xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision aca928a50a42f00f344df934005b09dbcb4e2f77)
1  //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Methods common to all machine instructions.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/CodeGen/MachineInstr.h"
14  #include "llvm/ADT/ArrayRef.h"
15  #include "llvm/ADT/Hashing.h"
16  #include "llvm/ADT/STLExtras.h"
17  #include "llvm/ADT/SmallBitVector.h"
18  #include "llvm/ADT/SmallVector.h"
19  #include "llvm/Analysis/AliasAnalysis.h"
20  #include "llvm/Analysis/MemoryLocation.h"
21  #include "llvm/CodeGen/LowLevelType.h"
22  #include "llvm/CodeGen/MachineBasicBlock.h"
23  #include "llvm/CodeGen/MachineFrameInfo.h"
24  #include "llvm/CodeGen/MachineFunction.h"
25  #include "llvm/CodeGen/MachineInstrBuilder.h"
26  #include "llvm/CodeGen/MachineInstrBundle.h"
27  #include "llvm/CodeGen/MachineMemOperand.h"
28  #include "llvm/CodeGen/MachineModuleInfo.h"
29  #include "llvm/CodeGen/MachineOperand.h"
30  #include "llvm/CodeGen/MachineRegisterInfo.h"
31  #include "llvm/CodeGen/PseudoSourceValue.h"
32  #include "llvm/CodeGen/Register.h"
33  #include "llvm/CodeGen/StackMaps.h"
34  #include "llvm/CodeGen/TargetInstrInfo.h"
35  #include "llvm/CodeGen/TargetRegisterInfo.h"
36  #include "llvm/CodeGen/TargetSubtargetInfo.h"
37  #include "llvm/IR/Constants.h"
38  #include "llvm/IR/DebugInfoMetadata.h"
39  #include "llvm/IR/DebugLoc.h"
40  #include "llvm/IR/Function.h"
41  #include "llvm/IR/InlineAsm.h"
42  #include "llvm/IR/LLVMContext.h"
43  #include "llvm/IR/Metadata.h"
44  #include "llvm/IR/Module.h"
45  #include "llvm/IR/ModuleSlotTracker.h"
46  #include "llvm/IR/Operator.h"
47  #include "llvm/MC/MCInstrDesc.h"
48  #include "llvm/MC/MCRegisterInfo.h"
49  #include "llvm/Support/Casting.h"
50  #include "llvm/Support/Compiler.h"
51  #include "llvm/Support/Debug.h"
52  #include "llvm/Support/ErrorHandling.h"
53  #include "llvm/Support/FormattedStream.h"
54  #include "llvm/Support/raw_ostream.h"
55  #include "llvm/Target/TargetMachine.h"
56  #include <algorithm>
57  #include <cassert>
58  #include <cstdint>
59  #include <cstring>
60  #include <utility>
61  
62  using namespace llvm;
63  
64  static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65    if (const MachineBasicBlock *MBB = MI.getParent())
66      if (const MachineFunction *MF = MBB->getParent())
67        return MF;
68    return nullptr;
69  }
70  
71  // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72  // it.
73  static void tryToGetTargetInfo(const MachineInstr &MI,
74                                 const TargetRegisterInfo *&TRI,
75                                 const MachineRegisterInfo *&MRI,
76                                 const TargetIntrinsicInfo *&IntrinsicInfo,
77                                 const TargetInstrInfo *&TII) {
78  
79    if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80      TRI = MF->getSubtarget().getRegisterInfo();
81      MRI = &MF->getRegInfo();
82      IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83      TII = MF->getSubtarget().getInstrInfo();
84    }
85  }
86  
87  void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88    for (MCPhysReg ImpDef : MCID->implicit_defs())
89      addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true));
90    for (MCPhysReg ImpUse : MCID->implicit_uses())
91      addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true));
92  }
93  
94  /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
95  /// implicit operands. It reserves space for the number of operands specified by
96  /// the MCInstrDesc.
97  MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
98                             DebugLoc DL, bool NoImp)
99      : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0),
100        DbgLoc(std::move(DL)), DebugInstrNum(0) {
101    assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
102  
103    // Reserve space for the expected number of operands.
104    if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
105                          MCID->implicit_uses().size()) {
106      CapOperands = OperandCapacity::get(NumOps);
107      Operands = MF.allocateOperandArray(CapOperands);
108    }
109  
110    if (!NoImp)
111      addImplicitDefUseOperands(MF);
112  }
113  
114  /// MachineInstr ctor - Copies MachineInstr arg exactly.
115  /// Does not copy the number from debug instruction numbering, to preserve
116  /// uniqueness.
117  MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
118      : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
119        Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) {
120    assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
121  
122    CapOperands = OperandCapacity::get(MI.getNumOperands());
123    Operands = MF.allocateOperandArray(CapOperands);
124  
125    // Copy operands.
126    for (const MachineOperand &MO : MI.operands())
127      addOperand(MF, MO);
128  
129    // Replicate ties between the operands, which addOperand was not
130    // able to do reliably.
131    for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
132      MachineOperand &NewMO = getOperand(i);
133      const MachineOperand &OrigMO = MI.getOperand(i);
134      NewMO.TiedTo = OrigMO.TiedTo;
135    }
136  
137    // Copy all the sensible flags.
138    setFlags(MI.Flags);
139  }
140  
141  void MachineInstr::setDesc(const MCInstrDesc &TID) {
142    if (getParent())
143      getMF()->handleChangeDesc(*this, TID);
144    MCID = &TID;
145  }
146  
147  void MachineInstr::moveBefore(MachineInstr *MovePos) {
148    MovePos->getParent()->splice(MovePos, getParent(), getIterator());
149  }
150  
151  /// getRegInfo - If this instruction is embedded into a MachineFunction,
152  /// return the MachineRegisterInfo object for the current function, otherwise
153  /// return null.
154  MachineRegisterInfo *MachineInstr::getRegInfo() {
155    if (MachineBasicBlock *MBB = getParent())
156      return &MBB->getParent()->getRegInfo();
157    return nullptr;
158  }
159  
160  const MachineRegisterInfo *MachineInstr::getRegInfo() const {
161    if (const MachineBasicBlock *MBB = getParent())
162      return &MBB->getParent()->getRegInfo();
163    return nullptr;
164  }
165  
166  void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
167    for (MachineOperand &MO : operands())
168      if (MO.isReg())
169        MRI.removeRegOperandFromUseList(&MO);
170  }
171  
172  void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
173    for (MachineOperand &MO : operands())
174      if (MO.isReg())
175        MRI.addRegOperandToUseList(&MO);
176  }
177  
178  void MachineInstr::addOperand(const MachineOperand &Op) {
179    MachineBasicBlock *MBB = getParent();
180    assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
181    MachineFunction *MF = MBB->getParent();
182    assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
183    addOperand(*MF, Op);
184  }
185  
186  /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
187  /// ranges. If MRI is non-null also update use-def chains.
188  static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
189                           unsigned NumOps, MachineRegisterInfo *MRI) {
190    if (MRI)
191      return MRI->moveOperands(Dst, Src, NumOps);
192    // MachineOperand is a trivially copyable type so we can just use memmove.
193    assert(Dst && Src && "Unknown operands");
194    std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
195  }
196  
197  /// addOperand - Add the specified operand to the instruction.  If it is an
198  /// implicit operand, it is added to the end of the operand list.  If it is
199  /// an explicit operand it is added at the end of the explicit operand list
200  /// (before the first implicit operand).
201  void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
202    assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) &&
203           "Cannot add more operands.");
204    assert(MCID && "Cannot add operands before providing an instr descriptor");
205  
206    // Check if we're adding one of our existing operands.
207    if (&Op >= Operands && &Op < Operands + NumOperands) {
208      // This is unusual: MI->addOperand(MI->getOperand(i)).
209      // If adding Op requires reallocating or moving existing operands around,
210      // the Op reference could go stale. Support it by copying Op.
211      MachineOperand CopyOp(Op);
212      return addOperand(MF, CopyOp);
213    }
214  
215    // Find the insert location for the new operand.  Implicit registers go at
216    // the end, everything else goes before the implicit regs.
217    //
218    // FIXME: Allow mixed explicit and implicit operands on inline asm.
219    // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
220    // implicit-defs, but they must not be moved around.  See the FIXME in
221    // InstrEmitter.cpp.
222    unsigned OpNo = getNumOperands();
223    bool isImpReg = Op.isReg() && Op.isImplicit();
224    if (!isImpReg && !isInlineAsm()) {
225      while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
226        --OpNo;
227        assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
228      }
229    }
230  
231    // OpNo now points as the desired insertion point.  Unless this is a variadic
232    // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
233    // RegMask operands go between the explicit and implicit operands.
234    MachineRegisterInfo *MRI = getRegInfo();
235  
236    // Determine if the Operands array needs to be reallocated.
237    // Save the old capacity and operand array.
238    OperandCapacity OldCap = CapOperands;
239    MachineOperand *OldOperands = Operands;
240    if (!OldOperands || OldCap.getSize() == getNumOperands()) {
241      CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
242      Operands = MF.allocateOperandArray(CapOperands);
243      // Move the operands before the insertion point.
244      if (OpNo)
245        moveOperands(Operands, OldOperands, OpNo, MRI);
246    }
247  
248    // Move the operands following the insertion point.
249    if (OpNo != NumOperands)
250      moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
251                   MRI);
252    ++NumOperands;
253  
254    // Deallocate the old operand array.
255    if (OldOperands != Operands && OldOperands)
256      MF.deallocateOperandArray(OldCap, OldOperands);
257  
258    // Copy Op into place. It still needs to be inserted into the MRI use lists.
259    MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
260    NewMO->ParentMI = this;
261  
262    // When adding a register operand, tell MRI about it.
263    if (NewMO->isReg()) {
264      // Ensure isOnRegUseList() returns false, regardless of Op's status.
265      NewMO->Contents.Reg.Prev = nullptr;
266      // Ignore existing ties. This is not a property that can be copied.
267      NewMO->TiedTo = 0;
268      // Add the new operand to MRI, but only for instructions in an MBB.
269      if (MRI)
270        MRI->addRegOperandToUseList(NewMO);
271      // The MCID operand information isn't accurate until we start adding
272      // explicit operands. The implicit operands are added first, then the
273      // explicits are inserted before them.
274      if (!isImpReg) {
275        // Tie uses to defs as indicated in MCInstrDesc.
276        if (NewMO->isUse()) {
277          int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
278          if (DefIdx != -1)
279            tieOperands(DefIdx, OpNo);
280        }
281        // If the register operand is flagged as early, mark the operand as such.
282        if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
283          NewMO->setIsEarlyClobber(true);
284      }
285      // Ensure debug instructions set debug flag on register uses.
