xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCInstrDesc.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FormattedStream.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <cstring>
76 #include <iterator>
77 #include <utility>
78 
79 using namespace llvm;
80 
81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
82   if (const MachineBasicBlock *MBB = MI.getParent())
83     if (const MachineFunction *MF = MBB->getParent())
84       return MF;
85   return nullptr;
86 }
87 
88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
89 // it.
90 static void tryToGetTargetInfo(const MachineInstr &MI,
91                                const TargetRegisterInfo *&TRI,
92                                const MachineRegisterInfo *&MRI,
93                                const TargetIntrinsicInfo *&IntrinsicInfo,
94                                const TargetInstrInfo *&TII) {
95 
96   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
97     TRI = MF->getSubtarget().getRegisterInfo();
98     MRI = &MF->getRegInfo();
99     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
100     TII = MF->getSubtarget().getInstrInfo();
101   }
102 }
103 
104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
105   if (MCID->ImplicitDefs)
106     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
107            ++ImpDefs)
108       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
109   if (MCID->ImplicitUses)
110     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
111            ++ImpUses)
112       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 }
114 
115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
116 /// implicit operands. It reserves space for the number of operands specified by
117 /// the MCInstrDesc.
118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
119                            DebugLoc dl, bool NoImp)
120     : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) {
121   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
122 
123   // Reserve space for the expected number of operands.
124   if (unsigned NumOps = MCID->getNumOperands() +
125     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
126     CapOperands = OperandCapacity::get(NumOps);
127     Operands = MF.allocateOperandArray(CapOperands);
128   }
129 
130   if (!NoImp)
131     addImplicitDefUseOperands(MF);
132 }
133 
134 /// MachineInstr ctor - Copies MachineInstr arg exactly.
135 /// Does not copy the number from debug instruction numbering, to preserve
136 /// uniqueness.
137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
138     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()),
139       DebugInstrNum(0) {
140   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
141 
142   CapOperands = OperandCapacity::get(MI.getNumOperands());
143   Operands = MF.allocateOperandArray(CapOperands);
144 
145   // Copy operands.
146   for (const MachineOperand &MO : MI.operands())
147     addOperand(MF, MO);
148 
149   // Copy all the sensible flags.
150   setFlags(MI.Flags);
151 }
152 
153 void MachineInstr::moveBefore(MachineInstr *MovePos) {
154   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
155 }
156 
157 /// getRegInfo - If this instruction is embedded into a MachineFunction,
158 /// return the MachineRegisterInfo object for the current function, otherwise
159 /// return null.
160 MachineRegisterInfo *MachineInstr::getRegInfo() {
161   if (MachineBasicBlock *MBB = getParent())
162     return &MBB->getParent()->getRegInfo();
163   return nullptr;
164 }
165 
166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
167 /// this instruction from their respective use lists.  This requires that the
168 /// operands already be on their use lists.
169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
170   for (MachineOperand &MO : operands())
171     if (MO.isReg())
172       MRI.removeRegOperandFromUseList(&MO);
173 }
174 
175 /// AddRegOperandsToUseLists - Add all of the register operands in
176 /// this instruction from their respective use lists.  This requires that the
177 /// operands not be on their use lists yet.
178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
179   for (MachineOperand &MO : operands())
180     if (MO.isReg())
181       MRI.addRegOperandToUseList(&MO);
182 }
183 
184 void MachineInstr::addOperand(const MachineOperand &Op) {
185   MachineBasicBlock *MBB = getParent();
186   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
187   MachineFunction *MF = MBB->getParent();
188   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
189   addOperand(*MF, Op);
190 }
191 
192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
193 /// ranges. If MRI is non-null also update use-def chains.
194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
195                          unsigned NumOps, MachineRegisterInfo *MRI) {
196   if (MRI)
197     return MRI->moveOperands(Dst, Src, NumOps);
198   // MachineOperand is a trivially copyable type so we can just use memmove.
199   assert(Dst && Src && "Unknown operands");
200   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
201 }
202 
203 /// addOperand - Add the specified operand to the instruction.  If it is an
204 /// implicit operand, it is added to the end of the operand list.  If it is
205 /// an explicit operand it is added at the end of the explicit operand list
206 /// (before the first implicit operand).
207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
208   assert(MCID && "Cannot add operands before providing an instr descriptor");
209 
210   // Check if we're adding one of our existing operands.
211   if (&Op >= Operands && &Op < Operands + NumOperands) {
212     // This is unusual: MI->addOperand(MI->getOperand(i)).
213     // If adding Op requires reallocating or moving existing operands around,
214     // the Op reference could go stale. Support it by copying Op.
215     MachineOperand CopyOp(Op);
216     return addOperand(MF, CopyOp);
217   }
218 
219   // Find the insert location for the new operand.  Implicit registers go at
220   // the end, everything else goes before the implicit regs.
221   //
222   // FIXME: Allow mixed explicit and implicit operands on inline asm.
223   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224   // implicit-defs, but they must not be moved around.  See the FIXME in
225   // InstrEmitter.cpp.
226   unsigned OpNo = getNumOperands();
227   bool isImpReg = Op.isReg() && Op.isImplicit();
228   if (!isImpReg && !isInlineAsm()) {
229     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
230       --OpNo;
231       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
232     }
233   }
234 
235 #ifndef NDEBUG
236   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
237                    Op.getType() == MachineOperand::MO_MCSymbol;
238   // OpNo now points as the desired insertion point.  Unless this is a variadic
239   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
240   // RegMask operands go between the explicit and implicit operands.
241   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
242           OpNo < MCID->getNumOperands() || isDebugOp) &&
243          "Trying to add an operand to a machine instr that is already done!");
244 #endif
245 
246   MachineRegisterInfo *MRI = getRegInfo();
247 
248   // Determine if the Operands array needs to be reallocated.
249   // Save the old capacity and operand array.
250   OperandCapacity OldCap = CapOperands;
251   MachineOperand *OldOperands = Operands;
252   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
253     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
254     Operands = MF.allocateOperandArray(CapOperands);
255     // Move the operands before the insertion point.
256     if (OpNo)
257       moveOperands(Operands, OldOperands, OpNo, MRI);
258   }
259 
260   // Move the operands following the insertion point.
261   if (OpNo != NumOperands)
262     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
263                  MRI);
264   ++NumOperands;
265 
266   // Deallocate the old operand array.
267   if (OldOperands != Operands && OldOperands)
268     MF.deallocateOperandArray(OldCap, OldOperands);
269 
270   // Copy Op into place. It still needs to be inserted into the MRI use lists.
271   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
272   NewMO->ParentMI = this;
273 
274   // When adding a register operand, tell MRI about it.
275   if (NewMO->isReg()) {
276     // Ensure isOnRegUseList() returns false, regardless of Op's status.
277     NewMO->Contents.Reg.Prev = nullptr;
278     // Ignore existing ties. This is not a property that can be copied.
279     NewMO->TiedTo = 0;
280     // Add the new operand to MRI, but only for instructions in an MBB.
281     if (MRI)
282       MRI->addRegOperandToUseList(NewMO);
283     // The MCID operand information isn't accurate until we start adding
284     // explicit operands. The implicit operands are added first, then the
285     // explicits are inserted before them.
286     if (!isImpReg) {
287       // Tie uses to defs as indicated in MCInstrDesc.
288       if (NewMO->isUse()) {
289         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
290         if (DefIdx != -1)
291           tieOperands(DefIdx, OpNo);
292       }
293       // If the register operand is flagged as early, mark the operand as such.
294       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
295         NewMO->setIsEarlyClobber(true);
296     }
297   }
298 }
299 
300 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
301 /// fewer operand than it started with.
302 ///
303 void MachineInstr::RemoveOperand(unsigned OpNo) {
304   assert(OpNo < getNumOperands() && "Invalid operand number");
305   untieRegOperand(OpNo);
306 
307 #ifndef NDEBUG
308   // Moving tied operands would break the ties.
309   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
310     if (Operands[i].isReg())
311       assert(!Operands[i].isTied() && "Cannot move tied operands");
312 #endif
313 
314   MachineRegisterInfo *MRI = getRegInfo();
315   if (MRI && Operands[OpNo].isReg())
316     MRI->removeRegOperandFromUseList(Operands + OpNo);
317 
318   // Don't call the MachineOperand destructor. A lot of this code depends on
319   // MachineOperand having a trivial destructor anyway, and adding a call here
320   // wouldn't make it 'destructor-correct'.
321 
322   if (unsigned N = NumOperands - 1 - OpNo)
323     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
324   --NumOperands;
325 }
326 
327 void MachineInstr::setExtraInfo(MachineFunction &MF,
328                                 ArrayRef<MachineMemOperand *> MMOs,
329                                 MCSymbol *PreInstrSymbol,
330                                 MCSymbol *PostInstrSymbol,
331                                 MDNode *HeapAllocMarker) {
332   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
333   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
334   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
335   int NumPointers =
336       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
337 
338   // Drop all extra info if there is none.
