xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision ada4cd3f7710d9759e391e84ad21b7763062bdbc)
1  //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Methods common to all machine instructions.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/CodeGen/MachineInstr.h"
14  #include "llvm/ADT/ArrayRef.h"
15  #include "llvm/ADT/Hashing.h"
16  #include "llvm/ADT/STLExtras.h"
17  #include "llvm/ADT/SmallBitVector.h"
18  #include "llvm/ADT/SmallVector.h"
19  #include "llvm/Analysis/AliasAnalysis.h"
20  #include "llvm/Analysis/MemoryLocation.h"
21  #include "llvm/CodeGen/LowLevelType.h"
22  #include "llvm/CodeGen/MachineBasicBlock.h"
23  #include "llvm/CodeGen/MachineFrameInfo.h"
24  #include "llvm/CodeGen/MachineFunction.h"
25  #include "llvm/CodeGen/MachineInstrBuilder.h"
26  #include "llvm/CodeGen/MachineInstrBundle.h"
27  #include "llvm/CodeGen/MachineMemOperand.h"
28  #include "llvm/CodeGen/MachineModuleInfo.h"
29  #include "llvm/CodeGen/MachineOperand.h"
30  #include "llvm/CodeGen/MachineRegisterInfo.h"
31  #include "llvm/CodeGen/PseudoSourceValue.h"
32  #include "llvm/CodeGen/Register.h"
33  #include "llvm/CodeGen/StackMaps.h"
34  #include "llvm/CodeGen/TargetInstrInfo.h"
35  #include "llvm/CodeGen/TargetRegisterInfo.h"
36  #include "llvm/CodeGen/TargetSubtargetInfo.h"
37  #include "llvm/IR/Constants.h"
38  #include "llvm/IR/DebugInfoMetadata.h"
39  #include "llvm/IR/DebugLoc.h"
40  #include "llvm/IR/Function.h"
41  #include "llvm/IR/InlineAsm.h"
42  #include "llvm/IR/LLVMContext.h"
43  #include "llvm/IR/Metadata.h"
44  #include "llvm/IR/Module.h"
45  #include "llvm/IR/ModuleSlotTracker.h"
46  #include "llvm/IR/Operator.h"
47  #include "llvm/MC/MCInstrDesc.h"
48  #include "llvm/MC/MCRegisterInfo.h"
49  #include "llvm/Support/Casting.h"
50  #include "llvm/Support/Compiler.h"
51  #include "llvm/Support/Debug.h"
52  #include "llvm/Support/ErrorHandling.h"
53  #include "llvm/Support/FormattedStream.h"
54  #include "llvm/Support/raw_ostream.h"
55  #include "llvm/Target/TargetMachine.h"
56  #include <algorithm>
57  #include <cassert>
58  #include <cstdint>
59  #include <cstring>
60  #include <utility>
61  
62  using namespace llvm;
63  
64  static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65    if (const MachineBasicBlock *MBB = MI.getParent())
66      if (const MachineFunction *MF = MBB->getParent())
67        return MF;
68    return nullptr;
69  }
70  
71  // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72  // it.
73  static void tryToGetTargetInfo(const MachineInstr &MI,
74                                 const TargetRegisterInfo *&TRI,
75                                 const MachineRegisterInfo *&MRI,
76                                 const TargetIntrinsicInfo *&IntrinsicInfo,
77                                 const TargetInstrInfo *&TII) {
78  
79    if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80      TRI = MF->getSubtarget().getRegisterInfo();
81      MRI = &MF->getRegInfo();
82      IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83      TII = MF->getSubtarget().getInstrInfo();
84    }
85  }
86  
87  void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88    for (MCPhysReg ImpDef : MCID->implicit_defs())
89      addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true));
90    for (MCPhysReg ImpUse : MCID->implicit_uses())
91      addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true));
92  }
93  
94  /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
95  /// implicit operands. It reserves space for the number of operands specified by
96  /// the MCInstrDesc.
97  MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
98                             DebugLoc DL, bool NoImp)
99      : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0),
100        DbgLoc(std::move(DL)), DebugInstrNum(0) {
101    assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
102  
103    // Reserve space for the expected number of operands.
104    if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
105                          MCID->implicit_uses().size()) {
106      CapOperands = OperandCapacity::get(NumOps);
107      Operands = MF.allocateOperandArray(CapOperands);
108    }
109  
110    if (!NoImp)
111      addImplicitDefUseOperands(MF);
112  }
113  
114  /// MachineInstr ctor - Copies MachineInstr arg exactly.
115  /// Does not copy the number from debug instruction numbering, to preserve
116  /// uniqueness.
117  MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
118      : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
119        Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) {
120    assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
121  
122    CapOperands = OperandCapacity::get(MI.getNumOperands());
123    Operands = MF.allocateOperandArray(CapOperands);
124  
125    // Copy operands.
126    for (const MachineOperand &MO : MI.operands())
127      addOperand(MF, MO);
128  
129    // Replicate ties between the operands, which addOperand was not
130    // able to do reliably.
131    for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
132      MachineOperand &NewMO = getOperand(i);
133      const MachineOperand &OrigMO = MI.getOperand(i);
134      NewMO.TiedTo = OrigMO.TiedTo;
135    }
136  
137    // Copy all the sensible flags.
138    setFlags(MI.Flags);
139  }
140  
141  void MachineInstr::moveBefore(MachineInstr *MovePos) {
142    MovePos->getParent()->splice(MovePos, getParent(), getIterator());
143  }
144  
145  /// getRegInfo - If this instruction is embedded into a MachineFunction,
146  /// return the MachineRegisterInfo object for the current function, otherwise
147  /// return null.
148  MachineRegisterInfo *MachineInstr::getRegInfo() {
149    if (MachineBasicBlock *MBB = getParent())
150      return &MBB->getParent()->getRegInfo();
151    return nullptr;
152  }
153  
154  const MachineRegisterInfo *MachineInstr::getRegInfo() const {
155    if (const MachineBasicBlock *MBB = getParent())
156      return &MBB->getParent()->getRegInfo();
157    return nullptr;
158  }
159  
160  void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
161    for (MachineOperand &MO : operands())
162      if (MO.isReg())
163        MRI.removeRegOperandFromUseList(&MO);
164  }
165  
166  void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
167    for (MachineOperand &MO : operands())
168      if (MO.isReg())
169        MRI.addRegOperandToUseList(&MO);
170  }
171  
172  void MachineInstr::addOperand(const MachineOperand &Op) {
173    MachineBasicBlock *MBB = getParent();
174    assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
175    MachineFunction *MF = MBB->getParent();
176    assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
177    addOperand(*MF, Op);
178  }
179  
180  /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
181  /// ranges. If MRI is non-null also update use-def chains.
182  static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
183                           unsigned NumOps, MachineRegisterInfo *MRI) {
184    if (MRI)
185      return MRI->moveOperands(Dst, Src, NumOps);
186    // MachineOperand is a trivially copyable type so we can just use memmove.
187    assert(Dst && Src && "Unknown operands");
188    std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
189  }
190  
191  /// addOperand - Add the specified operand to the instruction.  If it is an
192  /// implicit operand, it is added to the end of the operand list.  If it is
193  /// an explicit operand it is added at the end of the explicit operand list
194  /// (before the first implicit operand).
195  void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
196    assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) &&
197           "Cannot add more operands.");
198    assert(MCID && "Cannot add operands before providing an instr descriptor");
199  
200    // Check if we're adding one of our existing operands.
201    if (&Op >= Operands && &Op < Operands + NumOperands) {
202      // This is unusual: MI->addOperand(MI->getOperand(i)).
203      // If adding Op requires reallocating or moving existing operands around,
204      // the Op reference could go stale. Support it by copying Op.
205      MachineOperand CopyOp(Op);
206      return addOperand(MF, CopyOp);
207    }
208  
209    // Find the insert location for the new operand.  Implicit registers go at
210    // the end, everything else goes before the implicit regs.
211    //
212    // FIXME: Allow mixed explicit and implicit operands on inline asm.
213    // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
214    // implicit-defs, but they must not be moved around.  See the FIXME in
215    // InstrEmitter.cpp.
216    unsigned OpNo = getNumOperands();
217    bool isImpReg = Op.isReg() && Op.isImplicit();
218    if (!isImpReg && !isInlineAsm()) {
219      while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
220        --OpNo;
221        assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
222      }
223    }
224  
225    // OpNo now points as the desired insertion point.  Unless this is a variadic
226    // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
227    // RegMask operands go between the explicit and implicit operands.
228    assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
229            Op.isValidExcessOperand()) &&
230           "Trying to add an operand to a machine instr that is already done!");
231  
232    MachineRegisterInfo *MRI = getRegInfo();
233  
234    // Determine if the Operands array needs to be reallocated.
235    // Save the old capacity and operand array.
236    OperandCapacity OldCap = CapOperands;
237    MachineOperand *OldOperands = Operands;
238    if (!OldOperands || OldCap.getSize() == getNumOperands()) {
239      CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
240      Operands = MF.allocateOperandArray(CapOperands);
241      // Move the operands before the insertion point.
242      if (OpNo)
243        moveOperands(Operands, OldOperands, OpNo, MRI);
244    }
245  
246    // Move the operands following the insertion point.
247    if (OpNo != NumOperands)
248      moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
249                   MRI);
250    ++NumOperands;
251  
252    // Deallocate the old operand array.
253    if (OldOperands != Operands && OldOperands)
254      MF.deallocateOperandArray(OldCap, OldOperands);
255  
256    // Copy Op into place. It still needs to be inserted into the MRI use lists.
257    MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
258    NewMO->ParentMI = this;
259  
260    // When adding a register operand, tell MRI about it.
261    if (NewMO->isReg()) {
262      // Ensure isOnRegUseList() returns false, regardless of Op's status.
263      NewMO->Contents.Reg.Prev = nullptr;
264      // Ignore existing ties. This is not a property that can be copied.
265      NewMO->TiedTo = 0;
266      // Add the new operand to MRI, but only for instructions in an MBB.
267      if (MRI)
268        MRI->addRegOperandToUseList(NewMO);
269      // The MCID operand information isn't accurate until we start adding
270      // explicit operands. The implicit operands are added first, then the
271      // explicits are inserted before them.
272      if (!isImpReg) {
273        // Tie uses to defs as indicated in MCInstrDesc.
