xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision da759cfa320d5076b075d15ff3f00ab3ba5634fd)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <cstring>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 
79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
80   if (const MachineBasicBlock *MBB = MI.getParent())
81     if (const MachineFunction *MF = MBB->getParent())
82       return MF;
83   return nullptr;
84 }
85 
86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
87 // it.
88 static void tryToGetTargetInfo(const MachineInstr &MI,
89                                const TargetRegisterInfo *&TRI,
90                                const MachineRegisterInfo *&MRI,
91                                const TargetIntrinsicInfo *&IntrinsicInfo,
92                                const TargetInstrInfo *&TII) {
93 
94   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
95     TRI = MF->getSubtarget().getRegisterInfo();
96     MRI = &MF->getRegInfo();
97     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
98     TII = MF->getSubtarget().getInstrInfo();
99   }
100 }
101 
102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
103   if (MCID->ImplicitDefs)
104     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
105            ++ImpDefs)
106       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
107   if (MCID->ImplicitUses)
108     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
109            ++ImpUses)
110       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
111 }
112 
113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
114 /// implicit operands. It reserves space for the number of operands specified by
115 /// the MCInstrDesc.
116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
117                            DebugLoc dl, bool NoImp)
118     : MCID(&tid), debugLoc(std::move(dl)) {
119   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
120 
121   // Reserve space for the expected number of operands.
122   if (unsigned NumOps = MCID->getNumOperands() +
123     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
124     CapOperands = OperandCapacity::get(NumOps);
125     Operands = MF.allocateOperandArray(CapOperands);
126   }
127 
128   if (!NoImp)
129     addImplicitDefUseOperands(MF);
130 }
131 
132 /// MachineInstr ctor - Copies MachineInstr arg exactly
133 ///
134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
135     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
136   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
137 
138   CapOperands = OperandCapacity::get(MI.getNumOperands());
139   Operands = MF.allocateOperandArray(CapOperands);
140 
141   // Copy operands.
142   for (const MachineOperand &MO : MI.operands())
143     addOperand(MF, MO);
144 
145   // Copy all the sensible flags.
146   setFlags(MI.Flags);
147 }
148 
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
151 /// return null.
152 MachineRegisterInfo *MachineInstr::getRegInfo() {
153   if (MachineBasicBlock *MBB = getParent())
154     return &MBB->getParent()->getRegInfo();
155   return nullptr;
156 }
157 
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists.  This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
162   for (MachineOperand &MO : operands())
163     if (MO.isReg())
164       MRI.removeRegOperandFromUseList(&MO);
165 }
166 
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists.  This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
171   for (MachineOperand &MO : operands())
172     if (MO.isReg())
173       MRI.addRegOperandToUseList(&MO);
174 }
175 
176 void MachineInstr::addOperand(const MachineOperand &Op) {
177   MachineBasicBlock *MBB = getParent();
178   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
179   MachineFunction *MF = MBB->getParent();
180   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
181   addOperand(*MF, Op);
182 }
183 
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
187                          unsigned NumOps, MachineRegisterInfo *MRI) {
188   if (MRI)
189     return MRI->moveOperands(Dst, Src, NumOps);
190   // MachineOperand is a trivially copyable type so we can just use memmove.
191   assert(Dst && Src && "Unknown operands");
192   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
193 }
194 
195 /// addOperand - Add the specified operand to the instruction.  If it is an
196 /// implicit operand, it is added to the end of the operand list.  If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
200   assert(MCID && "Cannot add operands before providing an instr descriptor");
201 
202   // Check if we're adding one of our existing operands.
203   if (&Op >= Operands && &Op < Operands + NumOperands) {
204     // This is unusual: MI->addOperand(MI->getOperand(i)).
205     // If adding Op requires reallocating or moving existing operands around,
206     // the Op reference could go stale. Support it by copying Op.
207     MachineOperand CopyOp(Op);
208     return addOperand(MF, CopyOp);
209   }
210 
211   // Find the insert location for the new operand.  Implicit registers go at
212   // the end, everything else goes before the implicit regs.
213   //
214   // FIXME: Allow mixed explicit and implicit operands on inline asm.
215   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216   // implicit-defs, but they must not be moved around.  See the FIXME in
217   // InstrEmitter.cpp.
218   unsigned OpNo = getNumOperands();
219   bool isImpReg = Op.isReg() && Op.isImplicit();
220   if (!isImpReg && !isInlineAsm()) {
221     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
222       --OpNo;
223       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
224     }
225   }
226 
227 #ifndef NDEBUG
228   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
229                    Op.getType() == MachineOperand::MO_MCSymbol;
230   // OpNo now points as the desired insertion point.  Unless this is a variadic
231   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
232   // RegMask operands go between the explicit and implicit operands.
233   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
234           OpNo < MCID->getNumOperands() || isDebugOp) &&
235          "Trying to add an operand to a machine instr that is already done!");
236 #endif
237 
238   MachineRegisterInfo *MRI = getRegInfo();
239 
240   // Determine if the Operands array needs to be reallocated.
241   // Save the old capacity and operand array.
242   OperandCapacity OldCap = CapOperands;
243   MachineOperand *OldOperands = Operands;
244   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
245     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
246     Operands = MF.allocateOperandArray(CapOperands);
247     // Move the operands before the insertion point.
248     if (OpNo)
249       moveOperands(Operands, OldOperands, OpNo, MRI);
250   }
251 
252   // Move the operands following the insertion point.
253   if (OpNo != NumOperands)
254     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
255                  MRI);
256   ++NumOperands;
257 
258   // Deallocate the old operand array.
259   if (OldOperands != Operands && OldOperands)
260     MF.deallocateOperandArray(OldCap, OldOperands);
261 
262   // Copy Op into place. It still needs to be inserted into the MRI use lists.
263   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
264   NewMO->ParentMI = this;
265 
266   // When adding a register operand, tell MRI about it.
267   if (NewMO->isReg()) {
268     // Ensure isOnRegUseList() returns false, regardless of Op's status.
269     NewMO->Contents.Reg.Prev = nullptr;
270     // Ignore existing ties. This is not a property that can be copied.
271     NewMO->TiedTo = 0;
272     // Add the new operand to MRI, but only for instructions in an MBB.
273     if (MRI)
274       MRI->addRegOperandToUseList(NewMO);
275     // The MCID operand information isn't accurate until we start adding
276     // explicit operands. The implicit operands are added first, then the
277     // explicits are inserted before them.
278     if (!isImpReg) {
279       // Tie uses to defs as indicated in MCInstrDesc.
280       if (NewMO->isUse()) {
281         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
282         if (DefIdx != -1)
283           tieOperands(DefIdx, OpNo);
284       }
285       // If the register operand is flagged as early, mark the operand as such.
286       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
287         NewMO->setIsEarlyClobber(true);
288     }
289   }
290 }
291 
292 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
293 /// fewer operand than it started with.
294 ///
295 void MachineInstr::RemoveOperand(unsigned OpNo) {
296   assert(OpNo < getNumOperands() && "Invalid operand number");
297   untieRegOperand(OpNo);
298 
299 #ifndef NDEBUG
300   // Moving tied operands would break the ties.
301   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
302     if (Operands[i].isReg())
303       assert(!Operands[i].isTied() && "Cannot move tied operands");
304 #endif
305 
306   MachineRegisterInfo *MRI = getRegInfo();
307   if (MRI && Operands[OpNo].isReg())
308     MRI->removeRegOperandFromUseList(Operands + OpNo);
309 
310   // Don't call the MachineOperand destructor. A lot of this code depends on
311   // MachineOperand having a trivial destructor anyway, and adding a call here
312   // wouldn't make it 'destructor-correct'.
313 
314   if (unsigned N = NumOperands - 1 - OpNo)
315     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
316   --NumOperands;
317 }
318 
319 void MachineInstr::setExtraInfo(MachineFunction &MF,
320                                 ArrayRef<MachineMemOperand *> MMOs,
321                                 MCSymbol *PreInstrSymbol,
322                                 MCSymbol *PostInstrSymbol,
323                                 MDNode *HeapAllocMarker) {
324   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
325   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
326   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
327   int NumPointers =
328       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
329 
330   // Drop all extra info if there is none.