339   if (NumPointers <= 0) {
340     Info.clear();
341     return;
342   }
343 
344   // If more than one pointer, then store out of line. Store heap alloc markers
345   // out of line because PointerSumType cannot hold more than 4 tag types with
346   // 32-bit pointers.
347   // FIXME: Maybe we should make the symbols in the extra info mutable?
348   else if (NumPointers > 1 || HasHeapAllocMarker) {
349     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
350         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
351     return;
352   }
353 
354   // Otherwise store the single pointer inline.
355   if (HasPreInstrSymbol)
356     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
357   else if (HasPostInstrSymbol)
358     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
359   else
360     Info.set<EIIK_MMO>(MMOs[0]);
361 }
362 
363 void MachineInstr::dropMemRefs(MachineFunction &MF) {
364   if (memoperands_empty())
365     return;
366 
367   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
368                getHeapAllocMarker());
369 }
370 
371 void MachineInstr::setMemRefs(MachineFunction &MF,
372                               ArrayRef<MachineMemOperand *> MMOs) {
373   if (MMOs.empty()) {
374     dropMemRefs(MF);
375     return;
376   }
377 
378   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
379                getHeapAllocMarker());
380 }
381 
382 void MachineInstr::addMemOperand(MachineFunction &MF,
383                                  MachineMemOperand *MO) {
384   SmallVector<MachineMemOperand *, 2> MMOs;
385   MMOs.append(memoperands_begin(), memoperands_end());
386   MMOs.push_back(MO);
387   setMemRefs(MF, MMOs);
388 }
389 
390 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
391   if (this == &MI)
392     // Nothing to do for a self-clone!
393     return;
394 
395   assert(&MF == MI.getMF() &&
396          "Invalid machine functions when cloning memory refrences!");
397   // See if we can just steal the extra info already allocated for the
398   // instruction. We can do this whenever the pre- and post-instruction symbols
399   // are the same (including null).
400   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
401       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
402       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
403     Info = MI.Info;
404     return;
405   }
406 
407   // Otherwise, fall back on a copy-based clone.
408   setMemRefs(MF, MI.memoperands());
409 }
410 
411 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
412 /// identical.
413 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
414                              ArrayRef<MachineMemOperand *> RHS) {
415   if (LHS.size() != RHS.size())
416     return false;
417 
418   auto LHSPointees = make_pointee_range(LHS);
419   auto RHSPointees = make_pointee_range(RHS);
420   return std::equal(LHSPointees.begin(), LHSPointees.end(),
421                     RHSPointees.begin());
422 }
423 
424 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
425                                       ArrayRef<const MachineInstr *> MIs) {
426   // Try handling easy numbers of MIs with simpler mechanisms.
427   if (MIs.empty()) {
428     dropMemRefs(MF);
429     return;
430   }
431   if (MIs.size() == 1) {
432     cloneMemRefs(MF, *MIs[0]);
433     return;
434   }
435   // Because an empty memoperands list provides *no* information and must be
436   // handled conservatively (assuming the instruction can do anything), the only
437   // way to merge with it is to drop all other memoperands.
438   if (MIs[0]->memoperands_empty()) {
439     dropMemRefs(MF);
440     return;
441   }
442 
443   // Handle the general case.
444   SmallVector<MachineMemOperand *, 2> MergedMMOs;
445   // Start with the first instruction.
446   assert(&MF == MIs[0]->getMF() &&
447          "Invalid machine functions when cloning memory references!");
448   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
449   // Now walk all the other instructions and accumulate any different MMOs.
450   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
451     assert(&MF == MI.getMF() &&
452            "Invalid machine functions when cloning memory references!");
453 
454     // Skip MIs with identical operands to the first. This is a somewhat
455     // arbitrary hack but will catch common cases without being quadratic.
456     // TODO: We could fully implement merge semantics here if needed.
457     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
458       continue;
459 
460     // Because an empty memoperands list provides *no* information and must be
461     // handled conservatively (assuming the instruction can do anything), the
462     // only way to merge with it is to drop all other memoperands.
463     if (MI.memoperands_empty()) {
464       dropMemRefs(MF);
465       return;
466     }
467 
468     // Otherwise accumulate these into our temporary buffer of the merged state.
469     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
470   }
471 
472   setMemRefs(MF, MergedMMOs);
473 }
474 
475 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
476   // Do nothing if old and new symbols are the same.
477   if (Symbol == getPreInstrSymbol())
478     return;
479 
480   // If there was only one symbol and we're removing it, just clear info.
481   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
482     Info.clear();
483     return;
484   }
485 
486   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
487                getHeapAllocMarker());
488 }
489 
490 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
491   // Do nothing if old and new symbols are the same.
492   if (Symbol == getPostInstrSymbol())
493     return;
494 
495   // If there was only one symbol and we're removing it, just clear info.
496   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
497     Info.clear();
498     return;
499   }
500 
501   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
502                getHeapAllocMarker());
503 }
504 
505 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
506   // Do nothing if old and new symbols are the same.
507   if (Marker == getHeapAllocMarker())
508     return;
509 
510   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
511                Marker);
512 }
513 
514 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
515                                      const MachineInstr &MI) {
516   if (this == &MI)
517     // Nothing to do for a self-clone!
518     return;
519 
520   assert(&MF == MI.getMF() &&
521          "Invalid machine functions when cloning instruction symbols!");
522 
523   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
524   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
525   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
526 }
527 
528 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
529   // For now, the just return the union of the flags. If the flags get more
530   // complicated over time, we might need more logic here.
531   return getFlags() | Other.getFlags();
532 }
533 
534 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
535   uint16_t MIFlags = 0;
536   // Copy the wrapping flags.
537   if (const OverflowingBinaryOperator *OB =
538           dyn_cast<OverflowingBinaryOperator>(&I)) {
539     if (OB->hasNoSignedWrap())
540       MIFlags |= MachineInstr::MIFlag::NoSWrap;
541     if (OB->hasNoUnsignedWrap())
542       MIFlags |= MachineInstr::MIFlag::NoUWrap;
543   }
544 
545   // Copy the exact flag.
546   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
547     if (PE->isExact())
548       MIFlags |= MachineInstr::MIFlag::IsExact;
549 
550   // Copy the fast-math flags.
551   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
552     const FastMathFlags Flags = FP->getFastMathFlags();
553     if (Flags.noNaNs())
554       MIFlags |= MachineInstr::MIFlag::FmNoNans;
555     if (Flags.noInfs())
556       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
557     if (Flags.noSignedZeros())
558       MIFlags |= MachineInstr::MIFlag::FmNsz;
559     if (Flags.allowReciprocal())
560       MIFlags |= MachineInstr::MIFlag::FmArcp;
561     if (Flags.allowContract())
562       MIFlags |= MachineInstr::MIFlag::FmContract;
563     if (Flags.approxFunc())
564       MIFlags |= MachineInstr::MIFlag::FmAfn;
565     if (Flags.allowReassoc())
566       MIFlags |= MachineInstr::MIFlag::FmReassoc;
567   }
568 
569   return MIFlags;
570 }
571 
572 void MachineInstr::copyIRFlags(const Instruction &I) {
573   Flags = copyFlagsFromInstruction(I);
574 }
575 
576 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
577   assert(!isBundledWithPred() && "Must be called on bundle header");
578   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
579     if (MII->getDesc().getFlags() & Mask) {
580       if (Type == AnyInBundle)
581         return true;
582     } else {
583       if (Type == AllInBundle && !MII->isBundle())
584         return false;
585     }
586     // This was the last instruction in the bundle.
587     if (!MII->isBundledWithSucc())
588       return Type == AllInBundle;
589   }
590 }
591 
592 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
593                                  MICheckType Check) const {
594   // If opcodes or number of operands are not the same then the two
595   // instructions are obviously not identical.
596   if (Other.getOpcode() != getOpcode() ||
597       Other.getNumOperands() != getNumOperands())
598     return false;
599 
600   if (isBundle()) {
601     // We have passed the test above that both instructions have the same
602     // opcode, so we know that both instructions are bundles here. Let's compare
603     // MIs inside the bundle.
604     assert(Other.isBundle() && "Expected that both instructions are bundles.");
605     MachineBasicBlock::const_instr_iterator I1 = getIterator();
606     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
607     // Loop until we analysed the last intruction inside at least one of the
608     // bundles.
609     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
610       ++I1;
611       ++I2;
612       if (!I1->isIdenticalTo(*I2, Check))
613         return false;
614     }
615     // If we've reached the end of just one of the two bundles, but not both,
616     // the instructions are not identical.
617     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
618       return false;
619   }
620 
621   // Check operands to make sure they match.
622   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
623     const MachineOperand &MO = getOperand(i);
624     const MachineOperand &OMO = Other.getOperand(i);
625     if (!MO.isReg()) {
626       if (!MO.isIdenticalTo(OMO))
627         return false;
628       continue;
629     }
630 
631     // Clients may or may not want to ignore defs when testing for equality.
632     // For example, machine CSE pass only cares about finding common
633     // subexpressions, so it's safe to ignore virtual register defs.
