xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision c9539b89010900499a200cdd6c0265ea5d950875)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSlotTracker.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LowLevelTypeImpl.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <cstring>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65   if (const MachineBasicBlock *MBB = MI.getParent())
66     if (const MachineFunction *MF = MBB->getParent())
67       return MF;
68   return nullptr;
69 }
70 
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72 // it.
73 static void tryToGetTargetInfo(const MachineInstr &MI,
74                                const TargetRegisterInfo *&TRI,
75                                const MachineRegisterInfo *&MRI,
76                                const TargetIntrinsicInfo *&IntrinsicInfo,
77                                const TargetInstrInfo *&TII) {
78 
79   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80     TRI = MF->getSubtarget().getRegisterInfo();
81     MRI = &MF->getRegInfo();
82     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83     TII = MF->getSubtarget().getInstrInfo();
84   }
85 }
86 
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88   if (MCID->ImplicitDefs)
89     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
90            ++ImpDefs)
91       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
92   if (MCID->ImplicitUses)
93     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
94            ++ImpUses)
95       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
96 }
97 
98 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
99 /// implicit operands. It reserves space for the number of operands specified by
100 /// the MCInstrDesc.
101 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
102                            DebugLoc DL, bool NoImp)
103     : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
104   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
105 
106   // Reserve space for the expected number of operands.
107   if (unsigned NumOps = MCID->getNumOperands() +
108     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
109     CapOperands = OperandCapacity::get(NumOps);
110     Operands = MF.allocateOperandArray(CapOperands);
111   }
112 
113   if (!NoImp)
114     addImplicitDefUseOperands(MF);
115 }
116 
117 /// MachineInstr ctor - Copies MachineInstr arg exactly.
118 /// Does not copy the number from debug instruction numbering, to preserve
119 /// uniqueness.
120 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
121     : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
122       DebugInstrNum(0) {
123   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
124 
125   CapOperands = OperandCapacity::get(MI.getNumOperands());
126   Operands = MF.allocateOperandArray(CapOperands);
127 
128   // Copy operands.
129   for (const MachineOperand &MO : MI.operands())
130     addOperand(MF, MO);
131 
132   // Copy all the sensible flags.
133   setFlags(MI.Flags);
134 }
135 
136 void MachineInstr::moveBefore(MachineInstr *MovePos) {
137   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
138 }
139 
140 /// getRegInfo - If this instruction is embedded into a MachineFunction,
141 /// return the MachineRegisterInfo object for the current function, otherwise
142 /// return null.
143 MachineRegisterInfo *MachineInstr::getRegInfo() {
144   if (MachineBasicBlock *MBB = getParent())
145     return &MBB->getParent()->getRegInfo();
146   return nullptr;
147 }
148 
149 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
150   for (MachineOperand &MO : operands())
151     if (MO.isReg())
152       MRI.removeRegOperandFromUseList(&MO);
153 }
154 
155 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
156   for (MachineOperand &MO : operands())
157     if (MO.isReg())
158       MRI.addRegOperandToUseList(&MO);
159 }
160 
161 void MachineInstr::addOperand(const MachineOperand &Op) {
162   MachineBasicBlock *MBB = getParent();
163   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
164   MachineFunction *MF = MBB->getParent();
165   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
166   addOperand(*MF, Op);
167 }
168 
169 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
170 /// ranges. If MRI is non-null also update use-def chains.
171 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
172                          unsigned NumOps, MachineRegisterInfo *MRI) {
173   if (MRI)
174     return MRI->moveOperands(Dst, Src, NumOps);
175   // MachineOperand is a trivially copyable type so we can just use memmove.
176   assert(Dst && Src && "Unknown operands");
177   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
178 }
179 
180 /// addOperand - Add the specified operand to the instruction.  If it is an
181 /// implicit operand, it is added to the end of the operand list.  If it is
182 /// an explicit operand it is added at the end of the explicit operand list
183 /// (before the first implicit operand).
184 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
185   assert(MCID && "Cannot add operands before providing an instr descriptor");
186 
187   // Check if we're adding one of our existing operands.
188   if (&Op >= Operands && &Op < Operands + NumOperands) {
189     // This is unusual: MI->addOperand(MI->getOperand(i)).
190     // If adding Op requires reallocating or moving existing operands around,
191     // the Op reference could go stale. Support it by copying Op.
192     MachineOperand CopyOp(Op);
193     return addOperand(MF, CopyOp);
194   }
195 
196   // Find the insert location for the new operand.  Implicit registers go at
197   // the end, everything else goes before the implicit regs.
198   //
199   // FIXME: Allow mixed explicit and implicit operands on inline asm.
200   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
201   // implicit-defs, but they must not be moved around.  See the FIXME in
202   // InstrEmitter.cpp.
203   unsigned OpNo = getNumOperands();
204   bool isImpReg = Op.isReg() && Op.isImplicit();
205   if (!isImpReg && !isInlineAsm()) {
206     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
207       --OpNo;
208       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
209     }
210   }
211 
212   // OpNo now points as the desired insertion point.  Unless this is a variadic
213   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
214   // RegMask operands go between the explicit and implicit operands.
215   assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
216           Op.isValidExcessOperand()) &&
217          "Trying to add an operand to a machine instr that is already done!");
218 
219   MachineRegisterInfo *MRI = getRegInfo();
220 
221   // Determine if the Operands array needs to be reallocated.
222   // Save the old capacity and operand array.
223   OperandCapacity OldCap = CapOperands;
224   MachineOperand *OldOperands = Operands;
225   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
226     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
227     Operands = MF.allocateOperandArray(CapOperands);
228     // Move the operands before the insertion point.
229     if (OpNo)
230       moveOperands(Operands, OldOperands, OpNo, MRI);
231   }
232 
233   // Move the operands following the insertion point.
234   if (OpNo != NumOperands)
235     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
236                  MRI);
237   ++NumOperands;
238 
239   // Deallocate the old operand array.
240   if (OldOperands != Operands && OldOperands)
241     MF.deallocateOperandArray(OldCap, OldOperands);
242 
243   // Copy Op into place. It still needs to be inserted into the MRI use lists.
244   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
245   NewMO->ParentMI = this;
246 
247   // When adding a register operand, tell MRI about it.
248   if (NewMO->isReg()) {
249     // Ensure isOnRegUseList() returns false, regardless of Op's status.
250     NewMO->Contents.Reg.Prev = nullptr;
251     // Ignore existing ties. This is not a property that can be copied.
252     NewMO->TiedTo = 0;
253     // Add the new operand to MRI, but only for instructions in an MBB.
254     if (MRI)
255       MRI->addRegOperandToUseList(NewMO);
256     // The MCID operand information isn't accurate until we start adding
257     // explicit operands. The implicit operands are added first, then the
258     // explicits are inserted before them.
259     if (!isImpReg) {
260       // Tie uses to defs as indicated in MCInstrDesc.
261       if (NewMO->isUse()) {
262         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
263         if (DefIdx != -1)
264           tieOperands(DefIdx, OpNo);
265       }
266       // If the register operand is flagged as early, mark the operand as such.
267       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
268         NewMO->setIsEarlyClobber(true);
269     }
270     // Ensure debug instructions set debug flag on register uses.
271     if (NewMO->isUse() && isDebugInstr())
272       NewMO->setIsDebug();
273   }
274 }
275 
276 void MachineInstr::removeOperand(unsigned OpNo) {
277   assert(OpNo < getNumOperands() && "Invalid operand number");
278   untieRegOperand(OpNo);
279 
280 #ifndef NDEBUG
281   // Moving tied operands would break the ties.
282   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
283     if (Operands[i].isReg())
284       assert(!Operands[i].isTied() && "Cannot move tied operands");
285 #endif
286 
287   MachineRegisterInfo *MRI = getRegInfo();
288   if (MRI && Operands[OpNo].isReg())
289     MRI->removeRegOperandFromUseList(Operands + OpNo);
290 
291   // Don't call the MachineOperand destructor. A lot of this code depends on
292   // MachineOperand having a trivial destructor anyway, and adding a call here
293   // wouldn't make it 'destructor-correct'.
294 
295   if (unsigned N = NumOperands - 1 - OpNo)
296     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
297   --NumOperands;
298 }
299 
300 void MachineInstr::setExtraInfo(MachineFunction &MF,
301                                 ArrayRef<MachineMemOperand *> MMOs,
302                                 MCSymbol *PreInstrSymbol,
303                                 MCSymbol *PostInstrSymbol,
304                                 MDNode *HeapAllocMarker) {
305   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
306   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
307   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
308   int NumPointers =
309       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
310 
311   // Drop all extra info if there is none.
312   if (NumPointers <= 0) {
313     Info.clear();
314     return;
315   }
316 
317   // If more than one pointer, then store out of line. Store heap alloc markers
318   // out of line because PointerSumType cannot hold more than 4 tag types with
319   // 32-bit pointers.