274        if (NewMO->isUse()) {
275          int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
276          if (DefIdx != -1)
277            tieOperands(DefIdx, OpNo);
278        }
279        // If the register operand is flagged as early, mark the operand as such.
280        if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
281          NewMO->setIsEarlyClobber(true);
282      }
283      // Ensure debug instructions set debug flag on register uses.
284      if (NewMO->isUse() && isDebugInstr())
285        NewMO->setIsDebug();
286    }
287  }
288  
289  void MachineInstr::removeOperand(unsigned OpNo) {
290    assert(OpNo < getNumOperands() && "Invalid operand number");
291    untieRegOperand(OpNo);
292  
293  #ifndef NDEBUG
294    // Moving tied operands would break the ties.
295    for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
296      if (Operands[i].isReg())
297        assert(!Operands[i].isTied() && "Cannot move tied operands");
298  #endif
299  
300    MachineRegisterInfo *MRI = getRegInfo();
301    if (MRI && Operands[OpNo].isReg())
302      MRI->removeRegOperandFromUseList(Operands + OpNo);
303  
304    // Don't call the MachineOperand destructor. A lot of this code depends on
305    // MachineOperand having a trivial destructor anyway, and adding a call here
306    // wouldn't make it 'destructor-correct'.
307  
308    if (unsigned N = NumOperands - 1 - OpNo)
309      moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
310    --NumOperands;
311  }
312  
313  void MachineInstr::setExtraInfo(MachineFunction &MF,
314                                  ArrayRef<MachineMemOperand *> MMOs,
315                                  MCSymbol *PreInstrSymbol,
316                                  MCSymbol *PostInstrSymbol,
317                                  MDNode *HeapAllocMarker, MDNode *PCSections,
318                                  uint32_t CFIType) {
319    bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
320    bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
321    bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
322    bool HasPCSections = PCSections != nullptr;
323    bool HasCFIType = CFIType != 0;
324    int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
325                      HasHeapAllocMarker + HasPCSections + HasCFIType;
326  
327    // Drop all extra info if there is none.
328    if (NumPointers <= 0) {
329      Info.clear();
330      return;
331    }
332  
333    // If more than one pointer, then store out of line. Store heap alloc markers
334    // out of line because PointerSumType cannot hold more than 4 tag types with
335    // 32-bit pointers.
336    // FIXME: Maybe we should make the symbols in the extra info mutable?
337    else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections ||
338             HasCFIType) {
339      Info.set<EIIK_OutOfLine>(
340          MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
341                               HeapAllocMarker, PCSections, CFIType));
342      return;
343    }
344  
345    // Otherwise store the single pointer inline.
346    if (HasPreInstrSymbol)
347      Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
348    else if (HasPostInstrSymbol)
349      Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
350    else
351      Info.set<EIIK_MMO>(MMOs[0]);
352  }
353  
354  void MachineInstr::dropMemRefs(MachineFunction &MF) {
355    if (memoperands_empty())
356      return;
357  
358    setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
359                 getHeapAllocMarker(), getPCSections(), getCFIType());
360  }
361  
362  void MachineInstr::setMemRefs(MachineFunction &MF,
363                                ArrayRef<MachineMemOperand *> MMOs) {
364    if (MMOs.empty()) {
365      dropMemRefs(MF);
366      return;
367    }
368  
369    setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
370                 getHeapAllocMarker(), getPCSections(), getCFIType());
371  }
372  
373  void MachineInstr::addMemOperand(MachineFunction &MF,
374                                   MachineMemOperand *MO) {
375    SmallVector<MachineMemOperand *, 2> MMOs;
376    MMOs.append(memoperands_begin(), memoperands_end());
377    MMOs.push_back(MO);
378    setMemRefs(MF, MMOs);
379  }
380  
381  void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
382    if (this == &MI)
383      // Nothing to do for a self-clone!
384      return;
385  
386    assert(&MF == MI.getMF() &&
387           "Invalid machine functions when cloning memory refrences!");
388    // See if we can just steal the extra info already allocated for the
389    // instruction. We can do this whenever the pre- and post-instruction symbols
390    // are the same (including null).
391    if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
392        getPostInstrSymbol() == MI.getPostInstrSymbol() &&
393        getHeapAllocMarker() == MI.getHeapAllocMarker() &&
394        getPCSections() == MI.getPCSections()) {
395      Info = MI.Info;
396      return;
397    }
398  
399    // Otherwise, fall back on a copy-based clone.
400    setMemRefs(MF, MI.memoperands());
401  }
402  
403  /// Check to see if the MMOs pointed to by the two MemRefs arrays are
404  /// identical.
405  static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
406                               ArrayRef<MachineMemOperand *> RHS) {
407    if (LHS.size() != RHS.size())
408      return false;
409  
410    auto LHSPointees = make_pointee_range(LHS);
411    auto RHSPointees = make_pointee_range(RHS);
412    return std::equal(LHSPointees.begin(), LHSPointees.end(),
413                      RHSPointees.begin());
414  }
415  
416  void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
417                                        ArrayRef<const MachineInstr *> MIs) {
418    // Try handling easy numbers of MIs with simpler mechanisms.
419    if (MIs.empty()) {
420      dropMemRefs(MF);
421      return;
422    }
423    if (MIs.size() == 1) {
424      cloneMemRefs(MF, *MIs[0]);
425      return;
426    }
427    // Because an empty memoperands list provides *no* information and must be
428    // handled conservatively (assuming the instruction can do anything), the only
429    // way to merge with it is to drop all other memoperands.
430    if (MIs[0]->memoperands_empty()) {
431      dropMemRefs(MF);
432      return;
433    }
434  
435    // Handle the general case.
436    SmallVector<MachineMemOperand *, 2> MergedMMOs;
437    // Start with the first instruction.
438    assert(&MF == MIs[0]->getMF() &&
439           "Invalid machine functions when cloning memory references!");
440    MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
441    // Now walk all the other instructions and accumulate any different MMOs.
442    for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
443      assert(&MF == MI.getMF() &&
444             "Invalid machine functions when cloning memory references!");
445  
446      // Skip MIs with identical operands to the first. This is a somewhat
447      // arbitrary hack but will catch common cases without being quadratic.
448      // TODO: We could fully implement merge semantics here if needed.
449      if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
450        continue;
451  
452      // Because an empty memoperands list provides *no* information and must be
453      // handled conservatively (assuming the instruction can do anything), the
454      // only way to merge with it is to drop all other memoperands.
455      if (MI.memoperands_empty()) {
456        dropMemRefs(MF);
457        return;
458      }
459  
460      // Otherwise accumulate these into our temporary buffer of the merged state.
461      MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
462    }
463  
464    setMemRefs(MF, MergedMMOs);
465  }
466  
467  void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
468    // Do nothing if old and new symbols are the same.
469    if (Symbol == getPreInstrSymbol())
470      return;
471  
472    // If there was only one symbol and we're removing it, just clear info.
473    if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
474      Info.clear();
475      return;
476    }
477  
478    setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
479                 getHeapAllocMarker(), getPCSections(), getCFIType());
480  }
481  
482  void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
483    // Do nothing if old and new symbols are the same.
484    if (Symbol == getPostInstrSymbol())
485      return;
486  
487    // If there was only one symbol and we're removing it, just clear info.
488    if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
489      Info.clear();
490      return;
491    }
492  
493    setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
494                 getHeapAllocMarker(), getPCSections(), getCFIType());
495  }
496  
497  void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
498    // Do nothing if old and new symbols are the same.
499    if (Marker == getHeapAllocMarker())
500      return;
501  
502    setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
503                 Marker, getPCSections(), getCFIType());
504  }
505  
506  void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
507    // Do nothing if old and new symbols are the same.
508    if (PCSections == getPCSections())
509      return;
510  
511    setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
512                 getHeapAllocMarker(), PCSections, getCFIType());
513  }
514  
515  void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
516    // Do nothing if old and new types are the same.
517    if (Type == getCFIType())
518      return;
519  
520    setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
521                 getHeapAllocMarker(), getPCSections(), Type);
522  }
523  
524  void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
525                                       const MachineInstr &MI) {
526    if (this == &MI)
527      // Nothing to do for a self-clone!
528      return;
529  
530    assert(&MF == MI.getMF() &&
531           "Invalid machine functions when cloning instruction symbols!");
532  
533    setPreInstrSymbol(MF, MI.getPreInstrSymbol());
534    setPostInstrSymbol(MF, MI.getPostInstrSymbol());
535    setHeapAllocMarker(MF, MI.getHeapAllocMarker());
536    setPCSections(MF, MI.getPCSections());
537  }
538  
539  uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
540    // For now, the just return the union of the flags. If the flags get more
541    // complicated over time, we might need more logic here.
542    return getFlags() | Other.getFlags();
543  }
544  
545  uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
546    uint32_t MIFlags = 0;
547    // Copy the wrapping flags.
548    if (const OverflowingBinaryOperator *OB =
549            dyn_cast<OverflowingBinaryOperator>(&I)) {
550      if (OB->hasNoSignedWrap())
551        MIFlags |= MachineInstr::MIFlag::NoSWrap;
552      if (OB->hasNoUnsignedWrap())
553        MIFlags |= MachineInstr::MIFlag::NoUWrap;
554    }
555  
556    // Copy the exact flag.
557    if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
558      if (PE->isExact())
559        MIFlags |= MachineInstr::MIFlag::IsExact;
560  
561    // Copy the fast-math flags.
562    if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
563      const FastMathFlags Flags = FP->getFastMathFlags();
564      if (Flags.noNaNs())
565        MIFlags |= MachineInstr::MIFlag::FmNoNans;
566      if (Flags.noInfs())
567        MIFlags |= MachineInstr::MIFlag::FmNoInfs;
568      if (Flags.noSignedZeros())
569        MIFlags |= MachineInstr::MIFlag::FmNsz;
570      if (Flags.allowReciprocal())
571        MIFlags |= MachineInstr::MIFlag::FmArcp;
572      if (Flags.allowContract())
573        MIFlags |= MachineInstr::MIFlag::FmContract;
574      if (Flags.approxFunc())
575        MIFlags |= MachineInstr::MIFlag::FmAfn;
576      if (Flags.allowReassoc())
577        MIFlags |= MachineInstr::MIFlag::FmReassoc;
578    }
579  
580    if (I.getMetadata(LLVMContext::MD_unpredictable))
581      MIFlags |= MachineInstr::MIFlag::Unpredictable;
582  
583    return MIFlags;
584  }
585  
586  void MachineInstr::copyIRFlags(const Instruction &I) {
587    Flags = copyFlagsFromInstruction(I);
588  }
589  
590  bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
591    assert(!isBundledWithPred() && "Must be called on bundle header");
592    for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
593      if (MII->getDesc().getFlags() & Mask) {
594        if (Type == AnyInBundle)
595          return true;
596      } else {
597        if (Type == AllInBundle && !MII->isBundle())
598          return false;
599      }
600      // This was the last instruction in the bundle.
