 // register (lower 64 bits). A few Dn registers are preserved by some calling 450 // conventions, but Qn and Dn share exactly the same reg units. 451 // 452 // If we do this the right way, Qn will be marked as NOT clobbered even though 453 // its upper 64 bits are NOT preserved. The conservative approach handles this 454 // correctly at the cost of some missed optimizations on other targets. 455 // 456 // This is caused by how RegUnits are handled within TableGen. Ideally, Qn 457 // should have an extra RegUnit to model the "unknown" bits not covered by the 458 // subregs. 459 BitVector RUsFromRegsNotInMask(TRI.getNumRegUnits()); 460 const unsigned NumRegs = TRI.getNumRegs(); 461 const unsigned MaskWords = (NumRegs + 31) / 32; 462 for (unsigned K = 0; K < MaskWords; ++K) { 463 const uint32_t Word = Mask[K]; 464 for (unsigned Bit = 0; Bit < 32; ++Bit) { 465 const unsigned PhysReg = (K * 32) + Bit; 466 if (PhysReg == NumRegs) 467 break; 468 469 if (PhysReg && !((Word >> Bit) & 1)) { 470 for (MCRegUnitIterator RUI(PhysReg, &TRI); RUI.isValid(); ++RUI) 471 RUsFromRegsNotInMask.set(*RUI); 472 } 473 } 474 } 475 476 RUs |= RUsFromRegsNotInMask; 477 } 478 479 /// Examine the instruction for potentai LICM candidate. Also 480 /// gather register def and frame object update information. 481 void MachineLICMBase::ProcessMI(MachineInstr *MI, BitVector &RUDefs, 482 BitVector &RUClobbers, 483 SmallDenseSet<int> &StoredFIs, 484 SmallVectorImpl<CandidateInfo> &Candidates, 485 MachineLoop *CurLoop) { 486 bool RuledOut = false; 487 bool HasNonInvariantUse = false; 488 unsigned Def = 0; 489 for (const MachineOperand &MO : MI->operands()) { 490 if (MO.isFI()) { 491 // Remember if the instruction stores to the frame index. 492 int FI = MO.getIndex(); 493 if (!StoredFIs.count(FI) && 494 MFI->isSpillSlotObjectIndex(FI) && 495 InstructionStoresToFI(MI, FI)) 496 StoredFIs.insert(FI); 497 HasNonInvariantUse = true; 498 continue; 499 } 500 501 // We can't hoist an instruction defining a physreg that is clobbered in 502 // the loop. 503 if (MO.isRegMask()) { 504 applyBitsNotInRegMaskToRegUnitsMask(*TRI, RUClobbers, MO.getRegMask()); 505 continue; 506 } 507 508 if (!MO.isReg()) 509 continue; 510 Register Reg = MO.getReg(); 511 if (!Reg) 512 continue; 513 assert(Reg.isPhysical() && "Not expecting virtual register!"); 514 515 if (!MO.isDef()) { 516 if (!HasNonInvariantUse) { 517 for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) { 518 // If it's using a non-loop-invariant register, then it's obviously 519 // not safe to hoist. 520 if (RUDefs.test(*RUI) || RUClobbers.test(*RUI)) { 521 HasNonInvariantUse = true; 522 break; 523 } 524 } 525 } 526 continue; 527 } 528 529 if (MO.isImplicit()) { 530 for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) 531 RUClobbers.set(*RUI); 532 if (!MO.isDead()) 533 // Non-dead implicit def? This cannot be hoisted. 534 RuledOut = true; 535 // No need to check if a dead implicit def is also defined by 536 // another instruction. 537 continue; 538 } 539 540 // FIXME: For now, avoid instructions with multiple defs, unless 541 // it's a dead implicit def. 542 if (Def) 543 RuledOut = true; 544 else 545 Def = Reg; 546 547 // If we have already seen another instruction that defines the same 548 // register, then this is not safe. Two defs is indicated by setting a 549 // PhysRegClobbers bit. 550 for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) { 551 if (RUDefs.test(*RUI)) { 552 RUClobbers.set(*RUI); 553 RuledOut = true; 554 } else if (RUClobbers.test(*RUI)) { 555 // MI defined register is seen defined by another instruction in 556 // the loop, it cannot be a LICM candidate. 557 RuledOut = true; 558 } 559 560 RUDefs.set(*RUI); 561 } 562 } 563 564 // Only consider reloads for now and remats which do not have register 565 // operands. FIXME: Consider unfold load folding instructions. 566 if (Def && !RuledOut) { 567 int FI = std::numeric_limits<int>::min(); 568 if ((!HasNonInvariantUse && IsLICMCandidate(*MI, CurLoop)) || 569 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 570 Candidates.push_back(CandidateInfo(MI, Def, FI)); 571 } 572 } 573 574 /// Walk the specified region of the CFG and hoist loop invariants out to the 575 /// preheader. 576 void MachineLICMBase::HoistRegionPostRA(MachineLoop *CurLoop, 577 MachineBasicBlock *CurPreheader) { 578 MachineBasicBlock *Preheader = getCurPreheader(CurLoop, CurPreheader); 579 if (!Preheader) 580 return; 581 582 unsigned NumRegUnits = TRI->getNumRegUnits(); 583 BitVector RUDefs(NumRegUnits); // RUs defined once in the loop. 584 BitVector RUClobbers(NumRegUnits); // RUs defined more than once. 585 586 SmallVector<CandidateInfo, 32> Candidates; 587 SmallDenseSet<int> StoredFIs; 588 589 // Walk the entire region, count number of defs for each register, and 590 // collect potential LICM candidates. 591 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 592 // If the header of the loop containing this basic block is a landing pad, 593 // then don't try to hoist instructions out of this loop. 594 const MachineLoop *ML = MLI->getLoopFor(BB); 595 if (ML && ML->getHeader()->isEHPad()) continue; 596 597 // Conservatively treat live-in's as an external def. 598 // FIXME: That means a reload that're reused in successor block(s) will not 599 // be LICM'ed. 600 for (const auto &LI : BB->liveins()) { 601 for (MCRegUnitIterator RUI(LI.PhysReg, TRI); RUI.isValid(); ++RUI) 602 RUDefs.set(*RUI); 603 } 604 605 // Funclet entry blocks will clobber all registers 606 if (const uint32_t *Mask = BB->getBeginClobberMask(TRI)) 607 applyBitsNotInRegMaskToRegUnitsMask(*TRI, RUClobbers, Mask); 608 609 SpeculationState = SpeculateUnknown; 610 for (MachineInstr &MI : *BB) 611 ProcessMI(&MI, RUDefs, RUClobbers, StoredFIs, Candidates, CurLoop); 612 } 613 614 // Gather the registers read / clobbered by the terminator. 