1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCInstrDesc.h" 58 #include "llvm/MC/MCRegisterInfo.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/FormattedStream.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <cstring> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 82 if (const MachineBasicBlock *MBB = MI.getParent()) 83 if (const MachineFunction *MF = MBB->getParent()) 84 return MF; 85 return nullptr; 86 } 87 88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 89 // it. 90 static void tryToGetTargetInfo(const MachineInstr &MI, 91 const TargetRegisterInfo *&TRI, 92 const MachineRegisterInfo *&MRI, 93 const TargetIntrinsicInfo *&IntrinsicInfo, 94 const TargetInstrInfo *&TII) { 95 96 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 97 TRI = MF->getSubtarget().getRegisterInfo(); 98 MRI = &MF->getRegInfo(); 99 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 100 TII = MF->getSubtarget().getInstrInfo(); 101 } 102 } 103 104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 105 if (MCID->ImplicitDefs) 106 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 107 ++ImpDefs) 108 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 109 if (MCID->ImplicitUses) 110 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 111 ++ImpUses) 112 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 113 } 114 115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 116 /// implicit operands. It reserves space for the number of operands specified by 117 /// the MCInstrDesc. 118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 119 DebugLoc DL, bool NoImp) 120 : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) { 121 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 122 123 // Reserve space for the expected number of operands. 124 if (unsigned NumOps = MCID->getNumOperands() + 125 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 126 CapOperands = OperandCapacity::get(NumOps); 127 Operands = MF.allocateOperandArray(CapOperands); 128 } 129 130 if (!NoImp) 131 addImplicitDefUseOperands(MF); 132 } 133 134 /// MachineInstr ctor - Copies MachineInstr arg exactly. 135 /// Does not copy the number from debug instruction numbering, to preserve 136 /// uniqueness. 137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 138 : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()), 139 DebugInstrNum(0) { 140 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 141 142 CapOperands = OperandCapacity::get(MI.getNumOperands()); 143 Operands = MF.allocateOperandArray(CapOperands); 144 145 // Copy operands. 146 for (const MachineOperand &MO : MI.operands()) 147 addOperand(MF, MO); 148 149 // Copy all the sensible flags. 150 setFlags(MI.Flags); 151 } 152 153 void MachineInstr::moveBefore(MachineInstr *MovePos) { 154 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 155 } 156 157 /// getRegInfo - If this instruction is embedded into a MachineFunction, 158 /// return the MachineRegisterInfo object for the current function, otherwise 159 /// return null. 160 MachineRegisterInfo *MachineInstr::getRegInfo() { 161 if (MachineBasicBlock *MBB = getParent()) 162 return &MBB->getParent()->getRegInfo(); 163 return nullptr; 164 } 165 166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 167 /// this instruction from their respective use lists. This requires that the 168 /// operands already be on their use lists. 169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.removeRegOperandFromUseList(&MO); 173 } 174 175 /// AddRegOperandsToUseLists - Add all of the register operands in 176 /// this instruction from their respective use lists. This requires that the 177 /// operands not be on their use lists yet. 178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 179 for (MachineOperand &MO : operands()) 180 if (MO.isReg()) 181 MRI.addRegOperandToUseList(&MO); 182 } 183 184 void MachineInstr::addOperand(const MachineOperand &Op) { 185 MachineBasicBlock *MBB = getParent(); 186 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 187 MachineFunction *MF = MBB->getParent(); 188 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 189 addOperand(*MF, Op); 190 } 191 192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 193 /// ranges. If MRI is non-null also update use-def chains. 194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 195 unsigned NumOps, MachineRegisterInfo *MRI) { 196 if (MRI) 197 return MRI->moveOperands(Dst, Src, NumOps); 198 // MachineOperand is a trivially copyable type so we can just use memmove. 199 assert(Dst && Src && "Unknown operands"); 200 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 201 } 202 203 /// addOperand - Add the specified operand to the instruction. If it is an 204 /// implicit operand, it is added to the end of the operand list. If it is 205 /// an explicit operand it is added at the end of the explicit operand list 206 /// (before the first implicit operand). 207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 208 assert(MCID && "Cannot add operands before providing an instr descriptor"); 209 210 // Check if we're adding one of our existing operands. 211 if (&Op >= Operands && &Op < Operands + NumOperands) { 212 // This is unusual: MI->addOperand(MI->getOperand(i)). 213 // If adding Op requires reallocating or moving existing operands around, 214 // the Op reference could go stale. Support it by copying Op. 215 MachineOperand CopyOp(Op); 216 return addOperand(MF, CopyOp); 217 } 218 219 // Find the insert location for the new operand. Implicit registers go at 220 // the end, everything else goes before the implicit regs. 221 // 222 // FIXME: Allow mixed explicit and implicit operands on inline asm. 223 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 224 // implicit-defs, but they must not be moved around. See the FIXME in 225 // InstrEmitter.cpp. 226 unsigned OpNo = getNumOperands(); 227 bool isImpReg = Op.isReg() && Op.isImplicit(); 228 if (!isImpReg && !isInlineAsm()) { 229 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 230 --OpNo; 231 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 232 } 233 } 234 235 #ifndef NDEBUG 236 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 237 Op.getType() == MachineOperand::MO_MCSymbol; 238 // OpNo now points as the desired insertion point. Unless this is a variadic 239 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 240 // RegMask operands go between the explicit and implicit operands. 241 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 242 OpNo < MCID->getNumOperands() || isDebugOp) && 243 "Trying to add an operand to a machine instr that is already done!"); 244 #endif 245 246 MachineRegisterInfo *MRI = getRegInfo(); 247 248 // Determine if the Operands array needs to be reallocated. 249 // Save the old capacity and operand array. 250 OperandCapacity OldCap = CapOperands; 251 MachineOperand *OldOperands = Operands; 252 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 253 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 254 Operands = MF.allocateOperandArray(CapOperands); 255 // Move the operands before the insertion point. 256 if (OpNo) 257 moveOperands(Operands, OldOperands, OpNo, MRI); 258 } 259 260 // Move the operands following the insertion point. 261 if (OpNo != NumOperands) 262 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 263 MRI); 264 ++NumOperands; 265 266 // Deallocate the old operand array. 267 if (OldOperands != Operands && OldOperands) 268 MF.deallocateOperandArray(OldCap, OldOperands); 269 270 // Copy Op into place. It still needs to be inserted into the MRI use lists. 271 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 272 NewMO->ParentMI = this; 273 274 // When adding a register operand, tell MRI about it. 275 if (NewMO->isReg()) { 276 // Ensure isOnRegUseList() returns false, regardless of Op's status. 277 NewMO->Contents.Reg.Prev = nullptr; 278 // Ignore existing ties. This is not a property that can be copied. 279 NewMO->TiedTo = 0; 280 // Add the new operand to MRI, but only for instructions in an MBB. 281 if (MRI) 282 MRI->addRegOperandToUseList(NewMO); 283 // The MCID operand information isn't accurate until we start adding 284 // explicit operands. The implicit operands are added first, then the 285 // explicits are inserted before them. 286 if (!isImpReg) { 287 // Tie uses to defs as indicated in MCInstrDesc. 288 if (NewMO->isUse()) { 289 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 290 if (DefIdx != -1) 291 tieOperands(DefIdx, OpNo); 292 } 293 // If the register operand is flagged as early, mark the operand as such. 294 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 295 NewMO->setIsEarlyClobber(true); 296 } 297 // Ensure debug instructions set debug flag on register uses. 298 if (NewMO->isUse() && isDebugInstr()) 299 NewMO->setIsDebug(); 300 } 301 } 302 303 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 304 /// fewer operand than it started with. 305 /// 306 void MachineInstr::RemoveOperand(unsigned OpNo) { 307 assert(OpNo < getNumOperands() && "Invalid operand number"); 308 untieRegOperand(OpNo); 309 310 #ifndef NDEBUG 311 // Moving tied operands would break the ties. 312 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 313 if (Operands[i].isReg()) 314 assert(!Operands[i].isTied() && "Cannot move tied operands"); 315 #endif 316 317 MachineRegisterInfo *MRI = getRegInfo(); 318 if (MRI && Operands[OpNo].isReg()) 319 MRI->removeRegOperandFromUseList(Operands + OpNo); 320 321 // Don't call the MachineOperand destructor. A lot of this code depends on 322 // MachineOperand having a trivial destructor anyway, and adding a call here 323 // wouldn't make it 'destructor-correct'. 