320   // FIXME: Maybe we should make the symbols in the extra info mutable?
321   else if (NumPointers > 1 || HasHeapAllocMarker) {
322     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
323         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
324     return;
325   }
326 
327   // Otherwise store the single pointer inline.
328   if (HasPreInstrSymbol)
329     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
330   else if (HasPostInstrSymbol)
331     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
332   else
333     Info.set<EIIK_MMO>(MMOs[0]);
334 }
335 
336 void MachineInstr::dropMemRefs(MachineFunction &MF) {
337   if (memoperands_empty())
338     return;
339 
340   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
341                getHeapAllocMarker());
342 }
343 
344 void MachineInstr::setMemRefs(MachineFunction &MF,
345                               ArrayRef<MachineMemOperand *> MMOs) {
346   if (MMOs.empty()) {
347     dropMemRefs(MF);
348     return;
349   }
350 
351   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
352                getHeapAllocMarker());
353 }
354 
355 void MachineInstr::addMemOperand(MachineFunction &MF,
356                                  MachineMemOperand *MO) {
357   SmallVector<MachineMemOperand *, 2> MMOs;
358   MMOs.append(memoperands_begin(), memoperands_end());
359   MMOs.push_back(MO);
360   setMemRefs(MF, MMOs);
361 }
362 
363 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
364   if (this == &MI)
365     // Nothing to do for a self-clone!
366     return;
367 
368   assert(&MF == MI.getMF() &&
369          "Invalid machine functions when cloning memory refrences!");
370   // See if we can just steal the extra info already allocated for the
371   // instruction. We can do this whenever the pre- and post-instruction symbols
372   // are the same (including null).
373   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
374       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
375       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
376     Info = MI.Info;
377     return;
378   }
379 
380   // Otherwise, fall back on a copy-based clone.
381   setMemRefs(MF, MI.memoperands());
382 }
383 
384 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
385 /// identical.
386 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
387                              ArrayRef<MachineMemOperand *> RHS) {
388   if (LHS.size() != RHS.size())
389     return false;
390 
391   auto LHSPointees = make_pointee_range(LHS);
392   auto RHSPointees = make_pointee_range(RHS);
393   return std::equal(LHSPointees.begin(), LHSPointees.end(),
394                     RHSPointees.begin());
395 }
396 
397 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
398                                       ArrayRef<const MachineInstr *> MIs) {
399   // Try handling easy numbers of MIs with simpler mechanisms.
400   if (MIs.empty()) {
401     dropMemRefs(MF);
402     return;
403   }
404   if (MIs.size() == 1) {
405     cloneMemRefs(MF, *MIs[0]);
406     return;
407   }
408   // Because an empty memoperands list provides *no* information and must be
409   // handled conservatively (assuming the instruction can do anything), the only
410   // way to merge with it is to drop all other memoperands.
411   if (MIs[0]->memoperands_empty()) {
412     dropMemRefs(MF);
413     return;
414   }
415 
416   // Handle the general case.
417   SmallVector<MachineMemOperand *, 2> MergedMMOs;
418   // Start with the first instruction.
419   assert(&MF == MIs[0]->getMF() &&
420          "Invalid machine functions when cloning memory references!");
421   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
422   // Now walk all the other instructions and accumulate any different MMOs.
423   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
424     assert(&MF == MI.getMF() &&
425            "Invalid machine functions when cloning memory references!");
426 
427     // Skip MIs with identical operands to the first. This is a somewhat
428     // arbitrary hack but will catch common cases without being quadratic.
429     // TODO: We could fully implement merge semantics here if needed.
430     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
431       continue;
432 
433     // Because an empty memoperands list provides *no* information and must be
434     // handled conservatively (assuming the instruction can do anything), the
435     // only way to merge with it is to drop all other memoperands.
436     if (MI.memoperands_empty()) {
437       dropMemRefs(MF);
438       return;
439     }
440 
441     // Otherwise accumulate these into our temporary buffer of the merged state.
442     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
443   }
444 
445   setMemRefs(MF, MergedMMOs);
446 }
447 
448 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
449   // Do nothing if old and new symbols are the same.
450   if (Symbol == getPreInstrSymbol())
451     return;
452 
453   // If there was only one symbol and we're removing it, just clear info.
454   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
455     Info.clear();
456     return;
457   }
458 
459   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
460                getHeapAllocMarker());
461 }
462 
463 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
464   // Do nothing if old and new symbols are the same.
465   if (Symbol == getPostInstrSymbol())
466     return;
467 
468   // If there was only one symbol and we're removing it, just clear info.
469   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
470     Info.clear();
471     return;
472   }
473 
474   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
475                getHeapAllocMarker());
476 }
477 
478 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
479   // Do nothing if old and new symbols are the same.
480   if (Marker == getHeapAllocMarker())
481     return;
482 
483   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
484                Marker);
485 }
486 
487 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
488                                      const MachineInstr &MI) {
489   if (this == &MI)
490     // Nothing to do for a self-clone!
491     return;
492 
493   assert(&MF == MI.getMF() &&
494          "Invalid machine functions when cloning instruction symbols!");
495 
496   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
497   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
498   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
499 }
500 
501 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
502   // For now, the just return the union of the flags. If the flags get more
503   // complicated over time, we might need more logic here.
504   return getFlags() | Other.getFlags();
505 }
506 
507 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
508   uint16_t MIFlags = 0;
509   // Copy the wrapping flags.
510   if (const OverflowingBinaryOperator *OB =
511           dyn_cast<OverflowingBinaryOperator>(&I)) {
512     if (OB->hasNoSignedWrap())
513       MIFlags |= MachineInstr::MIFlag::NoSWrap;
514     if (OB->hasNoUnsignedWrap())
515       MIFlags |= MachineInstr::MIFlag::NoUWrap;
516   }
517 
518   // Copy the exact flag.
519   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
520     if (PE->isExact())
521       MIFlags |= MachineInstr::MIFlag::IsExact;
522 
523   // Copy the fast-math flags.
524   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
525     const FastMathFlags Flags = FP->getFastMathFlags();
526     if (Flags.noNaNs())
527       MIFlags |= MachineInstr::MIFlag::FmNoNans;
528     if (Flags.noInfs())
529       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
530     if (Flags.noSignedZeros())
531       MIFlags |= MachineInstr::MIFlag::FmNsz;
532     if (Flags.allowReciprocal())
533       MIFlags |= MachineInstr::MIFlag::FmArcp;
534     if (Flags.allowContract())
535       MIFlags |= MachineInstr::MIFlag::FmContract;
536     if (Flags.approxFunc())
537       MIFlags |= MachineInstr::MIFlag::FmAfn;
538     if (Flags.allowReassoc())
539       MIFlags |= MachineInstr::MIFlag::FmReassoc;
540   }
541 
542   return MIFlags;
543 }
544 
545 void MachineInstr::copyIRFlags(const Instruction &I) {
546   Flags = copyFlagsFromInstruction(I);
547 }
548 
549 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
550   assert(!isBundledWithPred() && "Must be called on bundle header");
551   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
552     if (MII->getDesc().getFlags() & Mask) {
553       if (Type == AnyInBundle)
554         return true;
555     } else {
556       if (Type == AllInBundle && !MII->isBundle())
557         return false;
558     }
559     // This was the last instruction in the bundle.
560     if (!MII->isBundledWithSucc())
561       return Type == AllInBundle;
562   }
563 }
564 
565 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
566                                  MICheckType Check) const {
567   // If opcodes or number of operands are not the same then the two
568   // instructions are obviously not identical.
569   if (Other.getOpcode() != getOpcode() ||
570       Other.getNumOperands() != getNumOperands())
571     return false;
572 
573   if (isBundle()) {
574     // We have passed the test above that both instructions have the same
575     // opcode, so we know that both instructions are bundles here. Let's compare
576     // MIs inside the bundle.
577     assert(Other.isBundle() && "Expected that both instructions are bundles.");
578     MachineBasicBlock::const_instr_iterator I1 = getIterator();
579     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
580     // Loop until we analysed the last intruction inside at least one of the
581     // bundles.
582     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
583       ++I1;
584       ++I2;
585       if (!I1->isIdenticalTo(*I2, Check))
586         return false;
587     }
588     // If we've reached the end of just one of the two bundles, but not both,
589     // the instructions are not identical.
590     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
591       return false;
592   }
593 
594   // Check operands to make sure they match.
595   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
596     const MachineOperand &MO = getOperand(i);
597     const MachineOperand &OMO = Other.getOperand(i);
598     if (!MO.isReg()) {
599       if (!MO.isIdenticalTo(OMO))
600         return false;
601       continue;
602     }
603 
604     // Clients may or may not want to ignore defs when testing for equality.
605     // For example, machine CSE pass only cares about finding common
606     // subexpressions, so it's safe to ignore virtual register defs.
