1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion on machine instructions. We 10 // attempt to remove as much code from the body of a loop as possible. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/MC/MCRegister.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <limits> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machinelicm" 60 61 static cl::opt<bool> 62 AvoidSpeculation("avoid-speculation", 63 cl::desc("MachineLICM should avoid speculation"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 HoistCheapInsts("hoist-cheap-insts", 68 cl::desc("MachineLICM should hoist even cheap instructions"), 69 cl::init(false), cl::Hidden); 70 71 static cl::opt<bool> 72 HoistConstStores("hoist-const-stores", 73 cl::desc("Hoist invariant stores"), 74 cl::init(true), cl::Hidden); 75 // The default threshold of 100 (i.e. if target block is 100 times hotter) 76 // is based on empirical data on a single target and is subject to tuning. 77 static cl::opt<unsigned> 78 BlockFrequencyRatioThreshold("block-freq-ratio-threshold", 79 cl::desc("Do not hoist instructions if target" 80 "block is N times hotter than the source."), 81 cl::init(100), cl::Hidden); 82 83 enum class UseBFI { None, PGO, All }; 84 85 static cl::opt<UseBFI> 86 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks", 87 cl::desc("Disable hoisting instructions to" 88 " hotter blocks"), 89 cl::init(UseBFI::PGO), cl::Hidden, 90 cl::values(clEnumValN(UseBFI::None, "none", 91 "disable the feature"), 92 clEnumValN(UseBFI::PGO, "pgo", 93 "enable the feature when using profile data"), 94 clEnumValN(UseBFI::All, "all", 95 "enable the feature with/wo profile data"))); 96 97 STATISTIC(NumHoisted, 98 "Number of machine instructions hoisted out of loops"); 99 STATISTIC(NumLowRP, 100 "Number of instructions hoisted in low reg pressure situation"); 101 STATISTIC(NumHighLatency, 102 "Number of high latency instructions hoisted"); 103 STATISTIC(NumCSEed, 104 "Number of hoisted machine instructions CSEed"); 105 STATISTIC(NumPostRAHoisted, 106 "Number of machine instructions hoisted out of loops post regalloc"); 107 STATISTIC(NumStoreConst, 108 "Number of stores of const phys reg hoisted out of loops"); 109 STATISTIC(NumNotHoistedDueToHotness, 110 "Number of instructions not hoisted due to block frequency"); 111 112 namespace { 113 114 class MachineLICMBase : public MachineFunctionPass { 115 const TargetInstrInfo *TII = nullptr; 116 const TargetLoweringBase *TLI = nullptr; 117 const TargetRegisterInfo *TRI = nullptr; 118 const MachineFrameInfo *MFI = nullptr; 119 MachineRegisterInfo *MRI = nullptr; 120 TargetSchedModel SchedModel; 121 bool PreRegAlloc = false; 122 bool HasProfileData = false; 123 124 // Various analyses that we use... 125 AliasAnalysis *AA = nullptr; // Alias analysis info. 126 MachineBlockFrequencyInfo *MBFI = nullptr; // Machine block frequncy info 127 MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo 128 MachineDominatorTree *DT = nullptr; // Machine dominator tree for the cur loop 129 130 // State that is updated as we process loops 131 bool Changed = false; // True if a loop is changed. 132 bool FirstInLoop = false; // True if it's the first LICM in the loop. 133 MachineLoop *CurLoop = nullptr; // The current loop we are working on. 134 MachineBasicBlock *CurPreheader = nullptr; // The preheader for CurLoop. 135 136 // Exit blocks for CurLoop. 137 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 138 139 bool isExitBlock(const MachineBasicBlock *MBB) const { 140 return is_contained(ExitBlocks, MBB); 141 } 142 143 // Track 'estimated' register pressure. 144 SmallSet<Register, 32> RegSeen; 145 SmallVector<unsigned, 8> RegPressure; 146 147 // Register pressure "limit" per register pressure set. If the pressure 148 // is higher than the limit, then it's considered high. 149 SmallVector<unsigned, 8> RegLimit; 150 151 // Register pressure on path leading from loop preheader to current BB. 152 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 153 154 // For each opcode, keep a list of potential CSE instructions. 155 DenseMap<unsigned, std::vector<MachineInstr *>> CSEMap; 156 157 enum { 158 SpeculateFalse = 0, 159 SpeculateTrue = 1, 160 SpeculateUnknown = 2 161 }; 162 163 // If a MBB does not dominate loop exiting blocks then it may not safe 164 // to hoist loads from this block. 165 // Tri-state: 0 - false, 1 - true, 2 - unknown 166 unsigned SpeculationState = SpeculateUnknown; 167 168 public: 169 MachineLICMBase(char &PassID, bool PreRegAlloc) 170 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 171 172 bool runOnMachineFunction(MachineFunction &MF) override; 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.addRequired<MachineLoopInfo>(); 176 if (DisableHoistingToHotterBlocks != UseBFI::None) 177 AU.addRequired<MachineBlockFrequencyInfo>(); 178 AU.addRequired<MachineDominatorTree>(); 179 AU.addRequired<AAResultsWrapperPass>(); 180 AU.addPreserved<MachineLoopInfo>(); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 void releaseMemory() override { 185 RegSeen.clear(); 186 RegPressure.clear(); 187 RegLimit.clear(); 188 BackTrace.clear(); 189 CSEMap.clear(); 190 } 191 192 private: 193 /// Keep track of information about hoisting candidates. 194 struct CandidateInfo { 195 MachineInstr *MI; 196 unsigned Def; 197 int FI; 198 199 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 200 : MI(mi), Def(def), FI(fi) {} 201 }; 202 203 void HoistRegionPostRA(); 204 205 void HoistPostRA(MachineInstr *MI, unsigned Def); 206 207 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 208 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 209 SmallVectorImpl<CandidateInfo> &Candidates); 210 211 void AddToLiveIns(MCRegister Reg); 212 213 bool IsLICMCandidate(MachineInstr &I); 214 215 bool IsLoopInvariantInst(MachineInstr &I); 216 217 bool HasLoopPHIUse(const MachineInstr *MI) const; 218 219 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 220 Register Reg) const; 221 222 bool IsCheapInstruction(MachineInstr &MI) const; 223 224 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 225 bool Cheap); 226 227 void UpdateBackTraceRegPressure(const MachineInstr *MI); 228 229 bool IsProfitableToHoist(MachineInstr &MI); 230 231 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 232 233 bool isTriviallyReMaterializable(const MachineInstr &MI) const; 234 235 void EnterScope(MachineBasicBlock *MBB); 236 237 void ExitScope(MachineBasicBlock *MBB); 238 239 void ExitScopeIfDone( 240 