324 325 if (unsigned N = NumOperands - 1 - OpNo) 326 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 327 --NumOperands; 328 } 329 330 void MachineInstr::setExtraInfo(MachineFunction &MF, 331 ArrayRef<MachineMemOperand *> MMOs, 332 MCSymbol *PreInstrSymbol, 333 MCSymbol *PostInstrSymbol, 334 MDNode *HeapAllocMarker) { 335 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 336 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 337 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 338 int NumPointers = 339 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; 340 341 // Drop all extra info if there is none. 342 if (NumPointers <= 0) { 343 Info.clear(); 344 return; 345 } 346 347 // If more than one pointer, then store out of line. Store heap alloc markers 348 // out of line because PointerSumType cannot hold more than 4 tag types with 349 // 32-bit pointers. 350 // FIXME: Maybe we should make the symbols in the extra info mutable? 351 else if (NumPointers > 1 || HasHeapAllocMarker) { 352 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( 353 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); 354 return; 355 } 356 357 // Otherwise store the single pointer inline. 358 if (HasPreInstrSymbol) 359 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 360 else if (HasPostInstrSymbol) 361 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 362 else 363 Info.set<EIIK_MMO>(MMOs[0]); 364 } 365 366 void MachineInstr::dropMemRefs(MachineFunction &MF) { 367 if (memoperands_empty()) 368 return; 369 370 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 371 getHeapAllocMarker()); 372 } 373 374 void MachineInstr::setMemRefs(MachineFunction &MF, 375 ArrayRef<MachineMemOperand *> MMOs) { 376 if (MMOs.empty()) { 377 dropMemRefs(MF); 378 return; 379 } 380 381 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 382 getHeapAllocMarker()); 383 } 384 385 void MachineInstr::addMemOperand(MachineFunction &MF, 386 MachineMemOperand *MO) { 387 SmallVector<MachineMemOperand *, 2> MMOs; 388 MMOs.append(memoperands_begin(), memoperands_end()); 389 MMOs.push_back(MO); 390 setMemRefs(MF, MMOs); 391 } 392 393 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 394 if (this == &MI) 395 // Nothing to do for a self-clone! 396 return; 397 398 assert(&MF == MI.getMF() && 399 "Invalid machine functions when cloning memory refrences!"); 400 // See if we can just steal the extra info already allocated for the 401 // instruction. We can do this whenever the pre- and post-instruction symbols 402 // are the same (including null). 403 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 404 getPostInstrSymbol() == MI.getPostInstrSymbol() && 405 getHeapAllocMarker() == MI.getHeapAllocMarker()) { 406 Info = MI.Info; 407 return; 408 } 409 410 // Otherwise, fall back on a copy-based clone. 411 setMemRefs(MF, MI.memoperands()); 412 } 413 414 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 415 /// identical. 416 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 417 ArrayRef<MachineMemOperand *> RHS) { 418 if (LHS.size() != RHS.size()) 419 return false; 420 421 auto LHSPointees = make_pointee_range(LHS); 422 auto RHSPointees = make_pointee_range(RHS); 423 return std::equal(LHSPointees.begin(), LHSPointees.end(), 424 RHSPointees.begin()); 425 } 426 427 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 428 ArrayRef<const MachineInstr *> MIs) { 429 // Try handling easy numbers of MIs with simpler mechanisms. 430 if (MIs.empty()) { 431 dropMemRefs(MF); 432 return; 433 } 434 if (MIs.size() == 1) { 435 cloneMemRefs(MF, *MIs[0]); 436 return; 437 } 438 // Because an empty memoperands list provides *no* information and must be 439 // handled conservatively (assuming the instruction can do anything), the only 440 // way to merge with it is to drop all other memoperands. 441 if (MIs[0]->memoperands_empty()) { 442 dropMemRefs(MF); 443 return; 444 } 445 446 // Handle the general case. 447 SmallVector<MachineMemOperand *, 2> MergedMMOs; 448 // Start with the first instruction. 449 assert(&MF == MIs[0]->getMF() && 450 "Invalid machine functions when cloning memory references!"); 451 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 452 // Now walk all the other instructions and accumulate any different MMOs. 453 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 454 assert(&MF == MI.getMF() && 455 "Invalid machine functions when cloning memory references!"); 456 457 // Skip MIs with identical operands to the first. This is a somewhat 458 // arbitrary hack but will catch common cases without being quadratic. 459 // TODO: We could fully implement merge semantics here if needed. 460 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 461 continue; 462 463 // Because an empty memoperands list provides *no* information and must be 464 // handled conservatively (assuming the instruction can do anything), the 465 // only way to merge with it is to drop all other memoperands. 466 if (MI.memoperands_empty()) { 467 dropMemRefs(MF); 468 return; 469 } 470 471 // Otherwise accumulate these into our temporary buffer of the merged state. 472 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 473 } 474 475 setMemRefs(MF, MergedMMOs); 476 } 477 478 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 479 // Do nothing if old and new symbols are the same. 480 if (Symbol == getPreInstrSymbol()) 481 return; 482 483 // If there was only one symbol and we're removing it, just clear info. 484 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 485 Info.clear(); 486 return; 487 } 488 489 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 490 getHeapAllocMarker()); 491 } 492 493 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 494 // Do nothing if old and new symbols are the same. 495 if (Symbol == getPostInstrSymbol()) 496 return; 497 498 // If there was only one symbol and we're removing it, just clear info. 499 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 500 Info.clear(); 501 return; 502 } 503 504 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 505 getHeapAllocMarker()); 506 } 507 508 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 509 // Do nothing if old and new symbols are the same. 510 if (Marker == getHeapAllocMarker()) 511 return; 512 513 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 514 Marker); 515 } 516 517 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 518 const MachineInstr &MI) { 519 if (this == &MI) 520 // Nothing to do for a self-clone! 521 return; 522 523 assert(&MF == MI.getMF() && 524 "Invalid machine functions when cloning instruction symbols!"); 525 526 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 527 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 528 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 529 } 530 531 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 532 // For now, the just return the union of the flags. If the flags get more 533 // complicated over time, we might need more logic here. 534 return getFlags() | Other.getFlags(); 535 } 536 537 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 538 uint16_t MIFlags = 0; 539 // Copy the wrapping flags. 540 if (const OverflowingBinaryOperator *OB = 541 dyn_cast<OverflowingBinaryOperator>(&I)) { 542 if (OB->hasNoSignedWrap()) 543 MIFlags |= MachineInstr::MIFlag::NoSWrap; 544 if (OB->hasNoUnsignedWrap()) 545 MIFlags |= MachineInstr::MIFlag::NoUWrap; 546 } 547 548 // Copy the exact flag. 549 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 550 if (PE->isExact()) 551 MIFlags |= MachineInstr::MIFlag::IsExact; 552 553 // Copy the fast-math flags. 554 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 555 const FastMathFlags Flags = FP->getFastMathFlags(); 556 if (Flags.noNaNs()) 557 MIFlags |= MachineInstr::MIFlag::FmNoNans; 558 if (Flags.noInfs()) 559 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 560 if (Flags.noSignedZeros()) 561 MIFlags |= MachineInstr::MIFlag::FmNsz; 562 if (Flags.allowReciprocal()) 563 MIFlags |= MachineInstr::MIFlag::FmArcp; 564 if (Flags.allowContract()) 565 MIFlags |= MachineInstr::MIFlag::FmContract; 566 if (Flags.approxFunc()) 567 MIFlags |= MachineInstr::MIFlag::FmAfn; 568 if (Flags.allowReassoc()) 569 MIFlags |= MachineInstr::MIFlag::FmReassoc; 570 } 571 572 return MIFlags; 573 } 574 575 void MachineInstr::copyIRFlags(const Instruction &I) { 576 Flags = copyFlagsFromInstruction(I); 577 } 578 579 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 580 assert(!isBundledWithPred() && "Must be called on bundle header"); 581 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 582 if (MII->getDesc().getFlags() & Mask) { 583 if (Type == AnyInBundle) 584 return true; 585 } else { 586 if (Type == AllInBundle && !MII->isBundle()) 587 return false; 588 } 589 // This was the last instruction in the bundle. 590 if (!MII->isBundledWithSucc()) 591 return Type == AllInBundle; 592 } 593 } 594 595 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 596 MICheckType Check) const { 597 // If opcodes or number of operands are not the same then the two 598 // instructions are obviously not identical. 599 if (Other.getOpcode() != getOpcode() || 600 Other.getNumOperands() != getNumOperands()) 601 return false; 602 603 if (isBundle()) { 604 // We have passed the test above that both instructions have the same 605 // opcode, so we know that both instructions are bundles here. Let's compare 606 // MIs inside the bundle. 607 assert(Other.isBundle() && "Expected that both instructions are bundles."); 608 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 609 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 610 // Loop until we analysed the last intruction inside at least one of the 611 // bundles. 612 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 613 ++I1; 614 ++I2; 615 if (!I1->isIdenticalTo(*I2, Check)) 616 return false; 617 } 618 // If we've reached the end of just one of the two bundles, but not both, 619 // the instructions are not identical. 620 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 621 return false; 622 } 623 624 // Check operands to make sure they match. 