1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/PseudoSourceValue.h" 32 #include "llvm/CodeGen/Register.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/ModuleSlotTracker.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/FormattedStream.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstdint> 59 #include <cstring> 60 #include <utility> 61 62 using namespace llvm; 63 64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 65 if (const MachineBasicBlock *MBB = MI.getParent()) 66 if (const MachineFunction *MF = MBB->getParent()) 67 return MF; 68 return nullptr; 69 } 70 71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 72 // it. 73 static void tryToGetTargetInfo(const MachineInstr &MI, 74 const TargetRegisterInfo *&TRI, 75 const MachineRegisterInfo *&MRI, 76 const TargetIntrinsicInfo *&IntrinsicInfo, 77 const TargetInstrInfo *&TII) { 78 79 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 80 TRI = MF->getSubtarget().getRegisterInfo(); 81 MRI = &MF->getRegInfo(); 82 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 83 TII = MF->getSubtarget().getInstrInfo(); 84 } 85 } 86 87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 88 for (MCPhysReg ImpDef : MCID->implicit_defs()) 89 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); 90 for (MCPhysReg ImpUse : MCID->implicit_uses()) 91 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); 92 } 93 94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 95 /// implicit operands. It reserves space for the number of operands specified by 96 /// the MCInstrDesc. 97 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 98 DebugLoc DL, bool NoImp) 99 : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), 100 DbgLoc(std::move(DL)), DebugInstrNum(0) { 101 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 102 103 // Reserve space for the expected number of operands. 104 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + 105 MCID->implicit_uses().size()) { 106 CapOperands = OperandCapacity::get(NumOps); 107 Operands = MF.allocateOperandArray(CapOperands); 108 } 109 110 if (!NoImp) 111 addImplicitDefUseOperands(MF); 112 } 113 114 /// MachineInstr ctor - Copies MachineInstr arg exactly. 115 /// Does not copy the number from debug instruction numbering, to preserve 116 /// uniqueness. 117 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 118 : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), 119 Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) { 120 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 121 122 CapOperands = OperandCapacity::get(MI.getNumOperands()); 123 Operands = MF.allocateOperandArray(CapOperands); 124 125 // Copy operands. 126 for (const MachineOperand &MO : MI.operands()) 127 addOperand(MF, MO); 128 129 // Replicate ties between the operands, which addOperand was not 130 // able to do reliably. 131 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 132 MachineOperand &NewMO = getOperand(i); 133 const MachineOperand &OrigMO = MI.getOperand(i); 134 NewMO.TiedTo = OrigMO.TiedTo; 135 } 136 137 // Copy all the sensible flags. 138 setFlags(MI.Flags); 139 } 140 141 void MachineInstr::setDesc(const MCInstrDesc &TID) { 142 if (getParent()) 143 getMF()->handleChangeDesc(*this, TID); 144 MCID = &TID; 145 } 146 147 void MachineInstr::moveBefore(MachineInstr *MovePos) { 148 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 149 } 150 151 /// getRegInfo - If this instruction is embedded into a MachineFunction, 152 /// return the MachineRegisterInfo object for the current function, otherwise 153 /// return null. 154 MachineRegisterInfo *MachineInstr::getRegInfo() { 155 if (MachineBasicBlock *MBB = getParent()) 156 return &MBB->getParent()->getRegInfo(); 157 return nullptr; 158 } 159 160 const MachineRegisterInfo *MachineInstr::getRegInfo() const { 161 if (const MachineBasicBlock *MBB = getParent()) 162 return &MBB->getParent()->getRegInfo(); 163 return nullptr; 164 } 165 166 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 167 for (MachineOperand &MO : operands()) 168 if (MO.isReg()) 169 MRI.removeRegOperandFromUseList(&MO); 170 } 171 172 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 173 for (MachineOperand &MO : operands()) 174 if (MO.isReg()) 175 MRI.addRegOperandToUseList(&MO); 176 } 177 178 void MachineInstr::addOperand(const MachineOperand &Op) { 179 MachineBasicBlock *MBB = getParent(); 180 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 181 MachineFunction *MF = MBB->getParent(); 182 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 183 addOperand(*MF, Op); 184 } 185 186 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 187 /// ranges. If MRI is non-null also update use-def chains. 