615 BitVector TermRUs(NumRegUnits); 616 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 617 if (TI != Preheader->end()) { 618 for (const MachineOperand &MO : TI->operands()) { 619 if (!MO.isReg()) 620 continue; 621 Register Reg = MO.getReg(); 622 if (!Reg) 623 continue; 624 for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) 625 TermRUs.set(*RUI); 626 } 627 } 628 629 // Now evaluate whether the potential candidates qualify. 630 // 1. Check if the candidate defined register is defined by another 631 // instruction in the loop. 632 // 2. If the candidate is a load from stack slot (always true for now), 633 // check if the slot is stored anywhere in the loop. 634 // 3. Make sure candidate def should not clobber 635 // registers read by the terminator. Similarly its def should not be 636 // clobbered by the terminator. 637 for (CandidateInfo &Candidate : Candidates) { 638 if (Candidate.FI != std::numeric_limits<int>::min() && 639 StoredFIs.count(Candidate.FI)) 640 continue; 641 642 unsigned Def = Candidate.Def; 643 bool Safe = true; 644 for (MCRegUnitIterator RUI(Def, TRI); RUI.isValid(); ++RUI) { 645 if (RUClobbers.test(*RUI) || TermRUs.test(*RUI)) { 646 Safe = false; 647 break; 648 } 649 } 650 651 if (!Safe) 652 continue; 653 654 MachineInstr *MI = Candidate.MI; 655 for (const MachineOperand &MO : MI->all_uses()) { 656 if (!MO.getReg()) 657 continue; 658 for (MCRegUnitIterator RUI(MO.getReg(), TRI); RUI.isValid(); ++RUI) { 659 if (RUDefs.test(*RUI) || RUClobbers.test(*RUI)) { 660 // If it's using a non-loop-invariant register, then it's obviously 661 // not safe to hoist. 662 Safe = false; 663 break; 664 } 665 } 666 667 if (!Safe) 668 break; 669 } 670 671 if (Safe) 672 HoistPostRA(MI, Candidate.Def, CurLoop, CurPreheader); 673 } 674 } 675 676 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 677 /// sure it is not killed by any instructions in the loop. 678 void MachineLICMBase::AddToLiveIns(MCRegister Reg, MachineLoop *CurLoop) { 679 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 680 if (!BB->isLiveIn(Reg)) 681 BB->addLiveIn(Reg); 682 for (MachineInstr &MI : *BB) { 683 for (MachineOperand &MO : MI.all_uses()) { 684 if (!MO.getReg()) 685 continue; 686 if (TRI->regsOverlap(Reg, MO.getReg())) 687 MO.setIsKill(false); 688 } 689 } 690 } 691 } 692 693 /// When an instruction is found to only use loop invariant operands that is 694 /// safe to hoist, this instruction is called to do the dirty work. 695 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def, 696 MachineLoop *CurLoop, 697 MachineBasicBlock *CurPreheader) { 698 MachineBasicBlock *Preheader = getCurPreheader(CurLoop, CurPreheader); 699 700 // Now move the instructions to the predecessor, inserting it before any 701 // terminator instructions. 702 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 703 << " from " << printMBBReference(*MI->getParent()) << ": " 704 << *MI); 705 706 // Splice the instruction to the preheader. 707 MachineBasicBlock *MBB = MI->getParent(); 708 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 709 710 // Since we are moving the instruction out of its basic block, we do not 711 // retain its debug location. Doing so would degrade the debugging 712 // experience and adversely affect the accuracy of profiling information. 713 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 714 MI->setDebugLoc(DebugLoc()); 715 716 // Add register to livein list to all the BBs in the current loop since a 717 // loop invariant must be kept live throughout the whole loop. This is 718 // important to ensure later passes do not scavenge the def register. 719 AddToLiveIns(Def, CurLoop); 720 721 ++NumPostRAHoisted; 722 Changed = true; 723 } 724 725 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 726 /// may not be safe to hoist. 727 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB, 728 MachineLoop *CurLoop) { 729 if (SpeculationState != SpeculateUnknown) 730 return SpeculationState == SpeculateFalse; 731 732 if (BB != CurLoop->getHeader()) { 733 // Check loop exiting blocks. 734 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 735 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 736 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 737 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 738 SpeculationState = SpeculateTrue; 739 return false; 740 } 741 } 742 743 SpeculationState = SpeculateFalse; 744 return true; 745 } 746 747 /// Check if \p MI is trivially remateralizable and if it does not have any 748 /// virtual register uses. Even though rematerializable RA might not actually 749 /// rematerialize it in this scenario. In that case we do not want to hoist such 750 /// instruction out of the loop in a belief RA will sink it back if needed. 751 bool MachineLICMBase::isTriviallyReMaterializable( 752 const MachineInstr &MI) const { 753 if (!TII->isTriviallyReMaterializable(MI)) 754 return false; 755 756 for (const MachineOperand &MO : MI.all_uses()) { 757 if (MO.getReg().isVirtual()) 758 return false; 759 } 760 761 return true; 762 } 763 764 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 765 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 766 767 // Remember livein register pressure. 