286      if (NewMO->isUse() && isDebugInstr())
287        NewMO->setIsDebug();
288    }
289  }
290  
291  void MachineInstr::removeOperand(unsigned OpNo) {
292    assert(OpNo < getNumOperands() && "Invalid operand number");
293    untieRegOperand(OpNo);
294  
295  #ifndef NDEBUG
296    // Moving tied operands would break the ties.
297    for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
298      if (Operands[i].isReg())
299        assert(!Operands[i].isTied() && "Cannot move tied operands");
300  #endif
301  
302    MachineRegisterInfo *MRI = getRegInfo();
303    if (MRI && Operands[OpNo].isReg())
304      MRI->removeRegOperandFromUseList(Operands + OpNo);
305  
306    // Don't call the MachineOperand destructor. A lot of this code depends on
307    // MachineOperand having a trivial destructor anyway, and adding a call here
308    // wouldn't make it 'destructor-correct'.
309  
310    if (unsigned N = NumOperands - 1 - OpNo)
311      moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
312    --NumOperands;
313  }
314  
315  void MachineInstr::setExtraInfo(MachineFunction &MF,
316                                  ArrayRef<MachineMemOperand *> MMOs,
317                                  MCSymbol *PreInstrSymbol,
318                                  MCSymbol *PostInstrSymbol,
319                                  MDNode *HeapAllocMarker, MDNode *PCSections,
320                                  uint32_t CFIType) {
321    bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
322    bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
323    bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
324    bool HasPCSections = PCSections != nullptr;
325    bool HasCFIType = CFIType != 0;
326    int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
327                      HasHeapAllocMarker + HasPCSections + HasCFIType;
328  
329    // Drop all extra info if there is none.
330    if (NumPointers <= 0) {
331      Info.clear();
332      return;
333    }
334  
335    // If more than one pointer, then store out of line. Store heap alloc markers
336    // out of line because PointerSumType cannot hold more than 4 tag types with
337    // 32-bit pointers.
338    // FIXME: Maybe we should make the symbols in the extra info mutable?
339    else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections ||
340             HasCFIType) {
341      Info.set<EIIK_OutOfLine>(
342          MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
343                               HeapAllocMarker, PCSections, CFIType));
344      return;
345    }
346  
347    // Otherwise store the single pointer inline.
348    if (HasPreInstrSymbol)
349      Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
350    else if (HasPostInstrSymbol)
351      Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
352    else
353      Info.set<EIIK_MMO>(MMOs[0]);
354  }
355  
356  void MachineInstr::dropMemRefs(MachineFunction &MF) {
357    if (memoperands_empty())
358      return;
359  
360    setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
361                 getHeapAllocMarker(), getPCSections(), getCFIType());
362  }
363  
364  void MachineInstr::setMemRefs(MachineFunction &MF,
365                                ArrayRef<MachineMemOperand *> MMOs) {
366    if (MMOs.empty()) {
367      dropMemRefs(MF);
368      return;
369    }
370  
371    setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
372                 getHeapAllocMarker(), getPCSections(), getCFIType());
373  }
374  
375  void MachineInstr::addMemOperand(MachineFunction &MF,
376                                   MachineMemOperand *MO) {
377    SmallVector<MachineMemOperand *, 2> MMOs;
378    MMOs.append(memoperands_begin(), memoperands_end());
379    MMOs.push_back(MO);
380    setMemRefs(MF, MMOs);
381  }
382  
383  void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
384    if (this == &MI)
385      // Nothing to do for a self-clone!
386      return;
387  
388    assert(&MF == MI.getMF() &&
389           "Invalid machine functions when cloning memory refrences!");
390    // See if we can just steal the extra info already allocated for the
391    // instruction. We can do this whenever the pre- and post-instruction symbols
392    // are the same (including null).
393    if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
394        getPostInstrSymbol() == MI.getPostInstrSymbol() &&
395        getHeapAllocMarker() == MI.getHeapAllocMarker() &&
396        getPCSections() == MI.getPCSections()) {
397      Info = MI.Info;
398      return;
399    }
400  
401    // Otherwise, fall back on a copy-based clone.
402    setMemRefs(MF, MI.memoperands());
403  }
404  
405  /// Check to see if the MMOs pointed to by the two MemRefs arrays are
406  /// identical.
407  static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
408                               ArrayRef<MachineMemOperand *> RHS) {
409    if (LHS.size() != RHS.size())
410      return false;
411  
412    auto LHSPointees = make_pointee_range(LHS);
413    auto RHSPointees = make_pointee_range(RHS);
414    return std::equal(LHSPointees.begin(), LHSPointees.end(),
415                      RHSPointees.begin());
416  }
417  
418  void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
419                                        ArrayRef<const MachineInstr *> MIs) {
420    // Try handling easy numbers of MIs with simpler mechanisms.
421    if (MIs.empty()) {
422      dropMemRefs(MF);
423      return;
424    }
425    if (MIs.size() == 1) {
426      cloneMemRefs(MF, *MIs[0]);
427      return;
428    }
429    // Because an empty memoperands list provides *no* information and must be
430    // handled conservatively (assuming the instruction can do anything), the only
431    // way to merge with it is to drop all other memoperands.
432    if (MIs[0]->memoperands_empty()) {
433      dropMemRefs(MF);
434      return;
435    }
436  
437    // Handle the general case.
438    SmallVector<MachineMemOperand *, 2> MergedMMOs;
439    // Start with the first instruction.
440    assert(&MF == MIs[0]->getMF() &&
441           "Invalid machine functions when cloning memory references!");
442    MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
443    // Now walk all the other instructions and accumulate any different MMOs.
444    for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
445      assert(&MF == MI.getMF() &&
446             "Invalid machine functions when cloning memory references!");
447  
448      // Skip MIs with identical operands to the first. This is a somewhat
449      // arbitrary hack but will catch common cases without being quadratic.
450      // TODO: We could fully implement merge semantics here if needed.
451      if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
452        continue;
453  
454      // Because an empty memoperands list provides *no* information and must be
455      // handled conservatively (assuming the instruction can do anything), the
456      // only way to merge with it is to drop all other memoperands.
457      if (MI.memoperands_empty()) {
458        dropMemRefs(MF);
459        return;
460      }
461  
462      // Otherwise accumulate these into our temporary buffer of the merged state.
463      MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
464    }
465  
466    setMemRefs(MF, MergedMMOs);
467  }
468  
469  void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
470    // Do nothing if old and new symbols are the same.
471    if (Symbol == getPreInstrSymbol())
472      return;
473  
474    // If there was only one symbol and we're removing it, just clear info.
475    if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
476      Info.clear();
477      return;
478    }
479  
480    setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
481                 getHeapAllocMarker(), getPCSections(), getCFIType());
482  }
483  
484  void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
485    // Do nothing if old and new symbols are the same.
486    if (Symbol == getPostInstrSymbol())
487      return;
488  
489    // If there was only one symbol and we're removing it, just clear info.
490    if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
491      Info.clear();
492      return;
493    }
494  
495    setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
496                 getHeapAllocMarker(), getPCSections(), getCFIType());
497  }
498  
499  void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
500    // Do nothing if old and new symbols are the same.
501    if (Marker == getHeapAllocMarker())
502      return;
503  
504    setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
505                 Marker, getPCSections(), getCFIType());
506  }
507  
508  void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
509    // Do nothing if old and new symbols are the same.
510    if (PCSections == getPCSections())
511      return;
512  
513    setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
514                 getHeapAllocMarker(), PCSections, getCFIType());
515  }
516  
517  void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
518    // Do nothing if old and new types are the same.
519    if (Type == getCFIType())
520      return;
521  
522    setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
523                 getHeapAllocMarker(), getPCSections(), Type);
524  }
525  
526  void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
527                                       const MachineInstr &MI) {
528    if (this == &MI)
529      // Nothing to do for a self-clone!
530      return;
531  
532    assert(&MF == MI.getMF() &&
533           "Invalid machine functions when cloning instruction symbols!");
534  
535    setPreInstrSymbol(MF, MI.getPreInstrSymbol());
536    setPostInstrSymbol(MF, MI.getPostInstrSymbol());
537    setHeapAllocMarker(MF, MI.getHeapAllocMarker());
538    setPCSections(MF, MI.getPCSections());
539  }
540  
541  uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
542    // For now, the just return the union of the flags. If the flags get more
543    // complicated over time, we might need more logic here.
544    return getFlags() | Other.getFlags();
545  }
546  
547  uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
548    uint32_t MIFlags = 0;
549    // Copy the wrapping flags.
550    if (const OverflowingBinaryOperator *OB =
551            dyn_cast<OverflowingBinaryOperator>(&I)) {
552      if (OB->hasNoSignedWrap())
553        MIFlags |= MachineInstr::MIFlag::NoSWrap;
554      if (OB->hasNoUnsignedWrap())
555        MIFlags |= MachineInstr::MIFlag::NoUWrap;
556    }
557  
558    // Copy the exact flag.
559    if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
560      if (PE->isExact())
561        MIFlags |= MachineInstr::MIFlag::IsExact;
562  
563    // Copy the fast-math flags.
564    if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
565      const FastMathFlags Flags = FP->getFastMathFlags();
566      if (Flags.noNaNs())
567        MIFlags |= MachineInstr::MIFlag::FmNoNans;
568      if (Flags.noInfs())
569        MIFlags |= MachineInstr::MIFlag::FmNoInfs;
570      if (Flags.noSignedZeros())
571        MIFlags |= MachineInstr::MIFlag::FmNsz;
572      if (Flags.allowReciprocal())
573        MIFlags |= MachineInstr::MIFlag::FmArcp;
574      if (Flags.allowContract())
575        MIFlags |= MachineInstr::MIFlag::FmContract;
576      if (Flags.approxFunc())
577        MIFlags |= MachineInstr::MIFlag::FmAfn;
578      if (Flags.allowReassoc())
579        MIFlags |= MachineInstr::MIFlag::FmReassoc;
580    }
581  
582    if (I.getMetadata(LLVMContext::MD_unpredictable))
583      MIFlags |= MachineInstr::MIFlag::Unpredictable;
584  
585    return MIFlags;
586  }
587  
588  void MachineInstr::copyIRFlags(const Instruction &I) {
589    Flags = copyFlagsFromInstruction(I);
590  }
591  
592  bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
593    assert(!isBundledWithPred() && "Must be called on bundle header");
594    for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
595      if (MII->getDesc().getFlags() & Mask) {
596        if (Type == AnyInBundle)
597          return true;
598      } else {
599        if (Type == AllInBundle && !MII->isBundle())
600          return false;
601      }
602      // This was the last instruction in the bundle.
603      if (!MII->isBundledWithSucc())
604        return Type == AllInBundle;
605    }
606  }
607  
608  bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
609                                   MICheckType Check) const {
610    // If opcodes or number of operands are not the same then the two
611    // instructions are obviously not identical.