188 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 189 unsigned NumOps, MachineRegisterInfo *MRI) { 190 if (MRI) 191 return MRI->moveOperands(Dst, Src, NumOps); 192 // MachineOperand is a trivially copyable type so we can just use memmove. 193 assert(Dst && Src && "Unknown operands"); 194 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 195 } 196 197 /// addOperand - Add the specified operand to the instruction. If it is an 198 /// implicit operand, it is added to the end of the operand list. If it is 199 /// an explicit operand it is added at the end of the explicit operand list 200 /// (before the first implicit operand). 201 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 202 assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) && 203 "Cannot add more operands."); 204 assert(MCID && "Cannot add operands before providing an instr descriptor"); 205 206 // Check if we're adding one of our existing operands. 207 if (&Op >= Operands && &Op < Operands + NumOperands) { 208 // This is unusual: MI->addOperand(MI->getOperand(i)). 209 // If adding Op requires reallocating or moving existing operands around, 210 // the Op reference could go stale. Support it by copying Op. 211 MachineOperand CopyOp(Op); 212 return addOperand(MF, CopyOp); 213 } 214 215 // Find the insert location for the new operand. Implicit registers go at 216 // the end, everything else goes before the implicit regs. 217 // 218 // FIXME: Allow mixed explicit and implicit operands on inline asm. 219 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 220 // implicit-defs, but they must not be moved around. See the FIXME in 221 // InstrEmitter.cpp. 222 unsigned OpNo = getNumOperands(); 223 bool isImpReg = Op.isReg() && Op.isImplicit(); 224 if (!isImpReg && !isInlineAsm()) { 225 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 226 --OpNo; 227 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 228 } 229 } 230 231 // OpNo now points as the desired insertion point. Unless this is a variadic 232 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 233 // RegMask operands go between the explicit and implicit operands. 234 MachineRegisterInfo *MRI = getRegInfo(); 235 236 // Determine if the Operands array needs to be reallocated. 237 // Save the old capacity and operand array. 238 OperandCapacity OldCap = CapOperands; 239 MachineOperand *OldOperands = Operands; 240 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 241 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 242 Operands = MF.allocateOperandArray(CapOperands); 243 // Move the operands before the insertion point. 244 if (OpNo) 245 moveOperands(Operands, OldOperands, OpNo, MRI); 246 } 247 248 // Move the operands following the insertion point. 249 if (OpNo != NumOperands) 250 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 251 MRI); 252 ++NumOperands; 253 254 // Deallocate the old operand array. 255 if (OldOperands != Operands && OldOperands) 256 MF.deallocateOperandArray(OldCap, OldOperands); 257 258 // Copy Op into place. It still needs to be inserted into the MRI use lists. 259 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 260 NewMO->ParentMI = this; 261 262 // When adding a register operand, tell MRI about it. 263 if (NewMO->isReg()) { 264 // Ensure isOnRegUseList() returns false, regardless of Op's status. 265 NewMO->Contents.Reg.Prev = nullptr; 266 // Ignore existing ties. This is not a property that can be copied. 267 NewMO->TiedTo = 0; 268 // Add the new operand to MRI, but only for instructions in an MBB. 269 if (MRI) 270 MRI->addRegOperandToUseList(NewMO); 271 // The MCID operand information isn't accurate until we start adding 272 // explicit operands. The implicit operands are added first, then the 273 // explicits are inserted before them. 274 if (!isImpReg) { 275 // Tie uses to defs as indicated in MCInstrDesc. 276 if (NewMO->isUse()) { 277 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 278 if (DefIdx != -1) 279 tieOperands(DefIdx, OpNo); 280 } 281 // If the register operand is flagged as early, mark the operand as such. 282 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 283 NewMO->setIsEarlyClobber(true); 284 } 285 // Ensure debug instructions set debug flag on register uses. 286 if (NewMO->isUse() && isDebugInstr()) 287 NewMO->setIsDebug(); 288 } 289 } 290 291 void MachineInstr::removeOperand(unsigned OpNo) { 292 assert(OpNo < getNumOperands() && "Invalid operand number"); 293 untieRegOperand(OpNo); 294 295 #ifndef NDEBUG 296 // Moving tied operands would break the ties. 297 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 298 if (Operands[i].isReg()) 299 assert(!Operands[i].isTied() && "Cannot move tied operands"); 300 #endif 301 302 MachineRegisterInfo *MRI = getRegInfo(); 303 if (MRI && Operands[OpNo].isReg()) 304 MRI->removeRegOperandFromUseList(Operands + OpNo); 305 306 // Don't call the MachineOperand destructor. A lot of this code depends on 307 // MachineOperand having a trivial destructor anyway, and adding a call here 308 // wouldn't make it 'destructor-correct'. 