634     if (MO.isDef()) {
635       if (Check == IgnoreDefs)
636         continue;
637       else if (Check == IgnoreVRegDefs) {
638         if (!Register::isVirtualRegister(MO.getReg()) ||
639             !Register::isVirtualRegister(OMO.getReg()))
640           if (!MO.isIdenticalTo(OMO))
641             return false;
642       } else {
643         if (!MO.isIdenticalTo(OMO))
644           return false;
645         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
646           return false;
647       }
648     } else {
649       if (!MO.isIdenticalTo(OMO))
650         return false;
651       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
652         return false;
653     }
654   }
655   // If DebugLoc does not match then two debug instructions are not identical.
656   if (isDebugInstr())
657     if (getDebugLoc() && Other.getDebugLoc() &&
658         getDebugLoc() != Other.getDebugLoc())
659       return false;
660   return true;
661 }
662 
663 const MachineFunction *MachineInstr::getMF() const {
664   return getParent()->getParent();
665 }
666 
667 MachineInstr *MachineInstr::removeFromParent() {
668   assert(getParent() && "Not embedded in a basic block!");
669   return getParent()->remove(this);
670 }
671 
672 MachineInstr *MachineInstr::removeFromBundle() {
673   assert(getParent() && "Not embedded in a basic block!");
674   return getParent()->remove_instr(this);
675 }
676 
677 void MachineInstr::eraseFromParent() {
678   assert(getParent() && "Not embedded in a basic block!");
679   getParent()->erase(this);
680 }
681 
682 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
683   assert(getParent() && "Not embedded in a basic block!");
684   MachineBasicBlock *MBB = getParent();
685   MachineFunction *MF = MBB->getParent();
686   assert(MF && "Not embedded in a function!");
687 
688   MachineInstr *MI = (MachineInstr *)this;
689   MachineRegisterInfo &MRI = MF->getRegInfo();
690 
691   for (const MachineOperand &MO : MI->operands()) {
692     if (!MO.isReg() || !MO.isDef())
693       continue;
694     Register Reg = MO.getReg();
695     if (!Reg.isVirtual())
696       continue;
697     MRI.markUsesInDebugValueAsUndef(Reg);
698   }
699   MI->eraseFromParent();
700 }
701 
702 void MachineInstr::eraseFromBundle() {
703   assert(getParent() && "Not embedded in a basic block!");
704   getParent()->erase_instr(this);
705 }
706 
707 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
708   if (!isCall(Type))
709     return false;
710   switch (getOpcode()) {
711   case TargetOpcode::PATCHPOINT:
712   case TargetOpcode::STACKMAP:
713   case TargetOpcode::STATEPOINT:
714   case TargetOpcode::FENTRY_CALL:
715     return false;
716   }
717   return true;
718 }
719 
720 bool MachineInstr::shouldUpdateCallSiteInfo() const {
721   if (isBundle())
722     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
723   return isCandidateForCallSiteEntry();
724 }
725 
726 unsigned MachineInstr::getNumExplicitOperands() const {
727   unsigned NumOperands = MCID->getNumOperands();
728   if (!MCID->isVariadic())
729     return NumOperands;
730 
731   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
732     const MachineOperand &MO = getOperand(I);
733     // The operands must always be in the following order:
734     // - explicit reg defs,
735     // - other explicit operands (reg uses, immediates, etc.),
736     // - implicit reg defs
737     // - implicit reg uses
738     if (MO.isReg() && MO.isImplicit())
739       break;
740     ++NumOperands;
741   }
742   return NumOperands;
743 }
744 
745 unsigned MachineInstr::getNumExplicitDefs() const {
746   unsigned NumDefs = MCID->getNumDefs();
747   if (!MCID->isVariadic())
748     return NumDefs;
749 
750   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
751     const MachineOperand &MO = getOperand(I);
752     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
753       break;
754     ++NumDefs;
755   }
756   return NumDefs;
757 }
758 
759 void MachineInstr::bundleWithPred() {
760   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
761   setFlag(BundledPred);
762   MachineBasicBlock::instr_iterator Pred = getIterator();
763   --Pred;
764   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
765   Pred->setFlag(BundledSucc);
766 }
767 
768 void MachineInstr::bundleWithSucc() {
769   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
770   setFlag(BundledSucc);
771   MachineBasicBlock::instr_iterator Succ = getIterator();
772   ++Succ;
773   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
774   Succ->setFlag(BundledPred);
775 }
776 
777 void MachineInstr::unbundleFromPred() {
778   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
779   clearFlag(BundledPred);
780   MachineBasicBlock::instr_iterator Pred = getIterator();
781   --Pred;
782   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
783   Pred->clearFlag(BundledSucc);
784 }
785 
786 void MachineInstr::unbundleFromSucc() {
787   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
788   clearFlag(BundledSucc);
789   MachineBasicBlock::instr_iterator Succ = getIterator();
790   ++Succ;
791   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
792   Succ->clearFlag(BundledPred);
793 }
794 
795 bool MachineInstr::isStackAligningInlineAsm() const {
796   if (isInlineAsm()) {
797     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
798     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
799       return true;
800   }
801   return false;
802 }
803 
804 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
805   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
806   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
807   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
808 }
809 
810 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
811                                        unsigned *GroupNo) const {
812   assert(isInlineAsm() && "Expected an inline asm instruction");
813   assert(OpIdx < getNumOperands() && "OpIdx out of range");
814 
815   // Ignore queries about the initial operands.
816   if (OpIdx < InlineAsm::MIOp_FirstOperand)
817     return -1;
818 
819   unsigned Group = 0;
820   unsigned NumOps;
821   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
822        i += NumOps) {
823     const MachineOperand &FlagMO = getOperand(i);
824     // If we reach the implicit register operands, stop looking.
825     if (!FlagMO.isImm())
826       return -1;
827     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
828     if (i + NumOps > OpIdx) {
829       if (GroupNo)
830         *GroupNo = Group;
831       return i;
832     }
833     ++Group;
834   }
835   return -1;
836 }
837 
838 const DILabel *MachineInstr::getDebugLabel() const {
839   assert(isDebugLabel() && "not a DBG_LABEL");
840   return cast<DILabel>(getOperand(0).getMetadata());
841 }
842 
843 const MachineOperand &MachineInstr::getDebugVariableOp() const {
844   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
845   unsigned VariableOp = isDebugValueList() ? 0 : 2;
846   return getOperand(VariableOp);
847 }
848 
849 MachineOperand &MachineInstr::getDebugVariableOp() {
850   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
851   unsigned VariableOp = isDebugValueList() ? 0 : 2;
852   return getOperand(VariableOp);
853 }
854 
855 const DILocalVariable *MachineInstr::getDebugVariable() const {
856   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
857 }
858 
859 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
860   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
861   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
862   return getOperand(ExpressionOp);
863 }
864 
865 MachineOperand &MachineInstr::getDebugExpressionOp() {
866   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
867   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
868   return getOperand(ExpressionOp);
869 }
870 
871 const DIExpression *MachineInstr::getDebugExpression() const {
872   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
873 }
874 
875 bool MachineInstr::isDebugEntryValue() const {
876   return isDebugValue() && getDebugExpression()->isEntryValue();
877 }
878 
879 const TargetRegisterClass*
880 MachineInstr::getRegClassConstraint(unsigned OpIdx,
881                                     const TargetInstrInfo *TII,
882                                     const TargetRegisterInfo *TRI) const {
883   assert(getParent() && "Can't have an MBB reference here!");
884   assert(getMF() && "Can't have an MF reference here!");
885   const MachineFunction &MF = *getMF();
886 
887   // Most opcodes have fixed constraints in their MCInstrDesc.
888   if (!isInlineAsm())
889     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
890 
891   if (!getOperand(OpIdx).isReg())
892     return nullptr;
893 
894   // For tied uses on inline asm, get the constraint from the def.
895   unsigned DefIdx;
896   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
897     OpIdx = DefIdx;
898 
899   // Inline asm stores register class constraints in the flag word.
900   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
901   if (FlagIdx < 0)
902     return nullptr;
903 
904   unsigned Flag = getOperand(FlagIdx).getImm();
905   unsigned RCID;
906   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
907        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
908        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
909       InlineAsm::hasRegClassConstraint(Flag, RCID))
910     return TRI->getRegClass(RCID);
911 
912   // Assume that all registers in a memory operand are pointers.
913   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
914     return TRI->getPointerRegClass(MF);
915 
916   return nullptr;
917 }
918 
919 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
920     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
921     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
922   // Check every operands inside the bundle if we have
923   // been asked to.
924   if (ExploreBundle)
925     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
926          ++OpndIt)
927       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
928           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
929   else
930     // Otherwise, just check the current operands.
931     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
932       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
933   return CurRC;
934 }
935 
936 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
937     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
938     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
939   assert(CurRC && "Invalid initial register class");
940   // Check if Reg is constrained by some of its use/def from MI.
941   const MachineOperand &MO = getOperand(OpIdx);
942   if (!MO.isReg() || MO.getReg() != Reg)
943     return CurRC;
944   // If yes, accumulate the constraints through the operand.