601      if (!MII->isBundledWithSucc())
602        return Type == AllInBundle;
603    }
604  }
605  
606  bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
607                                   MICheckType Check) const {
608    // If opcodes or number of operands are not the same then the two
609    // instructions are obviously not identical.
610    if (Other.getOpcode() != getOpcode() ||
611        Other.getNumOperands() != getNumOperands())
612      return false;
613  
614    if (isBundle()) {
615      // We have passed the test above that both instructions have the same
616      // opcode, so we know that both instructions are bundles here. Let's compare
617      // MIs inside the bundle.
618      assert(Other.isBundle() && "Expected that both instructions are bundles.");
619      MachineBasicBlock::const_instr_iterator I1 = getIterator();
620      MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
621      // Loop until we analysed the last intruction inside at least one of the
622      // bundles.
623      while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
624        ++I1;
625        ++I2;
626        if (!I1->isIdenticalTo(*I2, Check))
627          return false;
628      }
629      // If we've reached the end of just one of the two bundles, but not both,
630      // the instructions are not identical.
631      if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
632        return false;
633    }
634  
635    // Check operands to make sure they match.
636    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
637      const MachineOperand &MO = getOperand(i);
638      const MachineOperand &OMO = Other.getOperand(i);
639      if (!MO.isReg()) {
640        if (!MO.isIdenticalTo(OMO))
641          return false;
642        continue;
643      }
644  
645      // Clients may or may not want to ignore defs when testing for equality.
646      // For example, machine CSE pass only cares about finding common
647      // subexpressions, so it's safe to ignore virtual register defs.
648      if (MO.isDef()) {
649        if (Check == IgnoreDefs)
650          continue;
651        else if (Check == IgnoreVRegDefs) {
652          if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
653            if (!MO.isIdenticalTo(OMO))
654              return false;
655        } else {
656          if (!MO.isIdenticalTo(OMO))
657            return false;
658          if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
659            return false;
660        }
661      } else {
662        if (!MO.isIdenticalTo(OMO))
663          return false;
664        if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
665          return false;
666      }
667    }
668    // If DebugLoc does not match then two debug instructions are not identical.
669    if (isDebugInstr())
670      if (getDebugLoc() && Other.getDebugLoc() &&
671          getDebugLoc() != Other.getDebugLoc())
672        return false;
673    // If pre- or post-instruction symbols do not match then the two instructions
674    // are not identical.
675    if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
676        getPostInstrSymbol() != Other.getPostInstrSymbol())
677      return false;
678    // Call instructions with different CFI types are not identical.
679    if (isCall() && getCFIType() != Other.getCFIType())
680      return false;
681  
682    return true;
683  }
684  
685  bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
686    if (!isDebugValueLike() || !Other.isDebugValueLike())
687      return false;
688    if (getDebugLoc() != Other.getDebugLoc())
689      return false;
690    if (getDebugVariable() != Other.getDebugVariable())
691      return false;
692    if (getNumDebugOperands() != Other.getNumDebugOperands())
693      return false;
694    for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
695      if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
696        return false;
697    if (!DIExpression::isEqualExpression(
698            getDebugExpression(), isIndirectDebugValue(),
699            Other.getDebugExpression(), Other.isIndirectDebugValue()))
700      return false;
701    return true;
702  }
703  
704  const MachineFunction *MachineInstr::getMF() const {
705    return getParent()->getParent();
706  }
707  
708  MachineInstr *MachineInstr::removeFromParent() {
709    assert(getParent() && "Not embedded in a basic block!");
710    return getParent()->remove(this);
711  }
712  
713  MachineInstr *MachineInstr::removeFromBundle() {
714    assert(getParent() && "Not embedded in a basic block!");
715    return getParent()->remove_instr(this);
716  }
717  
718  void MachineInstr::eraseFromParent() {
719    assert(getParent() && "Not embedded in a basic block!");
720    getParent()->erase(this);
721  }
722  
723  void MachineInstr::eraseFromBundle() {
724    assert(getParent() && "Not embedded in a basic block!");
725    getParent()->erase_instr(this);
726  }
727  
728  bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
729    if (!isCall(Type))
730      return false;
731    switch (getOpcode()) {
732    case TargetOpcode::PATCHPOINT:
733    case TargetOpcode::STACKMAP:
734    case TargetOpcode::STATEPOINT:
735    case TargetOpcode::FENTRY_CALL:
736      return false;
737    }
738    return true;
739  }
740  
741  bool MachineInstr::shouldUpdateCallSiteInfo() const {
742    if (isBundle())
743      return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
744    return isCandidateForCallSiteEntry();
745  }
746  
747  unsigned MachineInstr::getNumExplicitOperands() const {
748    unsigned NumOperands = MCID->getNumOperands();
749    if (!MCID->isVariadic())
750      return NumOperands;
751  
752    for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
753      const MachineOperand &MO = getOperand(I);
754      // The operands must always be in the following order:
755      // - explicit reg defs,
756      // - other explicit operands (reg uses, immediates, etc.),
757      // - implicit reg defs
758      // - implicit reg uses
759      if (MO.isReg() && MO.isImplicit())
760        break;
761      ++NumOperands;
762    }
763    return NumOperands;
764  }
765  
766  unsigned MachineInstr::getNumExplicitDefs() const {
767    unsigned NumDefs = MCID->getNumDefs();
768    if (!MCID->isVariadic())
769      return NumDefs;
770  
771    for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
772      const MachineOperand &MO = getOperand(I);
773      if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
774        break;
775      ++NumDefs;
776    }
777    return NumDefs;
778  }
779  
780  void MachineInstr::bundleWithPred() {
781    assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
782    setFlag(BundledPred);
783    MachineBasicBlock::instr_iterator Pred = getIterator();
784    --Pred;
785    assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
786    Pred->setFlag(BundledSucc);
787  }
788  
789  void MachineInstr::bundleWithSucc() {
790    assert(!isBundledWithSucc() && "MI is already bundled with its successor");
791    setFlag(BundledSucc);
792    MachineBasicBlock::instr_iterator Succ = getIterator();
793    ++Succ;
794    assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
795    Succ->setFlag(BundledPred);
796  }
797  
798  void MachineInstr::unbundleFromPred() {
799    assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
800    clearFlag(BundledPred);
801    MachineBasicBlock::instr_iterator Pred = getIterator();
802    --Pred;
803    assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
804    Pred->clearFlag(BundledSucc);
805  }
806  
807  void MachineInstr::unbundleFromSucc() {
808    assert(isBundledWithSucc() && "MI isn't bundled with its successor");
809    clearFlag(BundledSucc);
810    MachineBasicBlock::instr_iterator Succ = getIterator();
811    ++Succ;
812    assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
813    Succ->clearFlag(BundledPred);
814  }
815  
816  bool MachineInstr::isStackAligningInlineAsm() const {
817    if (isInlineAsm()) {
818      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
819      if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
820        return true;
821    }
822    return false;
823  }
824  
825  InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
826    assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
827    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
828    return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
829  }
830  
831  int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
832                                         unsigned *GroupNo) const {
833    assert(isInlineAsm() && "Expected an inline asm instruction");
834    assert(OpIdx < getNumOperands() && "OpIdx out of range");
835  
836    // Ignore queries about the initial operands.
837    if (OpIdx < InlineAsm::MIOp_FirstOperand)
838      return -1;
839  
840    unsigned Group = 0;
841    unsigned NumOps;
842    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
843         i += NumOps) {
844      const MachineOperand &FlagMO = getOperand(i);
845      // If we reach the implicit register operands, stop looking.
846      if (!FlagMO.isImm())
847        return -1;
848      NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
849      if (i + NumOps > OpIdx) {
850        if (GroupNo)
851          *GroupNo = Group;
852        return i;
853      }
854      ++Group;
855    }
856    return -1;
857  }
858  
859  const DILabel *MachineInstr::getDebugLabel() const {
860    assert(isDebugLabel() && "not a DBG_LABEL");
861    return cast<DILabel>(getOperand(0).getMetadata());
862  }
863  
864  const MachineOperand &MachineInstr::getDebugVariableOp() const {
865    assert((isDebugValueLike()) && "not a DBG_VALUE*");
866    unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
867    return getOperand(VariableOp);
868  }
869  
870  MachineOperand &MachineInstr::getDebugVariableOp() {
871    assert((isDebugValueLike()) && "not a DBG_VALUE*");
872    unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
873    return getOperand(VariableOp);
874  }
875  
876  const DILocalVariable *MachineInstr::getDebugVariable() const {
877    return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
878  }
879  
880  const MachineOperand &MachineInstr::getDebugExpressionOp() const {
881    assert((isDebugValueLike()) && "not a DBG_VALUE*");
882    unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
883    return getOperand(ExpressionOp);
884  }
885  
886  MachineOperand &MachineInstr::getDebugExpressionOp() {
887    assert((isDebugValueLike()) && "not a DBG_VALUE*");
888    unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
889    return getOperand(ExpressionOp);
890  }
891  
892  const DIExpression *MachineInstr::getDebugExpression() const {
893    return cast<DIExpression>(getDebugExpressionOp().getMetadata());
894  }
895  
896  bool MachineInstr::isDebugEntryValue() const {
897    return isDebugValue() && getDebugExpression()->isEntryValue();
898  }
899  
900  const TargetRegisterClass*
901  MachineInstr::getRegClassConstraint(unsigned OpIdx,
902                                      const TargetInstrInfo *TII,
903                                      const TargetRegisterInfo *TRI) const {
904    assert(getParent() && "Can't have an MBB reference here!");
905    assert(getMF() && "Can't have an MF reference here!");
906    const MachineFunction &MF = *getMF();
907  
908    // Most opcodes have fixed constraints in their MCInstrDesc.
909    if (!isInlineAsm())
910      return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
911  
912    if (!getOperand(OpIdx).isReg())
913      return nullptr;
914  
915    // For tied uses on inline asm, get the constraint from the def.