607     if (MO.isDef()) {
608       if (Check == IgnoreDefs)
609         continue;
610       else if (Check == IgnoreVRegDefs) {
611         if (!Register::isVirtualRegister(MO.getReg()) ||
612             !Register::isVirtualRegister(OMO.getReg()))
613           if (!MO.isIdenticalTo(OMO))
614             return false;
615       } else {
616         if (!MO.isIdenticalTo(OMO))
617           return false;
618         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
619           return false;
620       }
621     } else {
622       if (!MO.isIdenticalTo(OMO))
623         return false;
624       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
625         return false;
626     }
627   }
628   // If DebugLoc does not match then two debug instructions are not identical.
629   if (isDebugInstr())
630     if (getDebugLoc() && Other.getDebugLoc() &&
631         getDebugLoc() != Other.getDebugLoc())
632       return false;
633   return true;
634 }
635 
636 const MachineFunction *MachineInstr::getMF() const {
637   return getParent()->getParent();
638 }
639 
640 MachineInstr *MachineInstr::removeFromParent() {
641   assert(getParent() && "Not embedded in a basic block!");
642   return getParent()->remove(this);
643 }
644 
645 MachineInstr *MachineInstr::removeFromBundle() {
646   assert(getParent() && "Not embedded in a basic block!");
647   return getParent()->remove_instr(this);
648 }
649 
650 void MachineInstr::eraseFromParent() {
651   assert(getParent() && "Not embedded in a basic block!");
652   getParent()->erase(this);
653 }
654 
655 void MachineInstr::eraseFromBundle() {
656   assert(getParent() && "Not embedded in a basic block!");
657   getParent()->erase_instr(this);
658 }
659 
660 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
661   if (!isCall(Type))
662     return false;
663   switch (getOpcode()) {
664   case TargetOpcode::PATCHPOINT:
665   case TargetOpcode::STACKMAP:
666   case TargetOpcode::STATEPOINT:
667   case TargetOpcode::FENTRY_CALL:
668     return false;
669   }
670   return true;
671 }
672 
673 bool MachineInstr::shouldUpdateCallSiteInfo() const {
674   if (isBundle())
675     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
676   return isCandidateForCallSiteEntry();
677 }
678 
679 unsigned MachineInstr::getNumExplicitOperands() const {
680   unsigned NumOperands = MCID->getNumOperands();
681   if (!MCID->isVariadic())
682     return NumOperands;
683 
684   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
685     const MachineOperand &MO = getOperand(I);
686     // The operands must always be in the following order:
687     // - explicit reg defs,
688     // - other explicit operands (reg uses, immediates, etc.),
689     // - implicit reg defs
690     // - implicit reg uses
691     if (MO.isReg() && MO.isImplicit())
692       break;
693     ++NumOperands;
694   }
695   return NumOperands;
696 }
697 
698 unsigned MachineInstr::getNumExplicitDefs() const {
699   unsigned NumDefs = MCID->getNumDefs();
700   if (!MCID->isVariadic())
701     return NumDefs;
702 
703   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
704     const MachineOperand &MO = getOperand(I);
705     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
706       break;
707     ++NumDefs;
708   }
709   return NumDefs;
710 }
711 
712 void MachineInstr::bundleWithPred() {
713   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
714   setFlag(BundledPred);
715   MachineBasicBlock::instr_iterator Pred = getIterator();
716   --Pred;
717   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
718   Pred->setFlag(BundledSucc);
719 }
720 
721 void MachineInstr::bundleWithSucc() {
722   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
723   setFlag(BundledSucc);
724   MachineBasicBlock::instr_iterator Succ = getIterator();
725   ++Succ;
726   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
727   Succ->setFlag(BundledPred);
728 }
729 
730 void MachineInstr::unbundleFromPred() {
731   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
732   clearFlag(BundledPred);
733   MachineBasicBlock::instr_iterator Pred = getIterator();
734   --Pred;
735   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
736   Pred->clearFlag(BundledSucc);
737 }
738 
739 void MachineInstr::unbundleFromSucc() {
740   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
741   clearFlag(BundledSucc);
742   MachineBasicBlock::instr_iterator Succ = getIterator();
743   ++Succ;
744   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
745   Succ->clearFlag(BundledPred);
746 }
747 
748 bool MachineInstr::isStackAligningInlineAsm() const {
749   if (isInlineAsm()) {
750     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
751     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
752       return true;
753   }
754   return false;
755 }
756 
757 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
758   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
759   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
760   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
761 }
762 
763 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
764                                        unsigned *GroupNo) const {
765   assert(isInlineAsm() && "Expected an inline asm instruction");
766   assert(OpIdx < getNumOperands() && "OpIdx out of range");
767 
768   // Ignore queries about the initial operands.
769   if (OpIdx < InlineAsm::MIOp_FirstOperand)
770     return -1;
771 
772   unsigned Group = 0;
773   unsigned NumOps;
774   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
775        i += NumOps) {
776     const MachineOperand &FlagMO = getOperand(i);
777     // If we reach the implicit register operands, stop looking.
778     if (!FlagMO.isImm())
779       return -1;
780     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
781     if (i + NumOps > OpIdx) {
782       if (GroupNo)
783         *GroupNo = Group;
784       return i;
785     }
786     ++Group;
787   }
788   return -1;
789 }
790 
791 const DILabel *MachineInstr::getDebugLabel() const {
792   assert(isDebugLabel() && "not a DBG_LABEL");
793   return cast<DILabel>(getOperand(0).getMetadata());
794 }
795 
796 const MachineOperand &MachineInstr::getDebugVariableOp() const {
797   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
798   unsigned VariableOp = isDebugValueList() ? 0 : 2;
799   return getOperand(VariableOp);
800 }
801 
802 MachineOperand &MachineInstr::getDebugVariableOp() {
803   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
804   unsigned VariableOp = isDebugValueList() ? 0 : 2;
805   return getOperand(VariableOp);
806 }
807 
808 const DILocalVariable *MachineInstr::getDebugVariable() const {
809   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
810 }
811 
812 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
813   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
814   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
815   return getOperand(ExpressionOp);
816 }
817 
818 MachineOperand &MachineInstr::getDebugExpressionOp() {
819   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
820   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
821   return getOperand(ExpressionOp);
822 }
823 
824 const DIExpression *MachineInstr::getDebugExpression() const {
825   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
826 }
827 
828 bool MachineInstr::isDebugEntryValue() const {
829   return isDebugValue() && getDebugExpression()->isEntryValue();
830 }
831 
832 const TargetRegisterClass*
833 MachineInstr::getRegClassConstraint(unsigned OpIdx,
834                                     const TargetInstrInfo *TII,
835                                     const TargetRegisterInfo *TRI) const {
836   assert(getParent() && "Can't have an MBB reference here!");
837   assert(getMF() && "Can't have an MF reference here!");
838   const MachineFunction &MF = *getMF();
839 
840   // Most opcodes have fixed constraints in their MCInstrDesc.
841   if (!isInlineAsm())
842     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
843 
844   if (!getOperand(OpIdx).isReg())
845     return nullptr;
846 
847   // For tied uses on inline asm, get the constraint from the def.
848   unsigned DefIdx;
849   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
850     OpIdx = DefIdx;
851 
852   // Inline asm stores register class constraints in the flag word.
853   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
854   if (FlagIdx < 0)
855     return nullptr;
856 
857   unsigned Flag = getOperand(FlagIdx).getImm();
858   unsigned RCID;
859   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
860        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
861        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
862       InlineAsm::hasRegClassConstraint(Flag, RCID))
863     return TRI->getRegClass(RCID);
864 
865   // Assume that all registers in a memory operand are pointers.
866   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
867     return TRI->getPointerRegClass(MF);
868 
869   return nullptr;
870 }
871 
872 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
873     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
874     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
875   // Check every operands inside the bundle if we have
876   // been asked to.
877   if (ExploreBundle)
878     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
879          ++OpndIt)
880       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
881           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
882   else
883     // Otherwise, just check the current operands.
884     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
885       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
886   return CurRC;
887 }
888 
889 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
890     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
891     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
892   assert(CurRC && "Invalid initial register class");
893   // Check if Reg is constrained by some of its use/def from MI.
894   const MachineOperand &MO = getOperand(OpIdx);
895   if (!MO.isReg() || MO.getReg() != Reg)
896     return CurRC;
897   // If yes, accumulate the constraints through the operand.
898   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
899 }
900 
901 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
902     unsigned OpIdx, const TargetRegisterClass *CurRC,
903     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
904   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
905   const MachineOperand &MO = getOperand(OpIdx);
906   assert(MO.isReg() &&
907          "Cannot get register constraints for non-register operand");
908   assert(CurRC && "Invalid initial register class");
909   if (unsigned SubIdx = MO.getSubReg()) {
910     if (OpRC)
911       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
912     else
913       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
914   } else if (OpRC)
915     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
916   return CurRC;
917 }
918 
919 /// Return the number of instructions inside the MI bundle, not counting the
920 /// header instruction.