331   if (NumPointers <= 0) {
332     Info.clear();
333     return;
334   }
335 
336   // If more than one pointer, then store out of line. Store heap alloc markers
337   // out of line because PointerSumType cannot hold more than 4 tag types with
338   // 32-bit pointers.
339   // FIXME: Maybe we should make the symbols in the extra info mutable?
340   else if (NumPointers > 1 || HasHeapAllocMarker) {
341     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
342         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
343     return;
344   }
345 
346   // Otherwise store the single pointer inline.
347   if (HasPreInstrSymbol)
348     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
349   else if (HasPostInstrSymbol)
350     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
351   else
352     Info.set<EIIK_MMO>(MMOs[0]);
353 }
354 
355 void MachineInstr::dropMemRefs(MachineFunction &MF) {
356   if (memoperands_empty())
357     return;
358 
359   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
360                getHeapAllocMarker());
361 }
362 
363 void MachineInstr::setMemRefs(MachineFunction &MF,
364                               ArrayRef<MachineMemOperand *> MMOs) {
365   if (MMOs.empty()) {
366     dropMemRefs(MF);
367     return;
368   }
369 
370   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
371                getHeapAllocMarker());
372 }
373 
374 void MachineInstr::addMemOperand(MachineFunction &MF,
375                                  MachineMemOperand *MO) {
376   SmallVector<MachineMemOperand *, 2> MMOs;
377   MMOs.append(memoperands_begin(), memoperands_end());
378   MMOs.push_back(MO);
379   setMemRefs(MF, MMOs);
380 }
381 
382 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
383   if (this == &MI)
384     // Nothing to do for a self-clone!
385     return;
386 
387   assert(&MF == MI.getMF() &&
388          "Invalid machine functions when cloning memory refrences!");
389   // See if we can just steal the extra info already allocated for the
390   // instruction. We can do this whenever the pre- and post-instruction symbols
391   // are the same (including null).
392   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
393       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
394       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
395     Info = MI.Info;
396     return;
397   }
398 
399   // Otherwise, fall back on a copy-based clone.
400   setMemRefs(MF, MI.memoperands());
401 }
402 
403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
404 /// identical.
405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
406                              ArrayRef<MachineMemOperand *> RHS) {
407   if (LHS.size() != RHS.size())
408     return false;
409 
410   auto LHSPointees = make_pointee_range(LHS);
411   auto RHSPointees = make_pointee_range(RHS);
412   return std::equal(LHSPointees.begin(), LHSPointees.end(),
413                     RHSPointees.begin());
414 }
415 
416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
417                                       ArrayRef<const MachineInstr *> MIs) {
418   // Try handling easy numbers of MIs with simpler mechanisms.
419   if (MIs.empty()) {
420     dropMemRefs(MF);
421     return;
422   }
423   if (MIs.size() == 1) {
424     cloneMemRefs(MF, *MIs[0]);
425     return;
426   }
427   // Because an empty memoperands list provides *no* information and must be
428   // handled conservatively (assuming the instruction can do anything), the only
429   // way to merge with it is to drop all other memoperands.
430   if (MIs[0]->memoperands_empty()) {
431     dropMemRefs(MF);
432     return;
433   }
434 
435   // Handle the general case.
436   SmallVector<MachineMemOperand *, 2> MergedMMOs;
437   // Start with the first instruction.
438   assert(&MF == MIs[0]->getMF() &&
439          "Invalid machine functions when cloning memory references!");
440   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
441   // Now walk all the other instructions and accumulate any different MMOs.
442   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
443     assert(&MF == MI.getMF() &&
444            "Invalid machine functions when cloning memory references!");
445 
446     // Skip MIs with identical operands to the first. This is a somewhat
447     // arbitrary hack but will catch common cases without being quadratic.
448     // TODO: We could fully implement merge semantics here if needed.
449     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
450       continue;
451 
452     // Because an empty memoperands list provides *no* information and must be
453     // handled conservatively (assuming the instruction can do anything), the
454     // only way to merge with it is to drop all other memoperands.
455     if (MI.memoperands_empty()) {
456       dropMemRefs(MF);
457       return;
458     }
459 
460     // Otherwise accumulate these into our temporary buffer of the merged state.
461     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
462   }
463 
464   setMemRefs(MF, MergedMMOs);
465 }
466 
467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
468   // Do nothing if old and new symbols are the same.
469   if (Symbol == getPreInstrSymbol())
470     return;
471 
472   // If there was only one symbol and we're removing it, just clear info.
473   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
474     Info.clear();
475     return;
476   }
477 
478   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
479                getHeapAllocMarker());
480 }
481 
482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
483   // Do nothing if old and new symbols are the same.
484   if (Symbol == getPostInstrSymbol())
485     return;
486 
487   // If there was only one symbol and we're removing it, just clear info.
488   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
489     Info.clear();
490     return;
491   }
492 
493   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
494                getHeapAllocMarker());
495 }
496 
497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
498   // Do nothing if old and new symbols are the same.
499   if (Marker == getHeapAllocMarker())
500     return;
501 
502   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
503                Marker);
504 }
505 
506 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
507                                      const MachineInstr &MI) {
508   if (this == &MI)
509     // Nothing to do for a self-clone!
510     return;
511 
512   assert(&MF == MI.getMF() &&
513          "Invalid machine functions when cloning instruction symbols!");
514 
515   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
516   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
517   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
518 }
519 
520 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
521   // For now, the just return the union of the flags. If the flags get more
522   // complicated over time, we might need more logic here.
523   return getFlags() | Other.getFlags();
524 }
525 
526 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
527   uint16_t MIFlags = 0;
528   // Copy the wrapping flags.
529   if (const OverflowingBinaryOperator *OB =
530           dyn_cast<OverflowingBinaryOperator>(&I)) {
531     if (OB->hasNoSignedWrap())
532       MIFlags |= MachineInstr::MIFlag::NoSWrap;
533     if (OB->hasNoUnsignedWrap())
534       MIFlags |= MachineInstr::MIFlag::NoUWrap;
535   }
536 
537   // Copy the exact flag.
538   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
539     if (PE->isExact())
540       MIFlags |= MachineInstr::MIFlag::IsExact;
541 
542   // Copy the fast-math flags.
543   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
544     const FastMathFlags Flags = FP->getFastMathFlags();
545     if (Flags.noNaNs())
546       MIFlags |= MachineInstr::MIFlag::FmNoNans;
547     if (Flags.noInfs())
548       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
549     if (Flags.noSignedZeros())
550       MIFlags |= MachineInstr::MIFlag::FmNsz;
551     if (Flags.allowReciprocal())
552       MIFlags |= MachineInstr::MIFlag::FmArcp;
553     if (Flags.allowContract())
554       MIFlags |= MachineInstr::MIFlag::FmContract;
555     if (Flags.approxFunc())
556       MIFlags |= MachineInstr::MIFlag::FmAfn;
557     if (Flags.allowReassoc())
558       MIFlags |= MachineInstr::MIFlag::FmReassoc;
559   }
560 
561   return MIFlags;
562 }
563 
564 void MachineInstr::copyIRFlags(const Instruction &I) {
565   Flags = copyFlagsFromInstruction(I);
566 }
567 
568 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
569   assert(!isBundledWithPred() && "Must be called on bundle header");
570   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
571     if (MII->getDesc().getFlags() & Mask) {
572       if (Type == AnyInBundle)
573         return true;
574     } else {
575       if (Type == AllInBundle && !MII->isBundle())
576         return false;
577     }
578     // This was the last instruction in the bundle.
579     if (!MII->isBundledWithSucc())
580       return Type == AllInBundle;
581   }
582 }
583 
584 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
585                                  MICheckType Check) const {
586   // If opcodes or number of operands are not the same then the two
587   // instructions are obviously not identical.
588   if (Other.getOpcode() != getOpcode() ||
589       Other.getNumOperands() != getNumOperands())
590     return false;
591 
592   if (isBundle()) {
593     // We have passed the test above that both instructions have the same
594     // opcode, so we know that both instructions are bundles here. Let's compare
595     // MIs inside the bundle.
596     assert(Other.isBundle() && "Expected that both instructions are bundles.");
597     MachineBasicBlock::const_instr_iterator I1 = getIterator();
598     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
599     // Loop until we analysed the last intruction inside at least one of the
600     // bundles.
601     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
602       ++I1;
603       ++I2;
604       if (!I1->isIdenticalTo(*I2, Check))
605         return false;
606     }
607     // If we've reached the end of just one of the two bundles, but not both,
608     // the instructions are not identical.
