1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCInstrDesc.h" 57 #include "llvm/MC/MCRegisterInfo.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetIntrinsicInfo.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <cstring> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 80 if (const MachineBasicBlock *MBB = MI.getParent()) 81 if (const MachineFunction *MF = MBB->getParent()) 82 return MF; 83 return nullptr; 84 } 85 86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 87 // it. 88 static void tryToGetTargetInfo(const MachineInstr &MI, 89 const TargetRegisterInfo *&TRI, 90 const MachineRegisterInfo *&MRI, 91 const TargetIntrinsicInfo *&IntrinsicInfo, 92 const TargetInstrInfo *&TII) { 93 94 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 95 TRI = MF->getSubtarget().getRegisterInfo(); 96 MRI = &MF->getRegInfo(); 97 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 98 TII = MF->getSubtarget().getInstrInfo(); 99 } 100 } 101 102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 103 if (MCID->ImplicitDefs) 104 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 105 ++ImpDefs) 106 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 107 if (MCID->ImplicitUses) 108 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 109 ++ImpUses) 110 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 111 } 112 113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 114 /// implicit operands. It reserves space for the number of operands specified by 115 /// the MCInstrDesc. 116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 117 DebugLoc dl, bool NoImp) 118 : MCID(&tid), debugLoc(std::move(dl)) { 119 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 120 121 // Reserve space for the expected number of operands. 122 if (unsigned NumOps = MCID->getNumOperands() + 123 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 124 CapOperands = OperandCapacity::get(NumOps); 125 Operands = MF.allocateOperandArray(CapOperands); 126 } 127 128 if (!NoImp) 129 addImplicitDefUseOperands(MF); 130 } 131 132 /// MachineInstr ctor - Copies MachineInstr arg exactly 133 /// 134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 135 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { 136 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 137 138 CapOperands = OperandCapacity::get(MI.getNumOperands()); 139 Operands = MF.allocateOperandArray(CapOperands); 140 141 // Copy operands. 142 for (const MachineOperand &MO : MI.operands()) 143 addOperand(MF, MO); 144 145 // Copy all the sensible flags. 146 setFlags(MI.Flags); 147 } 148 149 /// getRegInfo - If this instruction is embedded into a MachineFunction, 150 /// return the MachineRegisterInfo object for the current function, otherwise 151 /// return null. 152 MachineRegisterInfo *MachineInstr::getRegInfo() { 153 if (MachineBasicBlock *MBB = getParent()) 154 return &MBB->getParent()->getRegInfo(); 155 return nullptr; 156 } 157 158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 159 /// this instruction from their respective use lists. This requires that the 160 /// operands already be on their use lists. 161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 162 for (MachineOperand &MO : operands()) 163 if (MO.isReg()) 164 MRI.removeRegOperandFromUseList(&MO); 165 } 166 167 /// AddRegOperandsToUseLists - Add all of the register operands in 168 /// this instruction from their respective use lists. This requires that the 169 /// operands not be on their use lists yet. 170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 171 for (MachineOperand &MO : operands()) 172 if (MO.isReg()) 173 MRI.addRegOperandToUseList(&MO); 174 } 175 176 void MachineInstr::addOperand(const MachineOperand &Op) { 177 MachineBasicBlock *MBB = getParent(); 178 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 179 MachineFunction *MF = MBB->getParent(); 180 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 181 addOperand(*MF, Op); 182 } 183 184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 185 /// ranges. If MRI is non-null also update use-def chains. 186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 187 unsigned NumOps, MachineRegisterInfo *MRI) { 188 if (MRI) 189 return MRI->moveOperands(Dst, Src, NumOps); 190 191 // MachineOperand is a trivially copyable type so we can just use memmove. 192 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 193 } 194 195 /// addOperand - Add the specified operand to the instruction. If it is an 196 /// implicit operand, it is added to the end of the operand list. If it is 197 /// an explicit operand it is added at the end of the explicit operand list 198 /// (before the first implicit operand). 199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 200 assert(MCID && "Cannot add operands before providing an instr descriptor"); 201 202 // Check if we're adding one of our existing operands. 203 if (&Op >= Operands && &Op < Operands + NumOperands) { 204 // This is unusual: MI->addOperand(MI->getOperand(i)). 205 // If adding Op requires reallocating or moving existing operands around, 206 // the Op reference could go stale. Support it by copying Op. 207 MachineOperand CopyOp(Op); 208 return addOperand(MF, CopyOp); 209 } 210 211 // Find the insert location for the new operand. Implicit registers go at 212 // the end, everything else goes before the implicit regs. 213 // 214 // FIXME: Allow mixed explicit and implicit operands on inline asm. 215 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 216 // implicit-defs, but they must not be moved around. See the FIXME in 217 // InstrEmitter.cpp. 218 unsigned OpNo = getNumOperands(); 219 bool isImpReg = Op.isReg() && Op.isImplicit(); 220 if (!isImpReg && !isInlineAsm()) { 221 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 222 --OpNo; 223 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 224 } 225 } 226 227 #ifndef NDEBUG 228 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 229 Op.getType() == MachineOperand::MO_MCSymbol; 230 // OpNo now points as the desired insertion point. Unless this is a variadic 231 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 232 // RegMask operands go between the explicit and implicit operands. 233 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 234 OpNo < MCID->getNumOperands() || isDebugOp) && 235 "Trying to add an operand to a machine instr that is already done!"); 236 #endif 237 238 MachineRegisterInfo *MRI = getRegInfo(); 239 240 // Determine if the Operands array needs to be reallocated. 241 // Save the old capacity and operand array. 242 OperandCapacity OldCap = CapOperands; 243 MachineOperand *OldOperands = Operands; 244 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 245 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 246 Operands = MF.allocateOperandArray(CapOperands); 247 // Move the operands before the insertion point. 248 if (OpNo) 249 moveOperands(Operands, OldOperands, OpNo, MRI); 250 } 251 252 // Move the operands following the insertion point. 253 if (OpNo != NumOperands) 254 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 255 MRI); 256 ++NumOperands; 257 258 // Deallocate the old operand array. 259 if (OldOperands != Operands && OldOperands) 260 MF.deallocateOperandArray(OldCap, OldOperands); 261 262 // Copy Op into place. It still needs to be inserted into the MRI use lists. 263 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 264 NewMO->ParentMI = this; 265 266 // When adding a register operand, tell MRI about it. 267 if (NewMO->isReg()) { 268 // Ensure isOnRegUseList() returns false, regardless of Op's status. 269 NewMO->Contents.Reg.Prev = nullptr; 270 // Ignore existing ties. This is not a property that can be copied. 271 NewMO->TiedTo = 0; 272 // Add the new operand to MRI, but only for instructions in an MBB. 273 if (MRI) 274 MRI->addRegOperandToUseList(NewMO); 275 // The MCID operand information isn't accurate until we start adding 276 // explicit operands. The implicit operands are added first, then the 277 // explicits are inserted before them. 278 if (!isImpReg) { 279 // Tie uses to defs as indicated in MCInstrDesc. 280 if (NewMO->isUse()) { 281 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 282 if (DefIdx != -1) 283 tieOperands(DefIdx, OpNo); 284 } 285 // If the register operand is flagged as early, mark the operand as such. 286 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 287 NewMO->setIsEarlyClobber(true); 288 } 289 } 290 } 291 292 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 293 /// fewer operand than it started with. 294 /// 295 void MachineInstr::RemoveOperand(unsigned OpNo) { 296 assert(OpNo < getNumOperands() && "Invalid operand number"); 297 untieRegOperand(OpNo); 298 299 #ifndef NDEBUG 300 // Moving tied operands would break the ties. 301 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 302 if (Operands[i].isReg()) 303 assert(!Operands[i].isTied() && "Cannot move tied operands"); 304 #endif 305 306 MachineRegisterInfo *MRI = getRegInfo(); 307 if (MRI && Operands[OpNo].isReg()) 308 MRI->removeRegOperandFromUseList(Operands + OpNo); 309 310 // Don't call the MachineOperand destructor. A lot of this code depends on 311 // MachineOperand having a trivial destructor anyway, and adding a call here 312 // wouldn't make it 'destructor-correct'. 