768 BackTrace.push_back(RegPressure); 769 } 770 771 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 772 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 773 BackTrace.pop_back(); 774 } 775 776 /// Destroy scope for the MBB that corresponds to the given dominator tree node 777 /// if its a leaf or all of its children are done. Walk up the dominator tree to 778 /// destroy ancestors which are now done. 779 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 780 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 781 const DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 782 if (OpenChildren[Node]) 783 return; 784 785 for(;;) { 786 ExitScope(Node->getBlock()); 787 // Now traverse upwards to pop ancestors whose offsprings are all done. 788 MachineDomTreeNode *Parent = ParentMap.lookup(Node); 789 if (!Parent || --OpenChildren[Parent] != 0) 790 break; 791 Node = Parent; 792 } 793 } 794 795 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 796 /// specified header block, and that are in the current loop) in depth first 797 /// order w.r.t the DominatorTree. This allows us to visit definitions before 798 /// uses, allowing us to hoist a loop body in one pass without iteration. 799 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN, 800 MachineLoop *CurLoop, 801 MachineBasicBlock *CurPreheader) { 802 MachineBasicBlock *Preheader = getCurPreheader(CurLoop, CurPreheader); 803 if (!Preheader) 804 return; 805 806 SmallVector<MachineDomTreeNode*, 32> Scopes; 807 SmallVector<MachineDomTreeNode*, 8> WorkList; 808 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 809 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 810 811 // Perform a DFS walk to determine the order of visit. 812 WorkList.push_back(HeaderN); 813 while (!WorkList.empty()) { 814 MachineDomTreeNode *Node = WorkList.pop_back_val(); 815 assert(Node && "Null dominator tree node?"); 816 MachineBasicBlock *BB = Node->getBlock(); 817 818 // If the header of the loop containing this basic block is a landing pad, 819 // then don't try to hoist instructions out of this loop. 820 const MachineLoop *ML = MLI->getLoopFor(BB); 821 if (ML && ML->getHeader()->isEHPad()) 822 continue; 823 824 // If this subregion is not in the top level loop at all, exit. 825 if (!CurLoop->contains(BB)) 826 continue; 827 828 Scopes.push_back(Node); 829 unsigned NumChildren = Node->getNumChildren(); 830 831 // Don't hoist things out of a large switch statement. This often causes 832 // code to be hoisted that wasn't going to be executed, and increases 833 // register pressure in a situation where it's likely to matter. 834 if (BB->succ_size() >= 25) 835 NumChildren = 0; 836 837 OpenChildren[Node] = NumChildren; 838 if (NumChildren) { 839 // Add children in reverse order as then the next popped worklist node is 840 // the first child of this node. This means we ultimately traverse the 841 // DOM tree in exactly the same order as if we'd recursed. 842 for (MachineDomTreeNode *Child : reverse(Node->children())) { 843 ParentMap[Child] = Node; 844 WorkList.push_back(Child); 845 } 846 } 847 } 848 849 if (Scopes.size() == 0) 850 return; 851 852 // Compute registers which are livein into the loop headers. 853 RegSeen.clear(); 854 BackTrace.clear(); 855 InitRegPressure(Preheader); 856 857 // Now perform LICM. 858 for (MachineDomTreeNode *Node : Scopes) { 859 MachineBasicBlock *MBB = Node->getBlock(); 860 861 EnterScope(MBB); 862 863 // Process the block 864 SpeculationState = SpeculateUnknown; 865 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 866 unsigned HoistRes = HoistResult::NotHoisted; 867 HoistRes = Hoist(&MI, Preheader, CurLoop); 868 if (HoistRes & HoistResult::NotHoisted) { 869 // We have failed to hoist MI to outermost loop's preheader. If MI is in 870 // a subloop, try to hoist it to subloop's preheader. 871 SmallVector<MachineLoop *> InnerLoopWorkList; 872 for (MachineLoop *L = MLI->getLoopFor(MI.getParent()); L != CurLoop; 873 L = L->getParentLoop()) 874 InnerLoopWorkList.push_back(L); 875 876 while (!InnerLoopWorkList.empty()) { 877 MachineLoop *InnerLoop = InnerLoopWorkList.pop_back_val(); 878 MachineBasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 879 if (InnerLoopPreheader) { 880 HoistRes = Hoist(&MI, InnerLoopPreheader, InnerLoop); 881 if (HoistRes & HoistResult::Hoisted) 882 break; 883 } 884 } 885 } 886 887 if (HoistRes & HoistResult::ErasedMI) 888 continue; 889 890 UpdateRegPressure(&MI); 891 } 892 893 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 894 ExitScopeIfDone(Node, OpenChildren, ParentMap); 895 } 896 } 897 898 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 899 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 900 } 901 902 /// Find all virtual register references that are liveout of the preheader to 903 /// initialize the starting "register pressure". Note this does not count live 904 /// through (livein but not used) registers. 905 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 906 std::fill(RegPressure.begin(), RegPressure.end(), 0); 907 908 // If the preheader has only a single predecessor and it ends with a 909 // fallthrough or an unconditional branch, then scan its predecessor for live 910 // defs as well. This happens whenever the preheader is created by splitting 911 // the critical edge from the loop predecessor to the loop header. 912 if (BB->pred_size() == 1) { 913 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 914 SmallVector<MachineOperand, 4> Cond; 915 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 916 InitRegPressure(*BB->pred_begin()); 917 } 918 919 for (const MachineInstr &MI : *BB) 920 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 921 } 922 923 /// Update estimate of register pressure after the specified instruction. 924 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 925 bool ConsiderUnseenAsDef) { 926 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 927 for (const auto &RPIdAndCost : Cost) { 928 unsigned Class = RPIdAndCost.first; 929 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 930 RegPressure[Class] = 0; 931 else 932 RegPressure[Class] += RPIdAndCost.second; 933 } 934 } 935 936 /// Calculate the additional register pressure that the registers used in MI 937 /// cause. 