916    unsigned DefIdx;
917    if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
918      OpIdx = DefIdx;
919  
920    // Inline asm stores register class constraints in the flag word.
921    int FlagIdx = findInlineAsmFlagIdx(OpIdx);
922    if (FlagIdx < 0)
923      return nullptr;
924  
925    unsigned Flag = getOperand(FlagIdx).getImm();
926    unsigned RCID;
927    if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
928         InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
929         InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
930        InlineAsm::hasRegClassConstraint(Flag, RCID))
931      return TRI->getRegClass(RCID);
932  
933    // Assume that all registers in a memory operand are pointers.
934    if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
935      return TRI->getPointerRegClass(MF);
936  
937    return nullptr;
938  }
939  
940  const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
941      Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
942      const TargetRegisterInfo *TRI, bool ExploreBundle) const {
943    // Check every operands inside the bundle if we have
944    // been asked to.
945    if (ExploreBundle)
946      for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
947           ++OpndIt)
948        CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
949            OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
950    else
951      // Otherwise, just check the current operands.
952      for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
953        CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
954    return CurRC;
955  }
956  
957  const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
958      unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
959      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
960    assert(CurRC && "Invalid initial register class");
961    // Check if Reg is constrained by some of its use/def from MI.
962    const MachineOperand &MO = getOperand(OpIdx);
963    if (!MO.isReg() || MO.getReg() != Reg)
964      return CurRC;
965    // If yes, accumulate the constraints through the operand.
966    return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
967  }
968  
969  const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
970      unsigned OpIdx, const TargetRegisterClass *CurRC,
971      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
972    const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
973    const MachineOperand &MO = getOperand(OpIdx);
974    assert(MO.isReg() &&
975           "Cannot get register constraints for non-register operand");
976    assert(CurRC && "Invalid initial register class");
977    if (unsigned SubIdx = MO.getSubReg()) {
978      if (OpRC)
979        CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
980      else
981        CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
982    } else if (OpRC)
983      CurRC = TRI->getCommonSubClass(CurRC, OpRC);
984    return CurRC;
985  }
986  
987  /// Return the number of instructions inside the MI bundle, not counting the
988  /// header instruction.
989  unsigned MachineInstr::getBundleSize() const {
990    MachineBasicBlock::const_instr_iterator I = getIterator();
991    unsigned Size = 0;
992    while (I->isBundledWithSucc()) {
993      ++Size;
994      ++I;
995    }
996    return Size;
997  }
998  
999  /// Returns true if the MachineInstr has an implicit-use operand of exactly
1000  /// the given register (not considering sub/super-registers).
1001  bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
1002    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1003      const MachineOperand &MO = getOperand(i);
1004      if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1005        return true;
1006    }
1007    return false;
1008  }
1009  
1010  /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1011  /// the specific register or -1 if it is not found. It further tightens
1012  /// the search criteria to a use that kills the register if isKill is true.
1013  int MachineInstr::findRegisterUseOperandIdx(
1014      Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1015    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1016      const MachineOperand &MO = getOperand(i);
1017      if (!MO.isReg() || !MO.isUse())
1018        continue;
1019      Register MOReg = MO.getReg();
1020      if (!MOReg)
1021        continue;
1022      if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1023        if (!isKill || MO.isKill())
1024          return i;
1025    }
1026    return -1;
1027  }
1028  
1029  /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1030  /// indicating if this instruction reads or writes Reg. This also considers
1031  /// partial defines.
1032  std::pair<bool,bool>
1033  MachineInstr::readsWritesVirtualRegister(Register Reg,
1034                                           SmallVectorImpl<unsigned> *Ops) const {
1035    bool PartDef = false; // Partial redefine.
1036    bool FullDef = false; // Full define.
1037    bool Use = false;
1038  
1039    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1040      const MachineOperand &MO = getOperand(i);
1041      if (!MO.isReg() || MO.getReg() != Reg)
1042        continue;
1043      if (Ops)
1044        Ops->push_back(i);
1045      if (MO.isUse())
1046        Use |= !MO.isUndef();
1047      else if (MO.getSubReg() && !MO.isUndef())
1048        // A partial def undef doesn't count as reading the register.
1049        PartDef = true;
1050      else
1051        FullDef = true;
1052    }
1053    // A partial redefine uses Reg unless there is also a full define.
1054    return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1055  }
1056  
1057  /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1058  /// the specified register or -1 if it is not found. If isDead is true, defs
1059  /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1060  /// also checks if there is a def of a super-register.
1061  int
1062  MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1063                                          const TargetRegisterInfo *TRI) const {
1064    bool isPhys = Reg.isPhysical();
1065    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1066      const MachineOperand &MO = getOperand(i);
1067      // Accept regmask operands when Overlap is set.
1068      // Ignore them when looking for a specific def operand (Overlap == false).
1069      if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1070        return i;
1071      if (!MO.isReg() || !MO.isDef())
1072        continue;
1073      Register MOReg = MO.getReg();
1074      bool Found = (MOReg == Reg);
1075      if (!Found && TRI && isPhys && MOReg.isPhysical()) {
1076        if (Overlap)
1077          Found = TRI->regsOverlap(MOReg, Reg);
1078        else
1079          Found = TRI->isSubRegister(MOReg, Reg);
1080      }
1081      if (Found && (!isDead || MO.isDead()))
1082        return i;
1083    }
1084    return -1;
1085  }
1086  
1087  /// findFirstPredOperandIdx() - Find the index of the first operand in the
1088  /// operand list that is used to represent the predicate. It returns -1 if
1089  /// none is found.
1090  int MachineInstr::findFirstPredOperandIdx() const {
1091    // Don't call MCID.findFirstPredOperandIdx() because this variant
1092    // is sometimes called on an instruction that's not yet complete, and
1093    // so the number of operands is less than the MCID indicates. In
1094    // particular, the PTX target does this.
1095    const MCInstrDesc &MCID = getDesc();
1096    if (MCID.isPredicable()) {
1097      for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1098        if (MCID.operands()[i].isPredicate())
1099          return i;
1100    }
1101  
1102    return -1;
1103  }
1104  
1105  // MachineOperand::TiedTo is 4 bits wide.
1106  const unsigned TiedMax = 15;
1107  
1108  /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1109  ///
1110  /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1111  /// field. TiedTo can have these values:
1112  ///
1113  /// 0:              Operand is not tied to anything.
1114  /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1115  /// TiedMax:        Tied to an operand >= TiedMax-1.
1116  ///
1117  /// The tied def must be one of the first TiedMax operands on a normal
1118  /// instruction. INLINEASM instructions allow more tied defs.
1119  ///
1120  void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1121    MachineOperand &DefMO = getOperand(DefIdx);
1122    MachineOperand &UseMO = getOperand(UseIdx);
1123    assert(DefMO.isDef() && "DefIdx must be a def operand");
1124    assert(UseMO.isUse() && "UseIdx must be a use operand");
1125    assert(!DefMO.isTied() && "Def is already tied to another use");
1126    assert(!UseMO.isTied() && "Use is already tied to another def");
1127  
1128    if (DefIdx < TiedMax)
1129      UseMO.TiedTo = DefIdx + 1;
1130    else {
1131      // Inline asm can use the group descriptors to find tied operands,
1132      // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1133      // but on normal instruction, the tied def must be within the first TiedMax
1134      // operands.
1135      assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1136             "DefIdx out of range");
1137      UseMO.TiedTo = TiedMax;
1138    }
1139  
1140    // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1141    DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1142  }
1143  
1144  /// Given the index of a tied register operand, find the operand it is tied to.
1145  /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1146  /// which must exist.
1147  unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1148    const MachineOperand &MO = getOperand(OpIdx);
1149    assert(MO.isTied() && "Operand isn't tied");
1150  
1151    // Normally TiedTo is in range.
1152    if (MO.TiedTo < TiedMax)
1153      return MO.TiedTo - 1;
1154  
1155    // Uses on normal instructions can be out of range.
1156    if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1157      // Normal tied defs must be in the 0..TiedMax-1 range.
1158      if (MO.isUse())
1159        return TiedMax - 1;
1160      // MO is a def. Search for the tied use.
1161      for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1162        const MachineOperand &UseMO = getOperand(i);
1163        if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1164          return i;
1165      }
1166      llvm_unreachable("Can't find tied use");
1167    }
1168  
1169    if (getOpcode() == TargetOpcode::STATEPOINT) {
1170      // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1171      // on registers.
1172      StatepointOpers SO(this);
1173      unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1174      assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1175      unsigned NumDefs = getNumDefs();
1176      for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1177        while (!getOperand(CurUseIdx).isReg())
1178          CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1179        if (OpIdx == CurDefIdx)
1180          return CurUseIdx;
1181        if (OpIdx == CurUseIdx)
1182          return CurDefIdx;
1183        CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1184      }
1185      llvm_unreachable("Can't find tied use");
1186    }
1187  
1188    // Now deal with inline asm by parsing the operand group descriptor flags.
1189    // Find the beginning of each operand group.
1190    SmallVector<unsigned, 8> GroupIdx;
1191    unsigned OpIdxGroup = ~0u;
1192    unsigned NumOps;
1193    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1194         i += NumOps) {
1195      const MachineOperand &FlagMO = getOperand(i);
1196      assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1197      unsigned CurGroup = GroupIdx.size();
1198      GroupIdx.push_back(i);
1199      NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1200      // OpIdx belongs to this operand group.
1201      if (OpIdx > i && OpIdx < i + NumOps)
1202        OpIdxGroup = CurGroup;
1203      unsigned TiedGroup;
1204      if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1205        continue;
1206      // Operands in this group are tied to operands in TiedGroup which must be
1207      // earlier. Find the number of operands between the two groups.
1208      unsigned Delta = i - GroupIdx[TiedGroup];
1209  
1210      // OpIdx is a use tied to TiedGroup.
1211      if (OpIdxGroup == CurGroup)
1212        return OpIdx - Delta;
1213  
1214      // OpIdx is a def tied to this use group.
1215      if (OpIdxGroup == TiedGroup)
1216        return OpIdx + Delta;
1217    }
1218    llvm_unreachable("Invalid tied operand on inline asm");
1219  }
1220  
1221  /// clearKillInfo - Clears kill flags on all operands.