MachineDomTreeNode *Node, 241 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 242 const DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 243 244 void HoistOutOfLoop(MachineDomTreeNode *HeaderN); 245 246 void InitRegPressure(MachineBasicBlock *BB); 247 248 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 249 bool ConsiderSeen, 250 bool ConsiderUnseenAsDef); 251 252 void UpdateRegPressure(const MachineInstr *MI, 253 bool ConsiderUnseenAsDef = false); 254 255 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 256 257 MachineInstr *LookForDuplicate(const MachineInstr *MI, 258 std::vector<MachineInstr *> &PrevMIs); 259 260 bool 261 EliminateCSE(MachineInstr *MI, 262 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI); 263 264 bool MayCSE(MachineInstr *MI); 265 266 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 267 268 void InitCSEMap(MachineBasicBlock *BB); 269 270 bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 271 MachineBasicBlock *TgtBlock); 272 MachineBasicBlock *getCurPreheader(); 273 }; 274 275 class MachineLICM : public MachineLICMBase { 276 public: 277 static char ID; 278 MachineLICM() : MachineLICMBase(ID, false) { 279 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 280 } 281 }; 282 283 class EarlyMachineLICM : public MachineLICMBase { 284 public: 285 static char ID; 286 EarlyMachineLICM() : MachineLICMBase(ID, true) { 287 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 288 } 289 }; 290 291 } // end anonymous namespace 292 293 char MachineLICM::ID; 294 char EarlyMachineLICM::ID; 295 296 char &llvm::MachineLICMID = MachineLICM::ID; 297 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 298 299 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 300 "Machine Loop Invariant Code Motion", false, false) 301 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 302 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 303 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 304 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 305 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 306 "Machine Loop Invariant Code Motion", false, false) 307 308 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 309 "Early Machine Loop Invariant Code Motion", false, false) 310 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 311 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 312 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 313 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 314 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 315 "Early Machine Loop Invariant Code Motion", false, false) 316 317 /// Test if the given loop is the outer-most loop that has a unique predecessor. 318 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 319 // Check whether this loop even has a unique predecessor. 320 if (!CurLoop->getLoopPredecessor()) 321 return false; 322 // Ok, now check to see if any of its outer loops do. 323 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 324 if (L->getLoopPredecessor()) 325 return false; 326 // None of them did, so this is the outermost with a unique predecessor. 327 return true; 328 } 329 330 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 331 if (skipFunction(MF.getFunction())) 332 return false; 333 334 Changed = FirstInLoop = false; 335 const TargetSubtargetInfo &ST = MF.getSubtarget(); 336 TII = ST.getInstrInfo(); 337 TLI = ST.getTargetLowering(); 338 TRI = ST.getRegisterInfo(); 339 MFI = &MF.getFrameInfo(); 340 MRI = &MF.getRegInfo(); 341 SchedModel.init(&ST); 342 343 PreRegAlloc = MRI->isSSA(); 344 HasProfileData = MF.getFunction().hasProfileData(); 345 346 if (PreRegAlloc) 347 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 348 else 349 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 350 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 351 352 if (PreRegAlloc) { 353 // Estimate register pressure during pre-regalloc pass. 354 unsigned NumRPS = TRI->getNumRegPressureSets(); 355 RegPressure.resize(NumRPS); 356 std::fill(RegPressure.begin(), RegPressure.end(), 0); 357 RegLimit.resize(NumRPS); 358 for (unsigned i = 0, e = NumRPS; i != e; ++i) 359 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 360 } 361 362 // Get our Loop information... 363 if (DisableHoistingToHotterBlocks != UseBFI::None) 364 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 365 MLI = &getAnalysis<MachineLoopInfo>(); 366 DT = &getAnalysis<MachineDominatorTree>(); 367 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 368 369 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 370 while (!Worklist.empty()) { 371 CurLoop = Worklist.pop_back_val(); 372 CurPreheader = nullptr; 373 ExitBlocks.clear(); 374 375 // If this is done before regalloc, only visit outer-most preheader-sporting 376 // loops. 377 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 378 Worklist.append(CurLoop->begin(), CurLoop->end()); 379 continue; 380 } 381 382 CurLoop->getExitBlocks(ExitBlocks); 383 384 if (!PreRegAlloc) 385 HoistRegionPostRA(); 386 else { 387 // CSEMap is initialized for loop header when the first instruction is 388 // being hoisted. 389 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 390 FirstInLoop = true; 391 HoistOutOfLoop(N); 392 CSEMap.clear(); 393 } 394 } 395 396 return Changed; 397 } 398 399 /// Return true if instruction stores to the specified frame. 400 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 401 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 402 // true since they have no memory operands. 403 if (!MI->mayStore()) 404 return false; 405 // If we lost memory operands, conservatively assume that the instruction 406 // writes to all slots. 407 if (MI->memoperands_empty()) 408 return true; 409 for (const MachineMemOperand *MemOp : MI->memoperands()) { 410 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 411 continue; 412 if (const FixedStackPseudoSourceValue *Value = 413 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 414 if (Value->getFrameIndex() == FI) 415 return true; 416 } 417 } 418 return false; 419 } 420 421 /// Examine the instruction for potentai LICM candidate. Also 422 /// gather register def and frame object update information. 423 void MachineLICMBase::ProcessMI(MachineInstr *MI, 424 BitVector &PhysRegDefs, 425 BitVector &PhysRegClobbers, 426 SmallSet<int, 32> &StoredFIs, 427 SmallVectorImpl<CandidateInfo> &Candidates) { 428 bool RuledOut = false; 429 bool HasNonInvariantUse = false; 430 unsigned Def = 0; 431 for (const MachineOperand &MO : MI->operands()) { 432 if (MO.isFI()) { 433 // Remember if the instruction stores to the frame index. 