612    if (Other.getOpcode() != getOpcode() ||
613        Other.getNumOperands() != getNumOperands())
614      return false;
615  
616    if (isBundle()) {
617      // We have passed the test above that both instructions have the same
618      // opcode, so we know that both instructions are bundles here. Let's compare
619      // MIs inside the bundle.
620      assert(Other.isBundle() && "Expected that both instructions are bundles.");
621      MachineBasicBlock::const_instr_iterator I1 = getIterator();
622      MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
623      // Loop until we analysed the last intruction inside at least one of the
624      // bundles.
625      while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
626        ++I1;
627        ++I2;
628        if (!I1->isIdenticalTo(*I2, Check))
629          return false;
630      }
631      // If we've reached the end of just one of the two bundles, but not both,
632      // the instructions are not identical.
633      if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
634        return false;
635    }
636  
637    // Check operands to make sure they match.
638    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
639      const MachineOperand &MO = getOperand(i);
640      const MachineOperand &OMO = Other.getOperand(i);
641      if (!MO.isReg()) {
642        if (!MO.isIdenticalTo(OMO))
643          return false;
644        continue;
645      }
646  
647      // Clients may or may not want to ignore defs when testing for equality.
648      // For example, machine CSE pass only cares about finding common
649      // subexpressions, so it's safe to ignore virtual register defs.
650      if (MO.isDef()) {
651        if (Check == IgnoreDefs)
652          continue;
653        else if (Check == IgnoreVRegDefs) {
654          if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
655            if (!MO.isIdenticalTo(OMO))
656              return false;
657        } else {
658          if (!MO.isIdenticalTo(OMO))
659            return false;
660          if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
661            return false;
662        }
663      } else {
664        if (!MO.isIdenticalTo(OMO))
665          return false;
666        if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
667          return false;
668      }
669    }
670    // If DebugLoc does not match then two debug instructions are not identical.
671    if (isDebugInstr())
672      if (getDebugLoc() && Other.getDebugLoc() &&
673          getDebugLoc() != Other.getDebugLoc())
674        return false;
675    // If pre- or post-instruction symbols do not match then the two instructions
676    // are not identical.
677    if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
678        getPostInstrSymbol() != Other.getPostInstrSymbol())
679      return false;
680    // Call instructions with different CFI types are not identical.
681    if (isCall() && getCFIType() != Other.getCFIType())
682      return false;
683  
684    return true;
685  }
686  
687  bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
688    if (!isDebugValueLike() || !Other.isDebugValueLike())
689      return false;
690    if (getDebugLoc() != Other.getDebugLoc())
691      return false;
692    if (getDebugVariable() != Other.getDebugVariable())
693      return false;
694    if (getNumDebugOperands() != Other.getNumDebugOperands())
695      return false;
696    for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
697      if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
698        return false;
699    if (!DIExpression::isEqualExpression(
700            getDebugExpression(), isIndirectDebugValue(),
701            Other.getDebugExpression(), Other.isIndirectDebugValue()))
702      return false;
703    return true;
704  }
705  
706  const MachineFunction *MachineInstr::getMF() const {
707    return getParent()->getParent();
708  }
709  
710  MachineInstr *MachineInstr::removeFromParent() {
711    assert(getParent() && "Not embedded in a basic block!");
712    return getParent()->remove(this);
713  }
714  
715  MachineInstr *MachineInstr::removeFromBundle() {
716    assert(getParent() && "Not embedded in a basic block!");
717    return getParent()->remove_instr(this);
718  }
719  
720  void MachineInstr::eraseFromParent() {
721    assert(getParent() && "Not embedded in a basic block!");
722    getParent()->erase(this);
723  }
724  
725  void MachineInstr::eraseFromBundle() {
726    assert(getParent() && "Not embedded in a basic block!");
727    getParent()->erase_instr(this);
728  }
729  
730  bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
731    if (!isCall(Type))
732      return false;
733    switch (getOpcode()) {
734    case TargetOpcode::PATCHPOINT:
735    case TargetOpcode::STACKMAP:
736    case TargetOpcode::STATEPOINT:
737    case TargetOpcode::FENTRY_CALL:
738      return false;
739    }
740    return true;
741  }
742  
743  bool MachineInstr::shouldUpdateCallSiteInfo() const {
744    if (isBundle())
745      return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
746    return isCandidateForCallSiteEntry();
747  }
748  
749  unsigned MachineInstr::getNumExplicitOperands() const {
750    unsigned NumOperands = MCID->getNumOperands();
751    if (!MCID->isVariadic())
752      return NumOperands;
753  
754    for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
755      const MachineOperand &MO = getOperand(I);
756      // The operands must always be in the following order:
757      // - explicit reg defs,
758      // - other explicit operands (reg uses, immediates, etc.),
759      // - implicit reg defs
760      // - implicit reg uses
761      if (MO.isReg() && MO.isImplicit())
762        break;
763      ++NumOperands;
764    }
765    return NumOperands;
766  }
767  
768  unsigned MachineInstr::getNumExplicitDefs() const {
769    unsigned NumDefs = MCID->getNumDefs();
770    if (!MCID->isVariadic())
771      return NumDefs;
772  
773    for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
774      const MachineOperand &MO = getOperand(I);
775      if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
776        break;
777      ++NumDefs;
778    }
779    return NumDefs;
780  }
781  
782  void MachineInstr::bundleWithPred() {
783    assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
784    setFlag(BundledPred);
785    MachineBasicBlock::instr_iterator Pred = getIterator();
786    --Pred;
787    assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
788    Pred->setFlag(BundledSucc);
789  }
790  
791  void MachineInstr::bundleWithSucc() {
792    assert(!isBundledWithSucc() && "MI is already bundled with its successor");
793    setFlag(BundledSucc);
794    MachineBasicBlock::instr_iterator Succ = getIterator();
795    ++Succ;
796    assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
797    Succ->setFlag(BundledPred);
798  }
799  
800  void MachineInstr::unbundleFromPred() {
801    assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
802    clearFlag(BundledPred);
803    MachineBasicBlock::instr_iterator Pred = getIterator();
804    --Pred;
805    assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
806    Pred->clearFlag(BundledSucc);
807  }
808  
809  void MachineInstr::unbundleFromSucc() {
810    assert(isBundledWithSucc() && "MI isn't bundled with its successor");
811    clearFlag(BundledSucc);
812    MachineBasicBlock::instr_iterator Succ = getIterator();
813    ++Succ;
814    assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
815    Succ->clearFlag(BundledPred);
816  }
817  
818  bool MachineInstr::isStackAligningInlineAsm() const {
819    if (isInlineAsm()) {
820      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
821      if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
822        return true;
823    }
824    return false;
825  }
826  
827  InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
828    assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
829    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
830    return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
831  }
832  
833  int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
834                                         unsigned *GroupNo) const {
835    assert(isInlineAsm() && "Expected an inline asm instruction");
836    assert(OpIdx < getNumOperands() && "OpIdx out of range");
837  
838    // Ignore queries about the initial operands.
839    if (OpIdx < InlineAsm::MIOp_FirstOperand)
840      return -1;
841  
842    unsigned Group = 0;
843    unsigned NumOps;
844    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
845         i += NumOps) {
846      const MachineOperand &FlagMO = getOperand(i);
847      // If we reach the implicit register operands, stop looking.
848      if (!FlagMO.isImm())
849        return -1;
850      const InlineAsm::Flag F(FlagMO.getImm());
851      NumOps = 1 + F.getNumOperandRegisters();
852      if (i + NumOps > OpIdx) {
853        if (GroupNo)
854          *GroupNo = Group;
855        return i;
856      }
857      ++Group;
858    }
859    return -1;
860  }
861  
862  const DILabel *MachineInstr::getDebugLabel() const {
863    assert(isDebugLabel() && "not a DBG_LABEL");
864    return cast<DILabel>(getOperand(0).getMetadata());
865  }
866  
867  const MachineOperand &MachineInstr::getDebugVariableOp() const {
868    assert((isDebugValueLike()) && "not a DBG_VALUE*");
869    unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
870    return getOperand(VariableOp);
871  }
872  
873  MachineOperand &MachineInstr::getDebugVariableOp() {
874    assert((isDebugValueLike()) && "not a DBG_VALUE*");
875    unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
876    return getOperand(VariableOp);
877  }
878  
879  const DILocalVariable *MachineInstr::getDebugVariable() const {
880    return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
881  }
882  
883  const MachineOperand &MachineInstr::getDebugExpressionOp() const {
884    assert((isDebugValueLike()) && "not a DBG_VALUE*");
885    unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
886    return getOperand(ExpressionOp);
887  }
888  
889  MachineOperand &MachineInstr::getDebugExpressionOp() {
890    assert((isDebugValueLike()) && "not a DBG_VALUE*");
891    unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
892    return getOperand(ExpressionOp);
893  }
894  
895  const DIExpression *MachineInstr::getDebugExpression() const {
896    return cast<DIExpression>(getDebugExpressionOp().getMetadata());
897  }
898  
899  bool MachineInstr::isDebugEntryValue() const {
900    return isDebugValue() && getDebugExpression()->isEntryValue();
901  }
902  
903  const TargetRegisterClass*
904  MachineInstr::getRegClassConstraint(unsigned OpIdx,
905                                      const TargetInstrInfo *TII,
906                                      const TargetRegisterInfo *TRI) const {
907    assert(getParent() && "Can't have an MBB reference here!");
908    assert(getMF() && "Can't have an MF reference here!");
909    const MachineFunction &MF = *getMF();
910  
911    // Most opcodes have fixed constraints in their MCInstrDesc.
912    if (!isInlineAsm())
913      return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
914  
915    if (!getOperand(OpIdx).isReg())
916      return nullptr;
917  
918    // For tied uses on inline asm, get the constraint from the def.
919    unsigned DefIdx;
920    if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
921      OpIdx = DefIdx;
922  
923    // Inline asm stores register class constraints in the flag word.
924    int FlagIdx = findInlineAsmFlagIdx(OpIdx);
925    if (FlagIdx < 0)
926      return nullptr;
927  
928    const InlineAsm::Flag F(getOperand(FlagIdx).getImm());
929    unsigned RCID;
930    if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) &&
931        F.hasRegClassConstraint(RCID))
932      return TRI->getRegClass(RCID);
933  
934    // Assume that all registers in a memory operand are pointers.
935    if (F.isMemKind())
936      return TRI->getPointerRegClass(MF);
937  
938    return nullptr;
939  }
940  
941  const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
942      Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
943      const TargetRegisterInfo *TRI, bool ExploreBundle) const {
944    // Check every operands inside the bundle if we have
945    // been asked to.
946    if (ExploreBundle)
947      for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
948           ++OpndIt)
949        CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
950            OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
951    else
952      // Otherwise, just check the current operands.
953      for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
954        CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
955    return CurRC;
956  }
957  
958  const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
959      unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
960      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
961    assert(CurRC && "Invalid initial register class");
962    // Check if Reg is constrained by some of its use/def from MI.