921 unsigned MachineInstr::getBundleSize() const {
922   MachineBasicBlock::const_instr_iterator I = getIterator();
923   unsigned Size = 0;
924   while (I->isBundledWithSucc()) {
925     ++Size;
926     ++I;
927   }
928   return Size;
929 }
930 
931 /// Returns true if the MachineInstr has an implicit-use operand of exactly
932 /// the given register (not considering sub/super-registers).
933 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
934   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
935     const MachineOperand &MO = getOperand(i);
936     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
937       return true;
938   }
939   return false;
940 }
941 
942 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
943 /// the specific register or -1 if it is not found. It further tightens
944 /// the search criteria to a use that kills the register if isKill is true.
945 int MachineInstr::findRegisterUseOperandIdx(
946     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
947   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
948     const MachineOperand &MO = getOperand(i);
949     if (!MO.isReg() || !MO.isUse())
950       continue;
951     Register MOReg = MO.getReg();
952     if (!MOReg)
953       continue;
954     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
955       if (!isKill || MO.isKill())
956         return i;
957   }
958   return -1;
959 }
960 
961 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
962 /// indicating if this instruction reads or writes Reg. This also considers
963 /// partial defines.
964 std::pair<bool,bool>
965 MachineInstr::readsWritesVirtualRegister(Register Reg,
966                                          SmallVectorImpl<unsigned> *Ops) const {
967   bool PartDef = false; // Partial redefine.
968   bool FullDef = false; // Full define.
969   bool Use = false;
970 
971   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
972     const MachineOperand &MO = getOperand(i);
973     if (!MO.isReg() || MO.getReg() != Reg)
974       continue;
975     if (Ops)
976       Ops->push_back(i);
977     if (MO.isUse())
978       Use |= !MO.isUndef();
979     else if (MO.getSubReg() && !MO.isUndef())
980       // A partial def undef doesn't count as reading the register.
981       PartDef = true;
982     else
983       FullDef = true;
984   }
985   // A partial redefine uses Reg unless there is also a full define.
986   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
987 }
988 
989 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
990 /// the specified register or -1 if it is not found. If isDead is true, defs
991 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
992 /// also checks if there is a def of a super-register.
993 int
994 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
995                                         const TargetRegisterInfo *TRI) const {
996   bool isPhys = Register::isPhysicalRegister(Reg);
997   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
998     const MachineOperand &MO = getOperand(i);
999     // Accept regmask operands when Overlap is set.
1000     // Ignore them when looking for a specific def operand (Overlap == false).
1001     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1002       return i;
1003     if (!MO.isReg() || !MO.isDef())
1004       continue;
1005     Register MOReg = MO.getReg();
1006     bool Found = (MOReg == Reg);
1007     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1008       if (Overlap)
1009         Found = TRI->regsOverlap(MOReg, Reg);
1010       else
1011         Found = TRI->isSubRegister(MOReg, Reg);
1012     }
1013     if (Found && (!isDead || MO.isDead()))
1014       return i;
1015   }
1016   return -1;
1017 }
1018 
1019 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1020 /// operand list that is used to represent the predicate. It returns -1 if
1021 /// none is found.
1022 int MachineInstr::findFirstPredOperandIdx() const {
1023   // Don't call MCID.findFirstPredOperandIdx() because this variant
1024   // is sometimes called on an instruction that's not yet complete, and
1025   // so the number of operands is less than the MCID indicates. In
1026   // particular, the PTX target does this.
1027   const MCInstrDesc &MCID = getDesc();
1028   if (MCID.isPredicable()) {
1029     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1030       if (MCID.OpInfo[i].isPredicate())
1031         return i;
1032   }
1033 
1034   return -1;
1035 }
1036 
1037 // MachineOperand::TiedTo is 4 bits wide.
1038 const unsigned TiedMax = 15;
1039 
1040 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1041 ///
1042 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1043 /// field. TiedTo can have these values:
1044 ///
1045 /// 0:              Operand is not tied to anything.
1046 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1047 /// TiedMax:        Tied to an operand >= TiedMax-1.
1048 ///
1049 /// The tied def must be one of the first TiedMax operands on a normal
1050 /// instruction. INLINEASM instructions allow more tied defs.
1051 ///
1052 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1053   MachineOperand &DefMO = getOperand(DefIdx);
1054   MachineOperand &UseMO = getOperand(UseIdx);
1055   assert(DefMO.isDef() && "DefIdx must be a def operand");
1056   assert(UseMO.isUse() && "UseIdx must be a use operand");
1057   assert(!DefMO.isTied() && "Def is already tied to another use");
1058   assert(!UseMO.isTied() && "Use is already tied to another def");
1059 
1060   if (DefIdx < TiedMax)
1061     UseMO.TiedTo = DefIdx + 1;
1062   else {
1063     // Inline asm can use the group descriptors to find tied operands,
1064     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1065     // but on normal instruction, the tied def must be within the first TiedMax
1066     // operands.
1067     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1068            "DefIdx out of range");
1069     UseMO.TiedTo = TiedMax;
1070   }
1071 
1072   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1073   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1074 }
1075 
1076 /// Given the index of a tied register operand, find the operand it is tied to.
1077 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1078 /// which must exist.
1079 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1080   const MachineOperand &MO = getOperand(OpIdx);
1081   assert(MO.isTied() && "Operand isn't tied");
1082 
1083   // Normally TiedTo is in range.
1084   if (MO.TiedTo < TiedMax)
1085     return MO.TiedTo - 1;
1086 
1087   // Uses on normal instructions can be out of range.
1088   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1089     // Normal tied defs must be in the 0..TiedMax-1 range.
1090     if (MO.isUse())
1091       return TiedMax - 1;
1092     // MO is a def. Search for the tied use.
1093     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1094       const MachineOperand &UseMO = getOperand(i);
1095       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1096         return i;
1097     }
1098     llvm_unreachable("Can't find tied use");
1099   }
1100 
1101   if (getOpcode() == TargetOpcode::STATEPOINT) {
1102     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1103     // on registers.
1104     StatepointOpers SO(this);
1105     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1106     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1107     unsigned NumDefs = getNumDefs();
1108     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1109       while (!getOperand(CurUseIdx).isReg())
1110         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1111       if (OpIdx == CurDefIdx)
1112         return CurUseIdx;
1113       if (OpIdx == CurUseIdx)
1114         return CurDefIdx;
1115       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1116     }
1117     llvm_unreachable("Can't find tied use");
1118   }
1119 
1120   // Now deal with inline asm by parsing the operand group descriptor flags.
1121   // Find the beginning of each operand group.
1122   SmallVector<unsigned, 8> GroupIdx;
1123   unsigned OpIdxGroup = ~0u;
1124   unsigned NumOps;
1125   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1126        i += NumOps) {
1127     const MachineOperand &FlagMO = getOperand(i);
1128     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1129     unsigned CurGroup = GroupIdx.size();
1130     GroupIdx.push_back(i);
1131     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1132     // OpIdx belongs to this operand group.
1133     if (OpIdx > i && OpIdx < i + NumOps)
1134       OpIdxGroup = CurGroup;
1135     unsigned TiedGroup;
1136     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1137       continue;
1138     // Operands in this group are tied to operands in TiedGroup which must be
1139     // earlier. Find the number of operands between the two groups.
1140     unsigned Delta = i - GroupIdx[TiedGroup];
1141 
1142     // OpIdx is a use tied to TiedGroup.
1143     if (OpIdxGroup == CurGroup)
1144       return OpIdx - Delta;
1145 
1146     // OpIdx is a def tied to this use group.
1147     if (OpIdxGroup == TiedGroup)
1148       return OpIdx + Delta;
1149   }
1150   llvm_unreachable("Invalid tied operand on inline asm");
1151 }
1152 
1153 /// clearKillInfo - Clears kill flags on all operands.
1154 ///
1155 void MachineInstr::clearKillInfo() {
1156   for (MachineOperand &MO : operands()) {
1157     if (MO.isReg() && MO.isUse())
1158       MO.setIsKill(false);
1159   }
1160 }
1161 
1162 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1163                                       unsigned SubIdx,
1164                                       const TargetRegisterInfo &RegInfo) {
1165   if (Register::isPhysicalRegister(ToReg)) {
1166     if (SubIdx)
1167       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1168     for (MachineOperand &MO : operands()) {
1169       if (!MO.isReg() || MO.getReg() != FromReg)
1170         continue;
1171       MO.substPhysReg(ToReg, RegInfo);
1172     }
1173   } else {
1174     for (MachineOperand &MO : operands()) {
1175       if (!MO.isReg() || MO.getReg() != FromReg)
1176         continue;
1177       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1178     }
1179   }
1180 }
1181 
1182 /// isSafeToMove - Return true if it is safe to move this instruction. If
1183 /// SawStore is set to true, it means that there is a store (or call) between
1184 /// the instruction's location and its intended destination.
1185 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1186   // Ignore stuff that we obviously can't move.