313 314 if (unsigned N = NumOperands - 1 - OpNo) 315 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 316 --NumOperands; 317 } 318 319 void MachineInstr::setExtraInfo(MachineFunction &MF, 320 ArrayRef<MachineMemOperand *> MMOs, 321 MCSymbol *PreInstrSymbol, 322 MCSymbol *PostInstrSymbol, 323 MDNode *HeapAllocMarker) { 324 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 325 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 326 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 327 int NumPointers = 328 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; 329 330 // Drop all extra info if there is none. 331 if (NumPointers <= 0) { 332 Info.clear(); 333 return; 334 } 335 336 // If more than one pointer, then store out of line. Store heap alloc markers 337 // out of line because PointerSumType cannot hold more than 4 tag types with 338 // 32-bit pointers. 339 // FIXME: Maybe we should make the symbols in the extra info mutable? 340 else if (NumPointers > 1 || HasHeapAllocMarker) { 341 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfoWithMarker( 342 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); 343 return; 344 } 345 346 // Otherwise store the single pointer inline. 347 if (HasPreInstrSymbol) 348 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 349 else if (HasPostInstrSymbol) 350 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 351 else 352 Info.set<EIIK_MMO>(MMOs[0]); 353 } 354 355 void MachineInstr::dropMemRefs(MachineFunction &MF) { 356 if (memoperands_empty()) 357 return; 358 359 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 360 getHeapAllocMarker()); 361 } 362 363 void MachineInstr::setMemRefs(MachineFunction &MF, 364 ArrayRef<MachineMemOperand *> MMOs) { 365 if (MMOs.empty()) { 366 dropMemRefs(MF); 367 return; 368 } 369 370 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 371 getHeapAllocMarker()); 372 } 373 374 void MachineInstr::addMemOperand(MachineFunction &MF, 375 MachineMemOperand *MO) { 376 SmallVector<MachineMemOperand *, 2> MMOs; 377 MMOs.append(memoperands_begin(), memoperands_end()); 378 MMOs.push_back(MO); 379 setMemRefs(MF, MMOs); 380 } 381 382 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 383 if (this == &MI) 384 // Nothing to do for a self-clone! 385 return; 386 387 assert(&MF == MI.getMF() && 388 "Invalid machine functions when cloning memory refrences!"); 389 // See if we can just steal the extra info already allocated for the 390 // instruction. We can do this whenever the pre- and post-instruction symbols 391 // are the same (including null). 392 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 393 getPostInstrSymbol() == MI.getPostInstrSymbol() && 394 getHeapAllocMarker() == MI.getHeapAllocMarker()) { 395 Info = MI.Info; 396 return; 397 } 398 399 // Otherwise, fall back on a copy-based clone. 400 setMemRefs(MF, MI.memoperands()); 401 } 402 403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 404 /// identical. 405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 406 ArrayRef<MachineMemOperand *> RHS) { 407 if (LHS.size() != RHS.size()) 408 return false; 409 410 auto LHSPointees = make_pointee_range(LHS); 411 auto RHSPointees = make_pointee_range(RHS); 412 return std::equal(LHSPointees.begin(), LHSPointees.end(), 413 RHSPointees.begin()); 414 } 415 416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 417 ArrayRef<const MachineInstr *> MIs) { 418 // Try handling easy numbers of MIs with simpler mechanisms. 419 if (MIs.empty()) { 420 dropMemRefs(MF); 421 return; 422 } 423 if (MIs.size() == 1) { 424 cloneMemRefs(MF, *MIs[0]); 425 return; 426 } 427 // Because an empty memoperands list provides *no* information and must be 428 // handled conservatively (assuming the instruction can do anything), the only 429 // way to merge with it is to drop all other memoperands. 430 if (MIs[0]->memoperands_empty()) { 431 dropMemRefs(MF); 432 return; 433 } 434 435 // Handle the general case. 436 SmallVector<MachineMemOperand *, 2> MergedMMOs; 437 // Start with the first instruction. 438 assert(&MF == MIs[0]->getMF() && 439 "Invalid machine functions when cloning memory references!"); 440 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 441 // Now walk all the other instructions and accumulate any different MMOs. 442 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 443 assert(&MF == MI.getMF() && 444 "Invalid machine functions when cloning memory references!"); 445 446 // Skip MIs with identical operands to the first. This is a somewhat 447 // arbitrary hack but will catch common cases without being quadratic. 448 // TODO: We could fully implement merge semantics here if needed. 449 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 450 continue; 451 452 // Because an empty memoperands list provides *no* information and must be 453 // handled conservatively (assuming the instruction can do anything), the 454 // only way to merge with it is to drop all other memoperands. 455 if (MI.memoperands_empty()) { 456 dropMemRefs(MF); 457 return; 458 } 459 460 // Otherwise accumulate these into our temporary buffer of the merged state. 461 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 462 } 463 464 setMemRefs(MF, MergedMMOs); 465 } 466 467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 468 // Do nothing if old and new symbols are the same. 469 if (Symbol == getPreInstrSymbol()) 470 return; 471 472 // If there was only one symbol and we're removing it, just clear info. 473 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 474 Info.clear(); 475 return; 476 } 477 478 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 479 getHeapAllocMarker()); 480 } 481 482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 483 // Do nothing if old and new symbols are the same. 484 if (Symbol == getPostInstrSymbol()) 485 return; 486 487 // If there was only one symbol and we're removing it, just clear info. 488 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 489 Info.clear(); 490 return; 491 } 492 493 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 494 getHeapAllocMarker()); 495 } 496 497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 498 // Do nothing if old and new symbols are the same. 499 if (Marker == getHeapAllocMarker()) 500 return; 501 502 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 503 Marker); 504 } 505 506 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 507 const MachineInstr &MI) { 508 if (this == &MI) 509 // Nothing to do for a self-clone! 510 return; 511 512 assert(&MF == MI.getMF() && 513 "Invalid machine functions when cloning instruction symbols!"); 514 515 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 516 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 517 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 518 } 519 520 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 521 // For now, the just return the union of the flags. If the flags get more 522 // complicated over time, we might need more logic here. 523 return getFlags() | Other.getFlags(); 524 } 525 526 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 527 uint16_t MIFlags = 0; 528 // Copy the wrapping flags. 529 if (const OverflowingBinaryOperator *OB = 530 dyn_cast<OverflowingBinaryOperator>(&I)) { 531 if (OB->hasNoSignedWrap()) 532 MIFlags |= MachineInstr::MIFlag::NoSWrap; 533 if (OB->hasNoUnsignedWrap()) 534 MIFlags |= MachineInstr::MIFlag::NoUWrap; 535 } 536 537 // Copy the exact flag. 538 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 539 if (PE->isExact()) 540 MIFlags |= MachineInstr::MIFlag::IsExact; 541 542 // Copy the fast-math flags. 543 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 544 const FastMathFlags Flags = FP->getFastMathFlags(); 545 if (Flags.noNaNs()) 546 MIFlags |= MachineInstr::MIFlag::FmNoNans; 547 if (Flags.noInfs()) 548 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 549 if (Flags.noSignedZeros()) 550 MIFlags |= MachineInstr::MIFlag::FmNsz; 551 if (Flags.allowReciprocal()) 552 MIFlags |= MachineInstr::MIFlag::FmArcp; 553 if (Flags.allowContract()) 554 MIFlags |= MachineInstr::MIFlag::FmContract; 555 if (Flags.approxFunc()) 556 MIFlags |= MachineInstr::MIFlag::FmAfn; 557 if (Flags.allowReassoc()) 558 MIFlags |= MachineInstr::MIFlag::FmReassoc; 559 } 560 561 return MIFlags; 562 } 563 564 void MachineInstr::copyIRFlags(const Instruction &I) { 565 Flags = copyFlagsFromInstruction(I); 566 } 567 568 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 569 assert(!isBundledWithPred() && "Must be called on bundle header"); 570 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 571 if (MII->getDesc().getFlags() & Mask) { 572 if (Type == AnyInBundle) 573 return true; 574 } else { 575 if (Type == AllInBundle && !MII->isBundle()) 576 return false; 577 } 578 // This was the last instruction in the bundle. 