309 310 if (unsigned N = NumOperands - 1 - OpNo) 311 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 312 --NumOperands; 313 } 314 315 void MachineInstr::setExtraInfo(MachineFunction &MF, 316 ArrayRef<MachineMemOperand *> MMOs, 317 MCSymbol *PreInstrSymbol, 318 MCSymbol *PostInstrSymbol, 319 MDNode *HeapAllocMarker, MDNode *PCSections, 320 uint32_t CFIType) { 321 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 322 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 323 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 324 bool HasPCSections = PCSections != nullptr; 325 bool HasCFIType = CFIType != 0; 326 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 327 HasHeapAllocMarker + HasPCSections + HasCFIType; 328 329 // Drop all extra info if there is none. 330 if (NumPointers <= 0) { 331 Info.clear(); 332 return; 333 } 334 335 // If more than one pointer, then store out of line. Store heap alloc markers 336 // out of line because PointerSumType cannot hold more than 4 tag types with 337 // 32-bit pointers. 338 // FIXME: Maybe we should make the symbols in the extra info mutable? 339 else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections || 340 HasCFIType) { 341 Info.set<EIIK_OutOfLine>( 342 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 343 HeapAllocMarker, PCSections, CFIType)); 344 return; 345 } 346 347 // Otherwise store the single pointer inline. 348 if (HasPreInstrSymbol) 349 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 350 else if (HasPostInstrSymbol) 351 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 352 else 353 Info.set<EIIK_MMO>(MMOs[0]); 354 } 355 356 void MachineInstr::dropMemRefs(MachineFunction &MF) { 357 if (memoperands_empty()) 358 return; 359 360 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 361 getHeapAllocMarker(), getPCSections(), getCFIType()); 362 } 363 364 void MachineInstr::setMemRefs(MachineFunction &MF, 365 ArrayRef<MachineMemOperand *> MMOs) { 366 if (MMOs.empty()) { 367 dropMemRefs(MF); 368 return; 369 } 370 371 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 372 getHeapAllocMarker(), getPCSections(), getCFIType()); 373 } 374 375 void MachineInstr::addMemOperand(MachineFunction &MF, 376 MachineMemOperand *MO) { 377 SmallVector<MachineMemOperand *, 2> MMOs; 378 MMOs.append(memoperands_begin(), memoperands_end()); 379 MMOs.push_back(MO); 380 setMemRefs(MF, MMOs); 381 } 382 383 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 384 if (this == &MI) 385 // Nothing to do for a self-clone! 386 return; 387 388 assert(&MF == MI.getMF() && 389 "Invalid machine functions when cloning memory refrences!"); 390 // See if we can just steal the extra info already allocated for the 391 // instruction. We can do this whenever the pre- and post-instruction symbols 392 // are the same (including null). 393 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 394 getPostInstrSymbol() == MI.getPostInstrSymbol() && 395 getHeapAllocMarker() == MI.getHeapAllocMarker() && 396 getPCSections() == MI.getPCSections()) { 397 Info = MI.Info; 398 return; 399 } 400 401 // Otherwise, fall back on a copy-based clone. 402 setMemRefs(MF, MI.memoperands()); 403 } 404 405 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 406 /// identical. 407 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 408 ArrayRef<MachineMemOperand *> RHS) { 409 if (LHS.size() != RHS.size()) 410 return false; 411 412 auto LHSPointees = make_pointee_range(LHS); 413 auto RHSPointees = make_pointee_range(RHS); 414 return std::equal(LHSPointees.begin(), LHSPointees.end(), 415 RHSPointees.begin()); 416 } 417 418 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 419 ArrayRef<const MachineInstr *> MIs) { 420 // Try handling easy numbers of MIs with simpler mechanisms. 421 if (MIs.empty()) { 422 dropMemRefs(MF); 423 return; 424 } 425 if (MIs.size() == 1) { 426 cloneMemRefs(MF, *MIs[0]); 427 return; 428 } 429 // Because an empty memoperands list provides *no* information and must be 430 // handled conservatively (assuming the instruction can do anything), the only 431 // way to merge with it is to drop all other memoperands. 432 if (MIs[0]->memoperands_empty()) { 433 dropMemRefs(MF); 434 return; 435 } 436 437 // Handle the general case. 438 SmallVector<MachineMemOperand *, 2> MergedMMOs; 439 // Start with the first instruction. 440 assert(&MF == MIs[0]->getMF() && 441 "Invalid machine functions when cloning memory references!"); 442 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 443 // Now walk all the other instructions and accumulate any different MMOs. 444 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 445 assert(&MF == MI.getMF() && 446 "Invalid machine functions when cloning memory references!"); 447 448 // Skip MIs with identical operands to the first. This is a somewhat 449 // arbitrary hack but will catch common cases without being quadratic. 