625 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 626 const MachineOperand &MO = getOperand(i); 627 const MachineOperand &OMO = Other.getOperand(i); 628 if (!MO.isReg()) { 629 if (!MO.isIdenticalTo(OMO)) 630 return false; 631 continue; 632 } 633 634 // Clients may or may not want to ignore defs when testing for equality. 635 // For example, machine CSE pass only cares about finding common 636 // subexpressions, so it's safe to ignore virtual register defs. 637 if (MO.isDef()) { 638 if (Check == IgnoreDefs) 639 continue; 640 else if (Check == IgnoreVRegDefs) { 641 if (!Register::isVirtualRegister(MO.getReg()) || 642 !Register::isVirtualRegister(OMO.getReg())) 643 if (!MO.isIdenticalTo(OMO)) 644 return false; 645 } else { 646 if (!MO.isIdenticalTo(OMO)) 647 return false; 648 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 649 return false; 650 } 651 } else { 652 if (!MO.isIdenticalTo(OMO)) 653 return false; 654 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 655 return false; 656 } 657 } 658 // If DebugLoc does not match then two debug instructions are not identical. 659 if (isDebugInstr()) 660 if (getDebugLoc() && Other.getDebugLoc() && 661 getDebugLoc() != Other.getDebugLoc()) 662 return false; 663 return true; 664 } 665 666 const MachineFunction *MachineInstr::getMF() const { 667 return getParent()->getParent(); 668 } 669 670 MachineInstr *MachineInstr::removeFromParent() { 671 assert(getParent() && "Not embedded in a basic block!"); 672 return getParent()->remove(this); 673 } 674 675 MachineInstr *MachineInstr::removeFromBundle() { 676 assert(getParent() && "Not embedded in a basic block!"); 677 return getParent()->remove_instr(this); 678 } 679 680 void MachineInstr::eraseFromParent() { 681 assert(getParent() && "Not embedded in a basic block!"); 682 getParent()->erase(this); 683 } 684 685 void MachineInstr::eraseFromBundle() { 686 assert(getParent() && "Not embedded in a basic block!"); 687 getParent()->erase_instr(this); 688 } 689 690 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 691 if (!isCall(Type)) 692 return false; 693 switch (getOpcode()) { 694 case TargetOpcode::PATCHPOINT: 695 case TargetOpcode::STACKMAP: 696 case TargetOpcode::STATEPOINT: 697 case TargetOpcode::FENTRY_CALL: 698 return false; 699 } 700 return true; 701 } 702 703 bool MachineInstr::shouldUpdateCallSiteInfo() const { 704 if (isBundle()) 705 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 706 return isCandidateForCallSiteEntry(); 707 } 708 709 unsigned MachineInstr::getNumExplicitOperands() const { 710 unsigned NumOperands = MCID->getNumOperands(); 711 if (!MCID->isVariadic()) 712 return NumOperands; 713 714 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 715 const MachineOperand &MO = getOperand(I); 716 // The operands must always be in the following order: 717 // - explicit reg defs, 718 // - other explicit operands (reg uses, immediates, etc.), 719 // - implicit reg defs 720 // - implicit reg uses 721 if (MO.isReg() && MO.isImplicit()) 722 break; 723 ++NumOperands; 724 } 725 return NumOperands; 726 } 727 728 unsigned MachineInstr::getNumExplicitDefs() const { 729 unsigned NumDefs = MCID->getNumDefs(); 730 if (!MCID->isVariadic()) 731 return NumDefs; 732 733 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 734 const MachineOperand &MO = getOperand(I); 735 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 736 break; 737 ++NumDefs; 738 } 739 return NumDefs; 740 } 741 742 void MachineInstr::bundleWithPred() { 743 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 744 setFlag(BundledPred); 745 MachineBasicBlock::instr_iterator Pred = getIterator(); 746 --Pred; 747 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 748 Pred->setFlag(BundledSucc); 749 } 750 751 void MachineInstr::bundleWithSucc() { 752 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 753 setFlag(BundledSucc); 754 MachineBasicBlock::instr_iterator Succ = getIterator(); 755 ++Succ; 756 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 757 Succ->setFlag(BundledPred); 758 } 759 760 void MachineInstr::unbundleFromPred() { 761 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 762 clearFlag(BundledPred); 763 MachineBasicBlock::instr_iterator Pred = getIterator(); 764 --Pred; 765 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 766 Pred->clearFlag(BundledSucc); 767 } 768 769 void MachineInstr::unbundleFromSucc() { 770 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 771 clearFlag(BundledSucc); 772 MachineBasicBlock::instr_iterator Succ = getIterator(); 773 ++Succ; 774 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 775 Succ->clearFlag(BundledPred); 776 } 777 778 bool MachineInstr::isStackAligningInlineAsm() const { 779 if (isInlineAsm()) { 780 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 781 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 782 return true; 783 } 784 return false; 785 } 786 787 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 788 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 789 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 790 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 791 } 792 793 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 794 unsigned *GroupNo) const { 795 assert(isInlineAsm() && "Expected an inline asm instruction"); 796 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 797 798 // Ignore queries about the initial operands. 799 if (OpIdx < InlineAsm::MIOp_FirstOperand) 800 return -1; 801 802 unsigned Group = 0; 803 unsigned NumOps; 804 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 805 i += NumOps) { 806 const MachineOperand &FlagMO = getOperand(i); 807 // If we reach the implicit register operands, stop looking. 808 if (!FlagMO.isImm()) 809 return -1; 810 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 811 if (i + NumOps > OpIdx) { 812 if (GroupNo) 813 *GroupNo = Group; 814 return i; 815 } 816 ++Group; 817 } 818 return -1; 819 } 820 821 const DILabel *MachineInstr::getDebugLabel() const { 822 assert(isDebugLabel() && "not a DBG_LABEL"); 823 return cast<DILabel>(getOperand(0).getMetadata()); 824 } 825 826 const MachineOperand &MachineInstr::getDebugVariableOp() const { 827 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 828 unsigned VariableOp = isDebugValueList() ? 0 : 2; 829 return getOperand(VariableOp); 830 } 831 832 MachineOperand &MachineInstr::getDebugVariableOp() { 833 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 834 unsigned VariableOp = isDebugValueList() ? 0 : 2; 835 return getOperand(VariableOp); 836 } 837 838 const DILocalVariable *MachineInstr::getDebugVariable() const { 839 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 840 } 841 842 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 843 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 844 unsigned ExpressionOp = isDebugValueList() ? 1 : 3; 845 return getOperand(ExpressionOp); 846 } 847 848 MachineOperand &MachineInstr::getDebugExpressionOp() { 849 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 850 unsigned ExpressionOp = isDebugValueList() ? 1 : 3; 851 return getOperand(ExpressionOp); 852 } 853 854 const DIExpression *MachineInstr::getDebugExpression() const { 855 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 856 } 857 858 bool MachineInstr::isDebugEntryValue() const { 859 return isDebugValue() && getDebugExpression()->isEntryValue(); 860 } 861 862 const TargetRegisterClass* 863 MachineInstr::getRegClassConstraint(unsigned OpIdx, 864 const TargetInstrInfo *TII, 865 const TargetRegisterInfo *TRI) const { 866 assert(getParent() && "Can't have an MBB reference here!"); 867 assert(getMF() && "Can't have an MF reference here!"); 868 const MachineFunction &MF = *getMF(); 869 870 // Most opcodes have fixed constraints in their MCInstrDesc. 871 if (!isInlineAsm()) 872 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 873 874 if (!getOperand(OpIdx).isReg()) 875 return nullptr; 876 877 // For tied uses on inline asm, get the constraint from the def. 878 unsigned DefIdx; 879 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 880 OpIdx = DefIdx; 881 882 // Inline asm stores register class constraints in the flag word. 883 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 884 if (FlagIdx < 0) 885 return nullptr; 886 887 unsigned Flag = getOperand(FlagIdx).getImm(); 888 unsigned RCID; 889 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 890 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 891 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 892 InlineAsm::hasRegClassConstraint(Flag, RCID)) 893 return TRI->getRegClass(RCID); 894 895 // Assume that all registers in a memory operand are pointers. 896 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 897 return TRI->getPointerRegClass(MF); 898 899 return nullptr; 900 } 901 902 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 903 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 904 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 905 // Check every operands inside the bundle if we have 906 // been asked to. 907 if (ExploreBundle) 908 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 909 ++OpndIt) 910 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 911 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 912 else 913 // Otherwise, just check the current operands. 914 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 915 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 916 return CurRC; 917 } 918 919 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 920 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 921 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 922 assert(CurRC && "Invalid initial register class"); 923 // Check if Reg is constrained by some of its use/def from MI. 924 const MachineOperand &MO = getOperand(OpIdx); 925 if (!MO.isReg() || MO.getReg() != Reg) 926 return CurRC; 927 // If yes, accumulate the constraints through the operand. 