1222  ///
1223  void MachineInstr::clearKillInfo() {
1224    for (MachineOperand &MO : operands()) {
1225      if (MO.isReg() && MO.isUse())
1226        MO.setIsKill(false);
1227    }
1228  }
1229  
1230  void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1231                                        unsigned SubIdx,
1232                                        const TargetRegisterInfo &RegInfo) {
1233    if (ToReg.isPhysical()) {
1234      if (SubIdx)
1235        ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1236      for (MachineOperand &MO : operands()) {
1237        if (!MO.isReg() || MO.getReg() != FromReg)
1238          continue;
1239        MO.substPhysReg(ToReg, RegInfo);
1240      }
1241    } else {
1242      for (MachineOperand &MO : operands()) {
1243        if (!MO.isReg() || MO.getReg() != FromReg)
1244          continue;
1245        MO.substVirtReg(ToReg, SubIdx, RegInfo);
1246      }
1247    }
1248  }
1249  
1250  /// isSafeToMove - Return true if it is safe to move this instruction. If
1251  /// SawStore is set to true, it means that there is a store (or call) between
1252  /// the instruction's location and its intended destination.
1253  bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1254    // Ignore stuff that we obviously can't move.
1255    //
1256    // Treat volatile loads as stores. This is not strictly necessary for
1257    // volatiles, but it is required for atomic loads. It is not allowed to move
1258    // a load across an atomic load with Ordering > Monotonic.
1259    if (mayStore() || isCall() || isPHI() ||
1260        (mayLoad() && hasOrderedMemoryRef())) {
1261      SawStore = true;
1262      return false;
1263    }
1264  
1265    if (isPosition() || isDebugInstr() || isTerminator() ||
1266        mayRaiseFPException() || hasUnmodeledSideEffects())
1267      return false;
1268  
1269    // See if this instruction does a load.  If so, we have to guarantee that the
1270    // loaded value doesn't change between the load and the its intended
1271    // destination. The check for isInvariantLoad gives the target the chance to
1272    // classify the load as always returning a constant, e.g. a constant pool
1273    // load.
1274    if (mayLoad() && !isDereferenceableInvariantLoad())
1275      // Otherwise, this is a real load.  If there is a store between the load and
1276      // end of block, we can't move it.
1277      return !SawStore;
1278  
1279    return true;
1280  }
1281  
1282  static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1283                                   bool UseTBAA, const MachineMemOperand *MMOa,
1284                                   const MachineMemOperand *MMOb) {
1285    // The following interface to AA is fashioned after DAGCombiner::isAlias and
1286    // operates with MachineMemOperand offset with some important assumptions:
1287    //   - LLVM fundamentally assumes flat address spaces.
1288    //   - MachineOperand offset can *only* result from legalization and cannot
1289    //     affect queries other than the trivial case of overlap checking.
1290    //   - These offsets never wrap and never step outside of allocated objects.
1291    //   - There should never be any negative offsets here.
1292    //
1293    // FIXME: Modify API to hide this math from "user"
1294    // Even before we go to AA we can reason locally about some memory objects. It
1295    // can save compile time, and possibly catch some corner cases not currently
1296    // covered.
1297  
1298    int64_t OffsetA = MMOa->getOffset();
1299    int64_t OffsetB = MMOb->getOffset();
1300    int64_t MinOffset = std::min(OffsetA, OffsetB);
1301  
1302    uint64_t WidthA = MMOa->getSize();
1303    uint64_t WidthB = MMOb->getSize();
1304    bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1305    bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1306  
1307    const Value *ValA = MMOa->getValue();
1308    const Value *ValB = MMOb->getValue();
1309    bool SameVal = (ValA && ValB && (ValA == ValB));
1310    if (!SameVal) {
1311      const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1312      const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1313      if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1314        return false;
1315      if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1316        return false;
1317      if (PSVa && PSVb && (PSVa == PSVb))
1318        SameVal = true;
1319    }
1320  
1321    if (SameVal) {
1322      if (!KnownWidthA || !KnownWidthB)
1323        return true;
1324      int64_t MaxOffset = std::max(OffsetA, OffsetB);
1325      int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1326      return (MinOffset + LowWidth > MaxOffset);
1327    }
1328  
1329    if (!AA)
1330      return true;
1331  
1332    if (!ValA || !ValB)
1333      return true;
1334  
1335    assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1336    assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1337  
1338    int64_t OverlapA =
1339        KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1340    int64_t OverlapB =
1341        KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1342  
1343    return !AA->isNoAlias(
1344        MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1345        MemoryLocation(ValB, OverlapB,
1346                       UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1347  }
1348  
1349  bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1350                              bool UseTBAA) const {
1351    const MachineFunction *MF = getMF();
1352    const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1353    const MachineFrameInfo &MFI = MF->getFrameInfo();
1354  
1355    // Exclude call instruction which may alter the memory but can not be handled
1356    // by this function.
1357    if (isCall() || Other.isCall())
1358      return true;
1359  
1360    // If neither instruction stores to memory, they can't alias in any
1361    // meaningful way, even if they read from the same address.
1362    if (!mayStore() && !Other.mayStore())
1363      return false;
1364  
1365    // Both instructions must be memory operations to be able to alias.
1366    if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1367      return false;
1368  
1369    // Let the target decide if memory accesses cannot possibly overlap.
1370    if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1371      return false;
1372  
1373    // Memory operations without memory operands may access anything. Be
1374    // conservative and assume `MayAlias`.
1375    if (memoperands_empty() || Other.memoperands_empty())
1376      return true;
1377  
1378    // Skip if there are too many memory operands.
1379    auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1380    if (NumChecks > TII->getMemOperandAACheckLimit())
1381      return true;
1382  
1383    // Check each pair of memory operands from both instructions, which can't
1384    // alias only if all pairs won't alias.
1385    for (auto *MMOa : memoperands())
1386      for (auto *MMOb : Other.memoperands())
1387        if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1388          return true;
1389  
1390    return false;
1391  }
1392  
1393  /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1394  /// or volatile memory reference, or if the information describing the memory
1395  /// reference is not available. Return false if it is known to have no ordered
1396  /// memory references.
1397  bool MachineInstr::hasOrderedMemoryRef() const {
1398    // An instruction known never to access memory won't have a volatile access.
1399    if (!mayStore() &&
1400        !mayLoad() &&
1401        !isCall() &&
1402        !hasUnmodeledSideEffects())
1403      return false;
1404  
1405    // Otherwise, if the instruction has no memory reference information,
1406    // conservatively assume it wasn't preserved.
1407    if (memoperands_empty())
1408      return true;
1409  
1410    // Check if any of our memory operands are ordered.
1411    return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1412      return !MMO->isUnordered();
1413    });
1414  }
1415  
1416  /// isDereferenceableInvariantLoad - Return true if this instruction will never
1417  /// trap and is loading from a location whose value is invariant across a run of
1418  /// this function.
1419  bool MachineInstr::isDereferenceableInvariantLoad() const {
1420    // If the instruction doesn't load at all, it isn't an invariant load.
1421    if (!mayLoad())
1422      return false;
1423  
1424    // If the instruction has lost its memoperands, conservatively assume that
1425    // it may not be an invariant load.
1426    if (memoperands_empty())
1427      return false;
1428  
1429    const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1430  
1431    for (MachineMemOperand *MMO : memoperands()) {
1432      if (!MMO->isUnordered())
1433        // If the memory operand has ordering side effects, we can't move the
1434        // instruction.  Such an instruction is technically an invariant load,
1435        // but the caller code would need updated to expect that.
1436        return false;
1437      if (MMO->isStore()) return false;
1438      if (MMO->isInvariant() && MMO->isDereferenceable())
1439        continue;
1440  
1441      // A load from a constant PseudoSourceValue is invariant.
1442      if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1443        if (PSV->isConstant(&MFI))
1444          continue;
1445      }
1446  
1447      // Otherwise assume conservatively.
1448      return false;
1449    }
1450  
1451    // Everything checks out.
1452    return true;
1453  }
1454  
1455  /// isConstantValuePHI - If the specified instruction is a PHI that always
1456  /// merges together the same virtual register, return the register, otherwise
1457  /// return 0.
1458  unsigned MachineInstr::isConstantValuePHI() const {
1459    if (!isPHI())
1460      return 0;
1461    assert(getNumOperands() >= 3 &&
1462           "It's illegal to have a PHI without source operands");
1463  
1464    Register Reg = getOperand(1).getReg();
1465    for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1466      if (getOperand(i).getReg() != Reg)
1467        return 0;
1468    return Reg;
1469  }
1470  
1471  bool MachineInstr::hasUnmodeledSideEffects() const {
1472    if (hasProperty(MCID::UnmodeledSideEffects))
1473      return true;
1474    if (isInlineAsm()) {
1475      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1476      if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1477        return true;
1478    }
1479  
1480    return false;
1481  }
1482  
1483  bool MachineInstr::isLoadFoldBarrier() const {
1484    return mayStore() || isCall() ||
1485           (hasUnmodeledSideEffects() && !isPseudoProbe());
1486  }
1487  
1488  /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1489  ///
1490  bool MachineInstr::allDefsAreDead() const {
1491    for (const MachineOperand &MO : operands()) {
1492      if (!MO.isReg() || MO.isUse())
1493        continue;
1494      if (!MO.isDead())
1495        return false;
1496    }
1497    return true;
1498  }
1499  
1500  /// copyImplicitOps - Copy implicit register operands from specified
1501  /// instruction to this instruction.
1502  void MachineInstr::copyImplicitOps(MachineFunction &MF,
1503                                     const MachineInstr &MI) {
1504    for (const MachineOperand &MO :
1505         llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1506      if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1507        addOperand(MF, MO);
1508  }
1509  
1510  bool MachineInstr::hasComplexRegisterTies() const {
1511    const MCInstrDesc &MCID = getDesc();
1512    if (MCID.Opcode == TargetOpcode::STATEPOINT)
1513      return true;
1514    for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1515      const auto &Operand = getOperand(I);
1516      if (!Operand.isReg() || Operand.isDef())
1517        // Ignore the defined registers as MCID marks only the uses as tied.