963    const MachineOperand &MO = getOperand(OpIdx);
964    if (!MO.isReg() || MO.getReg() != Reg)
965      return CurRC;
966    // If yes, accumulate the constraints through the operand.
967    return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
968  }
969  
970  const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
971      unsigned OpIdx, const TargetRegisterClass *CurRC,
972      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
973    const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
974    const MachineOperand &MO = getOperand(OpIdx);
975    assert(MO.isReg() &&
976           "Cannot get register constraints for non-register operand");
977    assert(CurRC && "Invalid initial register class");
978    if (unsigned SubIdx = MO.getSubReg()) {
979      if (OpRC)
980        CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
981      else
982        CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
983    } else if (OpRC)
984      CurRC = TRI->getCommonSubClass(CurRC, OpRC);
985    return CurRC;
986  }
987  
988  /// Return the number of instructions inside the MI bundle, not counting the
989  /// header instruction.
990  unsigned MachineInstr::getBundleSize() const {
991    MachineBasicBlock::const_instr_iterator I = getIterator();
992    unsigned Size = 0;
993    while (I->isBundledWithSucc()) {
994      ++Size;
995      ++I;
996    }
997    return Size;
998  }
999  
1000  /// Returns true if the MachineInstr has an implicit-use operand of exactly
1001  /// the given register (not considering sub/super-registers).
1002  bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
1003    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1004      const MachineOperand &MO = getOperand(i);
1005      if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1006        return true;
1007    }
1008    return false;
1009  }
1010  
1011  /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1012  /// the specific register or -1 if it is not found. It further tightens
1013  /// the search criteria to a use that kills the register if isKill is true.
1014  int MachineInstr::findRegisterUseOperandIdx(
1015      Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1016    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1017      const MachineOperand &MO = getOperand(i);
1018      if (!MO.isReg() || !MO.isUse())
1019        continue;
1020      Register MOReg = MO.getReg();
1021      if (!MOReg)
1022        continue;
1023      if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1024        if (!isKill || MO.isKill())
1025          return i;
1026    }
1027    return -1;
1028  }
1029  
1030  /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1031  /// indicating if this instruction reads or writes Reg. This also considers
1032  /// partial defines.
1033  std::pair<bool,bool>
1034  MachineInstr::readsWritesVirtualRegister(Register Reg,
1035                                           SmallVectorImpl<unsigned> *Ops) const {
1036    bool PartDef = false; // Partial redefine.
1037    bool FullDef = false; // Full define.
1038    bool Use = false;
1039  
1040    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1041      const MachineOperand &MO = getOperand(i);
1042      if (!MO.isReg() || MO.getReg() != Reg)
1043        continue;
1044      if (Ops)
1045        Ops->push_back(i);
1046      if (MO.isUse())
1047        Use |= !MO.isUndef();
1048      else if (MO.getSubReg() && !MO.isUndef())
1049        // A partial def undef doesn't count as reading the register.
1050        PartDef = true;
1051      else
1052        FullDef = true;
1053    }
1054    // A partial redefine uses Reg unless there is also a full define.
1055    return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1056  }
1057  
1058  /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1059  /// the specified register or -1 if it is not found. If isDead is true, defs
1060  /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1061  /// also checks if there is a def of a super-register.
1062  int
1063  MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1064                                          const TargetRegisterInfo *TRI) const {
1065    bool isPhys = Reg.isPhysical();
1066    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1067      const MachineOperand &MO = getOperand(i);
1068      // Accept regmask operands when Overlap is set.
1069      // Ignore them when looking for a specific def operand (Overlap == false).
1070      if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1071        return i;
1072      if (!MO.isReg() || !MO.isDef())
1073        continue;
1074      Register MOReg = MO.getReg();
1075      bool Found = (MOReg == Reg);
1076      if (!Found && TRI && isPhys && MOReg.isPhysical()) {
1077        if (Overlap)
1078          Found = TRI->regsOverlap(MOReg, Reg);
1079        else
1080          Found = TRI->isSubRegister(MOReg, Reg);
1081      }
1082      if (Found && (!isDead || MO.isDead()))
1083        return i;
1084    }
1085    return -1;
1086  }
1087  
1088  /// findFirstPredOperandIdx() - Find the index of the first operand in the
1089  /// operand list that is used to represent the predicate. It returns -1 if
1090  /// none is found.
1091  int MachineInstr::findFirstPredOperandIdx() const {
1092    // Don't call MCID.findFirstPredOperandIdx() because this variant
1093    // is sometimes called on an instruction that's not yet complete, and
1094    // so the number of operands is less than the MCID indicates. In
1095    // particular, the PTX target does this.
1096    const MCInstrDesc &MCID = getDesc();
1097    if (MCID.isPredicable()) {
1098      for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1099        if (MCID.operands()[i].isPredicate())
1100          return i;
1101    }
1102  
1103    return -1;
1104  }
1105  
1106  // MachineOperand::TiedTo is 4 bits wide.
1107  const unsigned TiedMax = 15;
1108  
1109  /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1110  ///
1111  /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1112  /// field. TiedTo can have these values:
1113  ///
1114  /// 0:              Operand is not tied to anything.
1115  /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1116  /// TiedMax:        Tied to an operand >= TiedMax-1.
1117  ///
1118  /// The tied def must be one of the first TiedMax operands on a normal
1119  /// instruction. INLINEASM instructions allow more tied defs.
1120  ///
1121  void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1122    MachineOperand &DefMO = getOperand(DefIdx);
1123    MachineOperand &UseMO = getOperand(UseIdx);
1124    assert(DefMO.isDef() && "DefIdx must be a def operand");
1125    assert(UseMO.isUse() && "UseIdx must be a use operand");
1126    assert(!DefMO.isTied() && "Def is already tied to another use");
1127    assert(!UseMO.isTied() && "Use is already tied to another def");
1128  
1129    if (DefIdx < TiedMax)
1130      UseMO.TiedTo = DefIdx + 1;
1131    else {
1132      // Inline asm can use the group descriptors to find tied operands,
1133      // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1134      // but on normal instruction, the tied def must be within the first TiedMax
1135      // operands.
1136      assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1137             "DefIdx out of range");
1138      UseMO.TiedTo = TiedMax;
1139    }
1140  
1141    // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1142    DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1143  }
1144  
1145  /// Given the index of a tied register operand, find the operand it is tied to.
1146  /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1147  /// which must exist.
1148  unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1149    const MachineOperand &MO = getOperand(OpIdx);
1150    assert(MO.isTied() && "Operand isn't tied");
1151  
1152    // Normally TiedTo is in range.
1153    if (MO.TiedTo < TiedMax)
1154      return MO.TiedTo - 1;
1155  
1156    // Uses on normal instructions can be out of range.
1157    if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1158      // Normal tied defs must be in the 0..TiedMax-1 range.
1159      if (MO.isUse())
1160        return TiedMax - 1;
1161      // MO is a def. Search for the tied use.
1162      for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1163        const MachineOperand &UseMO = getOperand(i);
1164        if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1165          return i;
1166      }
1167      llvm_unreachable("Can't find tied use");
1168    }
1169  
1170    if (getOpcode() == TargetOpcode::STATEPOINT) {
1171      // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1172      // on registers.
1173      StatepointOpers SO(this);
1174      unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1175      assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1176      unsigned NumDefs = getNumDefs();
1177      for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1178        while (!getOperand(CurUseIdx).isReg())
1179          CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1180        if (OpIdx == CurDefIdx)
1181          return CurUseIdx;
1182        if (OpIdx == CurUseIdx)
1183          return CurDefIdx;
1184        CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1185      }
1186      llvm_unreachable("Can't find tied use");
1187    }
1188  
1189    // Now deal with inline asm by parsing the operand group descriptor flags.
1190    // Find the beginning of each operand group.
1191    SmallVector<unsigned, 8> GroupIdx;
1192    unsigned OpIdxGroup = ~0u;
1193    unsigned NumOps;
1194    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1195         i += NumOps) {
1196      const MachineOperand &FlagMO = getOperand(i);
1197      assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1198      unsigned CurGroup = GroupIdx.size();
1199      GroupIdx.push_back(i);
1200      const InlineAsm::Flag F(FlagMO.getImm());
1201      NumOps = 1 + F.getNumOperandRegisters();
1202      // OpIdx belongs to this operand group.
1203      if (OpIdx > i && OpIdx < i + NumOps)
1204        OpIdxGroup = CurGroup;
1205      unsigned TiedGroup;
1206      if (!F.isUseOperandTiedToDef(TiedGroup))
1207        continue;
1208      // Operands in this group are tied to operands in TiedGroup which must be
1209      // earlier. Find the number of operands between the two groups.
1210      unsigned Delta = i - GroupIdx[TiedGroup];
1211  
1212      // OpIdx is a use tied to TiedGroup.
1213      if (OpIdxGroup == CurGroup)
1214        return OpIdx - Delta;
1215  
1216      // OpIdx is a def tied to this use group.
1217      if (OpIdxGroup == TiedGroup)
1218        return OpIdx + Delta;
1219    }
1220    llvm_unreachable("Invalid tied operand on inline asm");
1221  }
1222  
1223  /// clearKillInfo - Clears kill flags on all operands.
1224  ///
1225  void MachineInstr::clearKillInfo() {
1226    for (MachineOperand &MO : operands()) {
1227      if (MO.isReg() && MO.isUse())
1228        MO.setIsKill(false);
1229    }
1230  }
1231  
1232  void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1233                                        unsigned SubIdx,
1234                                        const TargetRegisterInfo &RegInfo) {
1235    if (ToReg.isPhysical()) {
1236      if (SubIdx)
1237        ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1238      for (MachineOperand &MO : operands()) {
1239        if (!MO.isReg() || MO.getReg() != FromReg)
1240          continue;
1241        MO.substPhysReg(ToReg, RegInfo);
1242      }
1243    } else {
1244      for (MachineOperand &MO : operands()) {
1245        if (!MO.isReg() || MO.getReg() != FromReg)
1246          continue;
1247        MO.substVirtReg(ToReg, SubIdx, RegInfo);
1248      }
1249    }
1250  }
1251  
1252  /// isSafeToMove - Return true if it is safe to move this instruction. If
1253  /// SawStore is set to true, it means that there is a store (or call) between
1254  /// the instruction's location and its intended destination.
1255  bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1256    // Ignore stuff that we obviously can't move.
1257    //
1258    // Treat volatile loads as stores. This is not strictly necessary for
1259    // volatiles, but it is required for atomic loads. It is not allowed to move
1260    // a load across an atomic load with Ordering > Monotonic.