928 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 929 } 930 931 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 932 unsigned OpIdx, const TargetRegisterClass *CurRC, 933 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 934 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 935 const MachineOperand &MO = getOperand(OpIdx); 936 assert(MO.isReg() && 937 "Cannot get register constraints for non-register operand"); 938 assert(CurRC && "Invalid initial register class"); 939 if (unsigned SubIdx = MO.getSubReg()) { 940 if (OpRC) 941 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 942 else 943 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 944 } else if (OpRC) 945 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 946 return CurRC; 947 } 948 949 /// Return the number of instructions inside the MI bundle, not counting the 950 /// header instruction. 951 unsigned MachineInstr::getBundleSize() const { 952 MachineBasicBlock::const_instr_iterator I = getIterator(); 953 unsigned Size = 0; 954 while (I->isBundledWithSucc()) { 955 ++Size; 956 ++I; 957 } 958 return Size; 959 } 960 961 /// Returns true if the MachineInstr has an implicit-use operand of exactly 962 /// the given register (not considering sub/super-registers). 963 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 964 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 965 const MachineOperand &MO = getOperand(i); 966 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 967 return true; 968 } 969 return false; 970 } 971 972 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 973 /// the specific register or -1 if it is not found. It further tightens 974 /// the search criteria to a use that kills the register if isKill is true. 975 int MachineInstr::findRegisterUseOperandIdx( 976 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 977 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 978 const MachineOperand &MO = getOperand(i); 979 if (!MO.isReg() || !MO.isUse()) 980 continue; 981 Register MOReg = MO.getReg(); 982 if (!MOReg) 983 continue; 984 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 985 if (!isKill || MO.isKill()) 986 return i; 987 } 988 return -1; 989 } 990 991 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 992 /// indicating if this instruction reads or writes Reg. This also considers 993 /// partial defines. 994 std::pair<bool,bool> 995 MachineInstr::readsWritesVirtualRegister(Register Reg, 996 SmallVectorImpl<unsigned> *Ops) const { 997 bool PartDef = false; // Partial redefine. 998 bool FullDef = false; // Full define. 999 bool Use = false; 1000 1001 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1002 const MachineOperand &MO = getOperand(i); 1003 if (!MO.isReg() || MO.getReg() != Reg) 1004 continue; 1005 if (Ops) 1006 Ops->push_back(i); 1007 if (MO.isUse()) 1008 Use |= !MO.isUndef(); 1009 else if (MO.getSubReg() && !MO.isUndef()) 1010 // A partial def undef doesn't count as reading the register. 1011 PartDef = true; 1012 else 1013 FullDef = true; 1014 } 1015 // A partial redefine uses Reg unless there is also a full define. 1016 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1017 } 1018 1019 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1020 /// the specified register or -1 if it is not found. If isDead is true, defs 1021 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1022 /// also checks if there is a def of a super-register. 1023 int 1024 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1025 const TargetRegisterInfo *TRI) const { 1026 bool isPhys = Register::isPhysicalRegister(Reg); 1027 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1028 const MachineOperand &MO = getOperand(i); 1029 // Accept regmask operands when Overlap is set. 1030 // Ignore them when looking for a specific def operand (Overlap == false). 1031 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1032 return i; 1033 if (!MO.isReg() || !MO.isDef()) 1034 continue; 1035 Register MOReg = MO.getReg(); 1036 bool Found = (MOReg == Reg); 1037 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1038 if (Overlap) 1039 Found = TRI->regsOverlap(MOReg, Reg); 1040 else 1041 Found = TRI->isSubRegister(MOReg, Reg); 1042 } 1043 if (Found && (!isDead || MO.isDead())) 1044 return i; 1045 } 1046 return -1; 1047 } 1048 1049 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1050 /// operand list that is used to represent the predicate. It returns -1 if 1051 /// none is found. 1052 int MachineInstr::findFirstPredOperandIdx() const { 1053 // Don't call MCID.findFirstPredOperandIdx() because this variant 1054 // is sometimes called on an instruction that's not yet complete, and 1055 // so the number of operands is less than the MCID indicates. In 1056 // particular, the PTX target does this. 1057 const MCInstrDesc &MCID = getDesc(); 1058 if (MCID.isPredicable()) { 1059 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1060 if (MCID.OpInfo[i].isPredicate()) 1061 return i; 1062 } 1063 1064 return -1; 1065 } 1066 1067 // MachineOperand::TiedTo is 4 bits wide. 1068 const unsigned TiedMax = 15; 1069 1070 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1071 /// 1072 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1073 /// field. TiedTo can have these values: 1074 /// 1075 /// 0: Operand is not tied to anything. 1076 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1077 /// TiedMax: Tied to an operand >= TiedMax-1. 1078 /// 1079 /// The tied def must be one of the first TiedMax operands on a normal 1080 /// instruction. INLINEASM instructions allow more tied defs. 1081 /// 1082 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1083 MachineOperand &DefMO = getOperand(DefIdx); 1084 MachineOperand &UseMO = getOperand(UseIdx); 1085 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1086 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1087 assert(!DefMO.isTied() && "Def is already tied to another use"); 1088 assert(!UseMO.isTied() && "Use is already tied to another def"); 1089 1090 if (DefIdx < TiedMax) 1091 UseMO.TiedTo = DefIdx + 1; 1092 else { 1093 // Inline asm can use the group descriptors to find tied operands, 1094 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1095 // but on normal instruction, the tied def must be within the first TiedMax 1096 // operands. 1097 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1098 "DefIdx out of range"); 1099 UseMO.TiedTo = TiedMax; 1100 } 1101 1102 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1103 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1104 } 1105 1106 /// Given the index of a tied register operand, find the operand it is tied to. 1107 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1108 /// which must exist. 1109 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1110 const MachineOperand &MO = getOperand(OpIdx); 1111 assert(MO.isTied() && "Operand isn't tied"); 1112 1113 // Normally TiedTo is in range. 1114 if (MO.TiedTo < TiedMax) 1115 return MO.TiedTo - 1; 1116 1117 // Uses on normal instructions can be out of range. 1118 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1119 // Normal tied defs must be in the 0..TiedMax-1 range. 1120 if (MO.isUse()) 1121 return TiedMax - 1; 1122 // MO is a def. Search for the tied use. 1123 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1124 const MachineOperand &UseMO = getOperand(i); 1125 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1126 return i; 1127 } 1128 llvm_unreachable("Can't find tied use"); 1129 } 1130 1131 if (getOpcode() == TargetOpcode::STATEPOINT) { 1132 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1133 // on registers. 1134 StatepointOpers SO(this); 1135 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1136 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1137 unsigned NumDefs = getNumDefs(); 1138 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1139 while (!getOperand(CurUseIdx).isReg()) 1140 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1141 if (OpIdx == CurDefIdx) 1142 return CurUseIdx; 1143 if (OpIdx == CurUseIdx) 1144 return CurDefIdx; 1145 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1146 } 1147 llvm_unreachable("Can't find tied use"); 1148 } 1149 1150 // Now deal with inline asm by parsing the operand group descriptor flags. 1151 // Find the beginning of each operand group. 1152 SmallVector<unsigned, 8> GroupIdx; 1153 unsigned OpIdxGroup = ~0u; 1154 unsigned NumOps; 1155 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1156 i += NumOps) { 1157 const MachineOperand &FlagMO = getOperand(i); 1158 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1159 unsigned CurGroup = GroupIdx.size(); 1160 GroupIdx.push_back(i); 1161 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1162 // OpIdx belongs to this operand group. 1163 if (OpIdx > i && OpIdx < i + NumOps) 1164 OpIdxGroup = CurGroup; 1165 unsigned TiedGroup; 1166 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1167 continue; 1168 // Operands in this group are tied to operands in TiedGroup which must be 1169 // earlier. Find the number of operands between the two groups. 1170 unsigned Delta = i - GroupIdx[TiedGroup]; 1171 1172 // OpIdx is a use tied to TiedGroup. 1173 if (OpIdxGroup == CurGroup) 1174 return OpIdx - Delta; 1175 1176 // OpIdx is a def tied to this use group. 1177 if (OpIdxGroup == TiedGroup) 1178 return OpIdx + Delta; 1179 } 1180 llvm_unreachable("Invalid tied operand on inline asm"); 1181 } 1182 1183 /// clearKillInfo - Clears kill flags on all operands. 