1518        continue;
1519      int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1520      int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1521      if (ExpectedTiedIdx != TiedIdx)
1522        return true;
1523    }
1524    return false;
1525  }
1526  
1527  LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1528                                   const MachineRegisterInfo &MRI) const {
1529    const MachineOperand &Op = getOperand(OpIdx);
1530    if (!Op.isReg())
1531      return LLT{};
1532  
1533    if (isVariadic() || OpIdx >= getNumExplicitOperands())
1534      return MRI.getType(Op.getReg());
1535  
1536    auto &OpInfo = getDesc().operands()[OpIdx];
1537    if (!OpInfo.isGenericType())
1538      return MRI.getType(Op.getReg());
1539  
1540    if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1541      return LLT{};
1542  
1543    LLT TypeToPrint = MRI.getType(Op.getReg());
1544    // Don't mark the type index printed if it wasn't actually printed: maybe
1545    // another operand with the same type index has an actual type attached:
1546    if (TypeToPrint.isValid())
1547      PrintedTypes.set(OpInfo.getGenericTypeIndex());
1548    return TypeToPrint;
1549  }
1550  
1551  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1552  LLVM_DUMP_METHOD void MachineInstr::dump() const {
1553    dbgs() << "  ";
1554    print(dbgs());
1555  }
1556  
1557  LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1558      const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1559      SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1560    if (Depth >= MaxDepth)
1561      return;
1562    if (!AlreadySeenInstrs.insert(this).second)
1563      return;
1564    // PadToColumn always inserts at least one space.
1565    // Don't mess up the alignment if we don't want any space.
1566    if (Depth)
1567      fdbgs().PadToColumn(Depth * 2);
1568    print(fdbgs());
1569    for (const MachineOperand &MO : operands()) {
1570      if (!MO.isReg() || MO.isDef())
1571        continue;
1572      Register Reg = MO.getReg();
1573      if (Reg.isPhysical())
1574        continue;
1575      const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1576      if (NewMI == nullptr)
1577        continue;
1578      NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1579    }
1580  }
1581  
1582  LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1583                                            unsigned MaxDepth) const {
1584    SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1585    dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1586  }
1587  #endif
1588  
1589  void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1590                           bool SkipDebugLoc, bool AddNewLine,
1591                           const TargetInstrInfo *TII) const {
1592    const Module *M = nullptr;
1593    const Function *F = nullptr;
1594    if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1595      F = &MF->getFunction();
1596      M = F->getParent();
1597      if (!TII)
1598        TII = MF->getSubtarget().getInstrInfo();
1599    }
1600  
1601    ModuleSlotTracker MST(M);
1602    if (F)
1603      MST.incorporateFunction(*F);
1604    print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1605  }
1606  
1607  void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1608                           bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1609                           bool AddNewLine, const TargetInstrInfo *TII) const {
1610    // We can be a bit tidier if we know the MachineFunction.
1611    const TargetRegisterInfo *TRI = nullptr;
1612    const MachineRegisterInfo *MRI = nullptr;
1613    const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1614    tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1615  
1616    if (isCFIInstruction())
1617      assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1618  
1619    SmallBitVector PrintedTypes(8);
1620    bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1621    auto getTiedOperandIdx = [&](unsigned OpIdx) {
1622      if (!ShouldPrintRegisterTies)
1623        return 0U;
1624      const MachineOperand &MO = getOperand(OpIdx);
1625      if (MO.isReg() && MO.isTied() && !MO.isDef())
1626        return findTiedOperandIdx(OpIdx);
1627      return 0U;
1628    };
1629    unsigned StartOp = 0;
1630    unsigned e = getNumOperands();
1631  
1632    // Print explicitly defined operands on the left of an assignment syntax.
1633    while (StartOp < e) {
1634      const MachineOperand &MO = getOperand(StartOp);
1635      if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1636        break;
1637  
1638      if (StartOp != 0)
1639        OS << ", ";
1640  
1641      LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1642      unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1643      MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1644               ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1645      ++StartOp;
1646    }
1647  
1648    if (StartOp != 0)
1649      OS << " = ";
1650  
1651    if (getFlag(MachineInstr::FrameSetup))
1652      OS << "frame-setup ";
1653    if (getFlag(MachineInstr::FrameDestroy))
1654      OS << "frame-destroy ";
1655    if (getFlag(MachineInstr::FmNoNans))
1656      OS << "nnan ";
1657    if (getFlag(MachineInstr::FmNoInfs))
1658      OS << "ninf ";
1659    if (getFlag(MachineInstr::FmNsz))
1660      OS << "nsz ";
1661    if (getFlag(MachineInstr::FmArcp))
1662      OS << "arcp ";
1663    if (getFlag(MachineInstr::FmContract))
1664      OS << "contract ";
1665    if (getFlag(MachineInstr::FmAfn))
1666      OS << "afn ";
1667    if (getFlag(MachineInstr::FmReassoc))
1668      OS << "reassoc ";
1669    if (getFlag(MachineInstr::NoUWrap))
1670      OS << "nuw ";
1671    if (getFlag(MachineInstr::NoSWrap))
1672      OS << "nsw ";
1673    if (getFlag(MachineInstr::IsExact))
1674      OS << "exact ";
1675    if (getFlag(MachineInstr::NoFPExcept))
1676      OS << "nofpexcept ";
1677    if (getFlag(MachineInstr::NoMerge))
1678      OS << "nomerge ";
1679  
1680    // Print the opcode name.
1681    if (TII)
1682      OS << TII->getName(getOpcode());
1683    else
1684      OS << "UNKNOWN";
1685  
1686    if (SkipOpers)
1687      return;
1688  
1689    // Print the rest of the operands.
1690    bool FirstOp = true;
1691    unsigned AsmDescOp = ~0u;
1692    unsigned AsmOpCount = 0;
1693  
1694    if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1695      // Print asm string.
1696      OS << " ";
1697      const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1698      LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1699      unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1700      getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1701                              ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1702                              IntrinsicInfo);
1703  
1704      // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1705      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1706      if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1707        OS << " [sideeffect]";
1708      if (ExtraInfo & InlineAsm::Extra_MayLoad)
1709        OS << " [mayload]";
1710      if (ExtraInfo & InlineAsm::Extra_MayStore)
1711        OS << " [maystore]";
1712      if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1713        OS << " [isconvergent]";
1714      if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1715        OS << " [alignstack]";
1716      if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1717        OS << " [attdialect]";
1718      if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1719        OS << " [inteldialect]";
1720  
1721      StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1722      FirstOp = false;
1723    }
1724  
1725    for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1726      const MachineOperand &MO = getOperand(i);
1727  
1728      if (FirstOp) FirstOp = false; else OS << ",";
1729      OS << " ";
1730  
1731      if (isDebugValueLike() && MO.isMetadata()) {
1732        // Pretty print DBG_VALUE* instructions.
1733        auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1734        if (DIV && !DIV->getName().empty())
1735          OS << "!\"" << DIV->getName() << '\"';
1736        else {
1737          LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1738          unsigned TiedOperandIdx = getTiedOperandIdx(i);
1739          MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1740                   ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1741        }
1742      } else if (isDebugLabel() && MO.isMetadata()) {
1743        // Pretty print DBG_LABEL instructions.
1744        auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1745        if (DIL && !DIL->getName().empty())
1746          OS << "\"" << DIL->getName() << '\"';
1747        else {
1748          LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1749          unsigned TiedOperandIdx = getTiedOperandIdx(i);
1750          MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1751                   ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1752        }
1753      } else if (i == AsmDescOp && MO.isImm()) {
1754        // Pretty print the inline asm operand descriptor.
1755        OS << '$' << AsmOpCount++;
1756        unsigned Flag = MO.getImm();
1757        OS << ":[";
1758        OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1759  
1760        unsigned RCID = 0;
1761        if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1762            InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1763          if (TRI) {
1764            OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1765          } else
1766            OS << ":RC" << RCID;
1767        }
1768  
1769        if (InlineAsm::isMemKind(Flag)) {
1770          unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1771          OS << ":" << InlineAsm::getMemConstraintName(MCID);
1772        }
1773  
1774        unsigned TiedTo = 0;
1775        if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1776          OS << " tiedto:$" << TiedTo;
1777  
1778        OS << ']';
1779  
1780        // Compute the index of the next operand descriptor.
1781        AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1782      } else {
1783        LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1784        unsigned TiedOperandIdx = getTiedOperandIdx(i);
1785        if (MO.isImm() && isOperandSubregIdx(i))
1786          MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1787        else
1788          MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1789                   ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1790      }
1791    }
1792  
1793    // Print any optional symbols attached to this instruction as-if they were
1794    // operands.
1795    if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1796      if (!FirstOp) {
1797        FirstOp = false;
1798        OS << ',';
1799      }
1800      OS << " pre-instr-symbol ";
1801      MachineOperand::printSymbol(OS, *PreInstrSymbol);
1802    }
1803    if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1804      if (!FirstOp) {
1805        FirstOp = false;
1806        OS << ',';
1807      }
1808      OS << " post-instr-symbol ";
1809      MachineOperand::printSymbol(OS, *PostInstrSymbol);
1810    }
1811    if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1812      if (!FirstOp) {
1813        FirstOp = false;
1814        OS << ',';
1815      }
1816      OS << " heap-alloc-marker ";
1817      HeapAllocMarker->printAsOperand(OS, MST);
1818    }
1819    if (MDNode *PCSections = getPCSections()) {
1820      if (!FirstOp) {
1821        FirstOp = false;
1822        OS << ',';
1823      }
1824      OS << " pcsections ";
1825      PCSections->printAsOperand(OS, MST);
1826    }
1827    if (uint32_t CFIType = getCFIType()) {
1828      if (!FirstOp)
1829        OS << ',';
1830      OS << " cfi-type " << CFIType;
1831    }
1832  
1833    if (DebugInstrNum) {
1834      if (!FirstOp)
1835        OS << ",";
1836      OS << " debug-instr-number " << DebugInstrNum;
1837    }
1838  
1839    if (!SkipDebugLoc) {
1840      if (const DebugLoc &DL = getDebugLoc()) {
1841        if (!FirstOp)
1842          OS << ',';
1843        OS << " debug-location ";
1844        DL->printAsOperand(OS, MST);
1845      }
1846    }
1847  
1848    if (!memoperands_empty()) {
1849      SmallVector<StringRef, 0> SSNs;
1850      const LLVMContext *Context = nullptr;
1851      std::unique_ptr<LLVMContext> CtxPtr;
1852      const MachineFrameInfo *MFI = nullptr;
1853      if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1854        MFI = &MF->getFrameInfo();
1855        Context = &MF->getFunction().getContext();
1856      } else {
1857        CtxPtr = std::make_unique<LLVMContext>();
1858        Context = CtxPtr.get();
1859      }
1860  
1861      OS << " :: ";
1862      bool NeedComma = false;
1863      for (const MachineMemOperand *Op : memoperands()) {
1864        if (NeedComma)
1865          OS << ", ";
1866        Op->print(OS, MST, SSNs, *Context, MFI, TII);
1867        NeedComma = true;
1868      }
1869    }
1870  
1871    if (SkipDebugLoc)
1872      return;
1873  
1874    bool HaveSemi = false;
1875  
1876    // Print debug location information.