1261    if (mayStore() || isCall() || isPHI() ||
1262        (mayLoad() && hasOrderedMemoryRef())) {
1263      SawStore = true;
1264      return false;
1265    }
1266  
1267    if (isPosition() || isDebugInstr() || isTerminator() ||
1268        mayRaiseFPException() || hasUnmodeledSideEffects() ||
1269        isJumpTableDebugInfo())
1270      return false;
1271  
1272    // See if this instruction does a load.  If so, we have to guarantee that the
1273    // loaded value doesn't change between the load and the its intended
1274    // destination. The check for isInvariantLoad gives the target the chance to
1275    // classify the load as always returning a constant, e.g. a constant pool
1276    // load.
1277    if (mayLoad() && !isDereferenceableInvariantLoad())
1278      // Otherwise, this is a real load.  If there is a store between the load and
1279      // end of block, we can't move it.
1280      return !SawStore;
1281  
1282    return true;
1283  }
1284  
1285  static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1286                                   bool UseTBAA, const MachineMemOperand *MMOa,
1287                                   const MachineMemOperand *MMOb) {
1288    // The following interface to AA is fashioned after DAGCombiner::isAlias and
1289    // operates with MachineMemOperand offset with some important assumptions:
1290    //   - LLVM fundamentally assumes flat address spaces.
1291    //   - MachineOperand offset can *only* result from legalization and cannot
1292    //     affect queries other than the trivial case of overlap checking.
1293    //   - These offsets never wrap and never step outside of allocated objects.
1294    //   - There should never be any negative offsets here.
1295    //
1296    // FIXME: Modify API to hide this math from "user"
1297    // Even before we go to AA we can reason locally about some memory objects. It
1298    // can save compile time, and possibly catch some corner cases not currently
1299    // covered.
1300  
1301    int64_t OffsetA = MMOa->getOffset();
1302    int64_t OffsetB = MMOb->getOffset();
1303    int64_t MinOffset = std::min(OffsetA, OffsetB);
1304  
1305    uint64_t WidthA = MMOa->getSize();
1306    uint64_t WidthB = MMOb->getSize();
1307    bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1308    bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1309  
1310    const Value *ValA = MMOa->getValue();
1311    const Value *ValB = MMOb->getValue();
1312    bool SameVal = (ValA && ValB && (ValA == ValB));
1313    if (!SameVal) {
1314      const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1315      const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1316      if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1317        return false;
1318      if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1319        return false;
1320      if (PSVa && PSVb && (PSVa == PSVb))
1321        SameVal = true;
1322    }
1323  
1324    if (SameVal) {
1325      if (!KnownWidthA || !KnownWidthB)
1326        return true;
1327      int64_t MaxOffset = std::max(OffsetA, OffsetB);
1328      int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1329      return (MinOffset + LowWidth > MaxOffset);
1330    }
1331  
1332    if (!AA)
1333      return true;
1334  
1335    if (!ValA || !ValB)
1336      return true;
1337  
1338    assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1339    assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1340  
1341    int64_t OverlapA =
1342        KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1343    int64_t OverlapB =
1344        KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1345  
1346    return !AA->isNoAlias(
1347        MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1348        MemoryLocation(ValB, OverlapB,
1349                       UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1350  }
1351  
1352  bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1353                              bool UseTBAA) const {
1354    const MachineFunction *MF = getMF();
1355    const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1356    const MachineFrameInfo &MFI = MF->getFrameInfo();
1357  
1358    // Exclude call instruction which may alter the memory but can not be handled
1359    // by this function.
1360    if (isCall() || Other.isCall())
1361      return true;
1362  
1363    // If neither instruction stores to memory, they can't alias in any
1364    // meaningful way, even if they read from the same address.
1365    if (!mayStore() && !Other.mayStore())
1366      return false;
1367  
1368    // Both instructions must be memory operations to be able to alias.
1369    if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1370      return false;
1371  
1372    // Let the target decide if memory accesses cannot possibly overlap.
1373    if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1374      return false;
1375  
1376    // Memory operations without memory operands may access anything. Be
1377    // conservative and assume `MayAlias`.
1378    if (memoperands_empty() || Other.memoperands_empty())
1379      return true;
1380  
1381    // Skip if there are too many memory operands.
1382    auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1383    if (NumChecks > TII->getMemOperandAACheckLimit())
1384      return true;
1385  
1386    // Check each pair of memory operands from both instructions, which can't
1387    // alias only if all pairs won't alias.
1388    for (auto *MMOa : memoperands())
1389      for (auto *MMOb : Other.memoperands())
1390        if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1391          return true;
1392  
1393    return false;
1394  }
1395  
1396  /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1397  /// or volatile memory reference, or if the information describing the memory
1398  /// reference is not available. Return false if it is known to have no ordered
1399  /// memory references.
1400  bool MachineInstr::hasOrderedMemoryRef() const {
1401    // An instruction known never to access memory won't have a volatile access.
1402    if (!mayStore() &&
1403        !mayLoad() &&
1404        !isCall() &&
1405        !hasUnmodeledSideEffects())
1406      return false;
1407  
1408    // Otherwise, if the instruction has no memory reference information,
1409    // conservatively assume it wasn't preserved.
1410    if (memoperands_empty())
1411      return true;
1412  
1413    // Check if any of our memory operands are ordered.
1414    return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1415      return !MMO->isUnordered();
1416    });
1417  }
1418  
1419  /// isDereferenceableInvariantLoad - Return true if this instruction will never
1420  /// trap and is loading from a location whose value is invariant across a run of
1421  /// this function.
1422  bool MachineInstr::isDereferenceableInvariantLoad() const {
1423    // If the instruction doesn't load at all, it isn't an invariant load.
1424    if (!mayLoad())
1425      return false;
1426  
1427    // If the instruction has lost its memoperands, conservatively assume that
1428    // it may not be an invariant load.
1429    if (memoperands_empty())
1430      return false;
1431  
1432    const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1433  
1434    for (MachineMemOperand *MMO : memoperands()) {
1435      if (!MMO->isUnordered())
1436        // If the memory operand has ordering side effects, we can't move the
1437        // instruction.  Such an instruction is technically an invariant load,
1438        // but the caller code would need updated to expect that.
1439        return false;
1440      if (MMO->isStore()) return false;
1441      if (MMO->isInvariant() && MMO->isDereferenceable())
1442        continue;
1443  
1444      // A load from a constant PseudoSourceValue is invariant.
1445      if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1446        if (PSV->isConstant(&MFI))
1447          continue;
1448      }
1449  
1450      // Otherwise assume conservatively.
1451      return false;
1452    }
1453  
1454    // Everything checks out.
1455    return true;
1456  }
1457  
1458  /// isConstantValuePHI - If the specified instruction is a PHI that always
1459  /// merges together the same virtual register, return the register, otherwise
1460  /// return 0.
1461  unsigned MachineInstr::isConstantValuePHI() const {
1462    if (!isPHI())
1463      return 0;
1464    assert(getNumOperands() >= 3 &&
1465           "It's illegal to have a PHI without source operands");
1466  
1467    Register Reg = getOperand(1).getReg();
1468    for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1469      if (getOperand(i).getReg() != Reg)
1470        return 0;
1471    return Reg;
1472  }
1473  
1474  bool MachineInstr::hasUnmodeledSideEffects() const {
1475    if (hasProperty(MCID::UnmodeledSideEffects))
1476      return true;
1477    if (isInlineAsm()) {
1478      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1479      if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1480        return true;
1481    }
1482  
1483    return false;
1484  }
1485  
1486  bool MachineInstr::isLoadFoldBarrier() const {
1487    return mayStore() || isCall() ||
1488           (hasUnmodeledSideEffects() && !isPseudoProbe());
1489  }
1490  
1491  /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1492  ///
1493  bool MachineInstr::allDefsAreDead() const {
1494    for (const MachineOperand &MO : operands()) {
1495      if (!MO.isReg() || MO.isUse())
1496        continue;
1497      if (!MO.isDead())
1498        return false;
1499    }
1500    return true;
1501  }
1502  
1503  bool MachineInstr::allImplicitDefsAreDead() const {
1504    for (const MachineOperand &MO : implicit_operands()) {
1505      if (!MO.isReg() || MO.isUse())
1506        continue;
1507      if (!MO.isDead())
1508        return false;
1509    }
1510    return true;
1511  }
1512  
1513  /// copyImplicitOps - Copy implicit register operands from specified
1514  /// instruction to this instruction.
1515  void MachineInstr::copyImplicitOps(MachineFunction &MF,
1516                                     const MachineInstr &MI) {
1517    for (const MachineOperand &MO :
1518         llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1519      if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1520        addOperand(MF, MO);
1521  }
1522  
1523  bool MachineInstr::hasComplexRegisterTies() const {
1524    const MCInstrDesc &MCID = getDesc();
1525    if (MCID.Opcode == TargetOpcode::STATEPOINT)
1526      return true;
1527    for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1528      const auto &Operand = getOperand(I);
1529      if (!Operand.isReg() || Operand.isDef())
1530        // Ignore the defined registers as MCID marks only the uses as tied.
1531        continue;
1532      int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1533      int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1534      if (ExpectedTiedIdx != TiedIdx)
1535        return true;
1536    }
1537    return false;
1538  }
1539  
1540  LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1541                                   const MachineRegisterInfo &MRI) const {
1542    const MachineOperand &Op = getOperand(OpIdx);
1543    if (!Op.isReg())
1544      return LLT{};
1545  
1546    if (isVariadic() || OpIdx >= getNumExplicitOperands())
1547      return MRI.getType(Op.getReg());
1548  
1549    auto &OpInfo = getDesc().operands()[OpIdx];
1550    if (!OpInfo.isGenericType())
1551      return MRI.getType(Op.getReg());
1552  
1553    if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1554      return LLT{};
1555  
1556    LLT TypeToPrint = MRI.getType(Op.getReg());
1557    // Don't mark the type index printed if it wasn't actually printed: maybe
1558    // another operand with the same type index has an actual type attached:
1559    if (TypeToPrint.isValid())
1560      PrintedTypes.set(OpInfo.getGenericTypeIndex());
1561    return TypeToPrint;
1562  }
1563  
1564  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1565  LLVM_DUMP_METHOD void MachineInstr::dump() const {
1566    dbgs() << "  ";
1567    print(dbgs());
1568  }
1569  
1570  LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1571      const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1572      SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1573    if (Depth >= MaxDepth)
1574      return;
1575    if (!AlreadySeenInstrs.insert(this).second)
1576      return;
1577    // PadToColumn always inserts at least one space.
1578    // Don't mess up the alignment if we don't want any space.