945   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
946 }
947 
948 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
949     unsigned OpIdx, const TargetRegisterClass *CurRC,
950     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
951   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
952   const MachineOperand &MO = getOperand(OpIdx);
953   assert(MO.isReg() &&
954          "Cannot get register constraints for non-register operand");
955   assert(CurRC && "Invalid initial register class");
956   if (unsigned SubIdx = MO.getSubReg()) {
957     if (OpRC)
958       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
959     else
960       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
961   } else if (OpRC)
962     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
963   return CurRC;
964 }
965 
966 /// Return the number of instructions inside the MI bundle, not counting the
967 /// header instruction.
968 unsigned MachineInstr::getBundleSize() const {
969   MachineBasicBlock::const_instr_iterator I = getIterator();
970   unsigned Size = 0;
971   while (I->isBundledWithSucc()) {
972     ++Size;
973     ++I;
974   }
975   return Size;
976 }
977 
978 /// Returns true if the MachineInstr has an implicit-use operand of exactly
979 /// the given register (not considering sub/super-registers).
980 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
981   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
982     const MachineOperand &MO = getOperand(i);
983     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
984       return true;
985   }
986   return false;
987 }
988 
989 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
990 /// the specific register or -1 if it is not found. It further tightens
991 /// the search criteria to a use that kills the register if isKill is true.
992 int MachineInstr::findRegisterUseOperandIdx(
993     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
994   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
995     const MachineOperand &MO = getOperand(i);
996     if (!MO.isReg() || !MO.isUse())
997       continue;
998     Register MOReg = MO.getReg();
999     if (!MOReg)
1000       continue;
1001     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1002       if (!isKill || MO.isKill())
1003         return i;
1004   }
1005   return -1;
1006 }
1007 
1008 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1009 /// indicating if this instruction reads or writes Reg. This also considers
1010 /// partial defines.
1011 std::pair<bool,bool>
1012 MachineInstr::readsWritesVirtualRegister(Register Reg,
1013                                          SmallVectorImpl<unsigned> *Ops) const {
1014   bool PartDef = false; // Partial redefine.
1015   bool FullDef = false; // Full define.
1016   bool Use = false;
1017 
1018   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1019     const MachineOperand &MO = getOperand(i);
1020     if (!MO.isReg() || MO.getReg() != Reg)
1021       continue;
1022     if (Ops)
1023       Ops->push_back(i);
1024     if (MO.isUse())
1025       Use |= !MO.isUndef();
1026     else if (MO.getSubReg() && !MO.isUndef())
1027       // A partial def undef doesn't count as reading the register.
1028       PartDef = true;
1029     else
1030       FullDef = true;
1031   }
1032   // A partial redefine uses Reg unless there is also a full define.
1033   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1034 }
1035 
1036 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1037 /// the specified register or -1 if it is not found. If isDead is true, defs
1038 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1039 /// also checks if there is a def of a super-register.
1040 int
1041 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1042                                         const TargetRegisterInfo *TRI) const {
1043   bool isPhys = Register::isPhysicalRegister(Reg);
1044   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1045     const MachineOperand &MO = getOperand(i);
1046     // Accept regmask operands when Overlap is set.
1047     // Ignore them when looking for a specific def operand (Overlap == false).
1048     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1049       return i;
1050     if (!MO.isReg() || !MO.isDef())
1051       continue;
1052     Register MOReg = MO.getReg();
1053     bool Found = (MOReg == Reg);
1054     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1055       if (Overlap)
1056         Found = TRI->regsOverlap(MOReg, Reg);
1057       else
1058         Found = TRI->isSubRegister(MOReg, Reg);
1059     }
1060     if (Found && (!isDead || MO.isDead()))
1061       return i;
1062   }
1063   return -1;
1064 }
1065 
1066 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1067 /// operand list that is used to represent the predicate. It returns -1 if
1068 /// none is found.
1069 int MachineInstr::findFirstPredOperandIdx() const {
1070   // Don't call MCID.findFirstPredOperandIdx() because this variant
1071   // is sometimes called on an instruction that's not yet complete, and
1072   // so the number of operands is less than the MCID indicates. In
1073   // particular, the PTX target does this.
1074   const MCInstrDesc &MCID = getDesc();
1075   if (MCID.isPredicable()) {
1076     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1077       if (MCID.OpInfo[i].isPredicate())
1078         return i;
1079   }
1080 
1081   return -1;
1082 }
1083 
1084 // MachineOperand::TiedTo is 4 bits wide.
1085 const unsigned TiedMax = 15;
1086 
1087 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1088 ///
1089 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1090 /// field. TiedTo can have these values:
1091 ///
1092 /// 0:              Operand is not tied to anything.
1093 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1094 /// TiedMax:        Tied to an operand >= TiedMax-1.
1095 ///
1096 /// The tied def must be one of the first TiedMax operands on a normal
1097 /// instruction. INLINEASM instructions allow more tied defs.
1098 ///
1099 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1100   MachineOperand &DefMO = getOperand(DefIdx);
1101   MachineOperand &UseMO = getOperand(UseIdx);
1102   assert(DefMO.isDef() && "DefIdx must be a def operand");
1103   assert(UseMO.isUse() && "UseIdx must be a use operand");
1104   assert(!DefMO.isTied() && "Def is already tied to another use");
1105   assert(!UseMO.isTied() && "Use is already tied to another def");
1106 
1107   if (DefIdx < TiedMax)
1108     UseMO.TiedTo = DefIdx + 1;
1109   else {
1110     // Inline asm can use the group descriptors to find tied operands,
1111     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1112     // but on normal instruction, the tied def must be within the first TiedMax
1113     // operands.
1114     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1115            "DefIdx out of range");
1116     UseMO.TiedTo = TiedMax;
1117   }
1118 
1119   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1120   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1121 }
1122 
1123 /// Given the index of a tied register operand, find the operand it is tied to.
1124 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1125 /// which must exist.
1126 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1127   const MachineOperand &MO = getOperand(OpIdx);
1128   assert(MO.isTied() && "Operand isn't tied");
1129 
1130   // Normally TiedTo is in range.
1131   if (MO.TiedTo < TiedMax)
1132     return MO.TiedTo - 1;
1133 
1134   // Uses on normal instructions can be out of range.
1135   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1136     // Normal tied defs must be in the 0..TiedMax-1 range.
1137     if (MO.isUse())
1138       return TiedMax - 1;
1139     // MO is a def. Search for the tied use.
1140     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1141       const MachineOperand &UseMO = getOperand(i);
1142       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1143         return i;
1144     }
1145     llvm_unreachable("Can't find tied use");
1146   }
1147 
1148   if (getOpcode() == TargetOpcode::STATEPOINT) {
1149     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1150     // on registers.
1151     StatepointOpers SO(this);
1152     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1153     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1154     unsigned NumDefs = getNumDefs();
1155     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1156       while (!getOperand(CurUseIdx).isReg())
1157         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1158       if (OpIdx == CurDefIdx)
1159         return CurUseIdx;
1160       if (OpIdx == CurUseIdx)
1161         return CurDefIdx;
1162       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1163     }
1164     llvm_unreachable("Can't find tied use");
1165   }
1166 
1167   // Now deal with inline asm by parsing the operand group descriptor flags.
1168   // Find the beginning of each operand group.
1169   SmallVector<unsigned, 8> GroupIdx;
1170   unsigned OpIdxGroup = ~0u;
1171   unsigned NumOps;
1172   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1173        i += NumOps) {
1174     const MachineOperand &FlagMO = getOperand(i);
1175     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1176     unsigned CurGroup = GroupIdx.size();
1177     GroupIdx.push_back(i);
1178     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1179     // OpIdx belongs to this operand group.
1180     if (OpIdx > i && OpIdx < i + NumOps)
1181       OpIdxGroup = CurGroup;
1182     unsigned TiedGroup;
1183     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1184       continue;
1185     // Operands in this group are tied to operands in TiedGroup which must be
1186     // earlier. Find the number of operands between the two groups.
1187     unsigned Delta = i - GroupIdx[TiedGroup];
1188 
1189     // OpIdx is a use tied to TiedGroup.
1190     if (OpIdxGroup == CurGroup)
1191       return OpIdx - Delta;
1192 
1193     // OpIdx is a def tied to this use group.
1194     if (OpIdxGroup == TiedGroup)
1195       return OpIdx + Delta;
1196   }
1197   llvm_unreachable("Invalid tied operand on inline asm");
1198 }
1199 
1200 /// clearKillInfo - Clears kill flags on all operands.
1201 ///
1202 void MachineInstr::clearKillInfo() {
1203   for (MachineOperand &MO : operands()) {
1204     if (MO.isReg() && MO.isUse())
1205       MO.setIsKill(false);
1206   }
1207 }
1208 
1209 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1210                                       unsigned SubIdx,
1211                                       const TargetRegisterInfo &RegInfo) {
1212   if (Register::isPhysicalRegister(ToReg)) {
1213     if (SubIdx)
1214       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1215     for (MachineOperand &MO : operands()) {
1216       if (!MO.isReg() || MO.getReg() != FromReg)
1217         continue;
1218       MO.substPhysReg(ToReg, RegInfo);
1219     }
1220   } else {
1221     for (MachineOperand &MO : operands()) {
1222       if (!MO.isReg() || MO.getReg() != FromReg)
1223         continue;
1224       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1225     }
1226   }
1227 }
1228 
1229 /// isSafeToMove - Return true if it is safe to move this instruction. If
1230 /// SawStore is set to true, it means that there is a store (or call) between
1231 /// the instruction's location and its intended destination.