609     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
610       return false;
611   }
612 
613   // Check operands to make sure they match.
614   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
615     const MachineOperand &MO = getOperand(i);
616     const MachineOperand &OMO = Other.getOperand(i);
617     if (!MO.isReg()) {
618       if (!MO.isIdenticalTo(OMO))
619         return false;
620       continue;
621     }
622 
623     // Clients may or may not want to ignore defs when testing for equality.
624     // For example, machine CSE pass only cares about finding common
625     // subexpressions, so it's safe to ignore virtual register defs.
626     if (MO.isDef()) {
627       if (Check == IgnoreDefs)
628         continue;
629       else if (Check == IgnoreVRegDefs) {
630         if (!Register::isVirtualRegister(MO.getReg()) ||
631             !Register::isVirtualRegister(OMO.getReg()))
632           if (!MO.isIdenticalTo(OMO))
633             return false;
634       } else {
635         if (!MO.isIdenticalTo(OMO))
636           return false;
637         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
638           return false;
639       }
640     } else {
641       if (!MO.isIdenticalTo(OMO))
642         return false;
643       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
644         return false;
645     }
646   }
647   // If DebugLoc does not match then two debug instructions are not identical.
648   if (isDebugInstr())
649     if (getDebugLoc() && Other.getDebugLoc() &&
650         getDebugLoc() != Other.getDebugLoc())
651       return false;
652   return true;
653 }
654 
655 const MachineFunction *MachineInstr::getMF() const {
656   return getParent()->getParent();
657 }
658 
659 MachineInstr *MachineInstr::removeFromParent() {
660   assert(getParent() && "Not embedded in a basic block!");
661   return getParent()->remove(this);
662 }
663 
664 MachineInstr *MachineInstr::removeFromBundle() {
665   assert(getParent() && "Not embedded in a basic block!");
666   return getParent()->remove_instr(this);
667 }
668 
669 void MachineInstr::eraseFromParent() {
670   assert(getParent() && "Not embedded in a basic block!");
671   getParent()->erase(this);
672 }
673 
674 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
675   assert(getParent() && "Not embedded in a basic block!");
676   MachineBasicBlock *MBB = getParent();
677   MachineFunction *MF = MBB->getParent();
678   assert(MF && "Not embedded in a function!");
679 
680   MachineInstr *MI = (MachineInstr *)this;
681   MachineRegisterInfo &MRI = MF->getRegInfo();
682 
683   for (const MachineOperand &MO : MI->operands()) {
684     if (!MO.isReg() || !MO.isDef())
685       continue;
686     Register Reg = MO.getReg();
687     if (!Reg.isVirtual())
688       continue;
689     MRI.markUsesInDebugValueAsUndef(Reg);
690   }
691   MI->eraseFromParent();
692 }
693 
694 void MachineInstr::eraseFromBundle() {
695   assert(getParent() && "Not embedded in a basic block!");
696   getParent()->erase_instr(this);
697 }
698 
699 unsigned MachineInstr::getNumExplicitOperands() const {
700   unsigned NumOperands = MCID->getNumOperands();
701   if (!MCID->isVariadic())
702     return NumOperands;
703 
704   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
705     const MachineOperand &MO = getOperand(I);
706     // The operands must always be in the following order:
707     // - explicit reg defs,
708     // - other explicit operands (reg uses, immediates, etc.),
709     // - implicit reg defs
710     // - implicit reg uses
711     if (MO.isReg() && MO.isImplicit())
712       break;
713     ++NumOperands;
714   }
715   return NumOperands;
716 }
717 
718 unsigned MachineInstr::getNumExplicitDefs() const {
719   unsigned NumDefs = MCID->getNumDefs();
720   if (!MCID->isVariadic())
721     return NumDefs;
722 
723   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
724     const MachineOperand &MO = getOperand(I);
725     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
726       break;
727     ++NumDefs;
728   }
729   return NumDefs;
730 }
731 
732 void MachineInstr::bundleWithPred() {
733   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
734   setFlag(BundledPred);
735   MachineBasicBlock::instr_iterator Pred = getIterator();
736   --Pred;
737   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
738   Pred->setFlag(BundledSucc);
739 }
740 
741 void MachineInstr::bundleWithSucc() {
742   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
743   setFlag(BundledSucc);
744   MachineBasicBlock::instr_iterator Succ = getIterator();
745   ++Succ;
746   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
747   Succ->setFlag(BundledPred);
748 }
749 
750 void MachineInstr::unbundleFromPred() {
751   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
752   clearFlag(BundledPred);
753   MachineBasicBlock::instr_iterator Pred = getIterator();
754   --Pred;
755   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
756   Pred->clearFlag(BundledSucc);
757 }
758 
759 void MachineInstr::unbundleFromSucc() {
760   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
761   clearFlag(BundledSucc);
762   MachineBasicBlock::instr_iterator Succ = getIterator();
763   ++Succ;
764   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
765   Succ->clearFlag(BundledPred);
766 }
767 
768 bool MachineInstr::isStackAligningInlineAsm() const {
769   if (isInlineAsm()) {
770     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
771     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
772       return true;
773   }
774   return false;
775 }
776 
777 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
778   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
779   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
780   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
781 }
782 
783 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
784                                        unsigned *GroupNo) const {
785   assert(isInlineAsm() && "Expected an inline asm instruction");
786   assert(OpIdx < getNumOperands() && "OpIdx out of range");
787 
788   // Ignore queries about the initial operands.
789   if (OpIdx < InlineAsm::MIOp_FirstOperand)
790     return -1;
791 
792   unsigned Group = 0;
793   unsigned NumOps;
794   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
795        i += NumOps) {
796     const MachineOperand &FlagMO = getOperand(i);
797     // If we reach the implicit register operands, stop looking.
798     if (!FlagMO.isImm())
799       return -1;
800     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
801     if (i + NumOps > OpIdx) {
802       if (GroupNo)
803         *GroupNo = Group;
804       return i;
805     }
806     ++Group;
807   }
808   return -1;
809 }
810 
811 const DILabel *MachineInstr::getDebugLabel() const {
812   assert(isDebugLabel() && "not a DBG_LABEL");
813   return cast<DILabel>(getOperand(0).getMetadata());
814 }
815 
816 const DILocalVariable *MachineInstr::getDebugVariable() const {
817   assert(isDebugValue() && "not a DBG_VALUE");
818   return cast<DILocalVariable>(getOperand(2).getMetadata());
819 }
820 
821 const DIExpression *MachineInstr::getDebugExpression() const {
822   assert(isDebugValue() && "not a DBG_VALUE");
823   return cast<DIExpression>(getOperand(3).getMetadata());
824 }
825 
826 bool MachineInstr::isDebugEntryValue() const {
827   return isDebugValue() && getDebugExpression()->isEntryValue();
828 }
829 
830 const TargetRegisterClass*
831 MachineInstr::getRegClassConstraint(unsigned OpIdx,
832                                     const TargetInstrInfo *TII,
833                                     const TargetRegisterInfo *TRI) const {
834   assert(getParent() && "Can't have an MBB reference here!");
835   assert(getMF() && "Can't have an MF reference here!");
836   const MachineFunction &MF = *getMF();
837 
838   // Most opcodes have fixed constraints in their MCInstrDesc.
839   if (!isInlineAsm())
840     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
841 
842   if (!getOperand(OpIdx).isReg())
843     return nullptr;
844 
845   // For tied uses on inline asm, get the constraint from the def.
846   unsigned DefIdx;
847   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
848     OpIdx = DefIdx;
849 
850   // Inline asm stores register class constraints in the flag word.
851   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
852   if (FlagIdx < 0)
853     return nullptr;
854 
855   unsigned Flag = getOperand(FlagIdx).getImm();
856   unsigned RCID;
857   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
858        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
859        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
860       InlineAsm::hasRegClassConstraint(Flag, RCID))
861     return TRI->getRegClass(RCID);
862 
863   // Assume that all registers in a memory operand are pointers.
864   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
865     return TRI->getPointerRegClass(MF);
866 
867   return nullptr;
868 }
869 
870 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
871     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
872     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
873   // Check every operands inside the bundle if we have
874   // been asked to.
875   if (ExploreBundle)
876     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
877          ++OpndIt)
878       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
879           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
880   else
881     // Otherwise, just check the current operands.