1184 /// 1185 void MachineInstr::clearKillInfo() { 1186 for (MachineOperand &MO : operands()) { 1187 if (MO.isReg() && MO.isUse()) 1188 MO.setIsKill(false); 1189 } 1190 } 1191 1192 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1193 unsigned SubIdx, 1194 const TargetRegisterInfo &RegInfo) { 1195 if (Register::isPhysicalRegister(ToReg)) { 1196 if (SubIdx) 1197 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1198 for (MachineOperand &MO : operands()) { 1199 if (!MO.isReg() || MO.getReg() != FromReg) 1200 continue; 1201 MO.substPhysReg(ToReg, RegInfo); 1202 } 1203 } else { 1204 for (MachineOperand &MO : operands()) { 1205 if (!MO.isReg() || MO.getReg() != FromReg) 1206 continue; 1207 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1208 } 1209 } 1210 } 1211 1212 /// isSafeToMove - Return true if it is safe to move this instruction. If 1213 /// SawStore is set to true, it means that there is a store (or call) between 1214 /// the instruction's location and its intended destination. 1215 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1216 // Ignore stuff that we obviously can't move. 1217 // 1218 // Treat volatile loads as stores. This is not strictly necessary for 1219 // volatiles, but it is required for atomic loads. It is not allowed to move 1220 // a load across an atomic load with Ordering > Monotonic. 1221 if (mayStore() || isCall() || isPHI() || 1222 (mayLoad() && hasOrderedMemoryRef())) { 1223 SawStore = true; 1224 return false; 1225 } 1226 1227 if (isPosition() || isDebugInstr() || isTerminator() || 1228 mayRaiseFPException() || hasUnmodeledSideEffects()) 1229 return false; 1230 1231 // See if this instruction does a load. If so, we have to guarantee that the 1232 // loaded value doesn't change between the load and the its intended 1233 // destination. The check for isInvariantLoad gives the target the chance to 1234 // classify the load as always returning a constant, e.g. a constant pool 1235 // load. 1236 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1237 // Otherwise, this is a real load. If there is a store between the load and 1238 // end of block, we can't move it. 1239 return !SawStore; 1240 1241 return true; 1242 } 1243 1244 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1245 bool UseTBAA, const MachineMemOperand *MMOa, 1246 const MachineMemOperand *MMOb) { 1247 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1248 // operates with MachineMemOperand offset with some important assumptions: 1249 // - LLVM fundamentally assumes flat address spaces. 1250 // - MachineOperand offset can *only* result from legalization and cannot 1251 // affect queries other than the trivial case of overlap checking. 1252 // - These offsets never wrap and never step outside of allocated objects. 1253 // - There should never be any negative offsets here. 1254 // 1255 // FIXME: Modify API to hide this math from "user" 1256 // Even before we go to AA we can reason locally about some memory objects. It 1257 // can save compile time, and possibly catch some corner cases not currently 1258 // covered. 1259 1260 int64_t OffsetA = MMOa->getOffset(); 1261 int64_t OffsetB = MMOb->getOffset(); 1262 int64_t MinOffset = std::min(OffsetA, OffsetB); 1263 1264 uint64_t WidthA = MMOa->getSize(); 1265 uint64_t WidthB = MMOb->getSize(); 1266 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1267 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1268 1269 const Value *ValA = MMOa->getValue(); 1270 const Value *ValB = MMOb->getValue(); 1271 bool SameVal = (ValA && ValB && (ValA == ValB)); 1272 if (!SameVal) { 1273 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1274 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1275 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1276 return false; 1277 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1278 return false; 1279 if (PSVa && PSVb && (PSVa == PSVb)) 1280 SameVal = true; 1281 } 1282 1283 if (SameVal) { 1284 if (!KnownWidthA || !KnownWidthB) 1285 return true; 1286 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1287 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1288 return (MinOffset + LowWidth > MaxOffset); 1289 } 1290 1291 if (!AA) 1292 return true; 1293 1294 if (!ValA || !ValB) 1295 return true; 1296 1297 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1298 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1299 1300 int64_t OverlapA = 1301 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1302 int64_t OverlapB = 1303 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1304 1305 return !AA->isNoAlias( 1306 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1307 MemoryLocation(ValB, OverlapB, 1308 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1309 } 1310 1311 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1312 bool UseTBAA) const { 1313 const MachineFunction *MF = getMF(); 1314 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1315 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1316 1317 // Exclude call instruction which may alter the memory but can not be handled 1318 // by this function. 1319 if (isCall() || Other.isCall()) 1320 return true; 1321 1322 // If neither instruction stores to memory, they can't alias in any 1323 // meaningful way, even if they read from the same address. 1324 if (!mayStore() && !Other.mayStore()) 1325 return false; 1326 1327 // Both instructions must be memory operations to be able to alias. 1328 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1329 return false; 1330 1331 // Let the target decide if memory accesses cannot possibly overlap. 1332 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1333 return false; 1334 1335 // Memory operations without memory operands may access anything. Be 1336 // conservative and assume `MayAlias`. 1337 if (memoperands_empty() || Other.memoperands_empty()) 1338 return true; 1339 1340 // Skip if there are too many memory operands. 1341 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1342 if (NumChecks > TII->getMemOperandAACheckLimit()) 1343 return true; 1344 1345 // Check each pair of memory operands from both instructions, which can't 1346 // alias only if all pairs won't alias. 1347 for (auto *MMOa : memoperands()) 1348 for (auto *MMOb : Other.memoperands()) 1349 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1350 return true; 1351 1352 return false; 1353 } 1354 1355 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1356 /// or volatile memory reference, or if the information describing the memory 1357 /// reference is not available. Return false if it is known to have no ordered 1358 /// memory references. 1359 bool MachineInstr::hasOrderedMemoryRef() const { 1360 // An instruction known never to access memory won't have a volatile access. 1361 if (!mayStore() && 1362 !mayLoad() && 1363 !isCall() && 1364 !hasUnmodeledSideEffects()) 1365 return false; 1366 1367 // Otherwise, if the instruction has no memory reference information, 1368 // conservatively assume it wasn't preserved. 1369 if (memoperands_empty()) 1370 return true; 1371 1372 // Check if any of our memory operands are ordered. 1373 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1374 return !MMO->isUnordered(); 1375 }); 1376 } 1377 1378 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1379 /// trap and is loading from a location whose value is invariant across a run of 1380 /// this function. 1381 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { 1382 // If the instruction doesn't load at all, it isn't an invariant load. 1383 if (!mayLoad()) 1384 return false; 1385 1386 // If the instruction has lost its memoperands, conservatively assume that 1387 // it may not be an invariant load. 1388 if (memoperands_empty()) 1389 return false; 1390 1391 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1392 1393 for (MachineMemOperand *MMO : memoperands()) { 1394 if (!MMO->isUnordered()) 1395 // If the memory operand has ordering side effects, we can't move the 1396 // instruction. Such an instruction is technically an invariant load, 1397 // but the caller code would need updated to expect that. 1398 return false; 1399 if (MMO->isStore()) return false; 1400 if (MMO->isInvariant() && MMO->isDereferenceable()) 1401 continue; 1402 1403 // A load from a constant PseudoSourceValue is invariant. 1404 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1405 if (PSV->isConstant(&MFI)) 1406 continue; 1407 1408 if (const Value *V = MMO->getValue()) { 1409 // If we have an AliasAnalysis, ask it whether the memory is constant. 1410 if (AA && 1411 AA->pointsToConstantMemory( 1412 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1413 continue; 1414 } 1415 1416 // Otherwise assume conservatively. 1417 return false; 1418 } 1419 1420 // Everything checks out. 1421 return true; 1422 } 1423 1424 /// isConstantValuePHI - If the specified instruction is a PHI that always 1425 /// merges together the same virtual register, return the register, otherwise 1426 /// return 0. 1427 unsigned MachineInstr::isConstantValuePHI() const { 1428 if (!isPHI()) 1429 return 0; 1430 assert(getNumOperands() >= 3 && 1431 "It's illegal to have a PHI without source operands"); 1432 1433 Register Reg = getOperand(1).getReg(); 1434 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1435 if (getOperand(i).getReg() != Reg) 1436 return 0; 1437 return Reg; 1438 } 1439 1440 bool MachineInstr::hasUnmodeledSideEffects() const { 1441 if (hasProperty(MCID::UnmodeledSideEffects)) 1442 return true; 1443 if (isInlineAsm()) { 1444 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1445 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1446 return true; 1447 } 1448 1449 return false; 1450 } 1451 1452 bool MachineInstr::isLoadFoldBarrier() const { 1453 return mayStore() || isCall() || 1454 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1455 } 1456 1457 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1458 /// 1459 bool MachineInstr::allDefsAreDead() const { 1460 for (const MachineOperand &MO : operands()) { 1461 if (!MO.isReg() || MO.isUse()) 1462 continue; 1463 if (!MO.isDead()) 1464 return false; 1465 } 1466 return true; 1467 } 1468 1469 /// copyImplicitOps - Copy implicit register operands from specified 1470 /// instruction to this instruction. 