1232 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1233   // Ignore stuff that we obviously can't move.
1234   //
1235   // Treat volatile loads as stores. This is not strictly necessary for
1236   // volatiles, but it is required for atomic loads. It is not allowed to move
1237   // a load across an atomic load with Ordering > Monotonic.
1238   if (mayStore() || isCall() || isPHI() ||
1239       (mayLoad() && hasOrderedMemoryRef())) {
1240     SawStore = true;
1241     return false;
1242   }
1243 
1244   if (isPosition() || isDebugInstr() || isTerminator() ||
1245       mayRaiseFPException() || hasUnmodeledSideEffects())
1246     return false;
1247 
1248   // See if this instruction does a load.  If so, we have to guarantee that the
1249   // loaded value doesn't change between the load and the its intended
1250   // destination. The check for isInvariantLoad gives the target the chance to
1251   // classify the load as always returning a constant, e.g. a constant pool
1252   // load.
1253   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1254     // Otherwise, this is a real load.  If there is a store between the load and
1255     // end of block, we can't move it.
1256     return !SawStore;
1257 
1258   return true;
1259 }
1260 
1261 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1262                                  bool UseTBAA, const MachineMemOperand *MMOa,
1263                                  const MachineMemOperand *MMOb) {
1264   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1265   // operates with MachineMemOperand offset with some important assumptions:
1266   //   - LLVM fundamentally assumes flat address spaces.
1267   //   - MachineOperand offset can *only* result from legalization and cannot
1268   //     affect queries other than the trivial case of overlap checking.
1269   //   - These offsets never wrap and never step outside of allocated objects.
1270   //   - There should never be any negative offsets here.
1271   //
1272   // FIXME: Modify API to hide this math from "user"
1273   // Even before we go to AA we can reason locally about some memory objects. It
1274   // can save compile time, and possibly catch some corner cases not currently
1275   // covered.
1276 
1277   int64_t OffsetA = MMOa->getOffset();
1278   int64_t OffsetB = MMOb->getOffset();
1279   int64_t MinOffset = std::min(OffsetA, OffsetB);
1280 
1281   uint64_t WidthA = MMOa->getSize();
1282   uint64_t WidthB = MMOb->getSize();
1283   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1284   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1285 
1286   const Value *ValA = MMOa->getValue();
1287   const Value *ValB = MMOb->getValue();
1288   bool SameVal = (ValA && ValB && (ValA == ValB));
1289   if (!SameVal) {
1290     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1291     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1292     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1293       return false;
1294     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1295       return false;
1296     if (PSVa && PSVb && (PSVa == PSVb))
1297       SameVal = true;
1298   }
1299 
1300   if (SameVal) {
1301     if (!KnownWidthA || !KnownWidthB)
1302       return true;
1303     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1304     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1305     return (MinOffset + LowWidth > MaxOffset);
1306   }
1307 
1308   if (!AA)
1309     return true;
1310 
1311   if (!ValA || !ValB)
1312     return true;
1313 
1314   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1315   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1316 
1317   int64_t OverlapA =
1318       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1319   int64_t OverlapB =
1320       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1321 
1322   return !AA->isNoAlias(
1323       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1324       MemoryLocation(ValB, OverlapB,
1325                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1326 }
1327 
1328 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1329                             bool UseTBAA) const {
1330   const MachineFunction *MF = getMF();
1331   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1332   const MachineFrameInfo &MFI = MF->getFrameInfo();
1333 
1334   // Exclude call instruction which may alter the memory but can not be handled
1335   // by this function.
1336   if (isCall() || Other.isCall())
1337     return true;
1338 
1339   // If neither instruction stores to memory, they can't alias in any
1340   // meaningful way, even if they read from the same address.
1341   if (!mayStore() && !Other.mayStore())
1342     return false;
1343 
1344   // Both instructions must be memory operations to be able to alias.
1345   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1346     return false;
1347 
1348   // Let the target decide if memory accesses cannot possibly overlap.
1349   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1350     return false;
1351 
1352   // Memory operations without memory operands may access anything. Be
1353   // conservative and assume `MayAlias`.
1354   if (memoperands_empty() || Other.memoperands_empty())
1355     return true;
1356 
1357   // Skip if there are too many memory operands.
1358   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1359   if (NumChecks > TII->getMemOperandAACheckLimit())
1360     return true;
1361 
1362   // Check each pair of memory operands from both instructions, which can't
1363   // alias only if all pairs won't alias.
1364   for (auto *MMOa : memoperands())
1365     for (auto *MMOb : Other.memoperands())
1366       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1367         return true;
1368 
1369   return false;
1370 }
1371 
1372 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1373 /// or volatile memory reference, or if the information describing the memory
1374 /// reference is not available. Return false if it is known to have no ordered
1375 /// memory references.
1376 bool MachineInstr::hasOrderedMemoryRef() const {
1377   // An instruction known never to access memory won't have a volatile access.
1378   if (!mayStore() &&
1379       !mayLoad() &&
1380       !isCall() &&
1381       !hasUnmodeledSideEffects())
1382     return false;
1383 
1384   // Otherwise, if the instruction has no memory reference information,
1385   // conservatively assume it wasn't preserved.
1386   if (memoperands_empty())
1387     return true;
1388 
1389   // Check if any of our memory operands are ordered.
1390   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1391     return !MMO->isUnordered();
1392   });
1393 }
1394 
1395 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1396 /// trap and is loading from a location whose value is invariant across a run of
1397 /// this function.
1398 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1399   // If the instruction doesn't load at all, it isn't an invariant load.
1400   if (!mayLoad())
1401     return false;
1402 
1403   // If the instruction has lost its memoperands, conservatively assume that
1404   // it may not be an invariant load.
1405   if (memoperands_empty())
1406     return false;
1407 
1408   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1409 
1410   for (MachineMemOperand *MMO : memoperands()) {
1411     if (!MMO->isUnordered())
1412       // If the memory operand has ordering side effects, we can't move the
1413       // instruction.  Such an instruction is technically an invariant load,
1414       // but the caller code would need updated to expect that.
1415       return false;
1416     if (MMO->isStore()) return false;
1417     if (MMO->isInvariant() && MMO->isDereferenceable())
1418       continue;
1419 
1420     // A load from a constant PseudoSourceValue is invariant.
1421     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1422       if (PSV->isConstant(&MFI))
1423         continue;
1424 
1425     if (const Value *V = MMO->getValue()) {
1426       // If we have an AliasAnalysis, ask it whether the memory is constant.
1427       if (AA &&
1428           AA->pointsToConstantMemory(
1429               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1430         continue;
1431     }
1432 
1433     // Otherwise assume conservatively.
1434     return false;
1435   }
1436 
1437   // Everything checks out.
1438   return true;
1439 }
1440 
1441 /// isConstantValuePHI - If the specified instruction is a PHI that always
1442 /// merges together the same virtual register, return the register, otherwise
1443 /// return 0.
1444 unsigned MachineInstr::isConstantValuePHI() const {
1445   if (!isPHI())
1446     return 0;
1447   assert(getNumOperands() >= 3 &&
1448          "It's illegal to have a PHI without source operands");
1449 
1450   Register Reg = getOperand(1).getReg();
1451   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1452     if (getOperand(i).getReg() != Reg)
1453       return 0;
1454   return Reg;
1455 }
1456 
1457 bool MachineInstr::hasUnmodeledSideEffects() const {
1458   if (hasProperty(MCID::UnmodeledSideEffects))
1459     return true;
1460   if (isInlineAsm()) {
1461     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1462     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1463       return true;
1464   }
1465 
1466   return false;
1467 }
1468 
1469 bool MachineInstr::isLoadFoldBarrier() const {
1470   return mayStore() || isCall() ||
1471          (hasUnmodeledSideEffects() && !isPseudoProbe());
1472 }
1473 
1474 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1475 ///
1476 bool MachineInstr::allDefsAreDead() const {
1477   for (const MachineOperand &MO : operands()) {
1478     if (!MO.isReg() || MO.isUse())
1479       continue;
1480     if (!MO.isDead())
1481       return false;
1482   }
1483   return true;
1484 }
1485 
1486 /// copyImplicitOps - Copy implicit register operands from specified
1487 /// instruction to this instruction.
1488 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1489                                    const MachineInstr &MI) {
1490   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1491        i != e; ++i) {
1492     const MachineOperand &MO = MI.getOperand(i);
1493     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1494       addOperand(MF, MO);
1495   }
1496 }
1497 
1498 bool MachineInstr::hasComplexRegisterTies() const {
1499   const MCInstrDesc &MCID = getDesc();
1500   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1501     return true;
1502   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1503     const auto &Operand = getOperand(I);
1504     if (!Operand.isReg() || Operand.isDef())
1505       // Ignore the defined registers as MCID marks only the uses as tied.