882     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
883       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
884   return CurRC;
885 }
886 
887 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
888     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
889     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
890   assert(CurRC && "Invalid initial register class");
891   // Check if Reg is constrained by some of its use/def from MI.
892   const MachineOperand &MO = getOperand(OpIdx);
893   if (!MO.isReg() || MO.getReg() != Reg)
894     return CurRC;
895   // If yes, accumulate the constraints through the operand.
896   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
897 }
898 
899 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
900     unsigned OpIdx, const TargetRegisterClass *CurRC,
901     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
902   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
903   const MachineOperand &MO = getOperand(OpIdx);
904   assert(MO.isReg() &&
905          "Cannot get register constraints for non-register operand");
906   assert(CurRC && "Invalid initial register class");
907   if (unsigned SubIdx = MO.getSubReg()) {
908     if (OpRC)
909       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
910     else
911       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
912   } else if (OpRC)
913     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
914   return CurRC;
915 }
916 
917 /// Return the number of instructions inside the MI bundle, not counting the
918 /// header instruction.
919 unsigned MachineInstr::getBundleSize() const {
920   MachineBasicBlock::const_instr_iterator I = getIterator();
921   unsigned Size = 0;
922   while (I->isBundledWithSucc()) {
923     ++Size;
924     ++I;
925   }
926   return Size;
927 }
928 
929 /// Returns true if the MachineInstr has an implicit-use operand of exactly
930 /// the given register (not considering sub/super-registers).
931 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
932   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
933     const MachineOperand &MO = getOperand(i);
934     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
935       return true;
936   }
937   return false;
938 }
939 
940 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
941 /// the specific register or -1 if it is not found. It further tightens
942 /// the search criteria to a use that kills the register if isKill is true.
943 int MachineInstr::findRegisterUseOperandIdx(
944     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
945   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
946     const MachineOperand &MO = getOperand(i);
947     if (!MO.isReg() || !MO.isUse())
948       continue;
949     Register MOReg = MO.getReg();
950     if (!MOReg)
951       continue;
952     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
953       if (!isKill || MO.isKill())
954         return i;
955   }
956   return -1;
957 }
958 
959 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
960 /// indicating if this instruction reads or writes Reg. This also considers
961 /// partial defines.
962 std::pair<bool,bool>
963 MachineInstr::readsWritesVirtualRegister(Register Reg,
964                                          SmallVectorImpl<unsigned> *Ops) const {
965   bool PartDef = false; // Partial redefine.
966   bool FullDef = false; // Full define.
967   bool Use = false;
968 
969   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
970     const MachineOperand &MO = getOperand(i);
971     if (!MO.isReg() || MO.getReg() != Reg)
972       continue;
973     if (Ops)
974       Ops->push_back(i);
975     if (MO.isUse())
976       Use |= !MO.isUndef();
977     else if (MO.getSubReg() && !MO.isUndef())
978       // A partial def undef doesn't count as reading the register.
979       PartDef = true;
980     else
981       FullDef = true;
982   }
983   // A partial redefine uses Reg unless there is also a full define.
984   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
985 }
986 
987 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
988 /// the specified register or -1 if it is not found. If isDead is true, defs
989 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
990 /// also checks if there is a def of a super-register.
991 int
992 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
993                                         const TargetRegisterInfo *TRI) const {
994   bool isPhys = Register::isPhysicalRegister(Reg);
995   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
996     const MachineOperand &MO = getOperand(i);
997     // Accept regmask operands when Overlap is set.
998     // Ignore them when looking for a specific def operand (Overlap == false).
999     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1000       return i;
1001     if (!MO.isReg() || !MO.isDef())
1002       continue;
1003     Register MOReg = MO.getReg();
1004     bool Found = (MOReg == Reg);
1005     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1006       if (Overlap)
1007         Found = TRI->regsOverlap(MOReg, Reg);
1008       else
1009         Found = TRI->isSubRegister(MOReg, Reg);
1010     }
1011     if (Found && (!isDead || MO.isDead()))
1012       return i;
1013   }
1014   return -1;
1015 }
1016 
1017 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1018 /// operand list that is used to represent the predicate. It returns -1 if
1019 /// none is found.
1020 int MachineInstr::findFirstPredOperandIdx() const {
1021   // Don't call MCID.findFirstPredOperandIdx() because this variant
1022   // is sometimes called on an instruction that's not yet complete, and
1023   // so the number of operands is less than the MCID indicates. In
1024   // particular, the PTX target does this.
1025   const MCInstrDesc &MCID = getDesc();
1026   if (MCID.isPredicable()) {
1027     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1028       if (MCID.OpInfo[i].isPredicate())
1029         return i;
1030   }
1031 
1032   return -1;
1033 }
1034 
1035 // MachineOperand::TiedTo is 4 bits wide.
1036 const unsigned TiedMax = 15;
1037 
1038 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1039 ///
1040 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1041 /// field. TiedTo can have these values:
1042 ///
1043 /// 0:              Operand is not tied to anything.
1044 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1045 /// TiedMax:        Tied to an operand >= TiedMax-1.
1046 ///
1047 /// The tied def must be one of the first TiedMax operands on a normal
1048 /// instruction. INLINEASM instructions allow more tied defs.
1049 ///
1050 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1051   MachineOperand &DefMO = getOperand(DefIdx);
1052   MachineOperand &UseMO = getOperand(UseIdx);
1053   assert(DefMO.isDef() && "DefIdx must be a def operand");
1054   assert(UseMO.isUse() && "UseIdx must be a use operand");
1055   assert(!DefMO.isTied() && "Def is already tied to another use");
1056   assert(!UseMO.isTied() && "Use is already tied to another def");
1057 
1058   if (DefIdx < TiedMax)
1059     UseMO.TiedTo = DefIdx + 1;
1060   else {
1061     // Inline asm can use the group descriptors to find tied operands, but on
1062     // normal instruction, the tied def must be within the first TiedMax
1063     // operands.
1064     assert(isInlineAsm() && "DefIdx out of range");
1065     UseMO.TiedTo = TiedMax;
1066   }
1067 
1068   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1069   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1070 }
1071 
1072 /// Given the index of a tied register operand, find the operand it is tied to.
1073 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1074 /// which must exist.
1075 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1076   const MachineOperand &MO = getOperand(OpIdx);
1077   assert(MO.isTied() && "Operand isn't tied");
1078 
1079   // Normally TiedTo is in range.
1080   if (MO.TiedTo < TiedMax)
1081     return MO.TiedTo - 1;
1082 
1083   // Uses on normal instructions can be out of range.
1084   if (!isInlineAsm()) {
1085     // Normal tied defs must be in the 0..TiedMax-1 range.
1086     if (MO.isUse())
1087       return TiedMax - 1;
1088     // MO is a def. Search for the tied use.
1089     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1090       const MachineOperand &UseMO = getOperand(i);
1091       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1092         return i;
1093     }
1094     llvm_unreachable("Can't find tied use");
1095   }
1096 
1097   // Now deal with inline asm by parsing the operand group descriptor flags.
1098   // Find the beginning of each operand group.
1099   SmallVector<unsigned, 8> GroupIdx;
1100   unsigned OpIdxGroup = ~0u;
1101   unsigned NumOps;
1102   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1103        i += NumOps) {
1104     const MachineOperand &FlagMO = getOperand(i);
1105     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1106     unsigned CurGroup = GroupIdx.size();
1107     GroupIdx.push_back(i);
1108     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1109     // OpIdx belongs to this operand group.
1110     if (OpIdx > i && OpIdx < i + NumOps)
1111       OpIdxGroup = CurGroup;
1112     unsigned TiedGroup;
1113     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1114       continue;
1115     // Operands in this group are tied to operands in TiedGroup which must be
1116     // earlier. Find the number of operands between the two groups.
1117     unsigned Delta = i - GroupIdx[TiedGroup];
1118 
1119     // OpIdx is a use tied to TiedGroup.
1120     if (OpIdxGroup == CurGroup)
1121       return OpIdx - Delta;
1122 
1123     // OpIdx is a def tied to this use group.
1124     if (OpIdxGroup == TiedGroup)
1125       return OpIdx + Delta;
1126   }
1127   llvm_unreachable("Invalid tied operand on inline asm");
1128 }
1129 
1130 /// clearKillInfo - Clears kill flags on all operands.