434 int FI = MO.getIndex(); 435 if (!StoredFIs.count(FI) && 436 MFI->isSpillSlotObjectIndex(FI) && 437 InstructionStoresToFI(MI, FI)) 438 StoredFIs.insert(FI); 439 HasNonInvariantUse = true; 440 continue; 441 } 442 443 // We can't hoist an instruction defining a physreg that is clobbered in 444 // the loop. 445 if (MO.isRegMask()) { 446 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 447 continue; 448 } 449 450 if (!MO.isReg()) 451 continue; 452 Register Reg = MO.getReg(); 453 if (!Reg) 454 continue; 455 assert(Reg.isPhysical() && "Not expecting virtual register!"); 456 457 if (!MO.isDef()) { 458 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 459 // If it's using a non-loop-invariant register, then it's obviously not 460 // safe to hoist. 461 HasNonInvariantUse = true; 462 continue; 463 } 464 465 if (MO.isImplicit()) { 466 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 467 PhysRegClobbers.set(*AI); 468 if (!MO.isDead()) 469 // Non-dead implicit def? This cannot be hoisted. 470 RuledOut = true; 471 // No need to check if a dead implicit def is also defined by 472 // another instruction. 473 continue; 474 } 475 476 // FIXME: For now, avoid instructions with multiple defs, unless 477 // it's a dead implicit def. 478 if (Def) 479 RuledOut = true; 480 else 481 Def = Reg; 482 483 // If we have already seen another instruction that defines the same 484 // register, then this is not safe. Two defs is indicated by setting a 485 // PhysRegClobbers bit. 486 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 487 if (PhysRegDefs.test(*AS)) 488 PhysRegClobbers.set(*AS); 489 } 490 // Need a second loop because MCRegAliasIterator can visit the same 491 // register twice. 492 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) 493 PhysRegDefs.set(*AS); 494 495 if (PhysRegClobbers.test(Reg)) 496 // MI defined register is seen defined by another instruction in 497 // the loop, it cannot be a LICM candidate. 498 RuledOut = true; 499 } 500 501 // Only consider reloads for now and remats which do not have register 502 // operands. FIXME: Consider unfold load folding instructions. 503 if (Def && !RuledOut) { 504 int FI = std::numeric_limits<int>::min(); 505 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 506 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 507 Candidates.push_back(CandidateInfo(MI, Def, FI)); 508 } 509 } 510 511 /// Walk the specified region of the CFG and hoist loop invariants out to the 512 /// preheader. 513 void MachineLICMBase::HoistRegionPostRA() { 514 MachineBasicBlock *Preheader = getCurPreheader(); 515 if (!Preheader) 516 return; 517 518 unsigned NumRegs = TRI->getNumRegs(); 519 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 520 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 521 522 SmallVector<CandidateInfo, 32> Candidates; 523 SmallSet<int, 32> StoredFIs; 524 525 // Walk the entire region, count number of defs for each register, and 526 // collect potential LICM candidates. 527 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 528 // If the header of the loop containing this basic block is a landing pad, 529 // then don't try to hoist instructions out of this loop. 530 const MachineLoop *ML = MLI->getLoopFor(BB); 531 if (ML && ML->getHeader()->isEHPad()) continue; 532 533 // Conservatively treat live-in's as an external def. 534 // FIXME: That means a reload that're reused in successor block(s) will not 535 // be LICM'ed. 536 for (const auto &LI : BB->liveins()) { 537 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 538 PhysRegDefs.set(*AI); 539 } 540 541 SpeculationState = SpeculateUnknown; 542 for (MachineInstr &MI : *BB) 543 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 544 } 545 546 // Gather the registers read / clobbered by the terminator. 547 BitVector TermRegs(NumRegs); 548 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 549 if (TI != Preheader->end()) { 550 for (const MachineOperand &MO : TI->operands()) { 551 if (!MO.isReg()) 552 continue; 553 Register Reg = MO.getReg(); 554 if (!Reg) 555 continue; 556 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 557 TermRegs.set(*AI); 558 } 559 } 560 561 // Now evaluate whether the potential candidates qualify. 562 // 1. Check if the candidate defined register is defined by another 563 // instruction in the loop. 564 // 2. If the candidate is a load from stack slot (always true for now), 565 // check if the slot is stored anywhere in the loop. 566 // 3. Make sure candidate def should not clobber 567 // registers read by the terminator. Similarly its def should not be 568 // clobbered by the terminator. 569 for (CandidateInfo &Candidate : Candidates) { 570 if (Candidate.FI != std::numeric_limits<int>::min() && 571 StoredFIs.count(Candidate.FI)) 572 continue; 573 574 unsigned Def = Candidate.Def; 575 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 576 bool Safe = true; 577 MachineInstr *MI = Candidate.MI; 578 for (const MachineOperand &MO : MI->all_uses()) { 579 if (!MO.getReg()) 580 continue; 581 Register Reg = MO.getReg(); 582 if (PhysRegDefs.test(Reg) || 583 PhysRegClobbers.test(Reg)) { 584 // If it's using a non-loop-invariant register, then it's obviously 585 // not safe to hoist. 586 Safe = false; 587 break; 588 } 589 } 590 if (Safe) 591 HoistPostRA(MI, Candidate.Def); 592 } 593 } 594 } 595 596 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 597 /// sure it is not killed by any instructions in the loop. 598 void MachineLICMBase::AddToLiveIns(MCRegister Reg) { 599 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 600 if (!BB->isLiveIn(Reg)) 601 BB->addLiveIn(Reg); 602 for (MachineInstr &MI : *BB) { 603 for (MachineOperand &MO : MI.all_uses()) { 604 if (!MO.getReg()) 605 continue; 606 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 607 MO.setIsKill(false); 608 } 609 } 610 } 611 } 612 613 /// When an instruction is found to only use loop invariant operands that is 614 /// safe to hoist, this instruction is called to do the dirty work. 615 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) { 616 MachineBasicBlock *Preheader = getCurPreheader(); 617 618 // Now move the instructions to the predecessor, inserting it before any 619 // terminator instructions. 620 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 621 << " from " << printMBBReference(*MI->getParent()) << ": " 622 << *MI); 623 624 // Splice the instruction to the preheader. 