938 /// 939 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 940 /// figure out which usages are live-ins. 941 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 942 DenseMap<unsigned, int> 943 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 944 bool ConsiderUnseenAsDef) { 945 DenseMap<unsigned, int> Cost; 946 if (MI->isImplicitDef()) 947 return Cost; 948 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 949 const MachineOperand &MO = MI->getOperand(i); 950 if (!MO.isReg() || MO.isImplicit()) 951 continue; 952 Register Reg = MO.getReg(); 953 if (!Reg.isVirtual()) 954 continue; 955 956 // FIXME: It seems bad to use RegSeen only for some of these calculations. 957 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 958 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 959 960 RegClassWeight W = TRI->getRegClassWeight(RC); 961 int RCCost = 0; 962 if (MO.isDef()) 963 RCCost = W.RegWeight; 964 else { 965 bool isKill = isOperandKill(MO, MRI); 966 if (isNew && !isKill && ConsiderUnseenAsDef) 967 // Haven't seen this, it must be a livein. 968 RCCost = W.RegWeight; 969 else if (!isNew && isKill) 970 RCCost = -W.RegWeight; 971 } 972 if (RCCost == 0) 973 continue; 974 const int *PS = TRI->getRegClassPressureSets(RC); 975 for (; *PS != -1; ++PS) { 976 if (!Cost.contains(*PS)) 977 Cost[*PS] = RCCost; 978 else 979 Cost[*PS] += RCCost; 980 } 981 } 982 return Cost; 983 } 984 985 /// Return true if this machine instruction loads from global offset table or 986 /// constant pool. 987 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 988 assert(MI.mayLoad() && "Expected MI that loads!"); 989 990 // If we lost memory operands, conservatively assume that the instruction 991 // reads from everything.. 992 if (MI.memoperands_empty()) 993 return true; 994 995 for (MachineMemOperand *MemOp : MI.memoperands()) 996 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 997 if (PSV->isGOT() || PSV->isConstantPool()) 998 return true; 999 1000 return false; 1001 } 1002 1003 // This function iterates through all the operands of the input store MI and 1004 // checks that each register operand statisfies isCallerPreservedPhysReg. 1005 // This means, the value being stored and the address where it is being stored 1006 // is constant throughout the body of the function (not including prologue and 1007 // epilogue). When called with an MI that isn't a store, it returns false. 1008 // A future improvement can be to check if the store registers are constant 1009 // throughout the loop rather than throughout the funtion. 1010 static bool isInvariantStore(const MachineInstr &MI, 1011 const TargetRegisterInfo *TRI, 1012 const MachineRegisterInfo *MRI) { 1013 1014 bool FoundCallerPresReg = false; 1015 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 1016 (MI.getNumOperands() == 0)) 1017 return false; 1018 1019 // Check that all register operands are caller-preserved physical registers. 1020 for (const MachineOperand &MO : MI.operands()) { 1021 if (MO.isReg()) { 1022 Register Reg = MO.getReg(); 1023 // If operand is a virtual register, check if it comes from a copy of a 1024 // physical register. 1025 if (Reg.isVirtual()) 1026 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 1027 if (Reg.isVirtual()) 1028 return false; 1029 if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF())) 1030 return false; 1031 else 1032 FoundCallerPresReg = true; 1033 } else if (!MO.isImm()) { 1034 return false; 1035 } 1036 } 1037 return FoundCallerPresReg; 1038 } 1039 1040 // Return true if the input MI is a copy instruction that feeds an invariant 1041 // store instruction. This means that the src of the copy has to satisfy 1042 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 1043 // isInvariantStore. 1044 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 1045 const MachineRegisterInfo *MRI, 1046 const TargetRegisterInfo *TRI) { 1047 1048 // FIXME: If targets would like to look through instructions that aren't 1049 // pure copies, this can be updated to a query. 1050 if (!MI.isCopy()) 1051 return false; 1052 1053 const MachineFunction *MF = MI.getMF(); 1054 // Check that we are copying a constant physical register. 1055 Register CopySrcReg = MI.getOperand(1).getReg(); 1056 if (CopySrcReg.isVirtual()) 1057 return false; 1058 1059 if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF)) 1060 return false; 1061 1062 Register CopyDstReg = MI.getOperand(0).getReg(); 1063 // Check if any of the uses of the copy are invariant stores. 1064 assert(CopyDstReg.isVirtual() && "copy dst is not a virtual reg"); 1065 1066 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 1067 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 1068 return true; 1069 } 1070 return false; 1071 } 1072 1073 /// Returns true if the instruction may be a suitable candidate for LICM. 1074 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 1075 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I, MachineLoop *CurLoop) { 1076 // Check if it's safe to move the instruction. 1077 bool DontMoveAcrossStore = !HoistConstLoads || !AllowedToHoistLoads[CurLoop]; 1078 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 1079 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 1080 LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n"); 1081 return false; 1082 } 1083 1084 // If it is a load then check if it is guaranteed to execute by making sure 1085 // that it dominates all exiting blocks. If it doesn't, then there is a path 1086 // out of the loop which does not execute this load, so we can't hoist it. 1087 // Loads from constant memory are safe to speculate, for example indexed load 1088 // from a jump table. 1089 // Stores and side effects are already checked by isSafeToMove. 