1579    if (Depth)
1580      fdbgs().PadToColumn(Depth * 2);
1581    print(fdbgs());
1582    for (const MachineOperand &MO : operands()) {
1583      if (!MO.isReg() || MO.isDef())
1584        continue;
1585      Register Reg = MO.getReg();
1586      if (Reg.isPhysical())
1587        continue;
1588      const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1589      if (NewMI == nullptr)
1590        continue;
1591      NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1592    }
1593  }
1594  
1595  LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1596                                            unsigned MaxDepth) const {
1597    SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1598    dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1599  }
1600  #endif
1601  
1602  void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1603                           bool SkipDebugLoc, bool AddNewLine,
1604                           const TargetInstrInfo *TII) const {
1605    const Module *M = nullptr;
1606    const Function *F = nullptr;
1607    if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1608      F = &MF->getFunction();
1609      M = F->getParent();
1610      if (!TII)
1611        TII = MF->getSubtarget().getInstrInfo();
1612    }
1613  
1614    ModuleSlotTracker MST(M);
1615    if (F)
1616      MST.incorporateFunction(*F);
1617    print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1618  }
1619  
1620  void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1621                           bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1622                           bool AddNewLine, const TargetInstrInfo *TII) const {
1623    // We can be a bit tidier if we know the MachineFunction.
1624    const TargetRegisterInfo *TRI = nullptr;
1625    const MachineRegisterInfo *MRI = nullptr;
1626    const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1627    tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1628  
1629    if (isCFIInstruction())
1630      assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1631  
1632    SmallBitVector PrintedTypes(8);
1633    bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1634    auto getTiedOperandIdx = [&](unsigned OpIdx) {
1635      if (!ShouldPrintRegisterTies)
1636        return 0U;
1637      const MachineOperand &MO = getOperand(OpIdx);
1638      if (MO.isReg() && MO.isTied() && !MO.isDef())
1639        return findTiedOperandIdx(OpIdx);
1640      return 0U;
1641    };
1642    unsigned StartOp = 0;
1643    unsigned e = getNumOperands();
1644  
1645    // Print explicitly defined operands on the left of an assignment syntax.
1646    while (StartOp < e) {
1647      const MachineOperand &MO = getOperand(StartOp);
1648      if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1649        break;
1650  
1651      if (StartOp != 0)
1652        OS << ", ";
1653  
1654      LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1655      unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1656      MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1657               ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1658      ++StartOp;
1659    }
1660  
1661    if (StartOp != 0)
1662      OS << " = ";
1663  
1664    if (getFlag(MachineInstr::FrameSetup))
1665      OS << "frame-setup ";
1666    if (getFlag(MachineInstr::FrameDestroy))
1667      OS << "frame-destroy ";
1668    if (getFlag(MachineInstr::FmNoNans))
1669      OS << "nnan ";
1670    if (getFlag(MachineInstr::FmNoInfs))
1671      OS << "ninf ";
1672    if (getFlag(MachineInstr::FmNsz))
1673      OS << "nsz ";
1674    if (getFlag(MachineInstr::FmArcp))
1675      OS << "arcp ";
1676    if (getFlag(MachineInstr::FmContract))
1677      OS << "contract ";
1678    if (getFlag(MachineInstr::FmAfn))
1679      OS << "afn ";
1680    if (getFlag(MachineInstr::FmReassoc))
1681      OS << "reassoc ";
1682    if (getFlag(MachineInstr::NoUWrap))
1683      OS << "nuw ";
1684    if (getFlag(MachineInstr::NoSWrap))
1685      OS << "nsw ";
1686    if (getFlag(MachineInstr::IsExact))
1687      OS << "exact ";
1688    if (getFlag(MachineInstr::NoFPExcept))
1689      OS << "nofpexcept ";
1690    if (getFlag(MachineInstr::NoMerge))
1691      OS << "nomerge ";
1692  
1693    // Print the opcode name.
1694    if (TII)
1695      OS << TII->getName(getOpcode());
1696    else
1697      OS << "UNKNOWN";
1698  
1699    if (SkipOpers)
1700      return;
1701  
1702    // Print the rest of the operands.
1703    bool FirstOp = true;
1704    unsigned AsmDescOp = ~0u;
1705    unsigned AsmOpCount = 0;
1706  
1707    if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1708      // Print asm string.
1709      OS << " ";
1710      const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1711      LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1712      unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1713      getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1714                              ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1715                              IntrinsicInfo);
1716  
1717      // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1718      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1719      if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1720        OS << " [sideeffect]";
1721      if (ExtraInfo & InlineAsm::Extra_MayLoad)
1722        OS << " [mayload]";
1723      if (ExtraInfo & InlineAsm::Extra_MayStore)
1724        OS << " [maystore]";
1725      if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1726        OS << " [isconvergent]";
1727      if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1728        OS << " [alignstack]";
1729      if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1730        OS << " [attdialect]";
1731      if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1732        OS << " [inteldialect]";
1733  
1734      StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1735      FirstOp = false;
1736    }
1737  
1738    for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1739      const MachineOperand &MO = getOperand(i);
1740  
1741      if (FirstOp) FirstOp = false; else OS << ",";
1742      OS << " ";
1743  
1744      if (isDebugValueLike() && MO.isMetadata()) {
1745        // Pretty print DBG_VALUE* instructions.
1746        auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1747        if (DIV && !DIV->getName().empty())
1748          OS << "!\"" << DIV->getName() << '\"';
1749        else {
1750          LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1751          unsigned TiedOperandIdx = getTiedOperandIdx(i);
1752          MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1753                   ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1754        }
1755      } else if (isDebugLabel() && MO.isMetadata()) {
1756        // Pretty print DBG_LABEL instructions.
1757        auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1758        if (DIL && !DIL->getName().empty())
1759          OS << "\"" << DIL->getName() << '\"';
1760        else {
1761          LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1762          unsigned TiedOperandIdx = getTiedOperandIdx(i);
1763          MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1764                   ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1765        }
1766      } else if (i == AsmDescOp && MO.isImm()) {
1767        // Pretty print the inline asm operand descriptor.
1768        OS << '$' << AsmOpCount++;
1769        unsigned Flag = MO.getImm();
1770        const InlineAsm::Flag F(Flag);
1771        OS << ":[";
1772        OS << F.getKindName();
1773  
1774        unsigned RCID;
1775        if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) {
1776          if (TRI) {
1777            OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1778          } else
1779            OS << ":RC" << RCID;
1780        }
1781  
1782        if (F.isMemKind()) {
1783          const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID();
1784          OS << ":" << InlineAsm::getMemConstraintName(MCID);
1785        }
1786  
1787        unsigned TiedTo;
1788        if (F.isUseOperandTiedToDef(TiedTo))
1789          OS << " tiedto:$" << TiedTo;
1790  
1791        if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() ||
1792             F.isRegUseKind()) &&
1793            F.getRegMayBeFolded()) {
1794          OS << " foldable";
1795        }
1796  
1797        OS << ']';
1798  
1799        // Compute the index of the next operand descriptor.
1800        AsmDescOp += 1 + F.getNumOperandRegisters();
1801      } else {
1802        LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1803        unsigned TiedOperandIdx = getTiedOperandIdx(i);
1804        if (MO.isImm() && isOperandSubregIdx(i))
1805          MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1806        else
1807          MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1808                   ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1809      }
1810    }
1811  
1812    // Print any optional symbols attached to this instruction as-if they were
1813    // operands.
1814    if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1815      if (!FirstOp) {
1816        FirstOp = false;
1817        OS << ',';
1818      }
1819      OS << " pre-instr-symbol ";
1820      MachineOperand::printSymbol(OS, *PreInstrSymbol);
1821    }
1822    if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1823      if (!FirstOp) {
1824        FirstOp = false;
1825        OS << ',';
1826      }
1827      OS << " post-instr-symbol ";
1828      MachineOperand::printSymbol(OS, *PostInstrSymbol);
1829    }
1830    if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1831      if (!FirstOp) {
1832        FirstOp = false;
1833        OS << ',';
1834      }
1835      OS << " heap-alloc-marker ";
1836      HeapAllocMarker->printAsOperand(OS, MST);
1837    }
1838    if (MDNode *PCSections = getPCSections()) {
1839      if (!FirstOp) {
1840        FirstOp = false;
1841        OS << ',';
1842      }
1843      OS << " pcsections ";
1844      PCSections->printAsOperand(OS, MST);
1845    }
1846    if (uint32_t CFIType = getCFIType()) {
1847      if (!FirstOp)
1848        OS << ',';
1849      OS << " cfi-type " << CFIType;
1850    }
1851  
1852    if (DebugInstrNum) {
1853      if (!FirstOp)
1854        OS << ",";
1855      OS << " debug-instr-number " << DebugInstrNum;
1856    }
1857  
1858    if (!SkipDebugLoc) {
1859      if (const DebugLoc &DL = getDebugLoc()) {
1860        if (!FirstOp)
1861          OS << ',';
1862        OS << " debug-location ";
1863        DL->printAsOperand(OS, MST);
1864      }
1865    }
1866  
1867    if (!memoperands_empty()) {
1868      SmallVector<StringRef, 0> SSNs;
1869      const LLVMContext *Context = nullptr;
1870      std::unique_ptr<LLVMContext> CtxPtr;
1871      const MachineFrameInfo *MFI = nullptr;
1872      if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1873        MFI = &MF->getFrameInfo();
1874        Context = &MF->getFunction().getContext();
1875      } else {
1876        CtxPtr = std::make_unique<LLVMContext>();
1877        Context = CtxPtr.get();
1878      }
1879  
1880      OS << " :: ";
1881      bool NeedComma = false;
1882      for (const MachineMemOperand *Op : memoperands()) {
1883        if (NeedComma)
1884          OS << ", ";
1885        Op->print(OS, MST, SSNs, *Context, MFI, TII);
1886        NeedComma = true;
1887      }
1888    }
1889  
1890    if (SkipDebugLoc)
1891      return;
1892  
1893    bool HaveSemi = false;
1894  
1895    // Print debug location information.
1896    if (const DebugLoc &DL = getDebugLoc()) {
1897      if (!HaveSemi) {
1898        OS << ';';
1899        HaveSemi = true;
1900      }
1901      OS << ' ';
1902      DL.print(OS);
1903    }
1904  
1905    // Print extra comments for DEBUG_VALUE and friends if they are well-formed.
1906    if ((isNonListDebugValue() && getNumOperands() >= 4) ||
1907        (isDebugValueList() && getNumOperands() >= 2) ||
1908        (isDebugRef() && getNumOperands() >= 3)) {
1909      if (getDebugVariableOp().isMetadata()) {
1910        if (!HaveSemi) {
1911          OS << ";";
1912          HaveSemi = true;
1913        }
1914        auto *DV = getDebugVariable();
1915        OS << " line no:" << DV->getLine();
1916        if (isIndirectDebugValue())
1917          OS << " indirect";
1918      }
1919    }
1920    // TODO: DBG_LABEL
1921  
1922    if (AddNewLine)
1923      OS << '\n';
1924  }
1925  
1926  bool MachineInstr::addRegisterKilled(Register IncomingReg,
1927                                       const TargetRegisterInfo *RegInfo,
1928                                       bool AddIfNotFound) {
1929    bool isPhysReg = IncomingReg.isPhysical();
1930    bool hasAliases = isPhysReg &&
1931      MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1932    bool Found = false;
1933    SmallVector<unsigned,4> DeadOps;
1934    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1935      MachineOperand &MO = getOperand(i);
1936      if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1937        continue;
1938  
1939      // DEBUG_VALUE nodes do not contribute to code generation and should
1940      // always be ignored. Failure to do so may result in trying to modify
1941      // KILL flags on DEBUG_VALUE nodes.