450 // TODO: We could fully implement merge semantics here if needed. 451 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 452 continue; 453 454 // Because an empty memoperands list provides *no* information and must be 455 // handled conservatively (assuming the instruction can do anything), the 456 // only way to merge with it is to drop all other memoperands. 457 if (MI.memoperands_empty()) { 458 dropMemRefs(MF); 459 return; 460 } 461 462 // Otherwise accumulate these into our temporary buffer of the merged state. 463 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 464 } 465 466 setMemRefs(MF, MergedMMOs); 467 } 468 469 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 470 // Do nothing if old and new symbols are the same. 471 if (Symbol == getPreInstrSymbol()) 472 return; 473 474 // If there was only one symbol and we're removing it, just clear info. 475 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 476 Info.clear(); 477 return; 478 } 479 480 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 481 getHeapAllocMarker(), getPCSections(), getCFIType()); 482 } 483 484 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 485 // Do nothing if old and new symbols are the same. 486 if (Symbol == getPostInstrSymbol()) 487 return; 488 489 // If there was only one symbol and we're removing it, just clear info. 490 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 491 Info.clear(); 492 return; 493 } 494 495 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 496 getHeapAllocMarker(), getPCSections(), getCFIType()); 497 } 498 499 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 500 // Do nothing if old and new symbols are the same. 501 if (Marker == getHeapAllocMarker()) 502 return; 503 504 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 505 Marker, getPCSections(), getCFIType()); 506 } 507 508 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 509 // Do nothing if old and new symbols are the same. 510 if (PCSections == getPCSections()) 511 return; 512 513 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 514 getHeapAllocMarker(), PCSections, getCFIType()); 515 } 516 517 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 518 // Do nothing if old and new types are the same. 519 if (Type == getCFIType()) 520 return; 521 522 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 523 getHeapAllocMarker(), getPCSections(), Type); 524 } 525 526 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 527 const MachineInstr &MI) { 528 if (this == &MI) 529 // Nothing to do for a self-clone! 530 return; 531 532 assert(&MF == MI.getMF() && 533 "Invalid machine functions when cloning instruction symbols!"); 534 535 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 536 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 537 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 538 setPCSections(MF, MI.getPCSections()); 539 } 540 541 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 542 // For now, the just return the union of the flags. If the flags get more 543 // complicated over time, we might need more logic here. 544 return getFlags() | Other.getFlags(); 545 } 546 547 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 548 uint32_t MIFlags = 0; 549 // Copy the wrapping flags. 550 if (const OverflowingBinaryOperator *OB = 551 dyn_cast<OverflowingBinaryOperator>(&I)) { 552 if (OB->hasNoSignedWrap()) 553 MIFlags |= MachineInstr::MIFlag::NoSWrap; 554 if (OB->hasNoUnsignedWrap()) 555 MIFlags |= MachineInstr::MIFlag::NoUWrap; 556 } 557 558 // Copy the exact flag. 559 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 560 if (PE->isExact()) 561 MIFlags |= MachineInstr::MIFlag::IsExact; 562 563 // Copy the fast-math flags. 564 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 565 const FastMathFlags Flags = FP->getFastMathFlags(); 566 if (Flags.noNaNs()) 567 MIFlags |= MachineInstr::MIFlag::FmNoNans; 568 if (Flags.noInfs()) 569 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 570 if (Flags.noSignedZeros()) 571 MIFlags |= MachineInstr::MIFlag::FmNsz; 572 if (Flags.allowReciprocal()) 573 MIFlags |= MachineInstr::MIFlag::FmArcp; 574 if (Flags.allowContract()) 575 MIFlags |= MachineInstr::MIFlag::FmContract; 576 if (Flags.approxFunc()) 577 MIFlags |= MachineInstr::MIFlag::FmAfn; 578 if (Flags.allowReassoc()) 579 MIFlags |= MachineInstr::MIFlag::FmReassoc; 580 } 581 582 if (I.getMetadata(LLVMContext::MD_unpredictable)) 583 MIFlags |= MachineInstr::MIFlag::Unpredictable; 584 585 return MIFlags; 586 } 587 588 void MachineInstr::copyIRFlags(const Instruction &I) { 589 Flags = copyFlagsFromInstruction(I); 590 } 591 592 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 593 assert(!isBundledWithPred() && "Must be called on bundle header"); 594 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 595 if (MII->getDesc().getFlags() & Mask) { 596 if (Type == AnyInBundle) 597 return true; 598 } else { 599 if (Type == AllInBundle && !MII->isBundle()) 600 return false; 601 } 602 // This was the last instruction in the bundle. 