1506       continue;
1507     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1508     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1509     if (ExpectedTiedIdx != TiedIdx)
1510       return true;
1511   }
1512   return false;
1513 }
1514 
1515 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1516                                  const MachineRegisterInfo &MRI) const {
1517   const MachineOperand &Op = getOperand(OpIdx);
1518   if (!Op.isReg())
1519     return LLT{};
1520 
1521   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1522     return MRI.getType(Op.getReg());
1523 
1524   auto &OpInfo = getDesc().OpInfo[OpIdx];
1525   if (!OpInfo.isGenericType())
1526     return MRI.getType(Op.getReg());
1527 
1528   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1529     return LLT{};
1530 
1531   LLT TypeToPrint = MRI.getType(Op.getReg());
1532   // Don't mark the type index printed if it wasn't actually printed: maybe
1533   // another operand with the same type index has an actual type attached:
1534   if (TypeToPrint.isValid())
1535     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1536   return TypeToPrint;
1537 }
1538 
1539 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1540 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1541   dbgs() << "  ";
1542   print(dbgs());
1543 }
1544 
1545 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1546     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1547     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1548   if (Depth >= MaxDepth)
1549     return;
1550   if (!AlreadySeenInstrs.insert(this).second)
1551     return;
1552   // PadToColumn always inserts at least one space.
1553   // Don't mess up the alignment if we don't want any space.
1554   if (Depth)
1555     fdbgs().PadToColumn(Depth * 2);
1556   print(fdbgs());
1557   for (const MachineOperand &MO : operands()) {
1558     if (!MO.isReg() || MO.isDef())
1559       continue;
1560     Register Reg = MO.getReg();
1561     if (Reg.isPhysical())
1562       continue;
1563     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1564     if (NewMI == nullptr)
1565       continue;
1566     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1567   }
1568 }
1569 
1570 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1571                                           unsigned MaxDepth) const {
1572   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1573   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1574 }
1575 #endif
1576 
1577 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1578                          bool SkipDebugLoc, bool AddNewLine,
1579                          const TargetInstrInfo *TII) const {
1580   const Module *M = nullptr;
1581   const Function *F = nullptr;
1582   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1583     F = &MF->getFunction();
1584     M = F->getParent();
1585     if (!TII)
1586       TII = MF->getSubtarget().getInstrInfo();
1587   }
1588 
1589   ModuleSlotTracker MST(M);
1590   if (F)
1591     MST.incorporateFunction(*F);
1592   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1593 }
1594 
1595 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1596                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1597                          bool AddNewLine, const TargetInstrInfo *TII) const {
1598   // We can be a bit tidier if we know the MachineFunction.
1599   const TargetRegisterInfo *TRI = nullptr;
1600   const MachineRegisterInfo *MRI = nullptr;
1601   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1602   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1603 
1604   if (isCFIInstruction())
1605     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1606 
1607   SmallBitVector PrintedTypes(8);
1608   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1609   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1610     if (!ShouldPrintRegisterTies)
1611       return 0U;
1612     const MachineOperand &MO = getOperand(OpIdx);
1613     if (MO.isReg() && MO.isTied() && !MO.isDef())
1614       return findTiedOperandIdx(OpIdx);
1615     return 0U;
1616   };
1617   unsigned StartOp = 0;
1618   unsigned e = getNumOperands();
1619 
1620   // Print explicitly defined operands on the left of an assignment syntax.
1621   while (StartOp < e) {
1622     const MachineOperand &MO = getOperand(StartOp);
1623     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1624       break;
1625 
1626     if (StartOp != 0)
1627       OS << ", ";
1628 
1629     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1630     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1631     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1632              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1633     ++StartOp;
1634   }
1635 
1636   if (StartOp != 0)
1637     OS << " = ";
1638 
1639   if (getFlag(MachineInstr::FrameSetup))
1640     OS << "frame-setup ";
1641   if (getFlag(MachineInstr::FrameDestroy))
1642     OS << "frame-destroy ";
1643   if (getFlag(MachineInstr::FmNoNans))
1644     OS << "nnan ";
1645   if (getFlag(MachineInstr::FmNoInfs))
1646     OS << "ninf ";
1647   if (getFlag(MachineInstr::FmNsz))
1648     OS << "nsz ";
1649   if (getFlag(MachineInstr::FmArcp))
1650     OS << "arcp ";
1651   if (getFlag(MachineInstr::FmContract))
1652     OS << "contract ";
1653   if (getFlag(MachineInstr::FmAfn))
1654     OS << "afn ";
1655   if (getFlag(MachineInstr::FmReassoc))
1656     OS << "reassoc ";
1657   if (getFlag(MachineInstr::NoUWrap))
1658     OS << "nuw ";
1659   if (getFlag(MachineInstr::NoSWrap))
1660     OS << "nsw ";
1661   if (getFlag(MachineInstr::IsExact))
1662     OS << "exact ";
1663   if (getFlag(MachineInstr::NoFPExcept))
1664     OS << "nofpexcept ";
1665   if (getFlag(MachineInstr::NoMerge))
1666     OS << "nomerge ";
1667 
1668   // Print the opcode name.
1669   if (TII)
1670     OS << TII->getName(getOpcode());
1671   else
1672     OS << "UNKNOWN";
1673 
1674   if (SkipOpers)
1675     return;
1676 
1677   // Print the rest of the operands.
1678   bool FirstOp = true;
1679   unsigned AsmDescOp = ~0u;
1680   unsigned AsmOpCount = 0;
1681 
1682   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1683     // Print asm string.
1684     OS << " ";
1685     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1686     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1687     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1688     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1689                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1690                             IntrinsicInfo);
1691 
1692     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1693     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1694     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1695       OS << " [sideeffect]";
1696     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1697       OS << " [mayload]";
1698     if (ExtraInfo & InlineAsm::Extra_MayStore)
1699       OS << " [maystore]";
1700     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1701       OS << " [isconvergent]";
1702     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1703       OS << " [alignstack]";
1704     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1705       OS << " [attdialect]";
1706     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1707       OS << " [inteldialect]";
1708 
1709     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1710     FirstOp = false;
1711   }
1712 
1713   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1714     const MachineOperand &MO = getOperand(i);
1715 
1716     if (FirstOp) FirstOp = false; else OS << ",";
1717     OS << " ";
1718 
1719     if (isDebugValue() && MO.isMetadata()) {
1720       // Pretty print DBG_VALUE* instructions.
1721       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1722       if (DIV && !DIV->getName().empty())
1723         OS << "!\"" << DIV->getName() << '\"';
1724       else {
1725         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1726         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1727         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1728                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1729       }
1730     } else if (isDebugLabel() && MO.isMetadata()) {
1731       // Pretty print DBG_LABEL instructions.
1732       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1733       if (DIL && !DIL->getName().empty())
1734         OS << "\"" << DIL->getName() << '\"';
1735       else {
1736         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1737         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1738         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1739                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1740       }
1741     } else if (i == AsmDescOp && MO.isImm()) {
1742       // Pretty print the inline asm operand descriptor.
1743       OS << '$' << AsmOpCount++;
1744       unsigned Flag = MO.getImm();
1745       OS << ":[";
1746       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1747 
1748       unsigned RCID = 0;
1749       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1750           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1751         if (TRI) {
1752           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1753         } else
1754           OS << ":RC" << RCID;
1755       }
1756 
1757       if (InlineAsm::isMemKind(Flag)) {
1758         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1759         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1760       }
1761 
1762       unsigned TiedTo = 0;
1763       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1764         OS << " tiedto:$" << TiedTo;
1765 
1766       OS << ']';
1767 
1768       // Compute the index of the next operand descriptor.
1769       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1770     } else {
1771       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1772       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1773       if (MO.isImm() && isOperandSubregIdx(i))
1774         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1775       else
1776         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1777                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1778     }
1779   }
1780 
1781   // Print any optional symbols attached to this instruction as-if they were
1782   // operands.
1783   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1784     if (!FirstOp) {
1785       FirstOp = false;
1786       OS << ',';
1787     }
1788     OS << " pre-instr-symbol ";
1789     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1790   }
1791   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1792     if (!FirstOp) {
1793       FirstOp = false;
1794       OS << ',';
1795     }
1796     OS << " post-instr-symbol ";
1797     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1798   }
1799   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1800     if (!FirstOp) {
1801       FirstOp = false;
1802       OS << ',';
1803     }
1804     OS << " heap-alloc-marker ";
1805     HeapAllocMarker->printAsOperand(OS, MST);
1806   }
1807 
1808   if (DebugInstrNum) {
1809     if (!FirstOp)
1810       OS << ",";
1811     OS << " debug-instr-number " << DebugInstrNum;
1812   }
1813 
1814   if (!SkipDebugLoc) {
1815     if (const DebugLoc &DL = getDebugLoc()) {
1816       if (!FirstOp)
1817         OS << ',';
1818       OS << " debug-location ";
1819       DL->printAsOperand(OS, MST);
1820     }
1821   }
1822 
1823   if (!memoperands_empty()) {
1824     SmallVector<StringRef, 0> SSNs;
1825     const LLVMContext *Context = nullptr;
1826     std::unique_ptr<LLVMContext> CtxPtr;
1827     const MachineFrameInfo *MFI = nullptr;
1828     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1829       MFI = &MF->getFrameInfo();
1830       Context = &MF->getFunction().getContext();
1831     } else {
1832       CtxPtr = std::make_unique<LLVMContext>();
1833       Context = CtxPtr.get();
1834     }
1835 
1836     OS << " :: ";
1837     bool NeedComma = false;
1838     for (const MachineMemOperand *Op : memoperands()) {
1839       if (NeedComma)
1840         OS << ", ";
1841       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1842       NeedComma = true;
1843     }
1844   }
1845 
1846   if (SkipDebugLoc)
1847     return;
1848 
1849   bool HaveSemi = false;
1850 
1851   // Print debug location information.