1131 ///
1132 void MachineInstr::clearKillInfo() {
1133   for (MachineOperand &MO : operands()) {
1134     if (MO.isReg() && MO.isUse())
1135       MO.setIsKill(false);
1136   }
1137 }
1138 
1139 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1140                                       unsigned SubIdx,
1141                                       const TargetRegisterInfo &RegInfo) {
1142   if (Register::isPhysicalRegister(ToReg)) {
1143     if (SubIdx)
1144       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1145     for (MachineOperand &MO : operands()) {
1146       if (!MO.isReg() || MO.getReg() != FromReg)
1147         continue;
1148       MO.substPhysReg(ToReg, RegInfo);
1149     }
1150   } else {
1151     for (MachineOperand &MO : operands()) {
1152       if (!MO.isReg() || MO.getReg() != FromReg)
1153         continue;
1154       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1155     }
1156   }
1157 }
1158 
1159 /// isSafeToMove - Return true if it is safe to move this instruction. If
1160 /// SawStore is set to true, it means that there is a store (or call) between
1161 /// the instruction's location and its intended destination.
1162 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1163   // Ignore stuff that we obviously can't move.
1164   //
1165   // Treat volatile loads as stores. This is not strictly necessary for
1166   // volatiles, but it is required for atomic loads. It is not allowed to move
1167   // a load across an atomic load with Ordering > Monotonic.
1168   if (mayStore() || isCall() || isPHI() ||
1169       (mayLoad() && hasOrderedMemoryRef())) {
1170     SawStore = true;
1171     return false;
1172   }
1173 
1174   if (isPosition() || isDebugInstr() || isTerminator() ||
1175       mayRaiseFPException() || hasUnmodeledSideEffects())
1176     return false;
1177 
1178   // See if this instruction does a load.  If so, we have to guarantee that the
1179   // loaded value doesn't change between the load and the its intended
1180   // destination. The check for isInvariantLoad gives the targe the chance to
1181   // classify the load as always returning a constant, e.g. a constant pool
1182   // load.
1183   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1184     // Otherwise, this is a real load.  If there is a store between the load and
1185     // end of block, we can't move it.
1186     return !SawStore;
1187 
1188   return true;
1189 }
1190 
1191 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1192                             bool UseTBAA) const {
1193   const MachineFunction *MF = getMF();
1194   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1195   const MachineFrameInfo &MFI = MF->getFrameInfo();
1196 
1197   // If neither instruction stores to memory, they can't alias in any
1198   // meaningful way, even if they read from the same address.
1199   if (!mayStore() && !Other.mayStore())
1200     return false;
1201 
1202   // Let the target decide if memory accesses cannot possibly overlap.
1203   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1204     return false;
1205 
1206   // FIXME: Need to handle multiple memory operands to support all targets.
1207   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1208     return true;
1209 
1210   MachineMemOperand *MMOa = *memoperands_begin();
1211   MachineMemOperand *MMOb = *Other.memoperands_begin();
1212 
1213   // The following interface to AA is fashioned after DAGCombiner::isAlias
1214   // and operates with MachineMemOperand offset with some important
1215   // assumptions:
1216   //   - LLVM fundamentally assumes flat address spaces.
1217   //   - MachineOperand offset can *only* result from legalization and
1218   //     cannot affect queries other than the trivial case of overlap
1219   //     checking.
1220   //   - These offsets never wrap and never step outside
1221   //     of allocated objects.
1222   //   - There should never be any negative offsets here.
1223   //
1224   // FIXME: Modify API to hide this math from "user"
1225   // Even before we go to AA we can reason locally about some
1226   // memory objects. It can save compile time, and possibly catch some
1227   // corner cases not currently covered.
1228 
1229   int64_t OffsetA = MMOa->getOffset();
1230   int64_t OffsetB = MMOb->getOffset();
1231   int64_t MinOffset = std::min(OffsetA, OffsetB);
1232 
1233   uint64_t WidthA = MMOa->getSize();
1234   uint64_t WidthB = MMOb->getSize();
1235   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1236   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1237 
1238   const Value *ValA = MMOa->getValue();
1239   const Value *ValB = MMOb->getValue();
1240   bool SameVal = (ValA && ValB && (ValA == ValB));
1241   if (!SameVal) {
1242     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1243     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1244     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1245       return false;
1246     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1247       return false;
1248     if (PSVa && PSVb && (PSVa == PSVb))
1249       SameVal = true;
1250   }
1251 
1252   if (SameVal) {
1253     if (!KnownWidthA || !KnownWidthB)
1254       return true;
1255     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1256     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1257     return (MinOffset + LowWidth > MaxOffset);
1258   }
1259 
1260   if (!AA)
1261     return true;
1262 
1263   if (!ValA || !ValB)
1264     return true;
1265 
1266   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1267   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1268 
1269   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1270                                  : MemoryLocation::UnknownSize;
1271   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1272                                  : MemoryLocation::UnknownSize;
1273 
1274   AliasResult AAResult = AA->alias(
1275       MemoryLocation(ValA, OverlapA,
1276                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1277       MemoryLocation(ValB, OverlapB,
1278                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1279 
1280   return (AAResult != NoAlias);
1281 }
1282 
1283 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1284 /// or volatile memory reference, or if the information describing the memory
1285 /// reference is not available. Return false if it is known to have no ordered
1286 /// memory references.
1287 bool MachineInstr::hasOrderedMemoryRef() const {
1288   // An instruction known never to access memory won't have a volatile access.
1289   if (!mayStore() &&
1290       !mayLoad() &&
1291       !isCall() &&
1292       !hasUnmodeledSideEffects())
1293     return false;
1294 
1295   // Otherwise, if the instruction has no memory reference information,
1296   // conservatively assume it wasn't preserved.
1297   if (memoperands_empty())
1298     return true;
1299 
1300   // Check if any of our memory operands are ordered.
1301   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1302     return !MMO->isUnordered();
1303   });
1304 }
1305 
1306 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1307 /// trap and is loading from a location whose value is invariant across a run of
1308 /// this function.
1309 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1310   // If the instruction doesn't load at all, it isn't an invariant load.
1311   if (!mayLoad())
1312     return false;
1313 
1314   // If the instruction has lost its memoperands, conservatively assume that
1315   // it may not be an invariant load.
1316   if (memoperands_empty())
1317     return false;
1318 
1319   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1320 
1321   for (MachineMemOperand *MMO : memoperands()) {
1322     if (!MMO->isUnordered())
1323       // If the memory operand has ordering side effects, we can't move the
1324       // instruction.  Such an instruction is technically an invariant load,
1325       // but the caller code would need updated to expect that.
1326       return false;
1327     if (MMO->isStore()) return false;
1328     if (MMO->isInvariant() && MMO->isDereferenceable())
1329       continue;
1330 
1331     // A load from a constant PseudoSourceValue is invariant.
1332     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1333       if (PSV->isConstant(&MFI))
1334         continue;
1335 
1336     if (const Value *V = MMO->getValue()) {
1337       // If we have an AliasAnalysis, ask it whether the memory is constant.
1338       if (AA &&
1339           AA->pointsToConstantMemory(
1340               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1341         continue;
1342     }
1343 
1344     // Otherwise assume conservatively.
1345     return false;
1346   }
1347 
1348   // Everything checks out.
1349   return true;
1350 }
1351 
1352 /// isConstantValuePHI - If the specified instruction is a PHI that always
1353 /// merges together the same virtual register, return the register, otherwise
1354 /// return 0.
1355 unsigned MachineInstr::isConstantValuePHI() const {
1356   if (!isPHI())
1357     return 0;
1358   assert(getNumOperands() >= 3 &&
1359          "It's illegal to have a PHI without source operands");
1360 
1361   Register Reg = getOperand(1).getReg();
1362   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1363     if (getOperand(i).getReg() != Reg)
1364       return 0;
1365   return Reg;
1366 }
1367 
1368 bool MachineInstr::hasUnmodeledSideEffects() const {
1369   if (hasProperty(MCID::UnmodeledSideEffects))
1370     return true;
1371   if (isInlineAsm()) {
1372     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1373     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1374       return true;
1375   }
1376 
1377   return false;
1378 }
1379 
1380 bool MachineInstr::isLoadFoldBarrier() const {
1381   return mayStore() || isCall() || hasUnmodeledSideEffects();
1382 }
1383 
1384 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1385 ///
1386 bool MachineInstr::allDefsAreDead() const {
1387   for (const MachineOperand &MO : operands()) {
1388     if (!MO.isReg() || MO.isUse())
1389       continue;
1390     if (!MO.isDead())
1391       return false;
1392   }
1393   return true;
1394 }
1395 
1396 /// copyImplicitOps - Copy implicit register operands from specified
1397 /// instruction to this instruction.