1090 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 1091 !IsGuaranteedToExecute(I.getParent(), CurLoop)) { 1092 LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n"); 1093 return false; 1094 } 1095 1096 // Convergent attribute has been used on operations that involve inter-thread 1097 // communication which results are implicitly affected by the enclosing 1098 // control flows. It is not safe to hoist or sink such operations across 1099 // control flow. 1100 if (I.isConvergent()) 1101 return false; 1102 1103 if (!TII->shouldHoist(I, CurLoop)) 1104 return false; 1105 1106 return true; 1107 } 1108 1109 /// Returns true if the instruction is loop invariant. 1110 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I, 1111 MachineLoop *CurLoop) { 1112 if (!IsLICMCandidate(I, CurLoop)) { 1113 LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n"); 1114 return false; 1115 } 1116 return CurLoop->isLoopInvariant(I); 1117 } 1118 1119 /// Return true if the specified instruction is used by a phi node and hoisting 1120 /// it could cause a copy to be inserted. 1121 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI, 1122 MachineLoop *CurLoop) { 1123 SmallVector<const MachineInstr *, 8> Work(1, MI); 1124 do { 1125 MI = Work.pop_back_val(); 1126 for (const MachineOperand &MO : MI->all_defs()) { 1127 Register Reg = MO.getReg(); 1128 if (!Reg.isVirtual()) 1129 continue; 1130 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1131 // A PHI may cause a copy to be inserted. 1132 if (UseMI.isPHI()) { 1133 // A PHI inside the loop causes a copy because the live range of Reg is 1134 // extended across the PHI. 1135 if (CurLoop->contains(&UseMI)) 1136 return true; 1137 // A PHI in an exit block can cause a copy to be inserted if the PHI 1138 // has multiple predecessors in the loop with different values. 1139 // For now, approximate by rejecting all exit blocks. 1140 if (isExitBlock(CurLoop, UseMI.getParent())) 1141 return true; 1142 continue; 1143 } 1144 // Look past copies as well. 1145 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1146 Work.push_back(&UseMI); 1147 } 1148 } 1149 } while (!Work.empty()); 1150 return false; 1151 } 1152 1153 /// Compute operand latency between a def of 'Reg' and an use in the current 1154 /// loop, return true if the target considered it high. 1155 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 1156 Register Reg, 1157 MachineLoop *CurLoop) const { 1158 if (MRI->use_nodbg_empty(Reg)) 1159 return false; 1160 1161 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1162 if (UseMI.isCopyLike()) 1163 continue; 1164 if (!CurLoop->contains(UseMI.getParent())) 1165 continue; 1166 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1167 const MachineOperand &MO = UseMI.getOperand(i); 1168 if (!MO.isReg() || !MO.isUse()) 1169 continue; 1170 Register MOReg = MO.getReg(); 1171 if (MOReg != Reg) 1172 continue; 1173 1174 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1175 return true; 1176 } 1177 1178 // Only look at the first in loop use. 1179 break; 1180 } 1181 1182 return false; 1183 } 1184 1185 /// Return true if the instruction is marked "cheap" or the operand latency 1186 /// between its def and a use is one or less. 1187 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1188 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1189 return true; 1190 1191 bool isCheap = false; 1192 unsigned NumDefs = MI.getDesc().getNumDefs(); 1193 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1194 MachineOperand &DefMO = MI.getOperand(i); 1195 if (!DefMO.isReg() || !DefMO.isDef()) 1196 continue; 1197 --NumDefs; 1198 Register Reg = DefMO.getReg(); 1199 if (Reg.isPhysical()) 1200 continue; 1201 1202 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1203 return false; 1204 isCheap = true; 1205 } 1206 1207 return isCheap; 1208 } 1209 1210 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1211 /// given cost matrix can cause high register pressure. 1212 bool 1213 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1214 bool CheapInstr) { 1215 for (const auto &RPIdAndCost : Cost) { 1216 if (RPIdAndCost.second <= 0) 1217 continue; 1218 1219 unsigned Class = RPIdAndCost.first; 1220 int Limit = RegLimit[Class]; 1221 1222 // Don't hoist cheap instructions if they would increase register pressure, 1223 // even if we're under the limit. 1224 if (CheapInstr && !HoistCheapInsts) 1225 return true; 1226 1227 for (const auto &RP : BackTrace) 1228 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1229 return true; 1230 } 1231 1232 return false; 1233 } 1234 1235 /// Traverse the back trace from header to the current block and update their 1236 /// register pressures to reflect the effect of hoisting MI from the current 1237 /// block to the preheader. 1238 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1239 // First compute the 'cost' of the instruction, i.e. its contribution 1240 // to register pressure. 1241 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1242 /*ConsiderUnseenAsDef=*/false); 1243 1244 // Update register pressure of blocks from loop header to current block. 1245 for (auto &RP : BackTrace) 1246 for (const auto &RPIdAndCost : Cost) 1247 RP[RPIdAndCost.first] += RPIdAndCost.second; 1248 } 1249 1250 /// Return true if it is potentially profitable to hoist the given loop 1251 /// invariant. 1252 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI, 1253 MachineLoop *CurLoop) { 1254 if (MI.isImplicitDef()) 1255 return true; 1256 1257 // Besides removing computation from the loop, hoisting an instruction has 1258 // these effects: 1259 // 1260 // - The value defined by the instruction becomes live across the entire 1261 // loop. This increases register pressure in the loop. 1262 // 1263 // - If the value is used by a PHI in the loop, a copy will be required for 1264 // lowering the PHI after extending the live range. 