1877    if (const DebugLoc &DL = getDebugLoc()) {
1878      if (!HaveSemi) {
1879        OS << ';';
1880        HaveSemi = true;
1881      }
1882      OS << ' ';
1883      DL.print(OS);
1884    }
1885  
1886    // Print extra comments for DEBUG_VALUE.
1887    if (isDebugValueLike() && getDebugVariableOp().isMetadata()) {
1888      if (!HaveSemi) {
1889        OS << ";";
1890        HaveSemi = true;
1891      }
1892      auto *DV = getDebugVariable();
1893      OS << " line no:" <<  DV->getLine();
1894      if (isIndirectDebugValue())
1895        OS << " indirect";
1896    }
1897    // TODO: DBG_LABEL
1898  
1899    if (AddNewLine)
1900      OS << '\n';
1901  }
1902  
1903  bool MachineInstr::addRegisterKilled(Register IncomingReg,
1904                                       const TargetRegisterInfo *RegInfo,
1905                                       bool AddIfNotFound) {
1906    bool isPhysReg = IncomingReg.isPhysical();
1907    bool hasAliases = isPhysReg &&
1908      MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1909    bool Found = false;
1910    SmallVector<unsigned,4> DeadOps;
1911    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1912      MachineOperand &MO = getOperand(i);
1913      if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1914        continue;
1915  
1916      // DEBUG_VALUE nodes do not contribute to code generation and should
1917      // always be ignored. Failure to do so may result in trying to modify
1918      // KILL flags on DEBUG_VALUE nodes.
1919      if (MO.isDebug())
1920        continue;
1921  
1922      Register Reg = MO.getReg();
1923      if (!Reg)
1924        continue;
1925  
1926      if (Reg == IncomingReg) {
1927        if (!Found) {
1928          if (MO.isKill())
1929            // The register is already marked kill.
1930            return true;
1931          if (isPhysReg && isRegTiedToDefOperand(i))
1932            // Two-address uses of physregs must not be marked kill.
1933            return true;
1934          MO.setIsKill();
1935          Found = true;
1936        }
1937      } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
1938        // A super-register kill already exists.
1939        if (RegInfo->isSuperRegister(IncomingReg, Reg))
1940          return true;
1941        if (RegInfo->isSubRegister(IncomingReg, Reg))
1942          DeadOps.push_back(i);
1943      }
1944    }
1945  
1946    // Trim unneeded kill operands.
1947    while (!DeadOps.empty()) {
1948      unsigned OpIdx = DeadOps.back();
1949      if (getOperand(OpIdx).isImplicit() &&
1950          (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1951        removeOperand(OpIdx);
1952      else
1953        getOperand(OpIdx).setIsKill(false);
1954      DeadOps.pop_back();
1955    }
1956  
1957    // If not found, this means an alias of one of the operands is killed. Add a
1958    // new implicit operand if required.
1959    if (!Found && AddIfNotFound) {
1960      addOperand(MachineOperand::CreateReg(IncomingReg,
1961                                           false /*IsDef*/,
1962                                           true  /*IsImp*/,
1963                                           true  /*IsKill*/));
1964      return true;
1965    }
1966    return Found;
1967  }
1968  
1969  void MachineInstr::clearRegisterKills(Register Reg,
1970                                        const TargetRegisterInfo *RegInfo) {
1971    if (!Reg.isPhysical())
1972      RegInfo = nullptr;
1973    for (MachineOperand &MO : operands()) {
1974      if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1975        continue;
1976      Register OpReg = MO.getReg();
1977      if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1978        MO.setIsKill(false);
1979    }
1980  }
1981  
1982  bool MachineInstr::addRegisterDead(Register Reg,
1983                                     const TargetRegisterInfo *RegInfo,
1984                                     bool AddIfNotFound) {
1985    bool isPhysReg = Reg.isPhysical();
1986    bool hasAliases = isPhysReg &&
1987      MCRegAliasIterator(Reg, RegInfo, false).isValid();
1988    bool Found = false;
1989    SmallVector<unsigned,4> DeadOps;
1990    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1991      MachineOperand &MO = getOperand(i);
1992      if (!MO.isReg() || !MO.isDef())
1993        continue;
1994      Register MOReg = MO.getReg();
1995      if (!MOReg)
1996        continue;
1997  
1998      if (MOReg == Reg) {
1999        MO.setIsDead();
2000        Found = true;
2001      } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
2002        // There exists a super-register that's marked dead.
2003        if (RegInfo->isSuperRegister(Reg, MOReg))
2004          return true;
2005        if (RegInfo->isSubRegister(Reg, MOReg))
2006          DeadOps.push_back(i);
2007      }
2008    }
2009  
2010    // Trim unneeded dead operands.
2011    while (!DeadOps.empty()) {
2012      unsigned OpIdx = DeadOps.back();
2013      if (getOperand(OpIdx).isImplicit() &&
2014          (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2015        removeOperand(OpIdx);
2016      else
2017        getOperand(OpIdx).setIsDead(false);
2018      DeadOps.pop_back();
2019    }
2020  
2021    // If not found, this means an alias of one of the operands is dead. Add a
2022    // new implicit operand if required.
2023    if (Found || !AddIfNotFound)
2024      return Found;
2025  
2026    addOperand(MachineOperand::CreateReg(Reg,
2027                                         true  /*IsDef*/,
2028                                         true  /*IsImp*/,
2029                                         false /*IsKill*/,
2030                                         true  /*IsDead*/));
2031    return true;
2032  }
2033  
2034  void MachineInstr::clearRegisterDeads(Register Reg) {
2035    for (MachineOperand &MO : operands()) {
2036      if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2037        continue;
2038      MO.setIsDead(false);
2039    }
2040  }
2041  
2042  void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2043    for (MachineOperand &MO : operands()) {
2044      if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2045        continue;
2046      MO.setIsUndef(IsUndef);
2047    }
2048  }
2049  
2050  void MachineInstr::addRegisterDefined(Register Reg,
2051                                        const TargetRegisterInfo *RegInfo) {
2052    if (Reg.isPhysical()) {
2053      MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2054      if (MO)
2055        return;
2056    } else {
2057      for (const MachineOperand &MO : operands()) {
2058        if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2059            MO.getSubReg() == 0)
2060          return;
2061      }
2062    }
2063    addOperand(MachineOperand::CreateReg(Reg,
2064                                         true  /*IsDef*/,
2065                                         true  /*IsImp*/));
2066  }
2067  
2068  void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2069                                           const TargetRegisterInfo &TRI) {
2070    bool HasRegMask = false;
2071    for (MachineOperand &MO : operands()) {
2072      if (MO.isRegMask()) {
2073        HasRegMask = true;
2074        continue;
2075      }
2076      if (!MO.isReg() || !MO.isDef()) continue;
2077      Register Reg = MO.getReg();
2078      if (!Reg.isPhysical())
2079        continue;
2080      // If there are no uses, including partial uses, the def is dead.
2081      if (llvm::none_of(UsedRegs,
2082                        [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2083        MO.setIsDead();
2084    }
2085  
2086    // This is a call with a register mask operand.
2087    // Mask clobbers are always dead, so add defs for the non-dead defines.
2088    if (HasRegMask)
2089      for (const Register &UsedReg : UsedRegs)
2090        addRegisterDefined(UsedReg, &TRI);
2091  }
2092  
2093  unsigned
2094  MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2095    // Build up a buffer of hash code components.
2096    SmallVector<size_t, 16> HashComponents;
2097    HashComponents.reserve(MI->getNumOperands() + 1);
2098    HashComponents.push_back(MI->getOpcode());
2099    for (const MachineOperand &MO : MI->operands()) {
2100      if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
2101        continue;  // Skip virtual register defs.
2102  
2103      HashComponents.push_back(hash_value(MO));
2104    }
2105    return hash_combine_range(HashComponents.begin(), HashComponents.end());
2106  }
2107  
2108  void MachineInstr::emitError(StringRef Msg) const {
2109    // Find the source location cookie.
2110    uint64_t LocCookie = 0;
2111    const MDNode *LocMD = nullptr;
2112    for (unsigned i = getNumOperands(); i != 0; --i) {
2113      if (getOperand(i-1).isMetadata() &&
2114          (LocMD = getOperand(i-1).getMetadata()) &&
2115          LocMD->getNumOperands() != 0) {
2116        if (const ConstantInt *CI =
2117                mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2118          LocCookie = CI->getZExtValue();
2119          break;
2120        }
2121      }
2122    }
2123  
2124    if (const MachineBasicBlock *MBB = getParent())
2125      if (const MachineFunction *MF = MBB->getParent())
2126        return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2127    report_fatal_error(Msg);
2128  }
2129  
2130  MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2131                                    const MCInstrDesc &MCID, bool IsIndirect,
2132                                    Register Reg, const MDNode *Variable,
2133                                    const MDNode *Expr) {
2134    assert(isa<DILocalVariable>(Variable) && "not a variable");
2135    assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2136    assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2137           "Expected inlined-at fields to agree");
2138    auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2139    if (IsIndirect)
2140      MIB.addImm(0U);
2141    else
2142      MIB.addReg(0U);
2143    return MIB.addMetadata(Variable).addMetadata(Expr);
2144  }
2145  
2146  MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2147                                    const MCInstrDesc &MCID, bool IsIndirect,
2148                                    ArrayRef<MachineOperand> DebugOps,
2149                                    const MDNode *Variable, const MDNode *Expr) {
2150    assert(isa<DILocalVariable>(Variable) && "not a variable");
2151    assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2152    assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2153           "Expected inlined-at fields to agree");
2154    if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2155      assert(DebugOps.size() == 1 &&
2156             "DBG_VALUE must contain exactly one debug operand");
2157      MachineOperand DebugOp = DebugOps[0];
2158      if (DebugOp.isReg())
2159        return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
2160                       Expr);
2161  
2162      auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
2163      if (IsIndirect)
2164        MIB.addImm(0U);
2165      else
2166        MIB.addReg(0U);
2167      return MIB.addMetadata(Variable).addMetadata(Expr);
2168    }
2169  
2170    auto MIB = BuildMI(MF, DL, MCID);
2171    MIB.addMetadata(Variable).addMetadata(Expr);
2172    for (const MachineOperand &DebugOp : DebugOps)
2173      if (DebugOp.isReg())
2174        MIB.addReg(DebugOp.getReg());
2175      else
2176        MIB.add(DebugOp);
2177    return MIB;
2178  }
2179  
2180  MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2181                                    MachineBasicBlock::iterator I,
2182                                    const DebugLoc &DL, const MCInstrDesc &MCID,
2183                                    bool IsIndirect, Register Reg,
2184                                    const MDNode *Variable, const MDNode *Expr) {
2185    MachineFunction &MF = *BB.getParent();
2186    MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2187    BB.insert(I, MI);
2188    return MachineInstrBuilder(MF, MI);
2189  }
2190  
2191  MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2192                                    MachineBasicBlock::iterator I,
2193                                    const DebugLoc &DL, const MCInstrDesc &MCID,
2194                                    bool IsIndirect,
2195                                    ArrayRef<MachineOperand> DebugOps,
2196                                    const MDNode *Variable, const MDNode *Expr) {
2197    MachineFunction &MF = *BB.getParent();
2198    MachineInstr *MI =
2199        BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2200    BB.insert(I, MI);
2201    return MachineInstrBuilder(MF, *MI);
2202  }
2203  
2204  /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2205  /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2206  static const DIExpression *
2207  computeExprForSpill(const MachineInstr &MI,
2208                      SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2209    assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2210           "Expected inlined-at fields to agree");
2211  
2212    const DIExpression *Expr = MI.getDebugExpression();
2213    if (MI.isIndirectDebugValue()) {
2214      assert(MI.getDebugOffset().getImm() == 0 &&
2215             "DBG_VALUE with nonzero offset");
2216      Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2217    } else if (MI.isDebugValueList()) {
2218      // We will replace the spilled register with a frame index, so
2219      // immediately deref all references to the spilled register.