625 MachineBasicBlock *MBB = MI->getParent(); 626 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 627 628 // Since we are moving the instruction out of its basic block, we do not 629 // retain its debug location. Doing so would degrade the debugging 630 // experience and adversely affect the accuracy of profiling information. 631 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 632 MI->setDebugLoc(DebugLoc()); 633 634 // Add register to livein list to all the BBs in the current loop since a 635 // loop invariant must be kept live throughout the whole loop. This is 636 // important to ensure later passes do not scavenge the def register. 637 AddToLiveIns(Def); 638 639 ++NumPostRAHoisted; 640 Changed = true; 641 } 642 643 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 644 /// may not be safe to hoist. 645 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) { 646 if (SpeculationState != SpeculateUnknown) 647 return SpeculationState == SpeculateFalse; 648 649 if (BB != CurLoop->getHeader()) { 650 // Check loop exiting blocks. 651 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 652 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 653 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 654 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 655 SpeculationState = SpeculateTrue; 656 return false; 657 } 658 } 659 660 SpeculationState = SpeculateFalse; 661 return true; 662 } 663 664 /// Check if \p MI is trivially remateralizable and if it does not have any 665 /// virtual register uses. Even though rematerializable RA might not actually 666 /// rematerialize it in this scenario. In that case we do not want to hoist such 667 /// instruction out of the loop in a belief RA will sink it back if needed. 668 bool MachineLICMBase::isTriviallyReMaterializable( 669 const MachineInstr &MI) const { 670 if (!TII->isTriviallyReMaterializable(MI)) 671 return false; 672 673 for (const MachineOperand &MO : MI.all_uses()) { 674 if (MO.getReg().isVirtual()) 675 return false; 676 } 677 678 return true; 679 } 680 681 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 682 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 683 684 // Remember livein register pressure. 685 BackTrace.push_back(RegPressure); 686 } 687 688 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 689 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 690 BackTrace.pop_back(); 691 } 692 693 /// Destroy scope for the MBB that corresponds to the given dominator tree node 694 /// if its a leaf or all of its children are done. Walk up the dominator tree to 695 /// destroy ancestors which are now done. 696 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 697 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 698 const DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 699 if (OpenChildren[Node]) 700 return; 701 702 for(;;) { 703 ExitScope(Node->getBlock()); 704 // Now traverse upwards to pop ancestors whose offsprings are all done. 705 MachineDomTreeNode *Parent = ParentMap.lookup(Node); 706 if (!Parent || --OpenChildren[Parent] != 0) 707 break; 708 Node = Parent; 709 } 710 } 711 712 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 713 /// specified header block, and that are in the current loop) in depth first 714 /// order w.r.t the DominatorTree. This allows us to visit definitions before 715 /// uses, allowing us to hoist a loop body in one pass without iteration. 716 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 717 MachineBasicBlock *Preheader = getCurPreheader(); 718 if (!Preheader) 719 return; 720 721 SmallVector<MachineDomTreeNode*, 32> Scopes; 722 SmallVector<MachineDomTreeNode*, 8> WorkList; 723 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 724 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 725 726 // Perform a DFS walk to determine the order of visit. 727 WorkList.push_back(HeaderN); 728 while (!WorkList.empty()) { 729 MachineDomTreeNode *Node = WorkList.pop_back_val(); 730 assert(Node && "Null dominator tree node?"); 731 MachineBasicBlock *BB = Node->getBlock(); 732 733 // If the header of the loop containing this basic block is a landing pad, 734 // then don't try to hoist instructions out of this loop. 735 const MachineLoop *ML = MLI->getLoopFor(BB); 736 if (ML && ML->getHeader()->isEHPad()) 737 continue; 738 739 // If this subregion is not in the top level loop at all, exit. 740 if (!CurLoop->contains(BB)) 741 continue; 742 743 Scopes.push_back(Node); 744 unsigned NumChildren = Node->getNumChildren(); 745 746 // Don't hoist things out of a large switch statement. This often causes 747 // code to be hoisted that wasn't going to be executed, and increases 748 // register pressure in a situation where it's likely to matter. 749 if (BB->succ_size() >= 25) 750 NumChildren = 0; 751 752 OpenChildren[Node] = NumChildren; 753 if (NumChildren) { 754 // Add children in reverse order as then the next popped worklist node is 755 // the first child of this node. This means we ultimately traverse the 756 // DOM tree in exactly the same order as if we'd recursed. 757 for (MachineDomTreeNode *Child : reverse(Node->children())) { 758 ParentMap[Child] = Node; 759 WorkList.push_back(Child); 760 } 761 } 762 } 763 764 if (Scopes.size() == 0) 765 return; 766 767 // Compute registers which are livein into the loop headers. 768 RegSeen.clear(); 769 BackTrace.clear(); 770 InitRegPressure(Preheader); 771 772 // Now perform LICM. 773 for (MachineDomTreeNode *Node : Scopes) { 774 MachineBasicBlock *MBB = Node->getBlock(); 775 776 EnterScope(MBB); 777 778 // Process the block 779 SpeculationState = SpeculateUnknown; 780 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 781 if (!Hoist(&MI, Preheader)) 782 UpdateRegPressure(&MI); 783 // If we have hoisted an instruction that may store, it can only be a 784 // constant store. 785 } 786 787 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 788 ExitScopeIfDone(Node, OpenChildren, ParentMap); 789 } 790 } 791 792 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 793 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 794 } 795 796 /// Find all virtual register references that are liveout of the preheader to 797 /// initialize the starting "register pressure". Note this does not count live 798 /// through (livein but not used) registers. 