1265 // 1266 // - When hoisting the last use of a value in the loop, that value no longer 1267 // needs to be live in the loop. This lowers register pressure in the loop. 1268 1269 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1270 return true; 1271 1272 bool CheapInstr = IsCheapInstruction(MI); 1273 bool CreatesCopy = HasLoopPHIUse(&MI, CurLoop); 1274 1275 // Don't hoist a cheap instruction if it would create a copy in the loop. 1276 if (CheapInstr && CreatesCopy) { 1277 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1278 return false; 1279 } 1280 1281 // Rematerializable instructions should always be hoisted providing the 1282 // register allocator can just pull them down again when needed. 1283 if (isTriviallyReMaterializable(MI)) 1284 return true; 1285 1286 // FIXME: If there are long latency loop-invariant instructions inside the 1287 // loop at this point, why didn't the optimizer's LICM hoist them? 1288 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1289 const MachineOperand &MO = MI.getOperand(i); 1290 if (!MO.isReg() || MO.isImplicit()) 1291 continue; 1292 Register Reg = MO.getReg(); 1293 if (!Reg.isVirtual()) 1294 continue; 1295 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg, CurLoop)) { 1296 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1297 ++NumHighLatency; 1298 return true; 1299 } 1300 } 1301 1302 // Estimate register pressure to determine whether to LICM the instruction. 1303 // In low register pressure situation, we can be more aggressive about 1304 // hoisting. Also, favors hoisting long latency instructions even in 1305 // moderately high pressure situation. 1306 // Cheap instructions will only be hoisted if they don't increase register 1307 // pressure at all. 1308 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1309 /*ConsiderUnseenAsDef=*/false); 1310 1311 // Visit BBs from header to current BB, if hoisting this doesn't cause 1312 // high register pressure, then it's safe to proceed. 1313 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1314 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1315 ++NumLowRP; 1316 return true; 1317 } 1318 1319 // Don't risk increasing register pressure if it would create copies. 1320 if (CreatesCopy) { 1321 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1322 return false; 1323 } 1324 1325 // Do not "speculate" in high register pressure situation. If an 1326 // instruction is not guaranteed to be executed in the loop, it's best to be 1327 // conservative. 1328 if (AvoidSpeculation && 1329 (!IsGuaranteedToExecute(MI.getParent(), CurLoop) && !MayCSE(&MI))) { 1330 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1331 return false; 1332 } 1333 1334 // If we have a COPY with other uses in the loop, hoist to allow the users to 1335 // also be hoisted. 1336 // TODO: Handle all isCopyLike? 1337 if (MI.isCopy() || MI.isRegSequence()) { 1338 Register DefReg = MI.getOperand(0).getReg(); 1339 if (DefReg.isVirtual() && 1340 all_of(MI.uses(), 1341 [this](const MachineOperand &UseOp) { 1342 return !UseOp.isReg() || UseOp.getReg().isVirtual() || 1343 MRI->isConstantPhysReg(UseOp.getReg()); 1344 }) && 1345 IsLoopInvariantInst(MI, CurLoop) && 1346 any_of(MRI->use_nodbg_instructions(DefReg), 1347 [&CurLoop, this, DefReg, Cost](MachineInstr &UseMI) { 1348 if (!CurLoop->contains(&UseMI)) 1349 return false; 1350 1351 // COPY is a cheap instruction, but if moving it won't cause 1352 // high RP we're fine to hoist it even if the user can't be 1353 // hoisted later Otherwise we want to check the user if it's 1354 // hoistable 1355 if (CanCauseHighRegPressure(Cost, false) && 1356 !CurLoop->isLoopInvariant(UseMI, DefReg)) 1357 return false; 1358 1359 return true; 1360 })) 1361 return true; 1362 } 1363 1364 // High register pressure situation, only hoist if the instruction is going 1365 // to be remat'ed. 1366 if (!isTriviallyReMaterializable(MI) && 1367 !MI.isDereferenceableInvariantLoad()) { 1368 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1369 return false; 1370 } 1371 1372 return true; 1373 } 1374 1375 /// Unfold a load from the given machineinstr if the load itself could be 1376 /// hoisted. Return the unfolded and hoistable load, or null if the load 1377 /// couldn't be unfolded or if it wouldn't be hoistable. 1378 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI, 1379 MachineLoop *CurLoop) { 1380 // Don't unfold simple loads. 1381 if (MI->canFoldAsLoad()) 1382 return nullptr; 1383 1384 // If not, we may be able to unfold a load and hoist that. 1385 // First test whether the instruction is loading from an amenable 1386 // memory location. 1387 if (!MI->isDereferenceableInvariantLoad()) 1388 return nullptr; 1389 1390 // Next determine the register class for a temporary register. 1391 unsigned LoadRegIndex; 1392 unsigned NewOpc = 1393 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1394 /*UnfoldLoad=*/true, 1395 /*UnfoldStore=*/false, 1396 &LoadRegIndex); 1397 if (NewOpc == 0) return nullptr; 1398 const MCInstrDesc &MID = TII->get(NewOpc); 1399 MachineFunction &MF = *MI->getMF(); 1400 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1401 // Ok, we're unfolding. Create a temporary register and do the unfold. 1402 Register Reg = MRI->createVirtualRegister(RC); 1403 1404 SmallVector<MachineInstr *, 2> NewMIs; 1405 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1406 /*UnfoldLoad=*/true, 1407 /*UnfoldStore=*/false, NewMIs); 1408 (void)Success; 1409 assert(Success && 1410 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1411 "succeeded!"); 1412 assert(NewMIs.size() == 2 && 1413 "Unfolded a load into multiple instructions!"); 1414 MachineBasicBlock *MBB = MI->getParent(); 1415 MachineBasicBlock::iterator Pos = MI; 1416 MBB->insert(Pos, NewMIs[0]); 1417 MBB->insert(Pos, NewMIs[1]); 1418 // If unfolding produced a load that wasn't loop-invariant or profitable to 1419 // hoist, discard the new instructions and bail. 1420 if (!IsLoopInvariantInst(*NewMIs[0], CurLoop) || 1421 !IsProfitableToHoist(*NewMIs[0], CurLoop)) { 1422 NewMIs[0]->eraseFromParent(); 1423 NewMIs[1]->eraseFromParent(); 1424 return nullptr; 1425 } 1426 1427 // Update register pressure for the unfolded instruction. 