1187   //
1188   // Treat volatile loads as stores. This is not strictly necessary for
1189   // volatiles, but it is required for atomic loads. It is not allowed to move
1190   // a load across an atomic load with Ordering > Monotonic.
1191   if (mayStore() || isCall() || isPHI() ||
1192       (mayLoad() && hasOrderedMemoryRef())) {
1193     SawStore = true;
1194     return false;
1195   }
1196 
1197   if (isPosition() || isDebugInstr() || isTerminator() ||
1198       mayRaiseFPException() || hasUnmodeledSideEffects())
1199     return false;
1200 
1201   // See if this instruction does a load.  If so, we have to guarantee that the
1202   // loaded value doesn't change between the load and the its intended
1203   // destination. The check for isInvariantLoad gives the target the chance to
1204   // classify the load as always returning a constant, e.g. a constant pool
1205   // load.
1206   if (mayLoad() && !isDereferenceableInvariantLoad())
1207     // Otherwise, this is a real load.  If there is a store between the load and
1208     // end of block, we can't move it.
1209     return !SawStore;
1210 
1211   return true;
1212 }
1213 
1214 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1215                                  bool UseTBAA, const MachineMemOperand *MMOa,
1216                                  const MachineMemOperand *MMOb) {
1217   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1218   // operates with MachineMemOperand offset with some important assumptions:
1219   //   - LLVM fundamentally assumes flat address spaces.
1220   //   - MachineOperand offset can *only* result from legalization and cannot
1221   //     affect queries other than the trivial case of overlap checking.
1222   //   - These offsets never wrap and never step outside of allocated objects.
1223   //   - There should never be any negative offsets here.
1224   //
1225   // FIXME: Modify API to hide this math from "user"
1226   // Even before we go to AA we can reason locally about some memory objects. It
1227   // can save compile time, and possibly catch some corner cases not currently
1228   // covered.
1229 
1230   int64_t OffsetA = MMOa->getOffset();
1231   int64_t OffsetB = MMOb->getOffset();
1232   int64_t MinOffset = std::min(OffsetA, OffsetB);
1233 
1234   uint64_t WidthA = MMOa->getSize();
1235   uint64_t WidthB = MMOb->getSize();
1236   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1237   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1238 
1239   const Value *ValA = MMOa->getValue();
1240   const Value *ValB = MMOb->getValue();
1241   bool SameVal = (ValA && ValB && (ValA == ValB));
1242   if (!SameVal) {
1243     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1244     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1245     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1246       return false;
1247     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1248       return false;
1249     if (PSVa && PSVb && (PSVa == PSVb))
1250       SameVal = true;
1251   }
1252 
1253   if (SameVal) {
1254     if (!KnownWidthA || !KnownWidthB)
1255       return true;
1256     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1257     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1258     return (MinOffset + LowWidth > MaxOffset);
1259   }
1260 
1261   if (!AA)
1262     return true;
1263 
1264   if (!ValA || !ValB)
1265     return true;
1266 
1267   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1268   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1269 
1270   int64_t OverlapA =
1271       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1272   int64_t OverlapB =
1273       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1274 
1275   return !AA->isNoAlias(
1276       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1277       MemoryLocation(ValB, OverlapB,
1278                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1279 }
1280 
1281 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1282                             bool UseTBAA) const {
1283   const MachineFunction *MF = getMF();
1284   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1285   const MachineFrameInfo &MFI = MF->getFrameInfo();
1286 
1287   // Exclude call instruction which may alter the memory but can not be handled
1288   // by this function.
1289   if (isCall() || Other.isCall())
1290     return true;
1291 
1292   // If neither instruction stores to memory, they can't alias in any
1293   // meaningful way, even if they read from the same address.
1294   if (!mayStore() && !Other.mayStore())
1295     return false;
1296 
1297   // Both instructions must be memory operations to be able to alias.
1298   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1299     return false;
1300 
1301   // Let the target decide if memory accesses cannot possibly overlap.
1302   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1303     return false;
1304 
1305   // Memory operations without memory operands may access anything. Be
1306   // conservative and assume `MayAlias`.
1307   if (memoperands_empty() || Other.memoperands_empty())
1308     return true;
1309 
1310   // Skip if there are too many memory operands.
1311   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1312   if (NumChecks > TII->getMemOperandAACheckLimit())
1313     return true;
1314 
1315   // Check each pair of memory operands from both instructions, which can't
1316   // alias only if all pairs won't alias.
1317   for (auto *MMOa : memoperands())
1318     for (auto *MMOb : Other.memoperands())
1319       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1320         return true;
1321 
1322   return false;
1323 }
1324 
1325 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1326 /// or volatile memory reference, or if the information describing the memory
1327 /// reference is not available. Return false if it is known to have no ordered
1328 /// memory references.
1329 bool MachineInstr::hasOrderedMemoryRef() const {
1330   // An instruction known never to access memory won't have a volatile access.
1331   if (!mayStore() &&
1332       !mayLoad() &&
1333       !isCall() &&
1334       !hasUnmodeledSideEffects())
1335     return false;
1336 
1337   // Otherwise, if the instruction has no memory reference information,
1338   // conservatively assume it wasn't preserved.
1339   if (memoperands_empty())
1340     return true;
1341 
1342   // Check if any of our memory operands are ordered.
1343   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1344     return !MMO->isUnordered();
1345   });
1346 }
1347 
1348 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1349 /// trap and is loading from a location whose value is invariant across a run of
1350 /// this function.
1351 bool MachineInstr::isDereferenceableInvariantLoad() const {
1352   // If the instruction doesn't load at all, it isn't an invariant load.
1353   if (!mayLoad())
1354     return false;
1355 
1356   // If the instruction has lost its memoperands, conservatively assume that
1357   // it may not be an invariant load.
1358   if (memoperands_empty())
1359     return false;
1360 
1361   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1362 
1363   for (MachineMemOperand *MMO : memoperands()) {
1364     if (!MMO->isUnordered())
1365       // If the memory operand has ordering side effects, we can't move the
1366       // instruction.  Such an instruction is technically an invariant load,
1367       // but the caller code would need updated to expect that.
1368       return false;
1369     if (MMO->isStore()) return false;
1370     if (MMO->isInvariant() && MMO->isDereferenceable())
1371       continue;
1372 
1373     // A load from a constant PseudoSourceValue is invariant.
1374     if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1375       if (PSV->isConstant(&MFI))
1376         continue;
1377     }
1378 
1379     // Otherwise assume conservatively.
1380     return false;
1381   }
1382 
1383   // Everything checks out.
1384   return true;
1385 }
1386 
1387 /// isConstantValuePHI - If the specified instruction is a PHI that always
1388 /// merges together the same virtual register, return the register, otherwise
1389 /// return 0.
1390 unsigned MachineInstr::isConstantValuePHI() const {
1391   if (!isPHI())
1392     return 0;
1393   assert(getNumOperands() >= 3 &&
1394          "It's illegal to have a PHI without source operands");
1395 
1396   Register Reg = getOperand(1).getReg();
1397   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1398     if (getOperand(i).getReg() != Reg)
1399       return 0;
1400   return Reg;
1401 }
1402 
1403 bool MachineInstr::hasUnmodeledSideEffects() const {
1404   if (hasProperty(MCID::UnmodeledSideEffects))
1405     return true;
1406   if (isInlineAsm()) {
1407     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1408     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1409       return true;
1410   }
1411 
1412   return false;
1413 }
1414 
1415 bool MachineInstr::isLoadFoldBarrier() const {
1416   return mayStore() || isCall() ||
1417          (hasUnmodeledSideEffects() && !isPseudoProbe());
1418 }
1419 
1420 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1421 ///
1422 bool MachineInstr::allDefsAreDead() const {
1423   for (const MachineOperand &MO : operands()) {
1424     if (!MO.isReg() || MO.isUse())
1425       continue;
1426     if (!MO.isDead())
1427       return false;
1428   }
1429   return true;
1430 }
1431 
1432 /// copyImplicitOps - Copy implicit register operands from specified
1433 /// instruction to this instruction.
1434 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1435                                    const MachineInstr &MI) {
1436   for (const MachineOperand &MO :
1437        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1438     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1439       addOperand(MF, MO);
1440 }
1441 
1442 bool MachineInstr::hasComplexRegisterTies() const {
1443   const MCInstrDesc &MCID = getDesc();
1444   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1445     return true;
1446   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1447     const auto &Operand = getOperand(I);
1448     if (!Operand.isReg() || Operand.isDef())
1449       // Ignore the defined registers as MCID marks only the uses as tied.