579 if (!MII->isBundledWithSucc()) 580 return Type == AllInBundle; 581 } 582 } 583 584 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 585 MICheckType Check) const { 586 // If opcodes or number of operands are not the same then the two 587 // instructions are obviously not identical. 588 if (Other.getOpcode() != getOpcode() || 589 Other.getNumOperands() != getNumOperands()) 590 return false; 591 592 if (isBundle()) { 593 // We have passed the test above that both instructions have the same 594 // opcode, so we know that both instructions are bundles here. Let's compare 595 // MIs inside the bundle. 596 assert(Other.isBundle() && "Expected that both instructions are bundles."); 597 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 598 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 599 // Loop until we analysed the last intruction inside at least one of the 600 // bundles. 601 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 602 ++I1; 603 ++I2; 604 if (!I1->isIdenticalTo(*I2, Check)) 605 return false; 606 } 607 // If we've reached the end of just one of the two bundles, but not both, 608 // the instructions are not identical. 609 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 610 return false; 611 } 612 613 // Check operands to make sure they match. 614 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 615 const MachineOperand &MO = getOperand(i); 616 const MachineOperand &OMO = Other.getOperand(i); 617 if (!MO.isReg()) { 618 if (!MO.isIdenticalTo(OMO)) 619 return false; 620 continue; 621 } 622 623 // Clients may or may not want to ignore defs when testing for equality. 624 // For example, machine CSE pass only cares about finding common 625 // subexpressions, so it's safe to ignore virtual register defs. 626 if (MO.isDef()) { 627 if (Check == IgnoreDefs) 628 continue; 629 else if (Check == IgnoreVRegDefs) { 630 if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) || 631 !TargetRegisterInfo::isVirtualRegister(OMO.getReg())) 632 if (!MO.isIdenticalTo(OMO)) 633 return false; 634 } else { 635 if (!MO.isIdenticalTo(OMO)) 636 return false; 637 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 638 return false; 639 } 640 } else { 641 if (!MO.isIdenticalTo(OMO)) 642 return false; 643 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 644 return false; 645 } 646 } 647 // If DebugLoc does not match then two debug instructions are not identical. 648 if (isDebugInstr()) 649 if (getDebugLoc() && Other.getDebugLoc() && 650 getDebugLoc() != Other.getDebugLoc()) 651 return false; 652 return true; 653 } 654 655 const MachineFunction *MachineInstr::getMF() const { 656 return getParent()->getParent(); 657 } 658 659 MachineInstr *MachineInstr::removeFromParent() { 660 assert(getParent() && "Not embedded in a basic block!"); 661 return getParent()->remove(this); 662 } 663 664 MachineInstr *MachineInstr::removeFromBundle() { 665 assert(getParent() && "Not embedded in a basic block!"); 666 return getParent()->remove_instr(this); 667 } 668 669 void MachineInstr::eraseFromParent() { 670 assert(getParent() && "Not embedded in a basic block!"); 671 getParent()->erase(this); 672 } 673 674 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 675 assert(getParent() && "Not embedded in a basic block!"); 676 MachineBasicBlock *MBB = getParent(); 677 MachineFunction *MF = MBB->getParent(); 678 assert(MF && "Not embedded in a function!"); 679 680 MachineInstr *MI = (MachineInstr *)this; 681 MachineRegisterInfo &MRI = MF->getRegInfo(); 682 683 for (const MachineOperand &MO : MI->operands()) { 684 if (!MO.isReg() || !MO.isDef()) 685 continue; 686 unsigned Reg = MO.getReg(); 687 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 688 continue; 689 MRI.markUsesInDebugValueAsUndef(Reg); 690 } 691 MI->eraseFromParent(); 692 } 693 694 void MachineInstr::eraseFromBundle() { 695 assert(getParent() && "Not embedded in a basic block!"); 696 getParent()->erase_instr(this); 697 } 698 699 unsigned MachineInstr::getNumExplicitOperands() const { 700 unsigned NumOperands = MCID->getNumOperands(); 701 if (!MCID->isVariadic()) 702 return NumOperands; 703 704 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 705 const MachineOperand &MO = getOperand(I); 706 // The operands must always be in the following order: 707 // - explicit reg defs, 708 // - other explicit operands (reg uses, immediates, etc.), 709 // - implicit reg defs 710 // - implicit reg uses 711 if (MO.isReg() && MO.isImplicit()) 712 break; 713 ++NumOperands; 714 } 715 return NumOperands; 716 } 717 718 unsigned MachineInstr::getNumExplicitDefs() const { 719 unsigned NumDefs = MCID->getNumDefs(); 720 if (!MCID->isVariadic()) 721 return NumDefs; 722 723 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 724 const MachineOperand &MO = getOperand(I); 725 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 726 break; 727 ++NumDefs; 728 } 729 return NumDefs; 730 } 731 732 void MachineInstr::bundleWithPred() { 733 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 734 setFlag(BundledPred); 735 MachineBasicBlock::instr_iterator Pred = getIterator(); 736 --Pred; 737 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 738 Pred->setFlag(BundledSucc); 739 } 740 741 void MachineInstr::bundleWithSucc() { 742 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 743 setFlag(BundledSucc); 744 MachineBasicBlock::instr_iterator Succ = getIterator(); 745 ++Succ; 746 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 747 Succ->setFlag(BundledPred); 748 } 749 750 void MachineInstr::unbundleFromPred() { 751 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 752 clearFlag(BundledPred); 753 MachineBasicBlock::instr_iterator Pred = getIterator(); 754 --Pred; 755 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 756 Pred->clearFlag(BundledSucc); 757 } 758 759 void MachineInstr::unbundleFromSucc() { 760 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 761 clearFlag(BundledSucc); 762 MachineBasicBlock::instr_iterator Succ = getIterator(); 763 ++Succ; 764 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 765 Succ->clearFlag(BundledPred); 766 } 767 768 bool MachineInstr::isStackAligningInlineAsm() const { 769 if (isInlineAsm()) { 770 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 771 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 772 return true; 773 } 774 return false; 775 } 776 777 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 778 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 779 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 780 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 781 } 782 783 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 784 unsigned *GroupNo) const { 785 assert(isInlineAsm() && "Expected an inline asm instruction"); 786 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 787 788 // Ignore queries about the initial operands. 789 if (OpIdx < InlineAsm::MIOp_FirstOperand) 790 return -1; 791 792 unsigned Group = 0; 793 unsigned NumOps; 794 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 795 i += NumOps) { 796 const MachineOperand &FlagMO = getOperand(i); 797 // If we reach the implicit register operands, stop looking. 798 if (!FlagMO.isImm()) 799 return -1; 800 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 801 if (i + NumOps > OpIdx) { 802 if (GroupNo) 803 *GroupNo = Group; 804 return i; 805 } 806 ++Group; 807 } 808 return -1; 809 } 810 811 const DILabel *MachineInstr::getDebugLabel() const { 812 assert(isDebugLabel() && "not a DBG_LABEL"); 813 return cast<DILabel>(getOperand(0).getMetadata()); 814 } 815 816 const DILocalVariable *MachineInstr::getDebugVariable() const { 817 assert(isDebugValue() && "not a DBG_VALUE"); 818 return cast<DILocalVariable>(getOperand(2).getMetadata()); 819 } 820 821 const DIExpression *MachineInstr::getDebugExpression() const { 822 assert(isDebugValue() && "not a DBG_VALUE"); 823 return cast<DIExpression>(getOperand(3).getMetadata()); 824 } 825 826 const TargetRegisterClass* 827 MachineInstr::getRegClassConstraint(unsigned OpIdx, 828 const TargetInstrInfo *TII, 829 const TargetRegisterInfo *TRI) const { 830 assert(getParent() && "Can't have an MBB reference here!"); 831 assert(getMF() && "Can't have an MF reference here!"); 832 const MachineFunction &MF = *getMF(); 833 834 // Most opcodes have fixed constraints in their MCInstrDesc. 835 if (!isInlineAsm()) 836 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 837 838 if (!getOperand(OpIdx).isReg()) 839 return nullptr; 840 841 // For tied uses on inline asm, get the constraint from the def. 842 unsigned DefIdx; 843 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 844 OpIdx = DefIdx; 845 846 // Inline asm stores register class constraints in the flag word. 847 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 848 if (FlagIdx < 0) 849 return nullptr; 850 851 unsigned Flag = getOperand(FlagIdx).getImm(); 852 unsigned RCID; 853 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 854 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 855 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 856 InlineAsm::hasRegClassConstraint(Flag, RCID)) 857 return TRI->getRegClass(RCID); 858 859 // Assume that all registers in a memory operand are pointers. 