1398 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1399                                    const MachineInstr &MI) {
1400   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1401        i != e; ++i) {
1402     const MachineOperand &MO = MI.getOperand(i);
1403     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1404       addOperand(MF, MO);
1405   }
1406 }
1407 
1408 bool MachineInstr::hasComplexRegisterTies() const {
1409   const MCInstrDesc &MCID = getDesc();
1410   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1411     const auto &Operand = getOperand(I);
1412     if (!Operand.isReg() || Operand.isDef())
1413       // Ignore the defined registers as MCID marks only the uses as tied.
1414       continue;
1415     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1416     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1417     if (ExpectedTiedIdx != TiedIdx)
1418       return true;
1419   }
1420   return false;
1421 }
1422 
1423 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1424                                  const MachineRegisterInfo &MRI) const {
1425   const MachineOperand &Op = getOperand(OpIdx);
1426   if (!Op.isReg())
1427     return LLT{};
1428 
1429   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1430     return MRI.getType(Op.getReg());
1431 
1432   auto &OpInfo = getDesc().OpInfo[OpIdx];
1433   if (!OpInfo.isGenericType())
1434     return MRI.getType(Op.getReg());
1435 
1436   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1437     return LLT{};
1438 
1439   LLT TypeToPrint = MRI.getType(Op.getReg());
1440   // Don't mark the type index printed if it wasn't actually printed: maybe
1441   // another operand with the same type index has an actual type attached:
1442   if (TypeToPrint.isValid())
1443     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1444   return TypeToPrint;
1445 }
1446 
1447 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1448 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1449   dbgs() << "  ";
1450   print(dbgs());
1451 }
1452 #endif
1453 
1454 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1455                          bool SkipDebugLoc, bool AddNewLine,
1456                          const TargetInstrInfo *TII) const {
1457   const Module *M = nullptr;
1458   const Function *F = nullptr;
1459   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1460     F = &MF->getFunction();
1461     M = F->getParent();
1462     if (!TII)
1463       TII = MF->getSubtarget().getInstrInfo();
1464   }
1465 
1466   ModuleSlotTracker MST(M);
1467   if (F)
1468     MST.incorporateFunction(*F);
1469   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1470 }
1471 
1472 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1473                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1474                          bool AddNewLine, const TargetInstrInfo *TII) const {
1475   // We can be a bit tidier if we know the MachineFunction.
1476   const MachineFunction *MF = nullptr;
1477   const TargetRegisterInfo *TRI = nullptr;
1478   const MachineRegisterInfo *MRI = nullptr;
1479   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1480   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1481 
1482   if (isCFIInstruction())
1483     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1484 
1485   SmallBitVector PrintedTypes(8);
1486   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1487   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1488     if (!ShouldPrintRegisterTies)
1489       return 0U;
1490     const MachineOperand &MO = getOperand(OpIdx);
1491     if (MO.isReg() && MO.isTied() && !MO.isDef())
1492       return findTiedOperandIdx(OpIdx);
1493     return 0U;
1494   };
1495   unsigned StartOp = 0;
1496   unsigned e = getNumOperands();
1497 
1498   // Print explicitly defined operands on the left of an assignment syntax.
1499   while (StartOp < e) {
1500     const MachineOperand &MO = getOperand(StartOp);
1501     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1502       break;
1503 
1504     if (StartOp != 0)
1505       OS << ", ";
1506 
1507     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1508     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1509     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1510              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1511     ++StartOp;
1512   }
1513 
1514   if (StartOp != 0)
1515     OS << " = ";
1516 
1517   if (getFlag(MachineInstr::FrameSetup))
1518     OS << "frame-setup ";
1519   if (getFlag(MachineInstr::FrameDestroy))
1520     OS << "frame-destroy ";
1521   if (getFlag(MachineInstr::FmNoNans))
1522     OS << "nnan ";
1523   if (getFlag(MachineInstr::FmNoInfs))
1524     OS << "ninf ";
1525   if (getFlag(MachineInstr::FmNsz))
1526     OS << "nsz ";
1527   if (getFlag(MachineInstr::FmArcp))
1528     OS << "arcp ";
1529   if (getFlag(MachineInstr::FmContract))
1530     OS << "contract ";
1531   if (getFlag(MachineInstr::FmAfn))
1532     OS << "afn ";
1533   if (getFlag(MachineInstr::FmReassoc))
1534     OS << "reassoc ";
1535   if (getFlag(MachineInstr::NoUWrap))
1536     OS << "nuw ";
1537   if (getFlag(MachineInstr::NoSWrap))
1538     OS << "nsw ";
1539   if (getFlag(MachineInstr::IsExact))
1540     OS << "exact ";
1541   if (getFlag(MachineInstr::NoFPExcept))
1542     OS << "nofpexcept ";
1543 
1544   // Print the opcode name.
1545   if (TII)
1546     OS << TII->getName(getOpcode());
1547   else
1548     OS << "UNKNOWN";
1549 
1550   if (SkipOpers)
1551     return;
1552 
1553   // Print the rest of the operands.
1554   bool FirstOp = true;
1555   unsigned AsmDescOp = ~0u;
1556   unsigned AsmOpCount = 0;
1557 
1558   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1559     // Print asm string.
1560     OS << " ";
1561     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1562     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1563     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1564     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1565                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1566                             IntrinsicInfo);
1567 
1568     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1569     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1570     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1571       OS << " [sideeffect]";
1572     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1573       OS << " [mayload]";
1574     if (ExtraInfo & InlineAsm::Extra_MayStore)
1575       OS << " [maystore]";
1576     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1577       OS << " [isconvergent]";
1578     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1579       OS << " [alignstack]";
1580     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1581       OS << " [attdialect]";
1582     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1583       OS << " [inteldialect]";
1584 
1585     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1586     FirstOp = false;
1587   }
1588 
1589   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1590     const MachineOperand &MO = getOperand(i);
1591 
1592     if (FirstOp) FirstOp = false; else OS << ",";
1593     OS << " ";
1594 
1595     if (isDebugValue() && MO.isMetadata()) {
1596       // Pretty print DBG_VALUE instructions.
1597       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1598       if (DIV && !DIV->getName().empty())
1599         OS << "!\"" << DIV->getName() << '\"';
1600       else {
1601         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1602         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1603         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1604                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1605       }
1606     } else if (isDebugLabel() && MO.isMetadata()) {
1607       // Pretty print DBG_LABEL instructions.
1608       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1609       if (DIL && !DIL->getName().empty())
1610         OS << "\"" << DIL->getName() << '\"';
1611       else {
1612         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1613         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1614         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1615                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1616       }
1617     } else if (i == AsmDescOp && MO.isImm()) {
1618       // Pretty print the inline asm operand descriptor.
1619       OS << '$' << AsmOpCount++;
1620       unsigned Flag = MO.getImm();
1621       switch (InlineAsm::getKind(Flag)) {
1622       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1623       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1624       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1625       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1626       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1627       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1628       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1629       }
1630 
1631       unsigned RCID = 0;
1632       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1633           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1634         if (TRI) {
1635           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1636         } else
1637           OS << ":RC" << RCID;
1638       }
1639 
1640       if (InlineAsm::isMemKind(Flag)) {
1641         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1642         switch (MCID) {
1643         case InlineAsm::Constraint_es: OS << ":es"; break;
1644         case InlineAsm::Constraint_i:  OS << ":i"; break;
1645         case InlineAsm::Constraint_m:  OS << ":m"; break;
1646         case InlineAsm::Constraint_o:  OS << ":o"; break;
1647         case InlineAsm::Constraint_v:  OS << ":v"; break;
1648         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1649         case InlineAsm::Constraint_R:  OS << ":R"; break;
1650         case InlineAsm::Constraint_S:  OS << ":S"; break;
1651         case InlineAsm::Constraint_T:  OS << ":T"; break;
1652         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1653         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1654         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1655         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1656         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1657         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1658         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1659         case InlineAsm::Constraint_X:  OS << ":X"; break;
1660         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1661         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1662         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1663         default: OS << ":?"; break;
1664         }
1665       }
1666 
1667       unsigned TiedTo = 0;
1668       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1669         OS << " tiedto:$" << TiedTo;
1670 
1671       OS << ']';
1672 
1673       // Compute the index of the next operand descriptor.