1450       continue;
1451     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1452     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1453     if (ExpectedTiedIdx != TiedIdx)
1454       return true;
1455   }
1456   return false;
1457 }
1458 
1459 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1460                                  const MachineRegisterInfo &MRI) const {
1461   const MachineOperand &Op = getOperand(OpIdx);
1462   if (!Op.isReg())
1463     return LLT{};
1464 
1465   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1466     return MRI.getType(Op.getReg());
1467 
1468   auto &OpInfo = getDesc().OpInfo[OpIdx];
1469   if (!OpInfo.isGenericType())
1470     return MRI.getType(Op.getReg());
1471 
1472   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1473     return LLT{};
1474 
1475   LLT TypeToPrint = MRI.getType(Op.getReg());
1476   // Don't mark the type index printed if it wasn't actually printed: maybe
1477   // another operand with the same type index has an actual type attached:
1478   if (TypeToPrint.isValid())
1479     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1480   return TypeToPrint;
1481 }
1482 
1483 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1484 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1485   dbgs() << "  ";
1486   print(dbgs());
1487 }
1488 
1489 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1490     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1491     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1492   if (Depth >= MaxDepth)
1493     return;
1494   if (!AlreadySeenInstrs.insert(this).second)
1495     return;
1496   // PadToColumn always inserts at least one space.
1497   // Don't mess up the alignment if we don't want any space.
1498   if (Depth)
1499     fdbgs().PadToColumn(Depth * 2);
1500   print(fdbgs());
1501   for (const MachineOperand &MO : operands()) {
1502     if (!MO.isReg() || MO.isDef())
1503       continue;
1504     Register Reg = MO.getReg();
1505     if (Reg.isPhysical())
1506       continue;
1507     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1508     if (NewMI == nullptr)
1509       continue;
1510     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1511   }
1512 }
1513 
1514 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1515                                           unsigned MaxDepth) const {
1516   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1517   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1518 }
1519 #endif
1520 
1521 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1522                          bool SkipDebugLoc, bool AddNewLine,
1523                          const TargetInstrInfo *TII) const {
1524   const Module *M = nullptr;
1525   const Function *F = nullptr;
1526   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1527     F = &MF->getFunction();
1528     M = F->getParent();
1529     if (!TII)
1530       TII = MF->getSubtarget().getInstrInfo();
1531   }
1532 
1533   ModuleSlotTracker MST(M);
1534   if (F)
1535     MST.incorporateFunction(*F);
1536   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1537 }
1538 
1539 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1540                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1541                          bool AddNewLine, const TargetInstrInfo *TII) const {
1542   // We can be a bit tidier if we know the MachineFunction.
1543   const TargetRegisterInfo *TRI = nullptr;
1544   const MachineRegisterInfo *MRI = nullptr;
1545   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1546   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1547 
1548   if (isCFIInstruction())
1549     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1550 
1551   SmallBitVector PrintedTypes(8);
1552   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1553   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1554     if (!ShouldPrintRegisterTies)
1555       return 0U;
1556     const MachineOperand &MO = getOperand(OpIdx);
1557     if (MO.isReg() && MO.isTied() && !MO.isDef())
1558       return findTiedOperandIdx(OpIdx);
1559     return 0U;
1560   };
1561   unsigned StartOp = 0;
1562   unsigned e = getNumOperands();
1563 
1564   // Print explicitly defined operands on the left of an assignment syntax.
1565   while (StartOp < e) {
1566     const MachineOperand &MO = getOperand(StartOp);
1567     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1568       break;
1569 
1570     if (StartOp != 0)
1571       OS << ", ";
1572 
1573     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1574     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1575     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1576              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1577     ++StartOp;
1578   }
1579 
1580   if (StartOp != 0)
1581     OS << " = ";
1582 
1583   if (getFlag(MachineInstr::FrameSetup))
1584     OS << "frame-setup ";
1585   if (getFlag(MachineInstr::FrameDestroy))
1586     OS << "frame-destroy ";
1587   if (getFlag(MachineInstr::FmNoNans))
1588     OS << "nnan ";
1589   if (getFlag(MachineInstr::FmNoInfs))
1590     OS << "ninf ";
1591   if (getFlag(MachineInstr::FmNsz))
1592     OS << "nsz ";
1593   if (getFlag(MachineInstr::FmArcp))
1594     OS << "arcp ";
1595   if (getFlag(MachineInstr::FmContract))
1596     OS << "contract ";
1597   if (getFlag(MachineInstr::FmAfn))
1598     OS << "afn ";
1599   if (getFlag(MachineInstr::FmReassoc))
1600     OS << "reassoc ";
1601   if (getFlag(MachineInstr::NoUWrap))
1602     OS << "nuw ";
1603   if (getFlag(MachineInstr::NoSWrap))
1604     OS << "nsw ";
1605   if (getFlag(MachineInstr::IsExact))
1606     OS << "exact ";
1607   if (getFlag(MachineInstr::NoFPExcept))
1608     OS << "nofpexcept ";
1609   if (getFlag(MachineInstr::NoMerge))
1610     OS << "nomerge ";
1611 
1612   // Print the opcode name.
1613   if (TII)
1614     OS << TII->getName(getOpcode());
1615   else
1616     OS << "UNKNOWN";
1617 
1618   if (SkipOpers)
1619     return;
1620 
1621   // Print the rest of the operands.
1622   bool FirstOp = true;
1623   unsigned AsmDescOp = ~0u;
1624   unsigned AsmOpCount = 0;
1625 
1626   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1627     // Print asm string.
1628     OS << " ";
1629     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1630     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1631     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1632     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1633                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1634                             IntrinsicInfo);
1635 
1636     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1637     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1638     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1639       OS << " [sideeffect]";
1640     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1641       OS << " [mayload]";
1642     if (ExtraInfo & InlineAsm::Extra_MayStore)
1643       OS << " [maystore]";
1644     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1645       OS << " [isconvergent]";
1646     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1647       OS << " [alignstack]";
1648     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1649       OS << " [attdialect]";
1650     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1651       OS << " [inteldialect]";
1652 
1653     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1654     FirstOp = false;
1655   }
1656 
1657   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1658     const MachineOperand &MO = getOperand(i);
1659 
1660     if (FirstOp) FirstOp = false; else OS << ",";
1661     OS << " ";
1662 
1663     if (isDebugValue() && MO.isMetadata()) {
1664       // Pretty print DBG_VALUE* instructions.
1665       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1666       if (DIV && !DIV->getName().empty())
1667         OS << "!\"" << DIV->getName() << '\"';
1668       else {
1669         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1670         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1671         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1672                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1673       }
1674     } else if (isDebugLabel() && MO.isMetadata()) {
1675       // Pretty print DBG_LABEL instructions.
1676       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1677       if (DIL && !DIL->getName().empty())
1678         OS << "\"" << DIL->getName() << '\"';
1679       else {
1680         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1681         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1682         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1683                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1684       }
1685     } else if (i == AsmDescOp && MO.isImm()) {
1686       // Pretty print the inline asm operand descriptor.
1687       OS << '$' << AsmOpCount++;
1688       unsigned Flag = MO.getImm();
1689       OS << ":[";
1690       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1691 
1692       unsigned RCID = 0;
1693       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1694           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1695         if (TRI) {
1696           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1697         } else
1698           OS << ":RC" << RCID;
1699       }
1700 
1701       if (InlineAsm::isMemKind(Flag)) {
1702         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1703         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1704       }
1705 
1706       unsigned TiedTo = 0;
1707       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1708         OS << " tiedto:$" << TiedTo;
1709 
1710       OS << ']';
1711 
1712       // Compute the index of the next operand descriptor.
1713       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1714     } else {
1715       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1716       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1717       if (MO.isImm() && isOperandSubregIdx(i))
1718         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1719       else
1720         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1721                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1722     }
1723   }
1724 
1725   // Print any optional symbols attached to this instruction as-if they were
1726   // operands.
1727   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1728     if (!FirstOp) {
1729       FirstOp = false;
1730       OS << ',';
1731     }
1732     OS << " pre-instr-symbol ";
1733     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1734   }
1735   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1736     if (!FirstOp) {
1737       FirstOp = false;
1738       OS << ',';
1739     }
1740     OS << " post-instr-symbol ";
1741     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1742   }
1743   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1744     if (!FirstOp) {
1745       FirstOp = false;
1746       OS << ',';
1747     }
1748     OS << " heap-alloc-marker ";
1749     HeapAllocMarker->printAsOperand(OS, MST);
1750   }
1751 
1752   if (DebugInstrNum) {
1753     if (!FirstOp)
1754       OS << ",";
1755     OS << " debug-instr-number " << DebugInstrNum;
1756   }
1757 
1758   if (!SkipDebugLoc) {
1759     if (const DebugLoc &DL = getDebugLoc()) {
1760       if (!FirstOp)
1761         OS << ',';
1762       OS << " debug-location ";
1763       DL->printAsOperand(OS, MST);
1764     }
1765   }
1766 
1767   if (!memoperands_empty()) {
1768     SmallVector<StringRef, 0> SSNs;
1769     const LLVMContext *Context = nullptr;
1770     std::unique_ptr<LLVMContext> CtxPtr;
1771     const MachineFrameInfo *MFI = nullptr;
1772     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1773       MFI = &MF->getFrameInfo();
1774       Context = &MF->getFunction().getContext();
1775     } else {
1776       CtxPtr = std::make_unique<LLVMContext>();
1777       Context = CtxPtr.get();
1778     }
1779 
1780     OS << " :: ";
1781     bool NeedComma = false;
1782     for (const MachineMemOperand *Op : memoperands()) {
1783       if (NeedComma)
1784         OS << ", ";
1785       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1786       NeedComma = true;
1787     }
1788   }
1789 
1790   if (SkipDebugLoc)
1791     return;
1792 
1793   bool HaveSemi = false;
1794 
1795   // Print debug location information.