860 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 861 return TRI->getPointerRegClass(MF); 862 863 return nullptr; 864 } 865 866 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 867 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 868 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 869 // Check every operands inside the bundle if we have 870 // been asked to. 871 if (ExploreBundle) 872 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 873 ++OpndIt) 874 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 875 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 876 else 877 // Otherwise, just check the current operands. 878 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 879 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 880 return CurRC; 881 } 882 883 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 884 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 885 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 886 assert(CurRC && "Invalid initial register class"); 887 // Check if Reg is constrained by some of its use/def from MI. 888 const MachineOperand &MO = getOperand(OpIdx); 889 if (!MO.isReg() || MO.getReg() != Reg) 890 return CurRC; 891 // If yes, accumulate the constraints through the operand. 892 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 893 } 894 895 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 896 unsigned OpIdx, const TargetRegisterClass *CurRC, 897 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 898 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 899 const MachineOperand &MO = getOperand(OpIdx); 900 assert(MO.isReg() && 901 "Cannot get register constraints for non-register operand"); 902 assert(CurRC && "Invalid initial register class"); 903 if (unsigned SubIdx = MO.getSubReg()) { 904 if (OpRC) 905 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 906 else 907 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 908 } else if (OpRC) 909 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 910 return CurRC; 911 } 912 913 /// Return the number of instructions inside the MI bundle, not counting the 914 /// header instruction. 915 unsigned MachineInstr::getBundleSize() const { 916 MachineBasicBlock::const_instr_iterator I = getIterator(); 917 unsigned Size = 0; 918 while (I->isBundledWithSucc()) { 919 ++Size; 920 ++I; 921 } 922 return Size; 923 } 924 925 /// Returns true if the MachineInstr has an implicit-use operand of exactly 926 /// the given register (not considering sub/super-registers). 927 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const { 928 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 929 const MachineOperand &MO = getOperand(i); 930 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 931 return true; 932 } 933 return false; 934 } 935 936 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 937 /// the specific register or -1 if it is not found. It further tightens 938 /// the search criteria to a use that kills the register if isKill is true. 939 int MachineInstr::findRegisterUseOperandIdx( 940 unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { 941 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 942 const MachineOperand &MO = getOperand(i); 943 if (!MO.isReg() || !MO.isUse()) 944 continue; 945 unsigned MOReg = MO.getReg(); 946 if (!MOReg) 947 continue; 948 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 949 if (!isKill || MO.isKill()) 950 return i; 951 } 952 return -1; 953 } 954 955 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 956 /// indicating if this instruction reads or writes Reg. This also considers 957 /// partial defines. 958 std::pair<bool,bool> 959 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 960 SmallVectorImpl<unsigned> *Ops) const { 961 bool PartDef = false; // Partial redefine. 962 bool FullDef = false; // Full define. 963 bool Use = false; 964 965 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 966 const MachineOperand &MO = getOperand(i); 967 if (!MO.isReg() || MO.getReg() != Reg) 968 continue; 969 if (Ops) 970 Ops->push_back(i); 971 if (MO.isUse()) 972 Use |= !MO.isUndef(); 973 else if (MO.getSubReg() && !MO.isUndef()) 974 // A partial def undef doesn't count as reading the register. 975 PartDef = true; 976 else 977 FullDef = true; 978 } 979 // A partial redefine uses Reg unless there is also a full define. 980 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 981 } 982 983 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 984 /// the specified register or -1 if it is not found. If isDead is true, defs 985 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 986 /// also checks if there is a def of a super-register. 987 int 988 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 989 const TargetRegisterInfo *TRI) const { 990 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 991 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 992 const MachineOperand &MO = getOperand(i); 993 // Accept regmask operands when Overlap is set. 994 // Ignore them when looking for a specific def operand (Overlap == false). 995 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 996 return i; 997 if (!MO.isReg() || !MO.isDef()) 998 continue; 999 unsigned MOReg = MO.getReg(); 1000 bool Found = (MOReg == Reg); 1001 if (!Found && TRI && isPhys && 1002 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1003 if (Overlap) 1004 Found = TRI->regsOverlap(MOReg, Reg); 1005 else 1006 Found = TRI->isSubRegister(MOReg, Reg); 1007 } 1008 if (Found && (!isDead || MO.isDead())) 1009 return i; 1010 } 1011 return -1; 1012 } 1013 1014 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1015 /// operand list that is used to represent the predicate. It returns -1 if 1016 /// none is found. 1017 int MachineInstr::findFirstPredOperandIdx() const { 1018 // Don't call MCID.findFirstPredOperandIdx() because this variant 1019 // is sometimes called on an instruction that's not yet complete, and 1020 // so the number of operands is less than the MCID indicates. In 1021 // particular, the PTX target does this. 1022 const MCInstrDesc &MCID = getDesc(); 1023 if (MCID.isPredicable()) { 1024 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1025 if (MCID.OpInfo[i].isPredicate()) 1026 return i; 1027 } 1028 1029 return -1; 1030 } 1031 1032 // MachineOperand::TiedTo is 4 bits wide. 1033 const unsigned TiedMax = 15; 1034 1035 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1036 /// 1037 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1038 /// field. TiedTo can have these values: 1039 /// 1040 /// 0: Operand is not tied to anything. 1041 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1042 /// TiedMax: Tied to an operand >= TiedMax-1. 1043 /// 1044 /// The tied def must be one of the first TiedMax operands on a normal 1045 /// instruction. INLINEASM instructions allow more tied defs. 1046 /// 1047 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1048 MachineOperand &DefMO = getOperand(DefIdx); 1049 MachineOperand &UseMO = getOperand(UseIdx); 1050 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1051 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1052 assert(!DefMO.isTied() && "Def is already tied to another use"); 1053 assert(!UseMO.isTied() && "Use is already tied to another def"); 1054 1055 if (DefIdx < TiedMax) 1056 UseMO.TiedTo = DefIdx + 1; 1057 else { 1058 // Inline asm can use the group descriptors to find tied operands, but on 1059 // normal instruction, the tied def must be within the first TiedMax 1060 // operands. 1061 assert(isInlineAsm() && "DefIdx out of range"); 1062 UseMO.TiedTo = TiedMax; 1063 } 1064 1065 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1066 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1067 } 1068 1069 /// Given the index of a tied register operand, find the operand it is tied to. 1070 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1071 /// which must exist. 1072 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1073 const MachineOperand &MO = getOperand(OpIdx); 1074 assert(MO.isTied() && "Operand isn't tied"); 1075 1076 // Normally TiedTo is in range. 1077 if (MO.TiedTo < TiedMax) 1078 return MO.TiedTo - 1; 1079 1080 // Uses on normal instructions can be out of range. 1081 if (!isInlineAsm()) { 1082 // Normal tied defs must be in the 0..TiedMax-1 range. 1083 if (MO.isUse()) 1084 return TiedMax - 1; 1085 // MO is a def. Search for the tied use. 1086 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1087 const MachineOperand &UseMO = getOperand(i); 1088 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1089 return i; 1090 } 1091 llvm_unreachable("Can't find tied use"); 1092 } 1093 1094 // Now deal with inline asm by parsing the operand group descriptor flags. 1095 // Find the beginning of each operand group. 1096 SmallVector<unsigned, 8> GroupIdx; 1097 unsigned OpIdxGroup = ~0u; 1098 unsigned NumOps; 1099 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1100 i += NumOps) { 1101 const MachineOperand &FlagMO = getOperand(i); 1102 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1103 unsigned CurGroup = GroupIdx.size(); 1104 GroupIdx.push_back(i); 1105 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1106 // OpIdx belongs to this operand group. 