1428 UpdateRegPressure(NewMIs[1]); 1429 1430 // Otherwise we successfully unfolded a load that we can hoist. 1431 1432 // Update the call site info. 1433 if (MI->shouldUpdateCallSiteInfo()) 1434 MF.eraseCallSiteInfo(MI); 1435 1436 MI->eraseFromParent(); 1437 return NewMIs[0]; 1438 } 1439 1440 /// Initialize the CSE map with instructions that are in the current loop 1441 /// preheader that may become duplicates of instructions that are hoisted 1442 /// out of the loop. 1443 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1444 for (MachineInstr &MI : *BB) 1445 CSEMap[BB][MI.getOpcode()].push_back(&MI); 1446 } 1447 1448 /// Initialize AllowedToHoistLoads with information about whether invariant 1449 /// loads can be moved outside a given loop 1450 void MachineLICMBase::InitializeLoadsHoistableLoops() { 1451 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 1452 SmallVector<MachineLoop *, 8> LoopsInPreOrder; 1453 1454 // Mark all loops as hoistable initially and prepare a list of loops in 1455 // pre-order DFS. 1456 while (!Worklist.empty()) { 1457 auto *L = Worklist.pop_back_val(); 1458 AllowedToHoistLoads[L] = true; 1459 LoopsInPreOrder.push_back(L); 1460 Worklist.insert(Worklist.end(), L->getSubLoops().begin(), 1461 L->getSubLoops().end()); 1462 } 1463 1464 // Going from the innermost to outermost loops, check if a loop has 1465 // instructions preventing invariant load hoisting. If such instruction is 1466 // found, mark this loop and its parent as non-hoistable and continue 1467 // investigating the next loop. 1468 // Visiting in a reversed pre-ordered DFS manner 1469 // allows us to not process all the instructions of the outer loop if the 1470 // inner loop is proved to be non-load-hoistable. 1471 for (auto *Loop : reverse(LoopsInPreOrder)) { 1472 for (auto *MBB : Loop->blocks()) { 1473 // If this loop has already been marked as non-hoistable, skip it. 1474 if (!AllowedToHoistLoads[Loop]) 1475 continue; 1476 for (auto &MI : *MBB) { 1477 if (!MI.mayStore() && !MI.isCall() && 1478 !(MI.mayLoad() && MI.hasOrderedMemoryRef())) 1479 continue; 1480 for (MachineLoop *L = Loop; L != nullptr; L = L->getParentLoop()) 1481 AllowedToHoistLoads[L] = false; 1482 break; 1483 } 1484 } 1485 } 1486 } 1487 1488 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1489 /// Return this instruction if it's found. 1490 MachineInstr * 1491 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1492 std::vector<MachineInstr *> &PrevMIs) { 1493 for (MachineInstr *PrevMI : PrevMIs) 1494 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1495 return PrevMI; 1496 1497 return nullptr; 1498 } 1499 1500 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1501 /// computes the same value. If it's found, do a RAU on with the definition of 1502 /// the existing instruction rather than hoisting the instruction to the 1503 /// preheader. 1504 bool MachineLICMBase::EliminateCSE( 1505 MachineInstr *MI, 1506 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) { 1507 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1508 // the undef property onto uses. 1509 if (MI->isImplicitDef()) 1510 return false; 1511 1512 // Do not CSE normal loads because between them could be store instructions 1513 // that change the loaded value 1514 if (MI->mayLoad() && !MI->isDereferenceableInvariantLoad()) 1515 return false; 1516 1517 if (MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1518 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1519 1520 // Replace virtual registers defined by MI by their counterparts defined 1521 // by Dup. 1522 SmallVector<unsigned, 2> Defs; 1523 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1524 const MachineOperand &MO = MI->getOperand(i); 1525 1526 // Physical registers may not differ here. 1527 assert((!MO.isReg() || MO.getReg() == 0 || !MO.getReg().isPhysical() || 1528 MO.getReg() == Dup->getOperand(i).getReg()) && 1529 "Instructions with different phys regs are not identical!"); 1530 1531 if (MO.isReg() && MO.isDef() && !MO.getReg().isPhysical()) 1532 Defs.push_back(i); 1533 } 1534 1535 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1536 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1537 unsigned Idx = Defs[i]; 1538 Register Reg = MI->getOperand(Idx).getReg(); 1539 Register DupReg = Dup->getOperand(Idx).getReg(); 1540 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1541 1542 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1543 // Restore old RCs if more than one defs. 1544 for (unsigned j = 0; j != i; ++j) 1545 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1546 return false; 1547 } 1548 } 1549 1550 for (unsigned Idx : Defs) { 1551 Register Reg = MI->getOperand(Idx).getReg(); 1552 Register DupReg = Dup->getOperand(Idx).getReg(); 1553 MRI->replaceRegWith(Reg, DupReg); 1554 MRI->clearKillFlags(DupReg); 1555 // Clear Dup dead flag if any, we reuse it for Reg. 1556 if (!MRI->use_nodbg_empty(DupReg)) 1557 Dup->getOperand(Idx).setIsDead(false); 1558 } 1559 1560 MI->eraseFromParent(); 1561 ++NumCSEed; 1562 return true; 1563 } 1564 return false; 1565 } 1566 1567 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1568 /// the loop. 1569 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1570 if (MI->mayLoad() && !MI->isDereferenceableInvariantLoad()) 1571 return false; 1572 1573 unsigned Opcode = MI->getOpcode(); 1574 for (auto &Map : CSEMap) { 1575 // Check this CSEMap's preheader dominates MI's basic block. 