1674       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1675     } else {
1676       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1677       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1678       if (MO.isImm() && isOperandSubregIdx(i))
1679         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1680       else
1681         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1682                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1683     }
1684   }
1685 
1686   // Print any optional symbols attached to this instruction as-if they were
1687   // operands.
1688   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1689     if (!FirstOp) {
1690       FirstOp = false;
1691       OS << ',';
1692     }
1693     OS << " pre-instr-symbol ";
1694     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1695   }
1696   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1697     if (!FirstOp) {
1698       FirstOp = false;
1699       OS << ',';
1700     }
1701     OS << " post-instr-symbol ";
1702     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1703   }
1704   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1705     if (!FirstOp) {
1706       FirstOp = false;
1707       OS << ',';
1708     }
1709     OS << " heap-alloc-marker ";
1710     HeapAllocMarker->printAsOperand(OS, MST);
1711   }
1712 
1713   if (!SkipDebugLoc) {
1714     if (const DebugLoc &DL = getDebugLoc()) {
1715       if (!FirstOp)
1716         OS << ',';
1717       OS << " debug-location ";
1718       DL->printAsOperand(OS, MST);
1719     }
1720   }
1721 
1722   if (!memoperands_empty()) {
1723     SmallVector<StringRef, 0> SSNs;
1724     const LLVMContext *Context = nullptr;
1725     std::unique_ptr<LLVMContext> CtxPtr;
1726     const MachineFrameInfo *MFI = nullptr;
1727     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1728       MFI = &MF->getFrameInfo();
1729       Context = &MF->getFunction().getContext();
1730     } else {
1731       CtxPtr = std::make_unique<LLVMContext>();
1732       Context = CtxPtr.get();
1733     }
1734 
1735     OS << " :: ";
1736     bool NeedComma = false;
1737     for (const MachineMemOperand *Op : memoperands()) {
1738       if (NeedComma)
1739         OS << ", ";
1740       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1741       NeedComma = true;
1742     }
1743   }
1744 
1745   if (SkipDebugLoc)
1746     return;
1747 
1748   bool HaveSemi = false;
1749 
1750   // Print debug location information.
1751   if (const DebugLoc &DL = getDebugLoc()) {
1752     if (!HaveSemi) {
1753       OS << ';';
1754       HaveSemi = true;
1755     }
1756     OS << ' ';
1757     DL.print(OS);
1758   }
1759 
1760   // Print extra comments for DEBUG_VALUE.
1761   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1762     if (!HaveSemi) {
1763       OS << ";";
1764       HaveSemi = true;
1765     }
1766     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1767     OS << " line no:" <<  DV->getLine();
1768     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1769       DebugLoc InlinedAtDL(InlinedAt);
1770       if (InlinedAtDL && MF) {
1771         OS << " inlined @[ ";
1772         InlinedAtDL.print(OS);
1773         OS << " ]";
1774       }
1775     }
1776     if (isIndirectDebugValue())
1777       OS << " indirect";
1778   }
1779   // TODO: DBG_LABEL
1780 
1781   if (AddNewLine)
1782     OS << '\n';
1783 }
1784 
1785 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1786                                      const TargetRegisterInfo *RegInfo,
1787                                      bool AddIfNotFound) {
1788   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1789   bool hasAliases = isPhysReg &&
1790     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1791   bool Found = false;
1792   SmallVector<unsigned,4> DeadOps;
1793   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1794     MachineOperand &MO = getOperand(i);
1795     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1796       continue;
1797 
1798     // DEBUG_VALUE nodes do not contribute to code generation and should
1799     // always be ignored. Failure to do so may result in trying to modify
1800     // KILL flags on DEBUG_VALUE nodes.
1801     if (MO.isDebug())
1802       continue;
1803 
1804     Register Reg = MO.getReg();
1805     if (!Reg)
1806       continue;
1807 
1808     if (Reg == IncomingReg) {
1809       if (!Found) {
1810         if (MO.isKill())
1811           // The register is already marked kill.
1812           return true;
1813         if (isPhysReg && isRegTiedToDefOperand(i))
1814           // Two-address uses of physregs must not be marked kill.
1815           return true;
1816         MO.setIsKill();
1817         Found = true;
1818       }
1819     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1820       // A super-register kill already exists.
1821       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1822         return true;
1823       if (RegInfo->isSubRegister(IncomingReg, Reg))
1824         DeadOps.push_back(i);
1825     }
1826   }
1827 
1828   // Trim unneeded kill operands.
1829   while (!DeadOps.empty()) {
1830     unsigned OpIdx = DeadOps.back();
1831     if (getOperand(OpIdx).isImplicit() &&
1832         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1833       RemoveOperand(OpIdx);
1834     else
1835       getOperand(OpIdx).setIsKill(false);
1836     DeadOps.pop_back();
1837   }
1838 
1839   // If not found, this means an alias of one of the operands is killed. Add a
1840   // new implicit operand if required.
1841   if (!Found && AddIfNotFound) {
1842     addOperand(MachineOperand::CreateReg(IncomingReg,
1843                                          false /*IsDef*/,
1844                                          true  /*IsImp*/,
1845                                          true  /*IsKill*/));
1846     return true;
1847   }
1848   return Found;
1849 }
1850 
1851 void MachineInstr::clearRegisterKills(Register Reg,
1852                                       const TargetRegisterInfo *RegInfo) {
1853   if (!Register::isPhysicalRegister(Reg))
1854     RegInfo = nullptr;
1855   for (MachineOperand &MO : operands()) {
1856     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1857       continue;
1858     Register OpReg = MO.getReg();
1859     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1860       MO.setIsKill(false);
1861   }
1862 }
1863 
1864 bool MachineInstr::addRegisterDead(Register Reg,
1865                                    const TargetRegisterInfo *RegInfo,
1866                                    bool AddIfNotFound) {
1867   bool isPhysReg = Register::isPhysicalRegister(Reg);
1868   bool hasAliases = isPhysReg &&
1869     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1870   bool Found = false;
1871   SmallVector<unsigned,4> DeadOps;
1872   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1873     MachineOperand &MO = getOperand(i);
1874     if (!MO.isReg() || !MO.isDef())
1875       continue;
1876     Register MOReg = MO.getReg();
1877     if (!MOReg)
1878       continue;
1879 
1880     if (MOReg == Reg) {
1881       MO.setIsDead();
1882       Found = true;
1883     } else if (hasAliases && MO.isDead() &&
1884                Register::isPhysicalRegister(MOReg)) {
1885       // There exists a super-register that's marked dead.
1886       if (RegInfo->isSuperRegister(Reg, MOReg))
1887         return true;
1888       if (RegInfo->isSubRegister(Reg, MOReg))
1889         DeadOps.push_back(i);
1890     }
1891   }
1892 
1893   // Trim unneeded dead operands.
1894   while (!DeadOps.empty()) {
1895     unsigned OpIdx = DeadOps.back();
1896     if (getOperand(OpIdx).isImplicit() &&
1897         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1898       RemoveOperand(OpIdx);
1899     else
1900       getOperand(OpIdx).setIsDead(false);
1901     DeadOps.pop_back();
1902   }
1903 
1904   // If not found, this means an alias of one of the operands is dead. Add a
1905   // new implicit operand if required.