1471 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1472 const MachineInstr &MI) { 1473 for (const MachineOperand &MO : 1474 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1475 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1476 addOperand(MF, MO); 1477 } 1478 1479 bool MachineInstr::hasComplexRegisterTies() const { 1480 const MCInstrDesc &MCID = getDesc(); 1481 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1482 return true; 1483 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1484 const auto &Operand = getOperand(I); 1485 if (!Operand.isReg() || Operand.isDef()) 1486 // Ignore the defined registers as MCID marks only the uses as tied. 1487 continue; 1488 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1489 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1490 if (ExpectedTiedIdx != TiedIdx) 1491 return true; 1492 } 1493 return false; 1494 } 1495 1496 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1497 const MachineRegisterInfo &MRI) const { 1498 const MachineOperand &Op = getOperand(OpIdx); 1499 if (!Op.isReg()) 1500 return LLT{}; 1501 1502 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1503 return MRI.getType(Op.getReg()); 1504 1505 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1506 if (!OpInfo.isGenericType()) 1507 return MRI.getType(Op.getReg()); 1508 1509 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1510 return LLT{}; 1511 1512 LLT TypeToPrint = MRI.getType(Op.getReg()); 1513 // Don't mark the type index printed if it wasn't actually printed: maybe 1514 // another operand with the same type index has an actual type attached: 1515 if (TypeToPrint.isValid()) 1516 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1517 return TypeToPrint; 1518 } 1519 1520 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1521 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1522 dbgs() << " "; 1523 print(dbgs()); 1524 } 1525 1526 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1527 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1528 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1529 if (Depth >= MaxDepth) 1530 return; 1531 if (!AlreadySeenInstrs.insert(this).second) 1532 return; 1533 // PadToColumn always inserts at least one space. 1534 // Don't mess up the alignment if we don't want any space. 1535 if (Depth) 1536 fdbgs().PadToColumn(Depth * 2); 1537 print(fdbgs()); 1538 for (const MachineOperand &MO : operands()) { 1539 if (!MO.isReg() || MO.isDef()) 1540 continue; 1541 Register Reg = MO.getReg(); 1542 if (Reg.isPhysical()) 1543 continue; 1544 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1545 if (NewMI == nullptr) 1546 continue; 1547 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1548 } 1549 } 1550 1551 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1552 unsigned MaxDepth) const { 1553 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1554 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1555 } 1556 #endif 1557 1558 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1559 bool SkipDebugLoc, bool AddNewLine, 1560 const TargetInstrInfo *TII) const { 1561 const Module *M = nullptr; 1562 const Function *F = nullptr; 1563 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1564 F = &MF->getFunction(); 1565 M = F->getParent(); 1566 if (!TII) 1567 TII = MF->getSubtarget().getInstrInfo(); 1568 } 1569 1570 ModuleSlotTracker MST(M); 1571 if (F) 1572 MST.incorporateFunction(*F); 1573 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1574 } 1575 1576 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1577 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1578 bool AddNewLine, const TargetInstrInfo *TII) const { 1579 // We can be a bit tidier if we know the MachineFunction. 1580 const TargetRegisterInfo *TRI = nullptr; 1581 const MachineRegisterInfo *MRI = nullptr; 1582 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1583 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1584 1585 if (isCFIInstruction()) 1586 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1587 1588 SmallBitVector PrintedTypes(8); 1589 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1590 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1591 if (!ShouldPrintRegisterTies) 1592 return 0U; 1593 const MachineOperand &MO = getOperand(OpIdx); 1594 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1595 return findTiedOperandIdx(OpIdx); 1596 return 0U; 1597 }; 1598 unsigned StartOp = 0; 1599 unsigned e = getNumOperands(); 1600 1601 // Print explicitly defined operands on the left of an assignment syntax. 1602 while (StartOp < e) { 1603 const MachineOperand &MO = getOperand(StartOp); 1604 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1605 break; 1606 1607 if (StartOp != 0) 1608 OS << ", "; 1609 1610 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1611 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1612 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1613 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1614 ++StartOp; 1615 } 1616 1617 if (StartOp != 0) 1618 OS << " = "; 1619 1620 if (getFlag(MachineInstr::FrameSetup)) 1621 OS << "frame-setup "; 1622 if (getFlag(MachineInstr::FrameDestroy)) 1623 OS << "frame-destroy "; 1624 if (getFlag(MachineInstr::FmNoNans)) 1625 OS << "nnan "; 1626 if (getFlag(MachineInstr::FmNoInfs)) 1627 OS << "ninf "; 1628 if (getFlag(MachineInstr::FmNsz)) 1629 OS << "nsz "; 1630 if (getFlag(MachineInstr::FmArcp)) 1631 OS << "arcp "; 1632 if (getFlag(MachineInstr::FmContract)) 1633 OS << "contract "; 1634 if (getFlag(MachineInstr::FmAfn)) 1635 OS << "afn "; 1636 if (getFlag(MachineInstr::FmReassoc)) 1637 OS << "reassoc "; 1638 if (getFlag(MachineInstr::NoUWrap)) 1639 OS << "nuw "; 1640 if (getFlag(MachineInstr::NoSWrap)) 1641 OS << "nsw "; 1642 if (getFlag(MachineInstr::IsExact)) 1643 OS << "exact "; 1644 if (getFlag(MachineInstr::NoFPExcept)) 1645 OS << "nofpexcept "; 1646 if (getFlag(MachineInstr::NoMerge)) 1647 OS << "nomerge "; 1648 1649 // Print the opcode name. 1650 if (TII) 1651 OS << TII->getName(getOpcode()); 1652 else 1653 OS << "UNKNOWN"; 1654 1655 if (SkipOpers) 1656 return; 1657 1658 // Print the rest of the operands. 1659 bool FirstOp = true; 1660 unsigned AsmDescOp = ~0u; 1661 unsigned AsmOpCount = 0; 1662 1663 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1664 // Print asm string. 1665 OS << " "; 1666 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1667 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1668 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1669 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1670 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1671 IntrinsicInfo); 1672 1673 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1674 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1675 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1676 OS << " [sideeffect]"; 1677 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1678 OS << " [mayload]"; 1679 if (ExtraInfo & InlineAsm::Extra_MayStore) 1680 OS << " [maystore]"; 1681 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1682 OS << " [isconvergent]"; 1683 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1684 OS << " [alignstack]"; 1685 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1686 OS << " [attdialect]"; 1687 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1688 OS << " [inteldialect]"; 1689 1690 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1691 FirstOp = false; 1692 } 1693 1694 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1695 const MachineOperand &MO = getOperand(i); 1696 1697 if (FirstOp) FirstOp = false; else OS << ","; 1698 OS << " "; 1699 1700 if (isDebugValue() && MO.isMetadata()) { 1701 // Pretty print DBG_VALUE* instructions. 1702 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1703 if (DIV && !DIV->getName().empty()) 1704 OS << "!\"" << DIV->getName() << '\"'; 1705 else { 1706 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1707 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1708 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1709 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1710 } 1711 } else if (isDebugLabel() && MO.isMetadata()) { 1712 // Pretty print DBG_LABEL instructions. 1713 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1714 if (DIL && !DIL->getName().empty()) 1715 OS << "\"" << DIL->getName() << '\"'; 1716 else { 1717 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1718 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1719 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1720 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1721 } 1722 } else if (i == AsmDescOp && MO.isImm()) { 1723 // Pretty print the inline asm operand descriptor. 1724 OS << '$' << AsmOpCount++; 1725 unsigned Flag = MO.getImm(); 1726 OS << ":["; 1727 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); 1728 1729 unsigned RCID = 0; 1730 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1731 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1732 if (TRI) { 1733 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1734 } else 1735 OS << ":RC" << RCID; 1736 } 1737 1738 if (InlineAsm::isMemKind(Flag)) { 1739 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1740 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1741 } 1742 1743 unsigned TiedTo = 0; 1744 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1745 OS << " tiedto:$" << TiedTo; 1746 1747 OS << ']'; 1748 1749 // Compute the index of the next operand descriptor. 