799 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 800 std::fill(RegPressure.begin(), RegPressure.end(), 0); 801 802 // If the preheader has only a single predecessor and it ends with a 803 // fallthrough or an unconditional branch, then scan its predecessor for live 804 // defs as well. This happens whenever the preheader is created by splitting 805 // the critical edge from the loop predecessor to the loop header. 806 if (BB->pred_size() == 1) { 807 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 808 SmallVector<MachineOperand, 4> Cond; 809 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 810 InitRegPressure(*BB->pred_begin()); 811 } 812 813 for (const MachineInstr &MI : *BB) 814 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 815 } 816 817 /// Update estimate of register pressure after the specified instruction. 818 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 819 bool ConsiderUnseenAsDef) { 820 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 821 for (const auto &RPIdAndCost : Cost) { 822 unsigned Class = RPIdAndCost.first; 823 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 824 RegPressure[Class] = 0; 825 else 826 RegPressure[Class] += RPIdAndCost.second; 827 } 828 } 829 830 /// Calculate the additional register pressure that the registers used in MI 831 /// cause. 832 /// 833 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 834 /// figure out which usages are live-ins. 835 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 836 DenseMap<unsigned, int> 837 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 838 bool ConsiderUnseenAsDef) { 839 DenseMap<unsigned, int> Cost; 840 if (MI->isImplicitDef()) 841 return Cost; 842 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 843 const MachineOperand &MO = MI->getOperand(i); 844 if (!MO.isReg() || MO.isImplicit()) 845 continue; 846 Register Reg = MO.getReg(); 847 if (!Reg.isVirtual()) 848 continue; 849 850 // FIXME: It seems bad to use RegSeen only for some of these calculations. 851 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 852 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 853 854 RegClassWeight W = TRI->getRegClassWeight(RC); 855 int RCCost = 0; 856 if (MO.isDef()) 857 RCCost = W.RegWeight; 858 else { 859 bool isKill = isOperandKill(MO, MRI); 860 if (isNew && !isKill && ConsiderUnseenAsDef) 861 // Haven't seen this, it must be a livein. 862 RCCost = W.RegWeight; 863 else if (!isNew && isKill) 864 RCCost = -W.RegWeight; 865 } 866 if (RCCost == 0) 867 continue; 868 const int *PS = TRI->getRegClassPressureSets(RC); 869 for (; *PS != -1; ++PS) { 870 if (!Cost.contains(*PS)) 871 Cost[*PS] = RCCost; 872 else 873 Cost[*PS] += RCCost; 874 } 875 } 876 return Cost; 877 } 878 879 /// Return true if this machine instruction loads from global offset table or 880 /// constant pool. 881 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 882 assert(MI.mayLoad() && "Expected MI that loads!"); 883 884 // If we lost memory operands, conservatively assume that the instruction 885 // reads from everything.. 886 if (MI.memoperands_empty()) 887 return true; 888 889 for (MachineMemOperand *MemOp : MI.memoperands()) 890 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 891 if (PSV->isGOT() || PSV->isConstantPool()) 892 return true; 893 894 return false; 895 } 896 897 // This function iterates through all the operands of the input store MI and 898 // checks that each register operand statisfies isCallerPreservedPhysReg. 899 // This means, the value being stored and the address where it is being stored 900 // is constant throughout the body of the function (not including prologue and 901 // epilogue). When called with an MI that isn't a store, it returns false. 902 // A future improvement can be to check if the store registers are constant 903 // throughout the loop rather than throughout the funtion. 904 static bool isInvariantStore(const MachineInstr &MI, 905 const TargetRegisterInfo *TRI, 906 const MachineRegisterInfo *MRI) { 907 908 bool FoundCallerPresReg = false; 909 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 910 (MI.getNumOperands() == 0)) 911 return false; 912 913 // Check that all register operands are caller-preserved physical registers. 914 for (const MachineOperand &MO : MI.operands()) { 915 if (MO.isReg()) { 916 Register Reg = MO.getReg(); 917 // If operand is a virtual register, check if it comes from a copy of a 918 // physical register. 919 if (Reg.isVirtual()) 920 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 921 if (Reg.isVirtual()) 922 return false; 923 if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF())) 924 return false; 925 else 926 FoundCallerPresReg = true; 927 } else if (!MO.isImm()) { 928 return false; 929 } 930 } 931 return FoundCallerPresReg; 932 } 933 934 // Return true if the input MI is a copy instruction that feeds an invariant 935 // store instruction. This means that the src of the copy has to satisfy 936 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 937 // isInvariantStore. 938 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 939 const MachineRegisterInfo *MRI, 940 const TargetRegisterInfo *TRI) { 941 942 // FIXME: If targets would like to look through instructions that aren't 943 // pure copies, this can be updated to a query. 944 if (!MI.isCopy()) 945 return false; 946 947 const MachineFunction *MF = MI.getMF(); 948 // Check that we are copying a constant physical register. 949 Register CopySrcReg = MI.getOperand(1).getReg(); 950 if (CopySrcReg.isVirtual()) 951 return false; 952 953 if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF)) 954 return false; 955 956 Register CopyDstReg = MI.getOperand(0).getReg(); 957 // Check if any of the uses of the copy are invariant stores. 958 assert(CopyDstReg.isVirtual() && "copy dst is not a virtual reg"); 959 960 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 961 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 962 return true; 963 } 964 return false; 965 } 966 967 /// Returns true if the instruction may be a suitable candidate for LICM. 968 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 969 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) { 970 // Check if it's safe to move the instruction. 971 bool DontMoveAcrossStore = true; 972 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 973 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 974 LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n"); 975 return false; 976 } 977 978 // If it is a load then check if it is guaranteed to execute by making sure 979 // that it dominates all exiting blocks. If it doesn't, then there is a path 980 // out of the loop which does not execute this load, so we can't hoist it. 981 // Loads from constant memory are safe to speculate, for example indexed load 982 // from a jump table. 