1796   if (const DebugLoc &DL = getDebugLoc()) {
1797     if (!HaveSemi) {
1798       OS << ';';
1799       HaveSemi = true;
1800     }
1801     OS << ' ';
1802     DL.print(OS);
1803   }
1804 
1805   // Print extra comments for DEBUG_VALUE.
1806   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1807     if (!HaveSemi) {
1808       OS << ";";
1809       HaveSemi = true;
1810     }
1811     auto *DV = getDebugVariable();
1812     OS << " line no:" <<  DV->getLine();
1813     if (isIndirectDebugValue())
1814       OS << " indirect";
1815   }
1816   // TODO: DBG_LABEL
1817 
1818   if (AddNewLine)
1819     OS << '\n';
1820 }
1821 
1822 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1823                                      const TargetRegisterInfo *RegInfo,
1824                                      bool AddIfNotFound) {
1825   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1826   bool hasAliases = isPhysReg &&
1827     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1828   bool Found = false;
1829   SmallVector<unsigned,4> DeadOps;
1830   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1831     MachineOperand &MO = getOperand(i);
1832     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1833       continue;
1834 
1835     // DEBUG_VALUE nodes do not contribute to code generation and should
1836     // always be ignored. Failure to do so may result in trying to modify
1837     // KILL flags on DEBUG_VALUE nodes.
1838     if (MO.isDebug())
1839       continue;
1840 
1841     Register Reg = MO.getReg();
1842     if (!Reg)
1843       continue;
1844 
1845     if (Reg == IncomingReg) {
1846       if (!Found) {
1847         if (MO.isKill())
1848           // The register is already marked kill.
1849           return true;
1850         if (isPhysReg && isRegTiedToDefOperand(i))
1851           // Two-address uses of physregs must not be marked kill.
1852           return true;
1853         MO.setIsKill();
1854         Found = true;
1855       }
1856     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1857       // A super-register kill already exists.
1858       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1859         return true;
1860       if (RegInfo->isSubRegister(IncomingReg, Reg))
1861         DeadOps.push_back(i);
1862     }
1863   }
1864 
1865   // Trim unneeded kill operands.
1866   while (!DeadOps.empty()) {
1867     unsigned OpIdx = DeadOps.back();
1868     if (getOperand(OpIdx).isImplicit() &&
1869         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1870       removeOperand(OpIdx);
1871     else
1872       getOperand(OpIdx).setIsKill(false);
1873     DeadOps.pop_back();
1874   }
1875 
1876   // If not found, this means an alias of one of the operands is killed. Add a
1877   // new implicit operand if required.
1878   if (!Found && AddIfNotFound) {
1879     addOperand(MachineOperand::CreateReg(IncomingReg,
1880                                          false /*IsDef*/,
1881                                          true  /*IsImp*/,
1882                                          true  /*IsKill*/));
1883     return true;
1884   }
1885   return Found;
1886 }
1887 
1888 void MachineInstr::clearRegisterKills(Register Reg,
1889                                       const TargetRegisterInfo *RegInfo) {
1890   if (!Register::isPhysicalRegister(Reg))
1891     RegInfo = nullptr;
1892   for (MachineOperand &MO : operands()) {
1893     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1894       continue;
1895     Register OpReg = MO.getReg();
1896     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1897       MO.setIsKill(false);
1898   }
1899 }
1900 
1901 bool MachineInstr::addRegisterDead(Register Reg,
1902                                    const TargetRegisterInfo *RegInfo,
1903                                    bool AddIfNotFound) {
1904   bool isPhysReg = Register::isPhysicalRegister(Reg);
1905   bool hasAliases = isPhysReg &&
1906     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1907   bool Found = false;
1908   SmallVector<unsigned,4> DeadOps;
1909   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1910     MachineOperand &MO = getOperand(i);
1911     if (!MO.isReg() || !MO.isDef())
1912       continue;
1913     Register MOReg = MO.getReg();
1914     if (!MOReg)
1915       continue;
1916 
1917     if (MOReg == Reg) {
1918       MO.setIsDead();
1919       Found = true;
1920     } else if (hasAliases && MO.isDead() &&
1921                Register::isPhysicalRegister(MOReg)) {
1922       // There exists a super-register that's marked dead.
1923       if (RegInfo->isSuperRegister(Reg, MOReg))
1924         return true;
1925       if (RegInfo->isSubRegister(Reg, MOReg))
1926         DeadOps.push_back(i);
1927     }
1928   }
1929 
1930   // Trim unneeded dead operands.
1931   while (!DeadOps.empty()) {
1932     unsigned OpIdx = DeadOps.back();
1933     if (getOperand(OpIdx).isImplicit() &&
1934         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1935       removeOperand(OpIdx);
1936     else
1937       getOperand(OpIdx).setIsDead(false);
1938     DeadOps.pop_back();
1939   }
1940 
1941   // If not found, this means an alias of one of the operands is dead. Add a
1942   // new implicit operand if required.
1943   if (Found || !AddIfNotFound)
1944     return Found;
1945 
1946   addOperand(MachineOperand::CreateReg(Reg,
1947                                        true  /*IsDef*/,
1948                                        true  /*IsImp*/,
1949                                        false /*IsKill*/,
1950                                        true  /*IsDead*/));
1951   return true;
1952 }
1953 
1954 void MachineInstr::clearRegisterDeads(Register Reg) {
1955   for (MachineOperand &MO : operands()) {
1956     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1957       continue;
1958     MO.setIsDead(false);
1959   }
1960 }
1961 
1962 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1963   for (MachineOperand &MO : operands()) {
1964     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1965       continue;
1966     MO.setIsUndef(IsUndef);
1967   }
1968 }
1969 
1970 void MachineInstr::addRegisterDefined(Register Reg,
1971                                       const TargetRegisterInfo *RegInfo) {
1972   if (Register::isPhysicalRegister(Reg)) {
1973     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1974     if (MO)
1975       return;
1976   } else {
1977     for (const MachineOperand &MO : operands()) {
1978       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1979           MO.getSubReg() == 0)
1980         return;
1981     }
1982   }
1983   addOperand(MachineOperand::CreateReg(Reg,
1984                                        true  /*IsDef*/,
1985                                        true  /*IsImp*/));
1986 }
1987 
1988 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1989                                          const TargetRegisterInfo &TRI) {
1990   bool HasRegMask = false;
1991   for (MachineOperand &MO : operands()) {
1992     if (MO.isRegMask()) {
1993       HasRegMask = true;
1994       continue;
1995     }
1996     if (!MO.isReg() || !MO.isDef()) continue;
1997     Register Reg = MO.getReg();
1998     if (!Reg.isPhysical())
1999       continue;
2000     // If there are no uses, including partial uses, the def is dead.
2001     if (llvm::none_of(UsedRegs,
2002                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2003       MO.setIsDead();
2004   }
2005 
2006   // This is a call with a register mask operand.
2007   // Mask clobbers are always dead, so add defs for the non-dead defines.
2008   if (HasRegMask)
2009     for (const Register &UsedReg : UsedRegs)
2010       addRegisterDefined(UsedReg, &TRI);
2011 }
2012 
2013 unsigned
2014 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2015   // Build up a buffer of hash code components.
2016   SmallVector<size_t, 16> HashComponents;
2017   HashComponents.reserve(MI->getNumOperands() + 1);
2018   HashComponents.push_back(MI->getOpcode());
2019   for (const MachineOperand &MO : MI->operands()) {
2020     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2021       continue;  // Skip virtual register defs.
2022 
2023     HashComponents.push_back(hash_value(MO));
2024   }
2025   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2026 }
2027 
2028 void MachineInstr::emitError(StringRef Msg) const {
2029   // Find the source location cookie.