1107 if (OpIdx > i && OpIdx < i + NumOps) 1108 OpIdxGroup = CurGroup; 1109 unsigned TiedGroup; 1110 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1111 continue; 1112 // Operands in this group are tied to operands in TiedGroup which must be 1113 // earlier. Find the number of operands between the two groups. 1114 unsigned Delta = i - GroupIdx[TiedGroup]; 1115 1116 // OpIdx is a use tied to TiedGroup. 1117 if (OpIdxGroup == CurGroup) 1118 return OpIdx - Delta; 1119 1120 // OpIdx is a def tied to this use group. 1121 if (OpIdxGroup == TiedGroup) 1122 return OpIdx + Delta; 1123 } 1124 llvm_unreachable("Invalid tied operand on inline asm"); 1125 } 1126 1127 /// clearKillInfo - Clears kill flags on all operands. 1128 /// 1129 void MachineInstr::clearKillInfo() { 1130 for (MachineOperand &MO : operands()) { 1131 if (MO.isReg() && MO.isUse()) 1132 MO.setIsKill(false); 1133 } 1134 } 1135 1136 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg, 1137 unsigned SubIdx, 1138 const TargetRegisterInfo &RegInfo) { 1139 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1140 if (SubIdx) 1141 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1142 for (MachineOperand &MO : operands()) { 1143 if (!MO.isReg() || MO.getReg() != FromReg) 1144 continue; 1145 MO.substPhysReg(ToReg, RegInfo); 1146 } 1147 } else { 1148 for (MachineOperand &MO : operands()) { 1149 if (!MO.isReg() || MO.getReg() != FromReg) 1150 continue; 1151 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1152 } 1153 } 1154 } 1155 1156 /// isSafeToMove - Return true if it is safe to move this instruction. If 1157 /// SawStore is set to true, it means that there is a store (or call) between 1158 /// the instruction's location and its intended destination. 1159 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1160 // Ignore stuff that we obviously can't move. 1161 // 1162 // Treat volatile loads as stores. This is not strictly necessary for 1163 // volatiles, but it is required for atomic loads. It is not allowed to move 1164 // a load across an atomic load with Ordering > Monotonic. 1165 if (mayStore() || isCall() || isPHI() || 1166 (mayLoad() && hasOrderedMemoryRef())) { 1167 SawStore = true; 1168 return false; 1169 } 1170 1171 if (isPosition() || isDebugInstr() || isTerminator() || 1172 mayRaiseFPException() || hasUnmodeledSideEffects()) 1173 return false; 1174 1175 // See if this instruction does a load. If so, we have to guarantee that the 1176 // loaded value doesn't change between the load and the its intended 1177 // destination. The check for isInvariantLoad gives the targe the chance to 1178 // classify the load as always returning a constant, e.g. a constant pool 1179 // load. 1180 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1181 // Otherwise, this is a real load. If there is a store between the load and 1182 // end of block, we can't move it. 1183 return !SawStore; 1184 1185 return true; 1186 } 1187 1188 bool MachineInstr::mayAlias(AliasAnalysis *AA, const MachineInstr &Other, 1189 bool UseTBAA) const { 1190 const MachineFunction *MF = getMF(); 1191 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1192 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1193 1194 // If neither instruction stores to memory, they can't alias in any 1195 // meaningful way, even if they read from the same address. 1196 if (!mayStore() && !Other.mayStore()) 1197 return false; 1198 1199 // Let the target decide if memory accesses cannot possibly overlap. 1200 if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA)) 1201 return false; 1202 1203 // FIXME: Need to handle multiple memory operands to support all targets. 1204 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1205 return true; 1206 1207 MachineMemOperand *MMOa = *memoperands_begin(); 1208 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1209 1210 // The following interface to AA is fashioned after DAGCombiner::isAlias 1211 // and operates with MachineMemOperand offset with some important 1212 // assumptions: 1213 // - LLVM fundamentally assumes flat address spaces. 1214 // - MachineOperand offset can *only* result from legalization and 1215 // cannot affect queries other than the trivial case of overlap 1216 // checking. 1217 // - These offsets never wrap and never step outside 1218 // of allocated objects. 1219 // - There should never be any negative offsets here. 1220 // 1221 // FIXME: Modify API to hide this math from "user" 1222 // Even before we go to AA we can reason locally about some 1223 // memory objects. It can save compile time, and possibly catch some 1224 // corner cases not currently covered. 1225 1226 int64_t OffsetA = MMOa->getOffset(); 1227 int64_t OffsetB = MMOb->getOffset(); 1228 int64_t MinOffset = std::min(OffsetA, OffsetB); 1229 1230 uint64_t WidthA = MMOa->getSize(); 1231 uint64_t WidthB = MMOb->getSize(); 1232 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1233 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1234 1235 const Value *ValA = MMOa->getValue(); 1236 const Value *ValB = MMOb->getValue(); 1237 bool SameVal = (ValA && ValB && (ValA == ValB)); 1238 if (!SameVal) { 1239 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1240 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1241 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1242 return false; 1243 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1244 return false; 1245 if (PSVa && PSVb && (PSVa == PSVb)) 1246 SameVal = true; 1247 } 1248 1249 if (SameVal) { 1250 if (!KnownWidthA || !KnownWidthB) 1251 return true; 1252 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1253 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1254 return (MinOffset + LowWidth > MaxOffset); 1255 } 1256 1257 if (!AA) 1258 return true; 1259 1260 if (!ValA || !ValB) 1261 return true; 1262 1263 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1264 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1265 1266 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset 1267 : MemoryLocation::UnknownSize; 1268 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset 1269 : MemoryLocation::UnknownSize; 1270 1271 AliasResult AAResult = AA->alias( 1272 MemoryLocation(ValA, OverlapA, 1273 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1274 MemoryLocation(ValB, OverlapB, 1275 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1276 1277 return (AAResult != NoAlias); 1278 } 1279 1280 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1281 /// or volatile memory reference, or if the information describing the memory 1282 /// reference is not available. Return false if it is known to have no ordered 1283 /// memory references. 1284 bool MachineInstr::hasOrderedMemoryRef() const { 1285 // An instruction known never to access memory won't have a volatile access. 1286 if (!mayStore() && 1287 !mayLoad() && 1288 !isCall() && 1289 !hasUnmodeledSideEffects()) 1290 return false; 1291 1292 // Otherwise, if the instruction has no memory reference information, 1293 // conservatively assume it wasn't preserved. 1294 if (memoperands_empty()) 1295 return true; 1296 1297 // Check if any of our memory operands are ordered. 1298 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1299 return !MMO->isUnordered(); 1300 }); 1301 } 1302 1303 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1304 /// trap and is loading from a location whose value is invariant across a run of 1305 /// this function. 1306 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const { 1307 // If the instruction doesn't load at all, it isn't an invariant load. 1308 if (!mayLoad()) 1309 return false; 1310 1311 // If the instruction has lost its memoperands, conservatively assume that 1312 // it may not be an invariant load. 1313 if (memoperands_empty()) 1314 return false; 1315 1316 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1317 1318 for (MachineMemOperand *MMO : memoperands()) { 1319 if (!MMO->isUnordered()) 1320 // If the memory operand has ordering side effects, we can't move the 1321 // instruction. Such an instruction is technically an invariant load, 1322 // but the caller code would need updated to expect that. 1323 return false; 1324 if (MMO->isStore()) return false; 1325 if (MMO->isInvariant() && MMO->isDereferenceable()) 1326 continue; 1327 1328 // A load from a constant PseudoSourceValue is invariant. 1329 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1330 if (PSV->isConstant(&MFI)) 1331 continue; 1332 1333 if (const Value *V = MMO->getValue()) { 1334 // If we have an AliasAnalysis, ask it whether the memory is constant. 1335 if (AA && 1336 AA->pointsToConstantMemory( 1337 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1338 continue; 1339 } 1340 1341 // Otherwise assume conservatively. 