983 // Stores and side effects are already checked by isSafeToMove. 984 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 985 !IsGuaranteedToExecute(I.getParent())) { 986 LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n"); 987 return false; 988 } 989 990 // Convergent attribute has been used on operations that involve inter-thread 991 // communication which results are implicitly affected by the enclosing 992 // control flows. It is not safe to hoist or sink such operations across 993 // control flow. 994 if (I.isConvergent()) 995 return false; 996 997 if (!TII->shouldHoist(I, CurLoop)) 998 return false; 999 1000 return true; 1001 } 1002 1003 /// Returns true if the instruction is loop invariant. 1004 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) { 1005 if (!IsLICMCandidate(I)) { 1006 LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n"); 1007 return false; 1008 } 1009 return CurLoop->isLoopInvariant(I); 1010 } 1011 1012 /// Return true if the specified instruction is used by a phi node and hoisting 1013 /// it could cause a copy to be inserted. 1014 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const { 1015 SmallVector<const MachineInstr*, 8> Work(1, MI); 1016 do { 1017 MI = Work.pop_back_val(); 1018 for (const MachineOperand &MO : MI->all_defs()) { 1019 Register Reg = MO.getReg(); 1020 if (!Reg.isVirtual()) 1021 continue; 1022 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1023 // A PHI may cause a copy to be inserted. 1024 if (UseMI.isPHI()) { 1025 // A PHI inside the loop causes a copy because the live range of Reg is 1026 // extended across the PHI. 1027 if (CurLoop->contains(&UseMI)) 1028 return true; 1029 // A PHI in an exit block can cause a copy to be inserted if the PHI 1030 // has multiple predecessors in the loop with different values. 1031 // For now, approximate by rejecting all exit blocks. 1032 if (isExitBlock(UseMI.getParent())) 1033 return true; 1034 continue; 1035 } 1036 // Look past copies as well. 1037 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1038 Work.push_back(&UseMI); 1039 } 1040 } 1041 } while (!Work.empty()); 1042 return false; 1043 } 1044 1045 /// Compute operand latency between a def of 'Reg' and an use in the current 1046 /// loop, return true if the target considered it high. 1047 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 1048 Register Reg) const { 1049 if (MRI->use_nodbg_empty(Reg)) 1050 return false; 1051 1052 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1053 if (UseMI.isCopyLike()) 1054 continue; 1055 if (!CurLoop->contains(UseMI.getParent())) 1056 continue; 1057 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1058 const MachineOperand &MO = UseMI.getOperand(i); 1059 if (!MO.isReg() || !MO.isUse()) 1060 continue; 1061 Register MOReg = MO.getReg(); 1062 if (MOReg != Reg) 1063 continue; 1064 1065 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1066 return true; 1067 } 1068 1069 // Only look at the first in loop use. 1070 break; 1071 } 1072 1073 return false; 1074 } 1075 1076 /// Return true if the instruction is marked "cheap" or the operand latency 1077 /// between its def and a use is one or less. 1078 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1079 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1080 return true; 1081 1082 bool isCheap = false; 1083 unsigned NumDefs = MI.getDesc().getNumDefs(); 1084 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1085 MachineOperand &DefMO = MI.getOperand(i); 1086 if (!DefMO.isReg() || !DefMO.isDef()) 1087 continue; 1088 --NumDefs; 1089 Register Reg = DefMO.getReg(); 1090 if (Reg.isPhysical()) 1091 continue; 1092 1093 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1094 return false; 1095 isCheap = true; 1096 } 1097 1098 return isCheap; 1099 } 1100 1101 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1102 /// given cost matrix can cause high register pressure. 1103 bool 1104 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1105 bool CheapInstr) { 1106 for (const auto &RPIdAndCost : Cost) { 1107 if (RPIdAndCost.second <= 0) 1108 continue; 1109 1110 unsigned Class = RPIdAndCost.first; 1111 int Limit = RegLimit[Class]; 1112 1113 // Don't hoist cheap instructions if they would increase register pressure, 1114 // even if we're under the limit. 1115 if (CheapInstr && !HoistCheapInsts) 1116 return true; 1117 1118 for (const auto &RP : BackTrace) 1119 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1120 return true; 1121 } 1122 1123 return false; 1124 } 1125 1126 /// Traverse the back trace from header to the current block and update their 1127 /// register pressures to reflect the effect of hoisting MI from the current 1128 /// block to the preheader. 1129 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1130 // First compute the 'cost' of the instruction, i.e. its contribution 1131 // to register pressure. 1132 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1133 /*ConsiderUnseenAsDef=*/false); 1134 1135 // Update register pressure of blocks from loop header to current block. 1136 for (auto &RP : BackTrace) 1137 for (const auto &RPIdAndCost : Cost) 1138 RP[RPIdAndCost.first] += RPIdAndCost.second; 1139 } 1140 1141 /// Return true if it is potentially profitable to hoist the given loop 1142 /// invariant. 1143 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) { 1144 if (MI.isImplicitDef()) 1145 return true; 1146 1147 // Besides removing computation from the loop, hoisting an instruction has 1148 // these effects: 1149 // 1150 // - The value defined by the instruction becomes live across the entire 1151 // loop. This increases register pressure in the loop. 1152 // 1153 // - If the value is used by a PHI in the loop, a copy will be required for 1154 // lowering the PHI after extending the live range. 1155 // 1156 // - When hoisting the last use of a value in the loop, that value no longer 1157 // needs to be live in the loop. This lowers register pressure in the loop. 1158 1159 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1160 return true; 1161 1162 bool CheapInstr = IsCheapInstruction(MI); 1163 bool CreatesCopy = HasLoopPHIUse(&MI); 1164 1165 // Don't hoist a cheap instruction if it would create a copy in the loop. 1166 if (CheapInstr && CreatesCopy) { 1167 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1168 return false; 1169 } 1170 1171 // Rematerializable instructions should always be hoisted providing the 1172 // register allocator can just pull them down again when needed. 