2030   uint64_t LocCookie = 0;
2031   const MDNode *LocMD = nullptr;
2032   for (unsigned i = getNumOperands(); i != 0; --i) {
2033     if (getOperand(i-1).isMetadata() &&
2034         (LocMD = getOperand(i-1).getMetadata()) &&
2035         LocMD->getNumOperands() != 0) {
2036       if (const ConstantInt *CI =
2037               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2038         LocCookie = CI->getZExtValue();
2039         break;
2040       }
2041     }
2042   }
2043 
2044   if (const MachineBasicBlock *MBB = getParent())
2045     if (const MachineFunction *MF = MBB->getParent())
2046       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2047   report_fatal_error(Msg);
2048 }
2049 
2050 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2051                                   const MCInstrDesc &MCID, bool IsIndirect,
2052                                   Register Reg, const MDNode *Variable,
2053                                   const MDNode *Expr) {
2054   assert(isa<DILocalVariable>(Variable) && "not a variable");
2055   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2056   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2057          "Expected inlined-at fields to agree");
2058   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2059   if (IsIndirect)
2060     MIB.addImm(0U);
2061   else
2062     MIB.addReg(0U);
2063   return MIB.addMetadata(Variable).addMetadata(Expr);
2064 }
2065 
2066 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2067                                   const MCInstrDesc &MCID, bool IsIndirect,
2068                                   const MachineOperand &MO,
2069                                   const MDNode *Variable, const MDNode *Expr) {
2070   assert(isa<DILocalVariable>(Variable) && "not a variable");
2071   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2072   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2073          "Expected inlined-at fields to agree");
2074   if (MO.isReg())
2075     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2076 
2077   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2078   if (IsIndirect)
2079     MIB.addImm(0U);
2080   else
2081     MIB.addReg(0U);
2082   return MIB.addMetadata(Variable).addMetadata(Expr);
2083 }
2084 
2085 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2086                                   const MCInstrDesc &MCID, bool IsIndirect,
2087                                   ArrayRef<MachineOperand> MOs,
2088                                   const MDNode *Variable, const MDNode *Expr) {
2089   assert(isa<DILocalVariable>(Variable) && "not a variable");
2090   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2091   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2092          "Expected inlined-at fields to agree");
2093   if (MCID.Opcode == TargetOpcode::DBG_VALUE)
2094     return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
2095 
2096   auto MIB = BuildMI(MF, DL, MCID);
2097   MIB.addMetadata(Variable).addMetadata(Expr);
2098   for (const MachineOperand &MO : MOs)
2099     if (MO.isReg())
2100       MIB.addReg(MO.getReg());
2101     else
2102       MIB.add(MO);
2103   return MIB;
2104 }
2105 
2106 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2107                                   MachineBasicBlock::iterator I,
2108                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2109                                   bool IsIndirect, Register Reg,
2110                                   const MDNode *Variable, const MDNode *Expr) {
2111   MachineFunction &MF = *BB.getParent();
2112   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2113   BB.insert(I, MI);
2114   return MachineInstrBuilder(MF, MI);
2115 }
2116 
2117 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2118                                   MachineBasicBlock::iterator I,
2119                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2120                                   bool IsIndirect, MachineOperand &MO,
2121                                   const MDNode *Variable, const MDNode *Expr) {
2122   MachineFunction &MF = *BB.getParent();
2123   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2124   BB.insert(I, MI);
2125   return MachineInstrBuilder(MF, *MI);
2126 }
2127 
2128 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2129                                   MachineBasicBlock::iterator I,
2130                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2131                                   bool IsIndirect, ArrayRef<MachineOperand> MOs,
2132                                   const MDNode *Variable, const MDNode *Expr) {
2133   MachineFunction &MF = *BB.getParent();
2134   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
2135   BB.insert(I, MI);
2136   return MachineInstrBuilder(MF, *MI);
2137 }
2138 
2139 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2140 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2141 static const DIExpression *
2142 computeExprForSpill(const MachineInstr &MI,
2143                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2144   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2145          "Expected inlined-at fields to agree");
2146 
2147   const DIExpression *Expr = MI.getDebugExpression();
2148   if (MI.isIndirectDebugValue()) {
2149     assert(MI.getDebugOffset().getImm() == 0 &&
2150            "DBG_VALUE with nonzero offset");
2151     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2152   } else if (MI.isDebugValueList()) {
2153     // We will replace the spilled register with a frame index, so
2154     // immediately deref all references to the spilled register.
2155     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2156     for (const MachineOperand *Op : SpilledOperands) {
2157       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2158       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2159     }
2160   }
2161   return Expr;
2162 }
2163 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2164                                                Register SpillReg) {
2165   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2166   SmallVector<const MachineOperand *> SpillOperands;
2167   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2168     SpillOperands.push_back(&Op);
2169   return computeExprForSpill(MI, SpillOperands);
2170 }
2171 
2172 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2173                                           MachineBasicBlock::iterator I,
2174                                           const MachineInstr &Orig,
2175                                           int FrameIndex, Register SpillReg) {
2176   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2177   MachineInstrBuilder NewMI =
2178       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2179   // Non-Variadic Operands: Location, Offset, Variable, Expression
2180   // Variadic Operands:     Variable, Expression, Locations...
2181   if (Orig.isNonListDebugValue())
2182     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2183   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2184   if (Orig.isDebugValueList()) {
2185     for (const MachineOperand &Op : Orig.debug_operands())
2186       if (Op.isReg() && Op.getReg() == SpillReg)
2187         NewMI.addFrameIndex(FrameIndex);
2188       else
2189         NewMI.add(MachineOperand(Op));
2190   }
2191   return NewMI;
2192 }
2193 MachineInstr *llvm::buildDbgValueForSpill(
2194     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2195     const MachineInstr &Orig, int FrameIndex,
2196     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2197   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2198   MachineInstrBuilder NewMI =
2199       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2200   // Non-Variadic Operands: Location, Offset, Variable, Expression
2201   // Variadic Operands:     Variable, Expression, Locations...
2202   if (Orig.isNonListDebugValue())
2203     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2204   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2205   if (Orig.isDebugValueList()) {
2206     for (const MachineOperand &Op : Orig.debug_operands())
2207       if (is_contained(SpilledOperands, &Op))
2208         NewMI.addFrameIndex(FrameIndex);
2209       else
2210         NewMI.add(MachineOperand(Op));
2211   }
2212   return NewMI;
2213 }
2214 
2215 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2216                                   Register Reg) {
2217   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2218   if (Orig.isNonListDebugValue())
2219     Orig.getDebugOffset().ChangeToImmediate(0U);
2220   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2221     Op.ChangeToFrameIndex(FrameIndex);
2222   Orig.getDebugExpressionOp().setMetadata(Expr);
2223 }
2224 
2225 void MachineInstr::collectDebugValues(
2226                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2227   MachineInstr &MI = *this;
2228   if (!MI.getOperand(0).isReg())
2229     return;
2230 
2231   MachineBasicBlock::iterator DI = MI; ++DI;
2232   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2233        DI != DE; ++DI) {
2234     if (!DI->isDebugValue())
2235       return;
2236     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2237       DbgValues.push_back(&*DI);
2238   }
2239 }
2240 
2241 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2242   // Collect matching debug values.
2243   SmallVector<MachineInstr *, 2> DbgValues;
2244 
2245   if (!getOperand(0).isReg())
2246     return;
2247 
2248   Register DefReg = getOperand(0).getReg();
2249   auto *MRI = getRegInfo();
2250   for (auto &MO : MRI->use_operands(DefReg)) {
2251     auto *DI = MO.getParent();
2252     if (!DI->isDebugValue())
2253       continue;
2254     if (DI->hasDebugOperandForReg(DefReg)) {
2255       DbgValues.push_back(DI);
2256     }
2257   }
2258 
2259   // Propagate Reg to debug value instructions.
2260   for (auto *DBI : DbgValues)
2261     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2262       Op.setReg(Reg);
2263 }
2264 
2265 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2266 
2267 static unsigned getSpillSlotSize(const MMOList &Accesses,
2268                                  const MachineFrameInfo &MFI) {
2269   unsigned Size = 0;
2270   for (const auto *A : Accesses)
2271     if (MFI.isSpillSlotObjectIndex(
2272             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2273                 ->getFrameIndex()))
2274       Size += A->getSize();
2275   return Size;
2276 }
2277 
2278 Optional<unsigned>
2279 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2280   int FI;
2281   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2282     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2283     if (MFI.isSpillSlotObjectIndex(FI))
2284       return (*memoperands_begin())->getSize();
2285   }
2286   return None;
2287 }
2288 
2289 Optional<unsigned>
2290 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2291   MMOList Accesses;
2292   if (TII->hasStoreToStackSlot(*this, Accesses))
2293     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2294   return None;
2295 }
2296 
2297 Optional<unsigned>
2298 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2299   int FI;
2300   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2301     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2302     if (MFI.isSpillSlotObjectIndex(FI))
2303       return (*memoperands_begin())->getSize();
2304   }
2305   return None;
2306 }
2307 
2308 Optional<unsigned>
2309 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2310   MMOList Accesses;
2311   if (TII->hasLoadFromStackSlot(*this, Accesses))
2312     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2313   return None;
2314 }
2315 
2316 unsigned MachineInstr::getDebugInstrNum() {
2317   if (DebugInstrNum == 0)
2318     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2319   return DebugInstrNum;
2320 }
2321 
2322 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2323   if (DebugInstrNum == 0)
2324     DebugInstrNum = MF.getNewDebugInstrNum();
2325   return DebugInstrNum;
2326 }
2327