1342 return false; 1343 } 1344 1345 // Everything checks out. 1346 return true; 1347 } 1348 1349 /// isConstantValuePHI - If the specified instruction is a PHI that always 1350 /// merges together the same virtual register, return the register, otherwise 1351 /// return 0. 1352 unsigned MachineInstr::isConstantValuePHI() const { 1353 if (!isPHI()) 1354 return 0; 1355 assert(getNumOperands() >= 3 && 1356 "It's illegal to have a PHI without source operands"); 1357 1358 unsigned Reg = getOperand(1).getReg(); 1359 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1360 if (getOperand(i).getReg() != Reg) 1361 return 0; 1362 return Reg; 1363 } 1364 1365 bool MachineInstr::hasUnmodeledSideEffects() const { 1366 if (hasProperty(MCID::UnmodeledSideEffects)) 1367 return true; 1368 if (isInlineAsm()) { 1369 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1370 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1371 return true; 1372 } 1373 1374 return false; 1375 } 1376 1377 bool MachineInstr::isLoadFoldBarrier() const { 1378 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1379 } 1380 1381 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1382 /// 1383 bool MachineInstr::allDefsAreDead() const { 1384 for (const MachineOperand &MO : operands()) { 1385 if (!MO.isReg() || MO.isUse()) 1386 continue; 1387 if (!MO.isDead()) 1388 return false; 1389 } 1390 return true; 1391 } 1392 1393 /// copyImplicitOps - Copy implicit register operands from specified 1394 /// instruction to this instruction. 1395 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1396 const MachineInstr &MI) { 1397 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1398 i != e; ++i) { 1399 const MachineOperand &MO = MI.getOperand(i); 1400 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1401 addOperand(MF, MO); 1402 } 1403 } 1404 1405 bool MachineInstr::hasComplexRegisterTies() const { 1406 const MCInstrDesc &MCID = getDesc(); 1407 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1408 const auto &Operand = getOperand(I); 1409 if (!Operand.isReg() || Operand.isDef()) 1410 // Ignore the defined registers as MCID marks only the uses as tied. 1411 continue; 1412 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1413 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1414 if (ExpectedTiedIdx != TiedIdx) 1415 return true; 1416 } 1417 return false; 1418 } 1419 1420 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1421 const MachineRegisterInfo &MRI) const { 1422 const MachineOperand &Op = getOperand(OpIdx); 1423 if (!Op.isReg()) 1424 return LLT{}; 1425 1426 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1427 return MRI.getType(Op.getReg()); 1428 1429 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1430 if (!OpInfo.isGenericType()) 1431 return MRI.getType(Op.getReg()); 1432 1433 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1434 return LLT{}; 1435 1436 LLT TypeToPrint = MRI.getType(Op.getReg()); 1437 // Don't mark the type index printed if it wasn't actually printed: maybe 1438 // another operand with the same type index has an actual type attached: 1439 if (TypeToPrint.isValid()) 1440 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1441 return TypeToPrint; 1442 } 1443 1444 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1445 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1446 dbgs() << " "; 1447 print(dbgs()); 1448 } 1449 #endif 1450 1451 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1452 bool SkipDebugLoc, bool AddNewLine, 1453 const TargetInstrInfo *TII) const { 1454 const Module *M = nullptr; 1455 const Function *F = nullptr; 1456 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1457 F = &MF->getFunction(); 1458 M = F->getParent(); 1459 if (!TII) 1460 TII = MF->getSubtarget().getInstrInfo(); 1461 } 1462 1463 ModuleSlotTracker MST(M); 1464 if (F) 1465 MST.incorporateFunction(*F); 1466 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1467 } 1468 1469 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1470 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1471 bool AddNewLine, const TargetInstrInfo *TII) const { 1472 // We can be a bit tidier if we know the MachineFunction. 1473 const MachineFunction *MF = nullptr; 1474 const TargetRegisterInfo *TRI = nullptr; 1475 const MachineRegisterInfo *MRI = nullptr; 1476 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1477 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1478 1479 if (isCFIInstruction()) 1480 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1481 1482 SmallBitVector PrintedTypes(8); 1483 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1484 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1485 if (!ShouldPrintRegisterTies) 1486 return 0U; 1487 const MachineOperand &MO = getOperand(OpIdx); 1488 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1489 return findTiedOperandIdx(OpIdx); 1490 return 0U; 1491 }; 1492 unsigned StartOp = 0; 1493 unsigned e = getNumOperands(); 1494 1495 // Print explicitly defined operands on the left of an assignment syntax. 1496 while (StartOp < e) { 1497 const MachineOperand &MO = getOperand(StartOp); 1498 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1499 break; 1500 1501 if (StartOp != 0) 1502 OS << ", "; 1503 1504 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1505 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1506 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone, 1507 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1508 ++StartOp; 1509 } 1510 1511 if (StartOp != 0) 1512 OS << " = "; 1513 1514 if (getFlag(MachineInstr::FrameSetup)) 1515 OS << "frame-setup "; 1516 if (getFlag(MachineInstr::FrameDestroy)) 1517 OS << "frame-destroy "; 1518 if (getFlag(MachineInstr::FmNoNans)) 1519 OS << "nnan "; 1520 if (getFlag(MachineInstr::FmNoInfs)) 1521 OS << "ninf "; 1522 if (getFlag(MachineInstr::FmNsz)) 1523 OS << "nsz "; 1524 if (getFlag(MachineInstr::FmArcp)) 1525 OS << "arcp "; 1526 if (getFlag(MachineInstr::FmContract)) 1527 OS << "contract "; 1528 if (getFlag(MachineInstr::FmAfn)) 1529 OS << "afn "; 1530 if (getFlag(MachineInstr::FmReassoc)) 1531 OS << "reassoc "; 1532 if (getFlag(MachineInstr::NoUWrap)) 1533 OS << "nuw "; 1534 if (getFlag(MachineInstr::NoSWrap)) 1535 OS << "nsw "; 1536 if (getFlag(MachineInstr::IsExact)) 1537 OS << "exact "; 1538 if (getFlag(MachineInstr::FPExcept)) 1539 OS << "fpexcept "; 1540 1541 // Print the opcode name. 1542 if (TII) 1543 OS << TII->getName(getOpcode()); 1544 else 1545 OS << "UNKNOWN"; 1546 1547 if (SkipOpers) 1548 return; 1549 1550 // Print the rest of the operands. 1551 bool FirstOp = true; 1552 unsigned AsmDescOp = ~0u; 1553 unsigned AsmOpCount = 0; 1554 1555 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1556 // Print asm string. 1557 OS << " "; 1558 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1559 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1560 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1561 getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1562 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1563 IntrinsicInfo); 1564 1565 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1566 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1567 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1568 OS << " [sideeffect]"; 1569 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1570 OS << " [mayload]"; 1571 if (ExtraInfo & InlineAsm::Extra_MayStore) 1572 OS << " [maystore]"; 1573 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1574 OS << " [isconvergent]"; 1575 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1576 OS << " [alignstack]"; 1577 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1578 OS << " [attdialect]"; 1579 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1580 OS << " [inteldialect]"; 1581 1582 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1583 FirstOp = false; 1584 } 1585 1586 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1587 const MachineOperand &MO = getOperand(i); 1588 1589 if (FirstOp) FirstOp = false; else OS << ","; 1590 OS << " "; 1591 1592 if (isDebugValue() && MO.isMetadata()) { 1593 // Pretty print DBG_VALUE instructions. 1594 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1595 if (DIV && !DIV->getName().empty()) 1596 OS << "!\"" << DIV->getName() << '\"'; 1597 else { 1598 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1599 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1600 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1601 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1602 } 1603 } else if (isDebugLabel() && MO.isMetadata()) { 1604 // Pretty print DBG_LABEL instructions. 1605 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1606 if (DIL && !DIL->getName().empty()) 1607 OS << "\"" << DIL->getName() << '\"'; 1608 else { 1609 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1610 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1611 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1612 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1613 } 1614 } else if (i == AsmDescOp && MO.isImm()) { 1615 // Pretty print the inline asm operand descriptor. 