1942      if (MO.isDebug())
1943        continue;
1944  
1945      Register Reg = MO.getReg();
1946      if (!Reg)
1947        continue;
1948  
1949      if (Reg == IncomingReg) {
1950        if (!Found) {
1951          if (MO.isKill())
1952            // The register is already marked kill.
1953            return true;
1954          if (isPhysReg && isRegTiedToDefOperand(i))
1955            // Two-address uses of physregs must not be marked kill.
1956            return true;
1957          MO.setIsKill();
1958          Found = true;
1959        }
1960      } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
1961        // A super-register kill already exists.
1962        if (RegInfo->isSuperRegister(IncomingReg, Reg))
1963          return true;
1964        if (RegInfo->isSubRegister(IncomingReg, Reg))
1965          DeadOps.push_back(i);
1966      }
1967    }
1968  
1969    // Trim unneeded kill operands.
1970    while (!DeadOps.empty()) {
1971      unsigned OpIdx = DeadOps.back();
1972      if (getOperand(OpIdx).isImplicit() &&
1973          (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1974        removeOperand(OpIdx);
1975      else
1976        getOperand(OpIdx).setIsKill(false);
1977      DeadOps.pop_back();
1978    }
1979  
1980    // If not found, this means an alias of one of the operands is killed. Add a
1981    // new implicit operand if required.
1982    if (!Found && AddIfNotFound) {
1983      addOperand(MachineOperand::CreateReg(IncomingReg,
1984                                           false /*IsDef*/,
1985                                           true  /*IsImp*/,
1986                                           true  /*IsKill*/));
1987      return true;
1988    }
1989    return Found;
1990  }
1991  
1992  void MachineInstr::clearRegisterKills(Register Reg,
1993                                        const TargetRegisterInfo *RegInfo) {
1994    if (!Reg.isPhysical())
1995      RegInfo = nullptr;
1996    for (MachineOperand &MO : operands()) {
1997      if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1998        continue;
1999      Register OpReg = MO.getReg();
2000      if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2001        MO.setIsKill(false);
2002    }
2003  }
2004  
2005  bool MachineInstr::addRegisterDead(Register Reg,
2006                                     const TargetRegisterInfo *RegInfo,
2007                                     bool AddIfNotFound) {
2008    bool isPhysReg = Reg.isPhysical();
2009    bool hasAliases = isPhysReg &&
2010      MCRegAliasIterator(Reg, RegInfo, false).isValid();
2011    bool Found = false;
2012    SmallVector<unsigned,4> DeadOps;
2013    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2014      MachineOperand &MO = getOperand(i);
2015      if (!MO.isReg() || !MO.isDef())
2016        continue;
2017      Register MOReg = MO.getReg();
2018      if (!MOReg)
2019        continue;
2020  
2021      if (MOReg == Reg) {
2022        MO.setIsDead();
2023        Found = true;
2024      } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
2025        // There exists a super-register that's marked dead.
2026        if (RegInfo->isSuperRegister(Reg, MOReg))
2027          return true;
2028        if (RegInfo->isSubRegister(Reg, MOReg))
2029          DeadOps.push_back(i);
2030      }
2031    }
2032  
2033    // Trim unneeded dead operands.
2034    while (!DeadOps.empty()) {
2035      unsigned OpIdx = DeadOps.back();
2036      if (getOperand(OpIdx).isImplicit() &&
2037          (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2038        removeOperand(OpIdx);
2039      else
2040        getOperand(OpIdx).setIsDead(false);
2041      DeadOps.pop_back();
2042    }
2043  
2044    // If not found, this means an alias of one of the operands is dead. Add a
2045    // new implicit operand if required.
2046    if (Found || !AddIfNotFound)
2047      return Found;
2048  
2049    addOperand(MachineOperand::CreateReg(Reg,
2050                                         true  /*IsDef*/,
2051                                         true  /*IsImp*/,
2052                                         false /*IsKill*/,
2053                                         true  /*IsDead*/));
2054    return true;
2055  }
2056  
2057  void MachineInstr::clearRegisterDeads(Register Reg) {
2058    for (MachineOperand &MO : operands()) {
2059      if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2060        continue;
2061      MO.setIsDead(false);
2062    }
2063  }
2064  
2065  void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2066    for (MachineOperand &MO : operands()) {
2067      if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2068        continue;
2069      MO.setIsUndef(IsUndef);
2070    }
2071  }
2072  
2073  void MachineInstr::addRegisterDefined(Register Reg,
2074                                        const TargetRegisterInfo *RegInfo) {
2075    if (Reg.isPhysical()) {
2076      MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2077      if (MO)
2078        return;
2079    } else {
2080      for (const MachineOperand &MO : operands()) {
2081        if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2082            MO.getSubReg() == 0)
2083          return;
2084      }
2085    }
2086    addOperand(MachineOperand::CreateReg(Reg,
2087                                         true  /*IsDef*/,
2088                                         true  /*IsImp*/));
2089  }
2090  
2091  void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2092                                           const TargetRegisterInfo &TRI) {
2093    bool HasRegMask = false;
2094    for (MachineOperand &MO : operands()) {
2095      if (MO.isRegMask()) {
2096        HasRegMask = true;
2097        continue;
2098      }
2099      if (!MO.isReg() || !MO.isDef()) continue;
2100      Register Reg = MO.getReg();
2101      if (!Reg.isPhysical())
2102        continue;
2103      // If there are no uses, including partial uses, the def is dead.
2104      if (llvm::none_of(UsedRegs,
2105                        [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2106        MO.setIsDead();
2107    }
2108  
2109    // This is a call with a register mask operand.
2110    // Mask clobbers are always dead, so add defs for the non-dead defines.
2111    if (HasRegMask)
2112      for (const Register &UsedReg : UsedRegs)
2113        addRegisterDefined(UsedReg, &TRI);
2114  }
2115  
2116  unsigned
2117  MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2118    // Build up a buffer of hash code components.
2119    SmallVector<size_t, 16> HashComponents;
2120    HashComponents.reserve(MI->getNumOperands() + 1);
2121    HashComponents.push_back(MI->getOpcode());
2122    for (const MachineOperand &MO : MI->operands()) {
2123      if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
2124        continue;  // Skip virtual register defs.
2125  
2126      HashComponents.push_back(hash_value(MO));
2127    }
2128    return hash_combine_range(HashComponents.begin(), HashComponents.end());
2129  }
2130  
2131  void MachineInstr::emitError(StringRef Msg) const {
2132    // Find the source location cookie.
2133    uint64_t LocCookie = 0;
2134    const MDNode *LocMD = nullptr;
2135    for (unsigned i = getNumOperands(); i != 0; --i) {
2136      if (getOperand(i-1).isMetadata() &&
2137          (LocMD = getOperand(i-1).getMetadata()) &&
2138          LocMD->getNumOperands() != 0) {
2139        if (const ConstantInt *CI =
2140                mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2141          LocCookie = CI->getZExtValue();
2142          break;
2143        }
2144      }
2145    }
2146  
2147    if (const MachineBasicBlock *MBB = getParent())
2148      if (const MachineFunction *MF = MBB->getParent())
2149        return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2150    report_fatal_error(Msg);
2151  }
2152  
2153  MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2154                                    const MCInstrDesc &MCID, bool IsIndirect,
2155                                    Register Reg, const MDNode *Variable,
2156                                    const MDNode *Expr) {
2157    assert(isa<DILocalVariable>(Variable) && "not a variable");
2158    assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2159    assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2160           "Expected inlined-at fields to agree");
2161    auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2162    if (IsIndirect)
2163      MIB.addImm(0U);
2164    else
2165      MIB.addReg(0U);
2166    return MIB.addMetadata(Variable).addMetadata(Expr);
2167  }
2168  
2169  MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2170                                    const MCInstrDesc &MCID, bool IsIndirect,
2171                                    ArrayRef<MachineOperand> DebugOps,
2172                                    const MDNode *Variable, const MDNode *Expr) {
2173    assert(isa<DILocalVariable>(Variable) && "not a variable");
2174    assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2175    assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2176           "Expected inlined-at fields to agree");
2177    if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2178      assert(DebugOps.size() == 1 &&
2179             "DBG_VALUE must contain exactly one debug operand");
2180      MachineOperand DebugOp = DebugOps[0];
2181      if (DebugOp.isReg())
2182        return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
2183                       Expr);
2184  
2185      auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
2186      if (IsIndirect)
2187        MIB.addImm(0U);
2188      else
2189        MIB.addReg(0U);
2190      return MIB.addMetadata(Variable).addMetadata(Expr);
2191    }
2192  
2193    auto MIB = BuildMI(MF, DL, MCID);
2194    MIB.addMetadata(Variable).addMetadata(Expr);
2195    for (const MachineOperand &DebugOp : DebugOps)
2196      if (DebugOp.isReg())
2197        MIB.addReg(DebugOp.getReg());
2198      else
2199        MIB.add(DebugOp);
2200    return MIB;
2201  }
2202  
2203  MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2204                                    MachineBasicBlock::iterator I,
2205                                    const DebugLoc &DL, const MCInstrDesc &MCID,
2206                                    bool IsIndirect, Register Reg,
2207                                    const MDNode *Variable, const MDNode *Expr) {
2208    MachineFunction &MF = *BB.getParent();
2209    MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2210    BB.insert(I, MI);
2211    return MachineInstrBuilder(MF, MI);
2212  }
2213  
2214  MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2215                                    MachineBasicBlock::iterator I,
2216                                    const DebugLoc &DL, const MCInstrDesc &MCID,
2217                                    bool IsIndirect,
2218                                    ArrayRef<MachineOperand> DebugOps,
2219                                    const MDNode *Variable, const MDNode *Expr) {
2220    MachineFunction &MF = *BB.getParent();
2221    MachineInstr *MI =
2222        BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2223    BB.insert(I, MI);
2224    return MachineInstrBuilder(MF, *MI);
2225  }
2226  
2227  /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2228  /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2229  static const DIExpression *
2230  computeExprForSpill(const MachineInstr &MI,
2231                      SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2232    assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2233           "Expected inlined-at fields to agree");
2234  
2235    const DIExpression *Expr = MI.getDebugExpression();
2236    if (MI.isIndirectDebugValue()) {
2237      assert(MI.getDebugOffset().getImm() == 0 &&
2238             "DBG_VALUE with nonzero offset");
2239      Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2240    } else if (MI.isDebugValueList()) {
2241      // We will replace the spilled register with a frame index, so
2242      // immediately deref all references to the spilled register.