1852   if (const DebugLoc &DL = getDebugLoc()) {
1853     if (!HaveSemi) {
1854       OS << ';';
1855       HaveSemi = true;
1856     }
1857     OS << ' ';
1858     DL.print(OS);
1859   }
1860 
1861   // Print extra comments for DEBUG_VALUE.
1862   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1863     if (!HaveSemi) {
1864       OS << ";";
1865       HaveSemi = true;
1866     }
1867     auto *DV = getDebugVariable();
1868     OS << " line no:" <<  DV->getLine();
1869     if (isIndirectDebugValue())
1870       OS << " indirect";
1871   }
1872   // TODO: DBG_LABEL
1873 
1874   if (AddNewLine)
1875     OS << '\n';
1876 }
1877 
1878 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1879                                      const TargetRegisterInfo *RegInfo,
1880                                      bool AddIfNotFound) {
1881   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1882   bool hasAliases = isPhysReg &&
1883     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1884   bool Found = false;
1885   SmallVector<unsigned,4> DeadOps;
1886   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1887     MachineOperand &MO = getOperand(i);
1888     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1889       continue;
1890 
1891     // DEBUG_VALUE nodes do not contribute to code generation and should
1892     // always be ignored. Failure to do so may result in trying to modify
1893     // KILL flags on DEBUG_VALUE nodes.
1894     if (MO.isDebug())
1895       continue;
1896 
1897     Register Reg = MO.getReg();
1898     if (!Reg)
1899       continue;
1900 
1901     if (Reg == IncomingReg) {
1902       if (!Found) {
1903         if (MO.isKill())
1904           // The register is already marked kill.
1905           return true;
1906         if (isPhysReg && isRegTiedToDefOperand(i))
1907           // Two-address uses of physregs must not be marked kill.
1908           return true;
1909         MO.setIsKill();
1910         Found = true;
1911       }
1912     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1913       // A super-register kill already exists.
1914       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1915         return true;
1916       if (RegInfo->isSubRegister(IncomingReg, Reg))
1917         DeadOps.push_back(i);
1918     }
1919   }
1920 
1921   // Trim unneeded kill operands.
1922   while (!DeadOps.empty()) {
1923     unsigned OpIdx = DeadOps.back();
1924     if (getOperand(OpIdx).isImplicit() &&
1925         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1926       RemoveOperand(OpIdx);
1927     else
1928       getOperand(OpIdx).setIsKill(false);
1929     DeadOps.pop_back();
1930   }
1931 
1932   // If not found, this means an alias of one of the operands is killed. Add a
1933   // new implicit operand if required.
1934   if (!Found && AddIfNotFound) {
1935     addOperand(MachineOperand::CreateReg(IncomingReg,
1936                                          false /*IsDef*/,
1937                                          true  /*IsImp*/,
1938                                          true  /*IsKill*/));
1939     return true;
1940   }
1941   return Found;
1942 }
1943 
1944 void MachineInstr::clearRegisterKills(Register Reg,
1945                                       const TargetRegisterInfo *RegInfo) {
1946   if (!Register::isPhysicalRegister(Reg))
1947     RegInfo = nullptr;
1948   for (MachineOperand &MO : operands()) {
1949     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1950       continue;
1951     Register OpReg = MO.getReg();
1952     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1953       MO.setIsKill(false);
1954   }
1955 }
1956 
1957 bool MachineInstr::addRegisterDead(Register Reg,
1958                                    const TargetRegisterInfo *RegInfo,
1959                                    bool AddIfNotFound) {
1960   bool isPhysReg = Register::isPhysicalRegister(Reg);
1961   bool hasAliases = isPhysReg &&
1962     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1963   bool Found = false;
1964   SmallVector<unsigned,4> DeadOps;
1965   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1966     MachineOperand &MO = getOperand(i);
1967     if (!MO.isReg() || !MO.isDef())
1968       continue;
1969     Register MOReg = MO.getReg();
1970     if (!MOReg)
1971       continue;
1972 
1973     if (MOReg == Reg) {
1974       MO.setIsDead();
1975       Found = true;
1976     } else if (hasAliases && MO.isDead() &&
1977                Register::isPhysicalRegister(MOReg)) {
1978       // There exists a super-register that's marked dead.
1979       if (RegInfo->isSuperRegister(Reg, MOReg))
1980         return true;
1981       if (RegInfo->isSubRegister(Reg, MOReg))
1982         DeadOps.push_back(i);
1983     }
1984   }
1985 
1986   // Trim unneeded dead operands.
1987   while (!DeadOps.empty()) {
1988     unsigned OpIdx = DeadOps.back();
1989     if (getOperand(OpIdx).isImplicit() &&
1990         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1991       RemoveOperand(OpIdx);
1992     else
1993       getOperand(OpIdx).setIsDead(false);
1994     DeadOps.pop_back();
1995   }
1996 
1997   // If not found, this means an alias of one of the operands is dead. Add a
1998   // new implicit operand if required.
1999   if (Found || !AddIfNotFound)
2000     return Found;
2001 
2002   addOperand(MachineOperand::CreateReg(Reg,
2003                                        true  /*IsDef*/,
2004                                        true  /*IsImp*/,
2005                                        false /*IsKill*/,
2006                                        true  /*IsDead*/));
2007   return true;
2008 }
2009 
2010 void MachineInstr::clearRegisterDeads(Register Reg) {
2011   for (MachineOperand &MO : operands()) {
2012     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2013       continue;
2014     MO.setIsDead(false);
2015   }
2016 }
2017 
2018 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2019   for (MachineOperand &MO : operands()) {
2020     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2021       continue;
2022     MO.setIsUndef(IsUndef);
2023   }
2024 }
2025 
2026 void MachineInstr::addRegisterDefined(Register Reg,
2027                                       const TargetRegisterInfo *RegInfo) {
2028   if (Register::isPhysicalRegister(Reg)) {
2029     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2030     if (MO)
2031       return;
2032   } else {
2033     for (const MachineOperand &MO : operands()) {
2034       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2035           MO.getSubReg() == 0)
2036         return;
2037     }
2038   }
2039   addOperand(MachineOperand::CreateReg(Reg,
2040                                        true  /*IsDef*/,
2041                                        true  /*IsImp*/));
2042 }
2043 
2044 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2045                                          const TargetRegisterInfo &TRI) {
2046   bool HasRegMask = false;
2047   for (MachineOperand &MO : operands()) {
2048     if (MO.isRegMask()) {
2049       HasRegMask = true;
2050       continue;
2051     }
2052     if (!MO.isReg() || !MO.isDef()) continue;
2053     Register Reg = MO.getReg();
2054     if (!Reg.isPhysical())
2055       continue;
2056     // If there are no uses, including partial uses, the def is dead.
2057     if (llvm::none_of(UsedRegs,
2058                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2059       MO.setIsDead();
2060   }
2061 
2062   // This is a call with a register mask operand.
2063   // Mask clobbers are always dead, so add defs for the non-dead defines.
2064   if (HasRegMask)
2065     for (const Register &UsedReg : UsedRegs)
2066       addRegisterDefined(UsedReg, &TRI);
2067 }
2068 
2069 unsigned
2070 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2071   // Build up a buffer of hash code components.
2072   SmallVector<size_t, 16> HashComponents;
2073   HashComponents.reserve(MI->getNumOperands() + 1);
2074   HashComponents.push_back(MI->getOpcode());
2075   for (const MachineOperand &MO : MI->operands()) {
2076     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2077       continue;  // Skip virtual register defs.
2078 
2079     HashComponents.push_back(hash_value(MO));
2080   }
2081   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2082 }
2083 
2084 void MachineInstr::emitError(StringRef Msg) const {
2085   // Find the source location cookie.