1616 OS << '$' << AsmOpCount++; 1617 unsigned Flag = MO.getImm(); 1618 switch (InlineAsm::getKind(Flag)) { 1619 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1620 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1621 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1622 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1623 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1624 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1625 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1626 } 1627 1628 unsigned RCID = 0; 1629 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1630 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1631 if (TRI) { 1632 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1633 } else 1634 OS << ":RC" << RCID; 1635 } 1636 1637 if (InlineAsm::isMemKind(Flag)) { 1638 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1639 switch (MCID) { 1640 case InlineAsm::Constraint_es: OS << ":es"; break; 1641 case InlineAsm::Constraint_i: OS << ":i"; break; 1642 case InlineAsm::Constraint_m: OS << ":m"; break; 1643 case InlineAsm::Constraint_o: OS << ":o"; break; 1644 case InlineAsm::Constraint_v: OS << ":v"; break; 1645 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1646 case InlineAsm::Constraint_R: OS << ":R"; break; 1647 case InlineAsm::Constraint_S: OS << ":S"; break; 1648 case InlineAsm::Constraint_T: OS << ":T"; break; 1649 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1650 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1651 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1652 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1653 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1654 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1655 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1656 case InlineAsm::Constraint_X: OS << ":X"; break; 1657 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1658 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1659 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1660 default: OS << ":?"; break; 1661 } 1662 } 1663 1664 unsigned TiedTo = 0; 1665 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1666 OS << " tiedto:$" << TiedTo; 1667 1668 OS << ']'; 1669 1670 // Compute the index of the next operand descriptor. 1671 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1672 } else { 1673 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1674 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1675 if (MO.isImm() && isOperandSubregIdx(i)) 1676 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1677 else 1678 MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, 1679 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1680 } 1681 } 1682 1683 // Print any optional symbols attached to this instruction as-if they were 1684 // operands. 1685 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1686 if (!FirstOp) { 1687 FirstOp = false; 1688 OS << ','; 1689 } 1690 OS << " pre-instr-symbol "; 1691 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1692 } 1693 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1694 if (!FirstOp) { 1695 FirstOp = false; 1696 OS << ','; 1697 } 1698 OS << " post-instr-symbol "; 1699 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1700 } 1701 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1702 if (!FirstOp) { 1703 FirstOp = false; 1704 OS << ','; 1705 } 1706 OS << " heap-alloc-marker"; 1707 } 1708 1709 if (!SkipDebugLoc) { 1710 if (const DebugLoc &DL = getDebugLoc()) { 1711 if (!FirstOp) 1712 OS << ','; 1713 OS << " debug-location "; 1714 DL->printAsOperand(OS, MST); 1715 } 1716 } 1717 1718 if (!memoperands_empty()) { 1719 SmallVector<StringRef, 0> SSNs; 1720 const LLVMContext *Context = nullptr; 1721 std::unique_ptr<LLVMContext> CtxPtr; 1722 const MachineFrameInfo *MFI = nullptr; 1723 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1724 MFI = &MF->getFrameInfo(); 1725 Context = &MF->getFunction().getContext(); 1726 } else { 1727 CtxPtr = llvm::make_unique<LLVMContext>(); 1728 Context = CtxPtr.get(); 1729 } 1730 1731 OS << " :: "; 1732 bool NeedComma = false; 1733 for (const MachineMemOperand *Op : memoperands()) { 1734 if (NeedComma) 1735 OS << ", "; 1736 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1737 NeedComma = true; 1738 } 1739 } 1740 1741 if (SkipDebugLoc) 1742 return; 1743 1744 bool HaveSemi = false; 1745 1746 // Print debug location information. 1747 if (const DebugLoc &DL = getDebugLoc()) { 1748 if (!HaveSemi) { 1749 OS << ';'; 1750 HaveSemi = true; 1751 } 1752 OS << ' '; 1753 DL.print(OS); 1754 } 1755 1756 // Print extra comments for DEBUG_VALUE. 1757 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1758 if (!HaveSemi) { 1759 OS << ";"; 1760 HaveSemi = true; 1761 } 1762 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1763 OS << " line no:" << DV->getLine(); 1764 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1765 DebugLoc InlinedAtDL(InlinedAt); 1766 if (InlinedAtDL && MF) { 1767 OS << " inlined @[ "; 1768 InlinedAtDL.print(OS); 1769 OS << " ]"; 1770 } 1771 } 1772 if (isIndirectDebugValue()) 1773 OS << " indirect"; 1774 } 1775 // TODO: DBG_LABEL 1776 1777 if (AddNewLine) 1778 OS << '\n'; 1779 } 1780 1781 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1782 const TargetRegisterInfo *RegInfo, 1783 bool AddIfNotFound) { 1784 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1785 bool hasAliases = isPhysReg && 1786 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1787 bool Found = false; 1788 SmallVector<unsigned,4> DeadOps; 1789 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1790 MachineOperand &MO = getOperand(i); 1791 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1792 continue; 1793 1794 // DEBUG_VALUE nodes do not contribute to code generation and should 1795 // always be ignored. Failure to do so may result in trying to modify 1796 // KILL flags on DEBUG_VALUE nodes. 1797 if (MO.isDebug()) 1798 continue; 1799 1800 unsigned Reg = MO.getReg(); 1801 if (!Reg) 1802 continue; 1803 1804 if (Reg == IncomingReg) { 1805 if (!Found) { 1806 if (MO.isKill()) 1807 // The register is already marked kill. 1808 return true; 1809 if (isPhysReg && isRegTiedToDefOperand(i)) 1810 // Two-address uses of physregs must not be marked kill. 1811 return true; 1812 MO.setIsKill(); 1813 Found = true; 1814 } 1815 } else if (hasAliases && MO.isKill() && 1816 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1817 // A super-register kill already exists. 1818 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1819 return true; 1820 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1821 DeadOps.push_back(i); 1822 } 1823 } 1824 1825 // Trim unneeded kill operands. 1826 while (!DeadOps.empty()) { 1827 unsigned OpIdx = DeadOps.back(); 1828 if (getOperand(OpIdx).isImplicit() && 1829 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1830 RemoveOperand(OpIdx); 1831 else 1832 getOperand(OpIdx).setIsKill(false); 1833 DeadOps.pop_back(); 1834 } 1835 1836 // If not found, this means an alias of one of the operands is killed. Add a 1837 // new implicit operand if required. 1838 if (!Found && AddIfNotFound) { 1839 addOperand(MachineOperand::CreateReg(IncomingReg, 1840 false /*IsDef*/, 1841 true /*IsImp*/, 1842 true /*IsKill*/)); 1843 return true; 1844 } 1845 return Found; 1846 } 1847 1848 void MachineInstr::clearRegisterKills(unsigned Reg, 1849 const TargetRegisterInfo *RegInfo) { 1850 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1851 RegInfo = nullptr; 1852 for (MachineOperand &MO : operands()) { 1853 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1854 continue; 1855 unsigned OpReg = MO.getReg(); 1856 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1857 MO.setIsKill(false); 1858 } 1859 } 1860 1861 bool MachineInstr::addRegisterDead(unsigned Reg, 1862 const TargetRegisterInfo *RegInfo, 1863 bool AddIfNotFound) { 1864 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1865 bool hasAliases = isPhysReg && 1866 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1867 bool Found = false; 1868 SmallVector<unsigned,4> DeadOps; 1869 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1870 MachineOperand &MO = getOperand(i); 1871 if (!MO.isReg() || !MO.isDef()) 1872 continue; 1873 unsigned MOReg = MO.getReg(); 1874 if (!MOReg) 1875 continue; 1876 1877 if (MOReg == Reg) { 1878 MO.setIsDead(); 1879 Found = true; 1880 } else if (hasAliases && MO.isDead() && 1881 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1882 // There exists a super-register that's marked dead. 1883 if (RegInfo->isSuperRegister(Reg, MOReg)) 1884 return true; 1885 if (RegInfo->isSubRegister(Reg, MOReg)) 1886 DeadOps.push_back(i); 1887 } 1888 } 1889 1890 // Trim unneeded dead operands. 1891 while (!DeadOps.empty()) { 1892 unsigned OpIdx = DeadOps.back(); 1893 if (getOperand(OpIdx).isImplicit() && 1894 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1895 RemoveOperand(OpIdx); 1896 else 1897 getOperand(OpIdx).setIsDead(false); 1898 DeadOps.pop_back(); 1899 } 1900 1901 // If not found, this means an alias of one of the operands is dead. Add a 1902 // new implicit operand if required. 