2243      std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2244      for (const MachineOperand *Op : SpilledOperands) {
2245        unsigned OpIdx = MI.getDebugOperandIndex(Op);
2246        Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2247      }
2248    }
2249    return Expr;
2250  }
2251  static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2252                                                 Register SpillReg) {
2253    assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2254    SmallVector<const MachineOperand *> SpillOperands;
2255    for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2256      SpillOperands.push_back(&Op);
2257    return computeExprForSpill(MI, SpillOperands);
2258  }
2259  
2260  MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2261                                            MachineBasicBlock::iterator I,
2262                                            const MachineInstr &Orig,
2263                                            int FrameIndex, Register SpillReg) {
2264    assert(!Orig.isDebugRef() &&
2265           "DBG_INSTR_REF should not reference a virtual register.");
2266    const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2267    MachineInstrBuilder NewMI =
2268        BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2269    // Non-Variadic Operands: Location, Offset, Variable, Expression
2270    // Variadic Operands:     Variable, Expression, Locations...
2271    if (Orig.isNonListDebugValue())
2272      NewMI.addFrameIndex(FrameIndex).addImm(0U);
2273    NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2274    if (Orig.isDebugValueList()) {
2275      for (const MachineOperand &Op : Orig.debug_operands())
2276        if (Op.isReg() && Op.getReg() == SpillReg)
2277          NewMI.addFrameIndex(FrameIndex);
2278        else
2279          NewMI.add(MachineOperand(Op));
2280    }
2281    return NewMI;
2282  }
2283  MachineInstr *llvm::buildDbgValueForSpill(
2284      MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2285      const MachineInstr &Orig, int FrameIndex,
2286      SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2287    const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2288    MachineInstrBuilder NewMI =
2289        BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2290    // Non-Variadic Operands: Location, Offset, Variable, Expression
2291    // Variadic Operands:     Variable, Expression, Locations...
2292    if (Orig.isNonListDebugValue())
2293      NewMI.addFrameIndex(FrameIndex).addImm(0U);
2294    NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2295    if (Orig.isDebugValueList()) {
2296      for (const MachineOperand &Op : Orig.debug_operands())
2297        if (is_contained(SpilledOperands, &Op))
2298          NewMI.addFrameIndex(FrameIndex);
2299        else
2300          NewMI.add(MachineOperand(Op));
2301    }
2302    return NewMI;
2303  }
2304  
2305  void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2306                                    Register Reg) {
2307    const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2308    if (Orig.isNonListDebugValue())
2309      Orig.getDebugOffset().ChangeToImmediate(0U);
2310    for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2311      Op.ChangeToFrameIndex(FrameIndex);
2312    Orig.getDebugExpressionOp().setMetadata(Expr);
2313  }
2314  
2315  void MachineInstr::collectDebugValues(
2316                                  SmallVectorImpl<MachineInstr *> &DbgValues) {
2317    MachineInstr &MI = *this;
2318    if (!MI.getOperand(0).isReg())
2319      return;
2320  
2321    MachineBasicBlock::iterator DI = MI; ++DI;
2322    for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2323         DI != DE; ++DI) {
2324      if (!DI->isDebugValue())
2325        return;
2326      if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2327        DbgValues.push_back(&*DI);
2328    }
2329  }
2330  
2331  void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2332    // Collect matching debug values.
2333    SmallVector<MachineInstr *, 2> DbgValues;
2334  
2335    if (!getOperand(0).isReg())
2336      return;
2337  
2338    Register DefReg = getOperand(0).getReg();
2339    auto *MRI = getRegInfo();
2340    for (auto &MO : MRI->use_operands(DefReg)) {
2341      auto *DI = MO.getParent();
2342      if (!DI->isDebugValue())
2343        continue;
2344      if (DI->hasDebugOperandForReg(DefReg)) {
2345        DbgValues.push_back(DI);
2346      }
2347    }
2348  
2349    // Propagate Reg to debug value instructions.
2350    for (auto *DBI : DbgValues)
2351      for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2352        Op.setReg(Reg);
2353  }
2354  
2355  using MMOList = SmallVector<const MachineMemOperand *, 2>;
2356  
2357  static unsigned getSpillSlotSize(const MMOList &Accesses,
2358                                   const MachineFrameInfo &MFI) {
2359    unsigned Size = 0;
2360    for (const auto *A : Accesses)
2361      if (MFI.isSpillSlotObjectIndex(
2362              cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2363                  ->getFrameIndex()))
2364        Size += A->getSize();
2365    return Size;
2366  }
2367  
2368  std::optional<unsigned>
2369  MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2370    int FI;
2371    if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2372      const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2373      if (MFI.isSpillSlotObjectIndex(FI))
2374        return (*memoperands_begin())->getSize();
2375    }
2376    return std::nullopt;
2377  }
2378  
2379  std::optional<unsigned>
2380  MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2381    MMOList Accesses;
2382    if (TII->hasStoreToStackSlot(*this, Accesses))
2383      return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2384    return std::nullopt;
2385  }
2386  
2387  std::optional<unsigned>
2388  MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2389    int FI;
2390    if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2391      const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2392      if (MFI.isSpillSlotObjectIndex(FI))
2393        return (*memoperands_begin())->getSize();
2394    }
2395    return std::nullopt;
2396  }
2397  
2398  std::optional<unsigned>
2399  MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2400    MMOList Accesses;
2401    if (TII->hasLoadFromStackSlot(*this, Accesses))
2402      return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2403    return std::nullopt;
2404  }
2405  
2406  unsigned MachineInstr::getDebugInstrNum() {
2407    if (DebugInstrNum == 0)
2408      DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2409    return DebugInstrNum;
2410  }
2411  
2412  unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2413    if (DebugInstrNum == 0)
2414      DebugInstrNum = MF.getNewDebugInstrNum();
2415    return DebugInstrNum;
2416  }
2417  
2418  std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const {
2419    return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2420                      getRegInfo()->getType(getOperand(1).getReg()));
2421  }
2422  
2423  std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const {
2424    return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2425                      getRegInfo()->getType(getOperand(1).getReg()),
2426                      getRegInfo()->getType(getOperand(2).getReg()));
2427  }
2428  
2429  std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const {
2430    return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2431                      getRegInfo()->getType(getOperand(1).getReg()),
2432                      getRegInfo()->getType(getOperand(2).getReg()),
2433                      getRegInfo()->getType(getOperand(3).getReg()));
2434  }
2435  
2436  std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const {
2437    return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2438                      getRegInfo()->getType(getOperand(1).getReg()),
2439                      getRegInfo()->getType(getOperand(2).getReg()),
2440                      getRegInfo()->getType(getOperand(3).getReg()),
2441                      getRegInfo()->getType(getOperand(4).getReg()));
2442  }
2443  
2444  std::tuple<Register, LLT, Register, LLT>
2445  MachineInstr::getFirst2RegLLTs() const {
2446    Register Reg0 = getOperand(0).getReg();
2447    Register Reg1 = getOperand(1).getReg();
2448    return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2449                      getRegInfo()->getType(Reg1));
2450  }
2451  
2452  std::tuple<Register, LLT, Register, LLT, Register, LLT>
2453  MachineInstr::getFirst3RegLLTs() const {
2454    Register Reg0 = getOperand(0).getReg();
2455    Register Reg1 = getOperand(1).getReg();
2456    Register Reg2 = getOperand(2).getReg();
2457    return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2458                      getRegInfo()->getType(Reg1), Reg2,
2459                      getRegInfo()->getType(Reg2));
2460  }
2461  
2462  std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2463  MachineInstr::getFirst4RegLLTs() const {
2464    Register Reg0 = getOperand(0).getReg();
2465    Register Reg1 = getOperand(1).getReg();
2466    Register Reg2 = getOperand(2).getReg();
2467    Register Reg3 = getOperand(3).getReg();
2468    return std::tuple(
2469        Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2470        Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3));
2471  }
2472  
2473  std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register,
2474             LLT>
2475  MachineInstr::getFirst5RegLLTs() const {
2476    Register Reg0 = getOperand(0).getReg();
2477    Register Reg1 = getOperand(1).getReg();
2478    Register Reg2 = getOperand(2).getReg();
2479    Register Reg3 = getOperand(3).getReg();
2480    Register Reg4 = getOperand(4).getReg();
2481    return std::tuple(
2482        Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2483        Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3),
2484        Reg4, getRegInfo()->getType(Reg4));
2485  }
2486  
2487  void MachineInstr::insert(mop_iterator InsertBefore,
2488                            ArrayRef<MachineOperand> Ops) {
2489    assert(InsertBefore != nullptr && "invalid iterator");
2490    assert(InsertBefore->getParent() == this &&
2491           "iterator points to operand of other inst");
2492    if (Ops.empty())
2493      return;
2494  
2495    // Do one pass to untie operands.
2496    SmallDenseMap<unsigned, unsigned> TiedOpIndices;
2497    for (const MachineOperand &MO : operands()) {
2498      if (MO.isReg() && MO.isTied()) {
2499        unsigned OpNo = getOperandNo(&MO);
2500        unsigned TiedTo = findTiedOperandIdx(OpNo);
2501        TiedOpIndices[OpNo] = TiedTo;
2502        untieRegOperand(OpNo);
2503      }
2504    }
2505  
2506    unsigned OpIdx = getOperandNo(InsertBefore);
2507    unsigned NumOperands = getNumOperands();
2508    unsigned OpsToMove = NumOperands - OpIdx;
2509  
2510    SmallVector<MachineOperand> MovingOps;
2511    MovingOps.reserve(OpsToMove);
2512  
2513    for (unsigned I = 0; I < OpsToMove; ++I) {
2514      MovingOps.emplace_back(getOperand(OpIdx));
2515      removeOperand(OpIdx);
2516    }
2517    for (const MachineOperand &MO : Ops)
2518      addOperand(MO);
2519    for (const MachineOperand &OpMoved : MovingOps)
2520      addOperand(OpMoved);
2521  
2522    // Re-tie operands.
2523    for (auto [Tie1, Tie2] : TiedOpIndices) {
2524      if (Tie1 >= OpIdx)
2525        Tie1 += Ops.size();
2526      if (Tie2 >= OpIdx)
2527        Tie2 += Ops.size();
2528      tieOperands(Tie1, Tie2);
2529    }
2530  }
2531  
2532  bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const {
2533    assert(OpId && "expected non-zero operand id");
2534    assert(isInlineAsm() && "should only be used on inline asm");
2535  
2536    if (!getOperand(OpId).isReg())
2537      return false;
2538  
2539    const MachineOperand &MD = getOperand(OpId - 1);
2540    if (!MD.isImm())
2541      return false;
2542  
2543    InlineAsm::Flag F(MD.getImm());
2544    if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind())
2545      return F.getRegMayBeFolded();
2546    return false;
2547  }
2548