2086   uint64_t LocCookie = 0;
2087   const MDNode *LocMD = nullptr;
2088   for (unsigned i = getNumOperands(); i != 0; --i) {
2089     if (getOperand(i-1).isMetadata() &&
2090         (LocMD = getOperand(i-1).getMetadata()) &&
2091         LocMD->getNumOperands() != 0) {
2092       if (const ConstantInt *CI =
2093               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2094         LocCookie = CI->getZExtValue();
2095         break;
2096       }
2097     }
2098   }
2099 
2100   if (const MachineBasicBlock *MBB = getParent())
2101     if (const MachineFunction *MF = MBB->getParent())
2102       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2103   report_fatal_error(Msg);
2104 }
2105 
2106 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2107                                   const MCInstrDesc &MCID, bool IsIndirect,
2108                                   Register Reg, const MDNode *Variable,
2109                                   const MDNode *Expr) {
2110   assert(isa<DILocalVariable>(Variable) && "not a variable");
2111   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2112   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2113          "Expected inlined-at fields to agree");
2114   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2115   if (IsIndirect)
2116     MIB.addImm(0U);
2117   else
2118     MIB.addReg(0U, RegState::Debug);
2119   return MIB.addMetadata(Variable).addMetadata(Expr);
2120 }
2121 
2122 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2123                                   const MCInstrDesc &MCID, bool IsIndirect,
2124                                   const MachineOperand &MO,
2125                                   const MDNode *Variable, const MDNode *Expr) {
2126   assert(isa<DILocalVariable>(Variable) && "not a variable");
2127   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2128   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2129          "Expected inlined-at fields to agree");
2130   if (MO.isReg())
2131     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2132 
2133   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2134   if (IsIndirect)
2135     MIB.addImm(0U);
2136   else
2137     MIB.addReg(0U, RegState::Debug);
2138   return MIB.addMetadata(Variable).addMetadata(Expr);
2139 }
2140 
2141 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2142                                   const MCInstrDesc &MCID, bool IsIndirect,
2143                                   ArrayRef<MachineOperand> MOs,
2144                                   const MDNode *Variable, const MDNode *Expr) {
2145   assert(isa<DILocalVariable>(Variable) && "not a variable");
2146   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2147   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2148          "Expected inlined-at fields to agree");
2149   if (MCID.Opcode == TargetOpcode::DBG_VALUE)
2150     return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
2151 
2152   auto MIB = BuildMI(MF, DL, MCID);
2153   MIB.addMetadata(Variable).addMetadata(Expr);
2154   for (const MachineOperand &MO : MOs)
2155     if (MO.isReg())
2156       MIB.addReg(MO.getReg(), RegState::Debug);
2157     else
2158       MIB.add(MO);
2159   return MIB;
2160 }
2161 
2162 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2163                                   MachineBasicBlock::iterator I,
2164                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2165                                   bool IsIndirect, Register Reg,
2166                                   const MDNode *Variable, const MDNode *Expr) {
2167   MachineFunction &MF = *BB.getParent();
2168   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2169   BB.insert(I, MI);
2170   return MachineInstrBuilder(MF, MI);
2171 }
2172 
2173 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2174                                   MachineBasicBlock::iterator I,
2175                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2176                                   bool IsIndirect, MachineOperand &MO,
2177                                   const MDNode *Variable, const MDNode *Expr) {
2178   MachineFunction &MF = *BB.getParent();
2179   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2180   BB.insert(I, MI);
2181   return MachineInstrBuilder(MF, *MI);
2182 }
2183 
2184 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2185                                   MachineBasicBlock::iterator I,
2186                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2187                                   bool IsIndirect, ArrayRef<MachineOperand> MOs,
2188                                   const MDNode *Variable, const MDNode *Expr) {
2189   MachineFunction &MF = *BB.getParent();
2190   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
2191   BB.insert(I, MI);
2192   return MachineInstrBuilder(MF, *MI);
2193 }
2194 
2195 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2196 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2197 static const DIExpression *
2198 computeExprForSpill(const MachineInstr &MI,
2199                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2200   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2201          "Expected inlined-at fields to agree");
2202 
2203   const DIExpression *Expr = MI.getDebugExpression();
2204   if (MI.isIndirectDebugValue()) {
2205     assert(MI.getDebugOffset().getImm() == 0 &&
2206            "DBG_VALUE with nonzero offset");
2207     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2208   } else if (MI.isDebugValueList()) {
2209     // We will replace the spilled register with a frame index, so
2210     // immediately deref all references to the spilled register.
2211     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2212     for (const MachineOperand *Op : SpilledOperands) {
2213       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2214       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2215     }
2216   }
2217   return Expr;
2218 }
2219 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2220                                                Register SpillReg) {
2221   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2222   SmallVector<const MachineOperand *> SpillOperands;
2223   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2224     SpillOperands.push_back(&Op);
2225   return computeExprForSpill(MI, SpillOperands);
2226 }
2227 
2228 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2229                                           MachineBasicBlock::iterator I,
2230                                           const MachineInstr &Orig,
2231                                           int FrameIndex, Register SpillReg) {
2232   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2233   MachineInstrBuilder NewMI =
2234       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2235   // Non-Variadic Operands: Location, Offset, Variable, Expression
2236   // Variadic Operands:     Variable, Expression, Locations...
2237   if (Orig.isNonListDebugValue())
2238     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2239   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2240   if (Orig.isDebugValueList()) {
2241     for (const MachineOperand &Op : Orig.debug_operands())
2242       if (Op.isReg() && Op.getReg() == SpillReg)
2243         NewMI.addFrameIndex(FrameIndex);
2244       else
2245         NewMI.add(MachineOperand(Op));
2246   }
2247   return NewMI;
2248 }
2249 MachineInstr *llvm::buildDbgValueForSpill(
2250     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2251     const MachineInstr &Orig, int FrameIndex,
2252     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2253   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2254   MachineInstrBuilder NewMI =
2255       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2256   // Non-Variadic Operands: Location, Offset, Variable, Expression
2257   // Variadic Operands:     Variable, Expression, Locations...
2258   if (Orig.isNonListDebugValue())
2259     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2260   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2261   if (Orig.isDebugValueList()) {
2262     for (const MachineOperand &Op : Orig.debug_operands())
2263       if (is_contained(SpilledOperands, &Op))
2264         NewMI.addFrameIndex(FrameIndex);
2265       else
2266         NewMI.add(MachineOperand(Op));
2267   }
2268   return NewMI;
2269 }
2270 
2271 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2272                                   Register Reg) {
2273   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2274   if (Orig.isNonListDebugValue())
2275     Orig.getDebugOffset().ChangeToImmediate(0U);
2276   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2277     Op.ChangeToFrameIndex(FrameIndex);
2278   Orig.getDebugExpressionOp().setMetadata(Expr);
2279 }
2280 
2281 void MachineInstr::collectDebugValues(
2282                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2283   MachineInstr &MI = *this;
2284   if (!MI.getOperand(0).isReg())
2285     return;
2286 
2287   MachineBasicBlock::iterator DI = MI; ++DI;
2288   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2289        DI != DE; ++DI) {
2290     if (!DI->isDebugValue())
2291       return;
2292     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2293       DbgValues.push_back(&*DI);
2294   }
2295 }
2296 
2297 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2298   // Collect matching debug values.
2299   SmallVector<MachineInstr *, 2> DbgValues;
2300 
2301   if (!getOperand(0).isReg())
2302     return;
2303 
2304   Register DefReg = getOperand(0).getReg();
2305   auto *MRI = getRegInfo();
2306   for (auto &MO : MRI->use_operands(DefReg)) {
2307     auto *DI = MO.getParent();
2308     if (!DI->isDebugValue())
2309       continue;
2310     if (DI->hasDebugOperandForReg(DefReg)) {
2311       DbgValues.push_back(DI);
2312     }
2313   }
2314 
2315   // Propagate Reg to debug value instructions.
2316   for (auto *DBI : DbgValues)
2317     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2318       Op.setReg(Reg);
2319 }
2320 
2321 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2322 
2323 static unsigned getSpillSlotSize(const MMOList &Accesses,
2324                                  const MachineFrameInfo &MFI) {
2325   unsigned Size = 0;
2326   for (auto A : Accesses)
2327     if (MFI.isSpillSlotObjectIndex(
2328             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2329                 ->getFrameIndex()))
2330       Size += A->getSize();
2331   return Size;
2332 }
2333 
2334 Optional<unsigned>
2335 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2336   int FI;
2337   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2338     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2339     if (MFI.isSpillSlotObjectIndex(FI))
2340       return (*memoperands_begin())->getSize();
2341   }
2342   return None;
2343 }
2344 
2345 Optional<unsigned>
2346 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2347   MMOList Accesses;
2348   if (TII->hasStoreToStackSlot(*this, Accesses))
2349     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2350   return None;
2351 }
2352 
2353 Optional<unsigned>
2354 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2355   int FI;
2356   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2357     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2358     if (MFI.isSpillSlotObjectIndex(FI))
2359       return (*memoperands_begin())->getSize();
2360   }
2361   return None;
2362 }
2363 
2364 Optional<unsigned>
2365 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2366   MMOList Accesses;
2367   if (TII->hasLoadFromStackSlot(*this, Accesses))
2368     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2369   return None;
2370 }
2371 
2372 unsigned MachineInstr::getDebugInstrNum() {
2373   if (DebugInstrNum == 0)
2374     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2375   return DebugInstrNum;
2376 }
2377 
2378 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2379   if (DebugInstrNum == 0)
2380     DebugInstrNum = MF.getNewDebugInstrNum();
2381   return DebugInstrNum;
2382 }
2383