1903 if (Found || !AddIfNotFound) 1904 return Found; 1905 1906 addOperand(MachineOperand::CreateReg(Reg, 1907 true /*IsDef*/, 1908 true /*IsImp*/, 1909 false /*IsKill*/, 1910 true /*IsDead*/)); 1911 return true; 1912 } 1913 1914 void MachineInstr::clearRegisterDeads(unsigned Reg) { 1915 for (MachineOperand &MO : operands()) { 1916 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1917 continue; 1918 MO.setIsDead(false); 1919 } 1920 } 1921 1922 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 1923 for (MachineOperand &MO : operands()) { 1924 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1925 continue; 1926 MO.setIsUndef(IsUndef); 1927 } 1928 } 1929 1930 void MachineInstr::addRegisterDefined(unsigned Reg, 1931 const TargetRegisterInfo *RegInfo) { 1932 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1933 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 1934 if (MO) 1935 return; 1936 } else { 1937 for (const MachineOperand &MO : operands()) { 1938 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1939 MO.getSubReg() == 0) 1940 return; 1941 } 1942 } 1943 addOperand(MachineOperand::CreateReg(Reg, 1944 true /*IsDef*/, 1945 true /*IsImp*/)); 1946 } 1947 1948 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1949 const TargetRegisterInfo &TRI) { 1950 bool HasRegMask = false; 1951 for (MachineOperand &MO : operands()) { 1952 if (MO.isRegMask()) { 1953 HasRegMask = true; 1954 continue; 1955 } 1956 if (!MO.isReg() || !MO.isDef()) continue; 1957 unsigned Reg = MO.getReg(); 1958 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1959 // If there are no uses, including partial uses, the def is dead. 1960 if (llvm::none_of(UsedRegs, 1961 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 1962 MO.setIsDead(); 1963 } 1964 1965 // This is a call with a register mask operand. 1966 // Mask clobbers are always dead, so add defs for the non-dead defines. 1967 if (HasRegMask) 1968 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1969 I != E; ++I) 1970 addRegisterDefined(*I, &TRI); 1971 } 1972 1973 unsigned 1974 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1975 // Build up a buffer of hash code components. 1976 SmallVector<size_t, 8> HashComponents; 1977 HashComponents.reserve(MI->getNumOperands() + 1); 1978 HashComponents.push_back(MI->getOpcode()); 1979 for (const MachineOperand &MO : MI->operands()) { 1980 if (MO.isReg() && MO.isDef() && 1981 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1982 continue; // Skip virtual register defs. 1983 1984 HashComponents.push_back(hash_value(MO)); 1985 } 1986 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1987 } 1988 1989 void MachineInstr::emitError(StringRef Msg) const { 1990 // Find the source location cookie. 1991 unsigned LocCookie = 0; 1992 const MDNode *LocMD = nullptr; 1993 for (unsigned i = getNumOperands(); i != 0; --i) { 1994 if (getOperand(i-1).isMetadata() && 1995 (LocMD = getOperand(i-1).getMetadata()) && 1996 LocMD->getNumOperands() != 0) { 1997 if (const ConstantInt *CI = 1998 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 1999 LocCookie = CI->getZExtValue(); 2000 break; 2001 } 2002 } 2003 } 2004 2005 if (const MachineBasicBlock *MBB = getParent()) 2006 if (const MachineFunction *MF = MBB->getParent()) 2007 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2008 report_fatal_error(Msg); 2009 } 2010 2011 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2012 const MCInstrDesc &MCID, bool IsIndirect, 2013 unsigned Reg, const MDNode *Variable, 2014 const MDNode *Expr) { 2015 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2016 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2017 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2018 "Expected inlined-at fields to agree"); 2019 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 2020 if (IsIndirect) 2021 MIB.addImm(0U); 2022 else 2023 MIB.addReg(0U, RegState::Debug); 2024 return MIB.addMetadata(Variable).addMetadata(Expr); 2025 } 2026 2027 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2028 const MCInstrDesc &MCID, bool IsIndirect, 2029 MachineOperand &MO, const MDNode *Variable, 2030 const MDNode *Expr) { 2031 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2032 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2033 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2034 "Expected inlined-at fields to agree"); 2035 if (MO.isReg()) 2036 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2037 2038 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2039 if (IsIndirect) 2040 MIB.addImm(0U); 2041 else 2042 MIB.addReg(0U, RegState::Debug); 2043 return MIB.addMetadata(Variable).addMetadata(Expr); 2044 } 2045 2046 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2047 MachineBasicBlock::iterator I, 2048 const DebugLoc &DL, const MCInstrDesc &MCID, 2049 bool IsIndirect, unsigned Reg, 2050 const MDNode *Variable, const MDNode *Expr) { 2051 MachineFunction &MF = *BB.getParent(); 2052 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2053 BB.insert(I, MI); 2054 return MachineInstrBuilder(MF, MI); 2055 } 2056 2057 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2058 MachineBasicBlock::iterator I, 2059 const DebugLoc &DL, const MCInstrDesc &MCID, 2060 bool IsIndirect, MachineOperand &MO, 2061 const MDNode *Variable, const MDNode *Expr) { 2062 MachineFunction &MF = *BB.getParent(); 2063 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2064 BB.insert(I, MI); 2065 return MachineInstrBuilder(MF, *MI); 2066 } 2067 2068 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2069 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2070 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2071 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2072 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2073 "Expected inlined-at fields to agree"); 2074 2075 const DIExpression *Expr = MI.getDebugExpression(); 2076 if (MI.isIndirectDebugValue()) { 2077 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2078 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2079 } 2080 return Expr; 2081 } 2082 2083 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2084 MachineBasicBlock::iterator I, 2085 const MachineInstr &Orig, 2086 int FrameIndex) { 2087 const DIExpression *Expr = computeExprForSpill(Orig); 2088 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2089 .addFrameIndex(FrameIndex) 2090 .addImm(0U) 2091 .addMetadata(Orig.getDebugVariable()) 2092 .addMetadata(Expr); 2093 } 2094 2095 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2096 const DIExpression *Expr = computeExprForSpill(Orig); 2097 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 2098 Orig.getOperand(1).ChangeToImmediate(0U); 2099 Orig.getOperand(3).setMetadata(Expr); 2100 } 2101 2102 void MachineInstr::collectDebugValues( 2103 SmallVectorImpl<MachineInstr *> &DbgValues) { 2104 MachineInstr &MI = *this; 2105 if (!MI.getOperand(0).isReg()) 2106 return; 2107 2108 MachineBasicBlock::iterator DI = MI; ++DI; 2109 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2110 DI != DE; ++DI) { 2111 if (!DI->isDebugValue()) 2112 return; 2113 if (DI->getOperand(0).isReg() && 2114 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 2115 DbgValues.push_back(&*DI); 2116 } 2117 } 2118 2119 void MachineInstr::changeDebugValuesDefReg(unsigned Reg) { 2120 // Collect matching debug values. 2121 SmallVector<MachineInstr *, 2> DbgValues; 2122 collectDebugValues(DbgValues); 2123 2124 // Propagate Reg to debug value instructions. 2125 for (auto *DBI : DbgValues) 2126 DBI->getOperand(0).setReg(Reg); 2127 } 2128 2129 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2130 2131 static unsigned getSpillSlotSize(MMOList &Accesses, 2132 const MachineFrameInfo &MFI) { 2133 unsigned Size = 0; 2134 for (auto A : Accesses) 2135 if (MFI.isSpillSlotObjectIndex( 2136 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2137 ->getFrameIndex())) 2138 Size += A->getSize(); 2139 return Size; 2140 } 2141 2142 Optional<unsigned> 2143 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2144 int FI; 2145 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2146 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2147 if (MFI.isSpillSlotObjectIndex(FI)) 2148 return (*memoperands_begin())->getSize(); 2149 } 2150 return None; 2151 } 2152 2153 Optional<unsigned> 2154 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2155 MMOList Accesses; 2156 if (TII->hasStoreToStackSlot(*this, Accesses)) 2157 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2158 return None; 2159 } 2160 2161 Optional<unsigned> 2162 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2163 int FI; 2164 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2165 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2166 if (MFI.isSpillSlotObjectIndex(FI)) 2167 return (*memoperands_begin())->getSize(); 2168 } 2169 return None; 2170 } 2171 2172 Optional<unsigned> 2173 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2174 MMOList Accesses; 2175 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2176 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2177 return None; 2178 } 2179