1173 if (isTriviallyReMaterializable(MI)) 1174 return true; 1175 1176 // FIXME: If there are long latency loop-invariant instructions inside the 1177 // loop at this point, why didn't the optimizer's LICM hoist them? 1178 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1179 const MachineOperand &MO = MI.getOperand(i); 1180 if (!MO.isReg() || MO.isImplicit()) 1181 continue; 1182 Register Reg = MO.getReg(); 1183 if (!Reg.isVirtual()) 1184 continue; 1185 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1186 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1187 ++NumHighLatency; 1188 return true; 1189 } 1190 } 1191 1192 // Estimate register pressure to determine whether to LICM the instruction. 1193 // In low register pressure situation, we can be more aggressive about 1194 // hoisting. Also, favors hoisting long latency instructions even in 1195 // moderately high pressure situation. 1196 // Cheap instructions will only be hoisted if they don't increase register 1197 // pressure at all. 1198 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1199 /*ConsiderUnseenAsDef=*/false); 1200 1201 // Visit BBs from header to current BB, if hoisting this doesn't cause 1202 // high register pressure, then it's safe to proceed. 1203 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1204 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1205 ++NumLowRP; 1206 return true; 1207 } 1208 1209 // Don't risk increasing register pressure if it would create copies. 1210 if (CreatesCopy) { 1211 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1212 return false; 1213 } 1214 1215 // Do not "speculate" in high register pressure situation. If an 1216 // instruction is not guaranteed to be executed in the loop, it's best to be 1217 // conservative. 1218 if (AvoidSpeculation && 1219 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1220 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1221 return false; 1222 } 1223 1224 // High register pressure situation, only hoist if the instruction is going 1225 // to be remat'ed. 1226 if (!isTriviallyReMaterializable(MI) && 1227 !MI.isDereferenceableInvariantLoad()) { 1228 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1229 return false; 1230 } 1231 1232 return true; 1233 } 1234 1235 /// Unfold a load from the given machineinstr if the load itself could be 1236 /// hoisted. Return the unfolded and hoistable load, or null if the load 1237 /// couldn't be unfolded or if it wouldn't be hoistable. 1238 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) { 1239 // Don't unfold simple loads. 1240 if (MI->canFoldAsLoad()) 1241 return nullptr; 1242 1243 // If not, we may be able to unfold a load and hoist that. 1244 // First test whether the instruction is loading from an amenable 1245 // memory location. 1246 if (!MI->isDereferenceableInvariantLoad()) 1247 return nullptr; 1248 1249 // Next determine the register class for a temporary register. 1250 unsigned LoadRegIndex; 1251 unsigned NewOpc = 1252 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1253 /*UnfoldLoad=*/true, 1254 /*UnfoldStore=*/false, 1255 &LoadRegIndex); 1256 if (NewOpc == 0) return nullptr; 1257 const MCInstrDesc &MID = TII->get(NewOpc); 1258 MachineFunction &MF = *MI->getMF(); 1259 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1260 // Ok, we're unfolding. Create a temporary register and do the unfold. 1261 Register Reg = MRI->createVirtualRegister(RC); 1262 1263 SmallVector<MachineInstr *, 2> NewMIs; 1264 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1265 /*UnfoldLoad=*/true, 1266 /*UnfoldStore=*/false, NewMIs); 1267 (void)Success; 1268 assert(Success && 1269 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1270 "succeeded!"); 1271 assert(NewMIs.size() == 2 && 1272 "Unfolded a load into multiple instructions!"); 1273 MachineBasicBlock *MBB = MI->getParent(); 1274 MachineBasicBlock::iterator Pos = MI; 1275 MBB->insert(Pos, NewMIs[0]); 1276 MBB->insert(Pos, NewMIs[1]); 1277 // If unfolding produced a load that wasn't loop-invariant or profitable to 1278 // hoist, discard the new instructions and bail. 1279 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1280 NewMIs[0]->eraseFromParent(); 1281 NewMIs[1]->eraseFromParent(); 1282 return nullptr; 1283 } 1284 1285 // Update register pressure for the unfolded instruction. 1286 UpdateRegPressure(NewMIs[1]); 1287 1288 // Otherwise we successfully unfolded a load that we can hoist. 1289 1290 // Update the call site info. 1291 if (MI->shouldUpdateCallSiteInfo()) 1292 MF.eraseCallSiteInfo(MI); 1293 1294 MI->eraseFromParent(); 1295 return NewMIs[0]; 1296 } 1297 1298 /// Initialize the CSE map with instructions that are in the current loop 1299 /// preheader that may become duplicates of instructions that are hoisted 1300 /// out of the loop. 1301 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1302 for (MachineInstr &MI : *BB) 1303 CSEMap[MI.getOpcode()].push_back(&MI); 1304 } 1305 1306 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1307 /// Return this instruction if it's found. 1308 MachineInstr * 1309 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1310 std::vector<MachineInstr *> &PrevMIs) { 1311 for (MachineInstr *PrevMI : PrevMIs) 1312 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1313 return PrevMI; 1314 1315 return nullptr; 1316 } 1317 1318 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1319 /// computes the same value. If it's found, do a RAU on with the definition of 1320 /// the existing instruction rather than hoisting the instruction to the 1321 /// preheader. 