1576 if (DT->dominates(Map.first, MI->getParent())) { 1577 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = 1578 Map.second.find(Opcode); 1579 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1580 // the undef property onto uses. 1581 if (CI == Map.second.end() || MI->isImplicitDef()) 1582 continue; 1583 if (LookForDuplicate(MI, CI->second) != nullptr) 1584 return true; 1585 } 1586 } 1587 1588 return false; 1589 } 1590 1591 /// When an instruction is found to use only loop invariant operands 1592 /// that are safe to hoist, this instruction is called to do the dirty work. 1593 /// It returns true if the instruction is hoisted. 1594 unsigned MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader, 1595 MachineLoop *CurLoop) { 1596 MachineBasicBlock *SrcBlock = MI->getParent(); 1597 1598 // Disable the instruction hoisting due to block hotness 1599 if ((DisableHoistingToHotterBlocks == UseBFI::All || 1600 (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) && 1601 isTgtHotterThanSrc(SrcBlock, Preheader)) { 1602 ++NumNotHoistedDueToHotness; 1603 return HoistResult::NotHoisted; 1604 } 1605 // First check whether we should hoist this instruction. 1606 bool HasExtractHoistableLoad = false; 1607 if (!IsLoopInvariantInst(*MI, CurLoop) || 1608 !IsProfitableToHoist(*MI, CurLoop)) { 1609 // If not, try unfolding a hoistable load. 1610 MI = ExtractHoistableLoad(MI, CurLoop); 1611 if (!MI) 1612 return HoistResult::NotHoisted; 1613 HasExtractHoistableLoad = true; 1614 } 1615 1616 // If we have hoisted an instruction that may store, it can only be a constant 1617 // store. 1618 if (MI->mayStore()) 1619 NumStoreConst++; 1620 1621 // Now move the instructions to the predecessor, inserting it before any 1622 // terminator instructions. 1623 LLVM_DEBUG({ 1624 dbgs() << "Hoisting " << *MI; 1625 if (MI->getParent()->getBasicBlock()) 1626 dbgs() << " from " << printMBBReference(*MI->getParent()); 1627 if (Preheader->getBasicBlock()) 1628 dbgs() << " to " << printMBBReference(*Preheader); 1629 dbgs() << "\n"; 1630 }); 1631 1632 // If this is the first instruction being hoisted to the preheader, 1633 // initialize the CSE map with potential common expressions. 1634 if (FirstInLoop) { 1635 InitCSEMap(Preheader); 1636 FirstInLoop = false; 1637 } 1638 1639 // Look for opportunity to CSE the hoisted instruction. 1640 unsigned Opcode = MI->getOpcode(); 1641 bool HasCSEDone = false; 1642 for (auto &Map : CSEMap) { 1643 // Check this CSEMap's preheader dominates MI's basic block. 1644 if (DT->dominates(Map.first, MI->getParent())) { 1645 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = 1646 Map.second.find(Opcode); 1647 if (CI != Map.second.end()) { 1648 if (EliminateCSE(MI, CI)) { 1649 HasCSEDone = true; 1650 break; 1651 } 1652 } 1653 } 1654 } 1655 1656 if (!HasCSEDone) { 1657 // Otherwise, splice the instruction to the preheader. 1658 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1659 1660 // Since we are moving the instruction out of its basic block, we do not 1661 // retain its debug location. Doing so would degrade the debugging 1662 // experience and adversely affect the accuracy of profiling information. 1663 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 1664 MI->setDebugLoc(DebugLoc()); 1665 1666 // Update register pressure for BBs from header to this block. 1667 UpdateBackTraceRegPressure(MI); 1668 1669 // Clear the kill flags of any register this instruction defines, 1670 // since they may need to be live throughout the entire loop 1671 // rather than just live for part of it. 1672 for (MachineOperand &MO : MI->all_defs()) 1673 if (!MO.isDead()) 1674 MRI->clearKillFlags(MO.getReg()); 1675 1676 CSEMap[Preheader][Opcode].push_back(MI); 1677 } 1678 1679 ++NumHoisted; 1680 Changed = true; 1681 1682 if (HasCSEDone || HasExtractHoistableLoad) 1683 return HoistResult::Hoisted | HoistResult::ErasedMI; 1684 return HoistResult::Hoisted; 1685 } 1686 1687 /// Get the preheader for the current loop, splitting a critical edge if needed. 1688 MachineBasicBlock * 1689 MachineLICMBase::getCurPreheader(MachineLoop *CurLoop, 1690 MachineBasicBlock *CurPreheader) { 1691 // Determine the block to which to hoist instructions. If we can't find a 1692 // suitable loop predecessor, we can't do any hoisting. 1693 1694 // If we've tried to get a preheader and failed, don't try again. 1695 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1696 return nullptr; 1697 1698 if (!CurPreheader) { 1699 CurPreheader = CurLoop->getLoopPreheader(); 1700 if (!CurPreheader) { 1701 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1702 if (!Pred) { 1703 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1704 return nullptr; 1705 } 1706 1707 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1708 if (!CurPreheader) { 1709 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1710 return nullptr; 1711 } 1712 } 1713 } 1714 return CurPreheader; 1715 } 1716 1717 /// Is the target basic block at least "BlockFrequencyRatioThreshold" 1718 /// times hotter than the source basic block. 1719 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 1720 MachineBasicBlock *TgtBlock) { 1721 // Parse source and target basic block frequency from MBFI 1722 uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency(); 1723 uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency(); 1724 1725 // Disable the hoisting if source block frequency is zero 1726 if (!SrcBF) 1727 return true; 1728 1729 double Ratio = (double)DstBF / SrcBF; 1730 1731 // Compare the block frequency ratio with the threshold 1732 return Ratio > BlockFrequencyRatioThreshold; 1733 } 1734