1906   if (Found || !AddIfNotFound)
1907     return Found;
1908 
1909   addOperand(MachineOperand::CreateReg(Reg,
1910                                        true  /*IsDef*/,
1911                                        true  /*IsImp*/,
1912                                        false /*IsKill*/,
1913                                        true  /*IsDead*/));
1914   return true;
1915 }
1916 
1917 void MachineInstr::clearRegisterDeads(Register Reg) {
1918   for (MachineOperand &MO : operands()) {
1919     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1920       continue;
1921     MO.setIsDead(false);
1922   }
1923 }
1924 
1925 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1926   for (MachineOperand &MO : operands()) {
1927     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1928       continue;
1929     MO.setIsUndef(IsUndef);
1930   }
1931 }
1932 
1933 void MachineInstr::addRegisterDefined(Register Reg,
1934                                       const TargetRegisterInfo *RegInfo) {
1935   if (Register::isPhysicalRegister(Reg)) {
1936     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1937     if (MO)
1938       return;
1939   } else {
1940     for (const MachineOperand &MO : operands()) {
1941       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1942           MO.getSubReg() == 0)
1943         return;
1944     }
1945   }
1946   addOperand(MachineOperand::CreateReg(Reg,
1947                                        true  /*IsDef*/,
1948                                        true  /*IsImp*/));
1949 }
1950 
1951 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1952                                          const TargetRegisterInfo &TRI) {
1953   bool HasRegMask = false;
1954   for (MachineOperand &MO : operands()) {
1955     if (MO.isRegMask()) {
1956       HasRegMask = true;
1957       continue;
1958     }
1959     if (!MO.isReg() || !MO.isDef()) continue;
1960     Register Reg = MO.getReg();
1961     if (!Reg.isPhysical())
1962       continue;
1963     // If there are no uses, including partial uses, the def is dead.
1964     if (llvm::none_of(UsedRegs,
1965                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
1966       MO.setIsDead();
1967   }
1968 
1969   // This is a call with a register mask operand.
1970   // Mask clobbers are always dead, so add defs for the non-dead defines.
1971   if (HasRegMask)
1972     for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1973          I != E; ++I)
1974       addRegisterDefined(*I, &TRI);
1975 }
1976 
1977 unsigned
1978 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1979   // Build up a buffer of hash code components.
1980   SmallVector<size_t, 16> HashComponents;
1981   HashComponents.reserve(MI->getNumOperands() + 1);
1982   HashComponents.push_back(MI->getOpcode());
1983   for (const MachineOperand &MO : MI->operands()) {
1984     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
1985       continue;  // Skip virtual register defs.
1986 
1987     HashComponents.push_back(hash_value(MO));
1988   }
1989   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1990 }
1991 
1992 void MachineInstr::emitError(StringRef Msg) const {
1993   // Find the source location cookie.
1994   unsigned LocCookie = 0;
1995   const MDNode *LocMD = nullptr;
1996   for (unsigned i = getNumOperands(); i != 0; --i) {
1997     if (getOperand(i-1).isMetadata() &&
1998         (LocMD = getOperand(i-1).getMetadata()) &&
1999         LocMD->getNumOperands() != 0) {
2000       if (const ConstantInt *CI =
2001               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2002         LocCookie = CI->getZExtValue();
2003         break;
2004       }
2005     }
2006   }
2007 
2008   if (const MachineBasicBlock *MBB = getParent())
2009     if (const MachineFunction *MF = MBB->getParent())
2010       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2011   report_fatal_error(Msg);
2012 }
2013 
2014 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2015                                   const MCInstrDesc &MCID, bool IsIndirect,
2016                                   Register Reg, const MDNode *Variable,
2017                                   const MDNode *Expr) {
2018   assert(isa<DILocalVariable>(Variable) && "not a variable");
2019   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2020   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2021          "Expected inlined-at fields to agree");
2022   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2023   if (IsIndirect)
2024     MIB.addImm(0U);
2025   else
2026     MIB.addReg(0U, RegState::Debug);
2027   return MIB.addMetadata(Variable).addMetadata(Expr);
2028 }
2029 
2030 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2031                                   const MCInstrDesc &MCID, bool IsIndirect,
2032                                   MachineOperand &MO, const MDNode *Variable,
2033                                   const MDNode *Expr) {
2034   assert(isa<DILocalVariable>(Variable) && "not a variable");
2035   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2036   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2037          "Expected inlined-at fields to agree");
2038   if (MO.isReg())
2039     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2040 
2041   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2042   if (IsIndirect)
2043     MIB.addImm(0U);
2044   else
2045     MIB.addReg(0U, RegState::Debug);
2046   return MIB.addMetadata(Variable).addMetadata(Expr);
2047  }
2048 
2049 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2050                                   MachineBasicBlock::iterator I,
2051                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2052                                   bool IsIndirect, Register Reg,
2053                                   const MDNode *Variable, const MDNode *Expr) {
2054   MachineFunction &MF = *BB.getParent();
2055   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2056   BB.insert(I, MI);
2057   return MachineInstrBuilder(MF, MI);
2058 }
2059 
2060 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2061                                   MachineBasicBlock::iterator I,
2062                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2063                                   bool IsIndirect, MachineOperand &MO,
2064                                   const MDNode *Variable, const MDNode *Expr) {
2065   MachineFunction &MF = *BB.getParent();
2066   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2067   BB.insert(I, MI);
2068   return MachineInstrBuilder(MF, *MI);
2069 }
2070 
2071 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2072 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2073 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2074   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2075   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2076          "Expected inlined-at fields to agree");
2077 
2078   const DIExpression *Expr = MI.getDebugExpression();
2079   if (MI.isIndirectDebugValue()) {
2080     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2081     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2082   }
2083   return Expr;
2084 }
2085 
2086 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2087                                           MachineBasicBlock::iterator I,
2088                                           const MachineInstr &Orig,
2089                                           int FrameIndex) {
2090   const DIExpression *Expr = computeExprForSpill(Orig);
2091   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2092       .addFrameIndex(FrameIndex)
2093       .addImm(0U)
2094       .addMetadata(Orig.getDebugVariable())
2095       .addMetadata(Expr);
2096 }
2097 
2098 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2099   const DIExpression *Expr = computeExprForSpill(Orig);
2100   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2101   Orig.getOperand(1).ChangeToImmediate(0U);
2102   Orig.getOperand(3).setMetadata(Expr);
2103 }
2104 
2105 void MachineInstr::collectDebugValues(
2106                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2107   MachineInstr &MI = *this;
2108   if (!MI.getOperand(0).isReg())
2109     return;
2110 
2111   MachineBasicBlock::iterator DI = MI; ++DI;
2112   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2113        DI != DE; ++DI) {
2114     if (!DI->isDebugValue())
2115       return;
2116     if (DI->getOperand(0).isReg() &&
2117         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2118       DbgValues.push_back(&*DI);
2119   }
2120 }
2121 
2122 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2123   // Collect matching debug values.
2124   SmallVector<MachineInstr *, 2> DbgValues;
2125 
2126   if (!getOperand(0).isReg())
2127     return;
2128 
2129   unsigned DefReg = getOperand(0).getReg();
2130   auto *MRI = getRegInfo();
2131   for (auto &MO : MRI->use_operands(DefReg)) {
2132     auto *DI = MO.getParent();
2133     if (!DI->isDebugValue())
2134       continue;
2135     if (DI->getOperand(0).isReg() &&
2136         DI->getOperand(0).getReg() == DefReg){
2137       DbgValues.push_back(DI);
2138     }
2139   }
2140 
2141   // Propagate Reg to debug value instructions.
2142   for (auto *DBI : DbgValues)
2143     DBI->getOperand(0).setReg(Reg);
2144 }
2145 
2146 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2147 
2148 static unsigned getSpillSlotSize(MMOList &Accesses,
2149                                  const MachineFrameInfo &MFI) {
2150   unsigned Size = 0;
2151   for (auto A : Accesses)
2152     if (MFI.isSpillSlotObjectIndex(
2153             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2154                 ->getFrameIndex()))
2155       Size += A->getSize();
2156   return Size;
2157 }
2158 
2159 Optional<unsigned>
2160 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2161   int FI;
2162   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2163     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2164     if (MFI.isSpillSlotObjectIndex(FI))
2165       return (*memoperands_begin())->getSize();
2166   }
2167   return None;
2168 }
2169 
2170 Optional<unsigned>
2171 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2172   MMOList Accesses;
2173   if (TII->hasStoreToStackSlot(*this, Accesses))
2174     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2175   return None;
2176 }
2177 
2178 Optional<unsigned>
2179 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2180   int FI;
2181   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2182     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2183     if (MFI.isSpillSlotObjectIndex(FI))
2184       return (*memoperands_begin())->getSize();
2185   }
2186   return None;
2187 }
2188 
2189 Optional<unsigned>
2190 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2191   MMOList Accesses;
2192   if (TII->hasLoadFromStackSlot(*this, Accesses))
2193     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2194   return None;
2195 }
2196