1750 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1751 } else { 1752 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1753 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1754 if (MO.isImm() && isOperandSubregIdx(i)) 1755 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1756 else 1757 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1758 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1759 } 1760 } 1761 1762 // Print any optional symbols attached to this instruction as-if they were 1763 // operands. 1764 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1765 if (!FirstOp) { 1766 FirstOp = false; 1767 OS << ','; 1768 } 1769 OS << " pre-instr-symbol "; 1770 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1771 } 1772 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1773 if (!FirstOp) { 1774 FirstOp = false; 1775 OS << ','; 1776 } 1777 OS << " post-instr-symbol "; 1778 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1779 } 1780 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1781 if (!FirstOp) { 1782 FirstOp = false; 1783 OS << ','; 1784 } 1785 OS << " heap-alloc-marker "; 1786 HeapAllocMarker->printAsOperand(OS, MST); 1787 } 1788 1789 if (DebugInstrNum) { 1790 if (!FirstOp) 1791 OS << ","; 1792 OS << " debug-instr-number " << DebugInstrNum; 1793 } 1794 1795 if (!SkipDebugLoc) { 1796 if (const DebugLoc &DL = getDebugLoc()) { 1797 if (!FirstOp) 1798 OS << ','; 1799 OS << " debug-location "; 1800 DL->printAsOperand(OS, MST); 1801 } 1802 } 1803 1804 if (!memoperands_empty()) { 1805 SmallVector<StringRef, 0> SSNs; 1806 const LLVMContext *Context = nullptr; 1807 std::unique_ptr<LLVMContext> CtxPtr; 1808 const MachineFrameInfo *MFI = nullptr; 1809 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1810 MFI = &MF->getFrameInfo(); 1811 Context = &MF->getFunction().getContext(); 1812 } else { 1813 CtxPtr = std::make_unique<LLVMContext>(); 1814 Context = CtxPtr.get(); 1815 } 1816 1817 OS << " :: "; 1818 bool NeedComma = false; 1819 for (const MachineMemOperand *Op : memoperands()) { 1820 if (NeedComma) 1821 OS << ", "; 1822 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1823 NeedComma = true; 1824 } 1825 } 1826 1827 if (SkipDebugLoc) 1828 return; 1829 1830 bool HaveSemi = false; 1831 1832 // Print debug location information. 1833 if (const DebugLoc &DL = getDebugLoc()) { 1834 if (!HaveSemi) { 1835 OS << ';'; 1836 HaveSemi = true; 1837 } 1838 OS << ' '; 1839 DL.print(OS); 1840 } 1841 1842 // Print extra comments for DEBUG_VALUE. 1843 if (isDebugValue() && getDebugVariableOp().isMetadata()) { 1844 if (!HaveSemi) { 1845 OS << ";"; 1846 HaveSemi = true; 1847 } 1848 auto *DV = getDebugVariable(); 1849 OS << " line no:" << DV->getLine(); 1850 if (isIndirectDebugValue()) 1851 OS << " indirect"; 1852 } 1853 // TODO: DBG_LABEL 1854 1855 if (AddNewLine) 1856 OS << '\n'; 1857 } 1858 1859 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1860 const TargetRegisterInfo *RegInfo, 1861 bool AddIfNotFound) { 1862 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1863 bool hasAliases = isPhysReg && 1864 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1865 bool Found = false; 1866 SmallVector<unsigned,4> DeadOps; 1867 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1868 MachineOperand &MO = getOperand(i); 1869 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1870 continue; 1871 1872 // DEBUG_VALUE nodes do not contribute to code generation and should 1873 // always be ignored. Failure to do so may result in trying to modify 1874 // KILL flags on DEBUG_VALUE nodes. 1875 if (MO.isDebug()) 1876 continue; 1877 1878 Register Reg = MO.getReg(); 1879 if (!Reg) 1880 continue; 1881 1882 if (Reg == IncomingReg) { 1883 if (!Found) { 1884 if (MO.isKill()) 1885 // The register is already marked kill. 1886 return true; 1887 if (isPhysReg && isRegTiedToDefOperand(i)) 1888 // Two-address uses of physregs must not be marked kill. 1889 return true; 1890 MO.setIsKill(); 1891 Found = true; 1892 } 1893 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1894 // A super-register kill already exists. 1895 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1896 return true; 1897 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1898 DeadOps.push_back(i); 1899 } 1900 } 1901 1902 // Trim unneeded kill operands. 1903 while (!DeadOps.empty()) { 1904 unsigned OpIdx = DeadOps.back(); 1905 if (getOperand(OpIdx).isImplicit() && 1906 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1907 RemoveOperand(OpIdx); 1908 else 1909 getOperand(OpIdx).setIsKill(false); 1910 DeadOps.pop_back(); 1911 } 1912 1913 // If not found, this means an alias of one of the operands is killed. Add a 1914 // new implicit operand if required. 1915 if (!Found && AddIfNotFound) { 1916 addOperand(MachineOperand::CreateReg(IncomingReg, 1917 false /*IsDef*/, 1918 true /*IsImp*/, 1919 true /*IsKill*/)); 1920 return true; 1921 } 1922 return Found; 1923 } 1924 1925 void MachineInstr::clearRegisterKills(Register Reg, 1926 const TargetRegisterInfo *RegInfo) { 1927 if (!Register::isPhysicalRegister(Reg)) 1928 RegInfo = nullptr; 1929 for (MachineOperand &MO : operands()) { 1930 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1931 continue; 1932 Register OpReg = MO.getReg(); 1933 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1934 MO.setIsKill(false); 1935 } 1936 } 1937 1938 bool MachineInstr::addRegisterDead(Register Reg, 1939 const TargetRegisterInfo *RegInfo, 1940 bool AddIfNotFound) { 1941 bool isPhysReg = Register::isPhysicalRegister(Reg); 1942 bool hasAliases = isPhysReg && 1943 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1944 bool Found = false; 1945 SmallVector<unsigned,4> DeadOps; 1946 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1947 MachineOperand &MO = getOperand(i); 1948 if (!MO.isReg() || !MO.isDef()) 1949 continue; 1950 Register MOReg = MO.getReg(); 1951 if (!MOReg) 1952 continue; 1953 1954 if (MOReg == Reg) { 1955 MO.setIsDead(); 1956 Found = true; 1957 } else if (hasAliases && MO.isDead() && 1958 Register::isPhysicalRegister(MOReg)) { 1959 // There exists a super-register that's marked dead. 1960 if (RegInfo->isSuperRegister(Reg, MOReg)) 1961 return true; 1962 if (RegInfo->isSubRegister(Reg, MOReg)) 1963 DeadOps.push_back(i); 1964 } 1965 } 1966 1967 // Trim unneeded dead operands. 1968 while (!DeadOps.empty()) { 1969 unsigned OpIdx = DeadOps.back(); 1970 if (getOperand(OpIdx).isImplicit() && 1971 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1972 RemoveOperand(OpIdx); 1973 else 1974 getOperand(OpIdx).setIsDead(false); 1975 DeadOps.pop_back(); 1976 } 1977 1978 // If not found, this means an alias of one of the operands is dead. Add a 1979 // new implicit operand if required. 1980 if (Found || !AddIfNotFound) 1981 return Found; 1982 1983 addOperand(MachineOperand::CreateReg(Reg, 1984 true /*IsDef*/, 1985 true /*IsImp*/, 1986 false /*IsKill*/, 1987 true /*IsDead*/)); 1988 return true; 1989 } 1990 1991 void MachineInstr::clearRegisterDeads(Register Reg) { 1992 for (MachineOperand &MO : operands()) { 1993 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1994 continue; 1995 MO.setIsDead(false); 1996 } 1997 } 1998 1999 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2000 for (MachineOperand &MO : operands()) { 2001 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2002 continue; 2003 MO.setIsUndef(IsUndef); 2004 } 2005 } 2006 2007 void MachineInstr::addRegisterDefined(Register Reg, 2008 const TargetRegisterInfo *RegInfo) { 2009 if (Register::isPhysicalRegister(Reg)) { 2010 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2011 if (MO) 2012 return; 2013 } else { 2014 for (const MachineOperand &MO : operands()) { 2015 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2016 MO.getSubReg() == 0) 2017 return; 2018 } 2019 } 2020 addOperand(MachineOperand::CreateReg(Reg, 2021 true /*IsDef*/, 2022 true /*IsImp*/)); 2023 } 2024 2025 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2026 const TargetRegisterInfo &TRI) { 2027 bool HasRegMask = false; 2028 for (MachineOperand &MO : operands()) { 2029 if (MO.isRegMask()) { 2030 HasRegMask = true; 2031 continue; 2032 } 2033 if (!MO.isReg() || !MO.isDef()) continue; 2034 Register Reg = MO.getReg(); 2035 if (!Reg.isPhysical()) 2036 continue; 2037 // If there are no uses, including partial uses, the def is dead. 2038 if (llvm::none_of(UsedRegs, 2039 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2040 MO.setIsDead(); 2041 } 2042 2043 // This is a call with a register mask operand. 2044 // Mask clobbers are always dead, so add defs for the non-dead defines. 2045 if (HasRegMask) 2046 for (const Register &UsedReg : UsedRegs) 2047 addRegisterDefined(UsedReg, &TRI); 2048 } 2049 2050 unsigned 2051 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2052 // Build up a buffer of hash code components. 2053 SmallVector<size_t, 16> HashComponents; 2054 HashComponents.reserve(MI->getNumOperands() + 1); 2055 HashComponents.push_back(MI->getOpcode()); 2056 for (const MachineOperand &MO : MI->operands()) { 2057 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 2058 continue; // Skip virtual register defs. 2059 2060 HashComponents.push_back(hash_value(MO)); 2061 } 2062 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2063 } 2064 2065 void MachineInstr::emitError(StringRef Msg) const { 2066 // Find the source location cookie. 