1322 bool MachineLICMBase::EliminateCSE( 1323 MachineInstr *MI, 1324 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) { 1325 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1326 // the undef property onto uses. 1327 if (CI == CSEMap.end() || MI->isImplicitDef()) 1328 return false; 1329 1330 if (MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1331 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1332 1333 // Replace virtual registers defined by MI by their counterparts defined 1334 // by Dup. 1335 SmallVector<unsigned, 2> Defs; 1336 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1337 const MachineOperand &MO = MI->getOperand(i); 1338 1339 // Physical registers may not differ here. 1340 assert((!MO.isReg() || MO.getReg() == 0 || !MO.getReg().isPhysical() || 1341 MO.getReg() == Dup->getOperand(i).getReg()) && 1342 "Instructions with different phys regs are not identical!"); 1343 1344 if (MO.isReg() && MO.isDef() && !MO.getReg().isPhysical()) 1345 Defs.push_back(i); 1346 } 1347 1348 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1349 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1350 unsigned Idx = Defs[i]; 1351 Register Reg = MI->getOperand(Idx).getReg(); 1352 Register DupReg = Dup->getOperand(Idx).getReg(); 1353 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1354 1355 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1356 // Restore old RCs if more than one defs. 1357 for (unsigned j = 0; j != i; ++j) 1358 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1359 return false; 1360 } 1361 } 1362 1363 for (unsigned Idx : Defs) { 1364 Register Reg = MI->getOperand(Idx).getReg(); 1365 Register DupReg = Dup->getOperand(Idx).getReg(); 1366 MRI->replaceRegWith(Reg, DupReg); 1367 MRI->clearKillFlags(DupReg); 1368 // Clear Dup dead flag if any, we reuse it for Reg. 1369 if (!MRI->use_nodbg_empty(DupReg)) 1370 Dup->getOperand(Idx).setIsDead(false); 1371 } 1372 1373 MI->eraseFromParent(); 1374 ++NumCSEed; 1375 return true; 1376 } 1377 return false; 1378 } 1379 1380 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1381 /// the loop. 1382 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1383 unsigned Opcode = MI->getOpcode(); 1384 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = 1385 CSEMap.find(Opcode); 1386 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1387 // the undef property onto uses. 1388 if (CI == CSEMap.end() || MI->isImplicitDef()) 1389 return false; 1390 1391 return LookForDuplicate(MI, CI->second) != nullptr; 1392 } 1393 1394 /// When an instruction is found to use only loop invariant operands 1395 /// that are safe to hoist, this instruction is called to do the dirty work. 1396 /// It returns true if the instruction is hoisted. 1397 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1398 MachineBasicBlock *SrcBlock = MI->getParent(); 1399 1400 // Disable the instruction hoisting due to block hotness 1401 if ((DisableHoistingToHotterBlocks == UseBFI::All || 1402 (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) && 1403 isTgtHotterThanSrc(SrcBlock, Preheader)) { 1404 ++NumNotHoistedDueToHotness; 1405 return false; 1406 } 1407 // First check whether we should hoist this instruction. 1408 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1409 // If not, try unfolding a hoistable load. 1410 MI = ExtractHoistableLoad(MI); 1411 if (!MI) return false; 1412 } 1413 1414 // If we have hoisted an instruction that may store, it can only be a constant 1415 // store. 1416 if (MI->mayStore()) 1417 NumStoreConst++; 1418 1419 // Now move the instructions to the predecessor, inserting it before any 1420 // terminator instructions. 1421 LLVM_DEBUG({ 1422 dbgs() << "Hoisting " << *MI; 1423 if (MI->getParent()->getBasicBlock()) 1424 dbgs() << " from " << printMBBReference(*MI->getParent()); 1425 if (Preheader->getBasicBlock()) 1426 dbgs() << " to " << printMBBReference(*Preheader); 1427 dbgs() << "\n"; 1428 }); 1429 1430 // If this is the first instruction being hoisted to the preheader, 1431 // initialize the CSE map with potential common expressions. 1432 if (FirstInLoop) { 1433 InitCSEMap(Preheader); 1434 FirstInLoop = false; 1435 } 1436 1437 // Look for opportunity to CSE the hoisted instruction. 1438 unsigned Opcode = MI->getOpcode(); 1439 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = 1440 CSEMap.find(Opcode); 1441 if (!EliminateCSE(MI, CI)) { 1442 // Otherwise, splice the instruction to the preheader. 1443 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1444 1445 // Since we are moving the instruction out of its basic block, we do not 1446 // retain its debug location. Doing so would degrade the debugging 1447 // experience and adversely affect the accuracy of profiling information. 1448 assert(!MI->isDebugInstr() && "Should not hoist debug inst"); 1449 MI->setDebugLoc(DebugLoc()); 1450 1451 // Update register pressure for BBs from header to this block. 1452 UpdateBackTraceRegPressure(MI); 1453 1454 // Clear the kill flags of any register this instruction defines, 1455 // since they may need to be live throughout the entire loop 1456 // rather than just live for part of it. 1457 for (MachineOperand &MO : MI->all_defs()) 1458 if (!MO.isDead()) 1459 MRI->clearKillFlags(MO.getReg()); 1460 1461 // Add to the CSE map. 1462 if (CI != CSEMap.end()) 1463 CI->second.push_back(MI); 1464 else 1465 CSEMap[Opcode].push_back(MI); 1466 } 1467 1468 ++NumHoisted; 1469 Changed = true; 1470 1471 return true; 1472 } 1473 1474 /// Get the preheader for the current loop, splitting a critical edge if needed. 1475 MachineBasicBlock *MachineLICMBase::getCurPreheader() { 1476 // Determine the block to which to hoist instructions. If we can't find a 1477 // suitable loop predecessor, we can't do any hoisting. 1478 1479 // If we've tried to get a preheader and failed, don't try again. 1480 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1481 return nullptr; 1482 1483 if (!CurPreheader) { 1484 CurPreheader = CurLoop->getLoopPreheader(); 1485 if (!CurPreheader) { 1486 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1487 if (!Pred) { 1488 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1489 return nullptr; 1490 } 1491 1492 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1493 if (!CurPreheader) { 1494 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1495 return nullptr; 1496 } 1497 } 1498 } 1499 return CurPreheader; 1500 } 1501 1502 /// Is the target basic block at least "BlockFrequencyRatioThreshold" 1503 /// times hotter than the source basic block. 1504 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, 1505 MachineBasicBlock *TgtBlock) { 1506 // Parse source and target basic block frequency from MBFI 1507 uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency(); 1508 uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency(); 1509 1510 // Disable the hoisting if source block frequency is zero 1511 if (!SrcBF) 1512 return true; 1513 1514 double Ratio = (double)DstBF / SrcBF; 1515 1516 // Compare the block frequency ratio with the threshold 1517 return Ratio > BlockFrequencyRatioThreshold; 1518 } 1519