2220      std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2221      for (const MachineOperand *Op : SpilledOperands) {
2222        unsigned OpIdx = MI.getDebugOperandIndex(Op);
2223        Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2224      }
2225    }
2226    return Expr;
2227  }
2228  static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2229                                                 Register SpillReg) {
2230    assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2231    SmallVector<const MachineOperand *> SpillOperands;
2232    for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2233      SpillOperands.push_back(&Op);
2234    return computeExprForSpill(MI, SpillOperands);
2235  }
2236  
2237  MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2238                                            MachineBasicBlock::iterator I,
2239                                            const MachineInstr &Orig,
2240                                            int FrameIndex, Register SpillReg) {
2241    assert(!Orig.isDebugRef() &&
2242           "DBG_INSTR_REF should not reference a virtual register.");
2243    const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2244    MachineInstrBuilder NewMI =
2245        BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2246    // Non-Variadic Operands: Location, Offset, Variable, Expression
2247    // Variadic Operands:     Variable, Expression, Locations...
2248    if (Orig.isNonListDebugValue())
2249      NewMI.addFrameIndex(FrameIndex).addImm(0U);
2250    NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2251    if (Orig.isDebugValueList()) {
2252      for (const MachineOperand &Op : Orig.debug_operands())
2253        if (Op.isReg() && Op.getReg() == SpillReg)
2254          NewMI.addFrameIndex(FrameIndex);
2255        else
2256          NewMI.add(MachineOperand(Op));
2257    }
2258    return NewMI;
2259  }
2260  MachineInstr *llvm::buildDbgValueForSpill(
2261      MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2262      const MachineInstr &Orig, int FrameIndex,
2263      SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2264    const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2265    MachineInstrBuilder NewMI =
2266        BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2267    // Non-Variadic Operands: Location, Offset, Variable, Expression
2268    // Variadic Operands:     Variable, Expression, Locations...
2269    if (Orig.isNonListDebugValue())
2270      NewMI.addFrameIndex(FrameIndex).addImm(0U);
2271    NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2272    if (Orig.isDebugValueList()) {
2273      for (const MachineOperand &Op : Orig.debug_operands())
2274        if (is_contained(SpilledOperands, &Op))
2275          NewMI.addFrameIndex(FrameIndex);
2276        else
2277          NewMI.add(MachineOperand(Op));
2278    }
2279    return NewMI;
2280  }
2281  
2282  void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2283                                    Register Reg) {
2284    const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2285    if (Orig.isNonListDebugValue())
2286      Orig.getDebugOffset().ChangeToImmediate(0U);
2287    for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2288      Op.ChangeToFrameIndex(FrameIndex);
2289    Orig.getDebugExpressionOp().setMetadata(Expr);
2290  }
2291  
2292  void MachineInstr::collectDebugValues(
2293                                  SmallVectorImpl<MachineInstr *> &DbgValues) {
2294    MachineInstr &MI = *this;
2295    if (!MI.getOperand(0).isReg())
2296      return;
2297  
2298    MachineBasicBlock::iterator DI = MI; ++DI;
2299    for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2300         DI != DE; ++DI) {
2301      if (!DI->isDebugValue())
2302        return;
2303      if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2304        DbgValues.push_back(&*DI);
2305    }
2306  }
2307  
2308  void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2309    // Collect matching debug values.
2310    SmallVector<MachineInstr *, 2> DbgValues;
2311  
2312    if (!getOperand(0).isReg())
2313      return;
2314  
2315    Register DefReg = getOperand(0).getReg();
2316    auto *MRI = getRegInfo();
2317    for (auto &MO : MRI->use_operands(DefReg)) {
2318      auto *DI = MO.getParent();
2319      if (!DI->isDebugValue())
2320        continue;
2321      if (DI->hasDebugOperandForReg(DefReg)) {
2322        DbgValues.push_back(DI);
2323      }
2324    }
2325  
2326    // Propagate Reg to debug value instructions.
2327    for (auto *DBI : DbgValues)
2328      for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2329        Op.setReg(Reg);
2330  }
2331  
2332  using MMOList = SmallVector<const MachineMemOperand *, 2>;
2333  
2334  static unsigned getSpillSlotSize(const MMOList &Accesses,
2335                                   const MachineFrameInfo &MFI) {
2336    unsigned Size = 0;
2337    for (const auto *A : Accesses)
2338      if (MFI.isSpillSlotObjectIndex(
2339              cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2340                  ->getFrameIndex()))
2341        Size += A->getSize();
2342    return Size;
2343  }
2344  
2345  std::optional<unsigned>
2346  MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2347    int FI;
2348    if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2349      const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2350      if (MFI.isSpillSlotObjectIndex(FI))
2351        return (*memoperands_begin())->getSize();
2352    }
2353    return std::nullopt;
2354  }
2355  
2356  std::optional<unsigned>
2357  MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2358    MMOList Accesses;
2359    if (TII->hasStoreToStackSlot(*this, Accesses))
2360      return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2361    return std::nullopt;
2362  }
2363  
2364  std::optional<unsigned>
2365  MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2366    int FI;
2367    if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2368      const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2369      if (MFI.isSpillSlotObjectIndex(FI))
2370        return (*memoperands_begin())->getSize();
2371    }
2372    return std::nullopt;
2373  }
2374  
2375  std::optional<unsigned>
2376  MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2377    MMOList Accesses;
2378    if (TII->hasLoadFromStackSlot(*this, Accesses))
2379      return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2380    return std::nullopt;
2381  }
2382  
2383  unsigned MachineInstr::getDebugInstrNum() {
2384    if (DebugInstrNum == 0)
2385      DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2386    return DebugInstrNum;
2387  }
2388  
2389  unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2390    if (DebugInstrNum == 0)
2391      DebugInstrNum = MF.getNewDebugInstrNum();
2392    return DebugInstrNum;
2393  }
2394  
2395  std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const {
2396    return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2397                      getRegInfo()->getType(getOperand(1).getReg()));
2398  }
2399  
2400  std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const {
2401    return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2402                      getRegInfo()->getType(getOperand(1).getReg()),
2403                      getRegInfo()->getType(getOperand(2).getReg()));
2404  }
2405  
2406  std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const {
2407    return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2408                      getRegInfo()->getType(getOperand(1).getReg()),
2409                      getRegInfo()->getType(getOperand(2).getReg()),
2410                      getRegInfo()->getType(getOperand(3).getReg()));
2411  }
2412  
2413  std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const {
2414    return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2415                      getRegInfo()->getType(getOperand(1).getReg()),
2416                      getRegInfo()->getType(getOperand(2).getReg()),
2417                      getRegInfo()->getType(getOperand(3).getReg()),
2418                      getRegInfo()->getType(getOperand(4).getReg()));
2419  }
2420  
2421  std::tuple<Register, LLT, Register, LLT>
2422  MachineInstr::getFirst2RegLLTs() const {
2423    Register Reg0 = getOperand(0).getReg();
2424    Register Reg1 = getOperand(1).getReg();
2425    return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2426                      getRegInfo()->getType(Reg1));
2427  }
2428  
2429  std::tuple<Register, LLT, Register, LLT, Register, LLT>
2430  MachineInstr::getFirst3RegLLTs() const {
2431    Register Reg0 = getOperand(0).getReg();
2432    Register Reg1 = getOperand(1).getReg();
2433    Register Reg2 = getOperand(2).getReg();
2434    return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2435                      getRegInfo()->getType(Reg1), Reg2,
2436                      getRegInfo()->getType(Reg2));
2437  }
2438  
2439  std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2440  MachineInstr::getFirst4RegLLTs() const {
2441    Register Reg0 = getOperand(0).getReg();
2442    Register Reg1 = getOperand(1).getReg();
2443    Register Reg2 = getOperand(2).getReg();
2444    Register Reg3 = getOperand(3).getReg();
2445    return std::tuple(
2446        Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2447        Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3));
2448  }
2449  
2450  std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register,
2451             LLT>
2452  MachineInstr::getFirst5RegLLTs() const {
2453    Register Reg0 = getOperand(0).getReg();
2454    Register Reg1 = getOperand(1).getReg();
2455    Register Reg2 = getOperand(2).getReg();
2456    Register Reg3 = getOperand(3).getReg();
2457    Register Reg4 = getOperand(4).getReg();
2458    return std::tuple(
2459        Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2460        Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3),
2461        Reg4, getRegInfo()->getType(Reg4));
2462  }
2463