2067 uint64_t LocCookie = 0; 2068 const MDNode *LocMD = nullptr; 2069 for (unsigned i = getNumOperands(); i != 0; --i) { 2070 if (getOperand(i-1).isMetadata() && 2071 (LocMD = getOperand(i-1).getMetadata()) && 2072 LocMD->getNumOperands() != 0) { 2073 if (const ConstantInt *CI = 2074 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2075 LocCookie = CI->getZExtValue(); 2076 break; 2077 } 2078 } 2079 } 2080 2081 if (const MachineBasicBlock *MBB = getParent()) 2082 if (const MachineFunction *MF = MBB->getParent()) 2083 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2084 report_fatal_error(Msg); 2085 } 2086 2087 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2088 const MCInstrDesc &MCID, bool IsIndirect, 2089 Register Reg, const MDNode *Variable, 2090 const MDNode *Expr) { 2091 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2092 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2093 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2094 "Expected inlined-at fields to agree"); 2095 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2096 if (IsIndirect) 2097 MIB.addImm(0U); 2098 else 2099 MIB.addReg(0U); 2100 return MIB.addMetadata(Variable).addMetadata(Expr); 2101 } 2102 2103 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2104 const MCInstrDesc &MCID, bool IsIndirect, 2105 const MachineOperand &MO, 2106 const MDNode *Variable, const MDNode *Expr) { 2107 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2108 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2109 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2110 "Expected inlined-at fields to agree"); 2111 if (MO.isReg()) 2112 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2113 2114 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2115 if (IsIndirect) 2116 MIB.addImm(0U); 2117 else 2118 MIB.addReg(0U); 2119 return MIB.addMetadata(Variable).addMetadata(Expr); 2120 } 2121 2122 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2123 const MCInstrDesc &MCID, bool IsIndirect, 2124 ArrayRef<MachineOperand> MOs, 2125 const MDNode *Variable, const MDNode *Expr) { 2126 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2127 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2128 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2129 "Expected inlined-at fields to agree"); 2130 if (MCID.Opcode == TargetOpcode::DBG_VALUE) 2131 return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr); 2132 2133 auto MIB = BuildMI(MF, DL, MCID); 2134 MIB.addMetadata(Variable).addMetadata(Expr); 2135 for (const MachineOperand &MO : MOs) 2136 if (MO.isReg()) 2137 MIB.addReg(MO.getReg()); 2138 else 2139 MIB.add(MO); 2140 return MIB; 2141 } 2142 2143 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2144 MachineBasicBlock::iterator I, 2145 const DebugLoc &DL, const MCInstrDesc &MCID, 2146 bool IsIndirect, Register Reg, 2147 const MDNode *Variable, const MDNode *Expr) { 2148 MachineFunction &MF = *BB.getParent(); 2149 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2150 BB.insert(I, MI); 2151 return MachineInstrBuilder(MF, MI); 2152 } 2153 2154 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2155 MachineBasicBlock::iterator I, 2156 const DebugLoc &DL, const MCInstrDesc &MCID, 2157 bool IsIndirect, MachineOperand &MO, 2158 const MDNode *Variable, const MDNode *Expr) { 2159 MachineFunction &MF = *BB.getParent(); 2160 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2161 BB.insert(I, MI); 2162 return MachineInstrBuilder(MF, *MI); 2163 } 2164 2165 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2166 MachineBasicBlock::iterator I, 2167 const DebugLoc &DL, const MCInstrDesc &MCID, 2168 bool IsIndirect, ArrayRef<MachineOperand> MOs, 2169 const MDNode *Variable, const MDNode *Expr) { 2170 MachineFunction &MF = *BB.getParent(); 2171 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr); 2172 BB.insert(I, MI); 2173 return MachineInstrBuilder(MF, *MI); 2174 } 2175 2176 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2177 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2178 static const DIExpression * 2179 computeExprForSpill(const MachineInstr &MI, 2180 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2181 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2182 "Expected inlined-at fields to agree"); 2183 2184 const DIExpression *Expr = MI.getDebugExpression(); 2185 if (MI.isIndirectDebugValue()) { 2186 assert(MI.getDebugOffset().getImm() == 0 && 2187 "DBG_VALUE with nonzero offset"); 2188 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2189 } else if (MI.isDebugValueList()) { 2190 // We will replace the spilled register with a frame index, so 2191 // immediately deref all references to the spilled register. 2192 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2193 for (const MachineOperand *Op : SpilledOperands) { 2194 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2195 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2196 } 2197 } 2198 return Expr; 2199 } 2200 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2201 Register SpillReg) { 2202 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2203 SmallVector<const MachineOperand *> SpillOperands; 2204 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2205 SpillOperands.push_back(&Op); 2206 return computeExprForSpill(MI, SpillOperands); 2207 } 2208 2209 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2210 MachineBasicBlock::iterator I, 2211 const MachineInstr &Orig, 2212 int FrameIndex, Register SpillReg) { 2213 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2214 MachineInstrBuilder NewMI = 2215 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2216 // Non-Variadic Operands: Location, Offset, Variable, Expression 2217 // Variadic Operands: Variable, Expression, Locations... 2218 if (Orig.isNonListDebugValue()) 2219 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2220 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2221 if (Orig.isDebugValueList()) { 2222 for (const MachineOperand &Op : Orig.debug_operands()) 2223 if (Op.isReg() && Op.getReg() == SpillReg) 2224 NewMI.addFrameIndex(FrameIndex); 2225 else 2226 NewMI.add(MachineOperand(Op)); 2227 } 2228 return NewMI; 2229 } 2230 MachineInstr *llvm::buildDbgValueForSpill( 2231 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2232 const MachineInstr &Orig, int FrameIndex, 2233 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2234 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2235 MachineInstrBuilder NewMI = 2236 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2237 // Non-Variadic Operands: Location, Offset, Variable, Expression 2238 // Variadic Operands: Variable, Expression, Locations... 2239 if (Orig.isNonListDebugValue()) 2240 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2241 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2242 if (Orig.isDebugValueList()) { 2243 for (const MachineOperand &Op : Orig.debug_operands()) 2244 if (is_contained(SpilledOperands, &Op)) 2245 NewMI.addFrameIndex(FrameIndex); 2246 else 2247 NewMI.add(MachineOperand(Op)); 2248 } 2249 return NewMI; 2250 } 2251 2252 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2253 Register Reg) { 2254 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2255 if (Orig.isNonListDebugValue()) 2256 Orig.getDebugOffset().ChangeToImmediate(0U); 2257 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2258 Op.ChangeToFrameIndex(FrameIndex); 2259 Orig.getDebugExpressionOp().setMetadata(Expr); 2260 } 2261 2262 void MachineInstr::collectDebugValues( 2263 SmallVectorImpl<MachineInstr *> &DbgValues) { 2264 MachineInstr &MI = *this; 2265 if (!MI.getOperand(0).isReg()) 2266 return; 2267 2268 MachineBasicBlock::iterator DI = MI; ++DI; 2269 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2270 DI != DE; ++DI) { 2271 if (!DI->isDebugValue()) 2272 return; 2273 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2274 DbgValues.push_back(&*DI); 2275 } 2276 } 2277 2278 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2279 // Collect matching debug values. 2280 SmallVector<MachineInstr *, 2> DbgValues; 2281 2282 if (!getOperand(0).isReg()) 2283 return; 2284 2285 Register DefReg = getOperand(0).getReg(); 2286 auto *MRI = getRegInfo(); 2287 for (auto &MO : MRI->use_operands(DefReg)) { 2288 auto *DI = MO.getParent(); 2289 if (!DI->isDebugValue()) 2290 continue; 2291 if (DI->hasDebugOperandForReg(DefReg)) { 2292 DbgValues.push_back(DI); 2293 } 2294 } 2295 2296 // Propagate Reg to debug value instructions. 2297 for (auto *DBI : DbgValues) 2298 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2299 Op.setReg(Reg); 2300 } 2301 2302 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2303 2304 static unsigned getSpillSlotSize(const MMOList &Accesses, 2305 const MachineFrameInfo &MFI) { 2306 unsigned Size = 0; 2307 for (auto A : Accesses) 2308 if (MFI.isSpillSlotObjectIndex( 2309 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2310 ->getFrameIndex())) 2311 Size += A->getSize(); 2312 return Size; 2313 } 2314 2315 Optional<unsigned> 2316 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2317 int FI; 2318 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2319 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2320 if (MFI.isSpillSlotObjectIndex(FI)) 2321 return (*memoperands_begin())->getSize(); 2322 } 2323 return None; 2324 } 2325 2326 Optional<unsigned> 2327 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2328 MMOList Accesses; 2329 if (TII->hasStoreToStackSlot(*this, Accesses)) 2330 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2331 return None; 2332 } 2333 2334 Optional<unsigned> 2335 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2336 int FI; 2337 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2338 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2339 if (MFI.isSpillSlotObjectIndex(FI)) 2340 return (*memoperands_begin())->getSize(); 2341 } 2342 return None; 2343 } 2344 2345 Optional<unsigned> 2346 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2347 MMOList Accesses; 2348 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2349 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2350 return None; 2351 } 2352 2353 unsigned MachineInstr::getDebugInstrNum() { 2354 if (DebugInstrNum == 0) 2355 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2356 return DebugInstrNum; 2357 } 2358 2359 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2360 if (DebugInstrNum == 0) 2361 DebugInstrNum = MF.getNewDebugInstrNum(); 2362 return DebugInstrNum; 2363 } 2364