603 if (!MII->isBundledWithSucc()) 604 return Type == AllInBundle; 605 } 606 } 607 608 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 609 MICheckType Check) const { 610 // If opcodes or number of operands are not the same then the two 611 // instructions are obviously not identical. 612 if (Other.getOpcode() != getOpcode() || 613 Other.getNumOperands() != getNumOperands()) 614 return false; 615 616 if (isBundle()) { 617 // We have passed the test above that both instructions have the same 618 // opcode, so we know that both instructions are bundles here. Let's compare 619 // MIs inside the bundle. 620 assert(Other.isBundle() && "Expected that both instructions are bundles."); 621 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 622 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 623 // Loop until we analysed the last intruction inside at least one of the 624 // bundles. 625 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 626 ++I1; 627 ++I2; 628 if (!I1->isIdenticalTo(*I2, Check)) 629 return false; 630 } 631 // If we've reached the end of just one of the two bundles, but not both, 632 // the instructions are not identical. 633 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 634 return false; 635 } 636 637 // Check operands to make sure they match. 638 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 639 const MachineOperand &MO = getOperand(i); 640 const MachineOperand &OMO = Other.getOperand(i); 641 if (!MO.isReg()) { 642 if (!MO.isIdenticalTo(OMO)) 643 return false; 644 continue; 645 } 646 647 // Clients may or may not want to ignore defs when testing for equality. 648 // For example, machine CSE pass only cares about finding common 649 // subexpressions, so it's safe to ignore virtual register defs. 650 if (MO.isDef()) { 651 if (Check == IgnoreDefs) 652 continue; 653 else if (Check == IgnoreVRegDefs) { 654 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 655 if (!MO.isIdenticalTo(OMO)) 656 return false; 657 } else { 658 if (!MO.isIdenticalTo(OMO)) 659 return false; 660 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 661 return false; 662 } 663 } else { 664 if (!MO.isIdenticalTo(OMO)) 665 return false; 666 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 667 return false; 668 } 669 } 670 // If DebugLoc does not match then two debug instructions are not identical. 671 if (isDebugInstr()) 672 if (getDebugLoc() && Other.getDebugLoc() && 673 getDebugLoc() != Other.getDebugLoc()) 674 return false; 675 // If pre- or post-instruction symbols do not match then the two instructions 676 // are not identical. 677 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 678 getPostInstrSymbol() != Other.getPostInstrSymbol()) 679 return false; 680 // Call instructions with different CFI types are not identical. 681 if (isCall() && getCFIType() != Other.getCFIType()) 682 return false; 683 684 return true; 685 } 686 687 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 688 if (!isDebugValueLike() || !Other.isDebugValueLike()) 689 return false; 690 if (getDebugLoc() != Other.getDebugLoc()) 691 return false; 692 if (getDebugVariable() != Other.getDebugVariable()) 693 return false; 694 if (getNumDebugOperands() != Other.getNumDebugOperands()) 695 return false; 696 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 697 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 698 return false; 699 if (!DIExpression::isEqualExpression( 700 getDebugExpression(), isIndirectDebugValue(), 701 Other.getDebugExpression(), Other.isIndirectDebugValue())) 702 return false; 703 return true; 704 } 705 706 const MachineFunction *MachineInstr::getMF() const { 707 return getParent()->getParent(); 708 } 709 710 MachineInstr *MachineInstr::removeFromParent() { 711 assert(getParent() && "Not embedded in a basic block!"); 712 return getParent()->remove(this); 713 } 714 715 MachineInstr *MachineInstr::removeFromBundle() { 716 assert(getParent() && "Not embedded in a basic block!"); 717 return getParent()->remove_instr(this); 718 } 719 720 void MachineInstr::eraseFromParent() { 721 assert(getParent() && "Not embedded in a basic block!"); 722 getParent()->erase(this); 723 } 724 725 void MachineInstr::eraseFromBundle() { 726 assert(getParent() && "Not embedded in a basic block!"); 727 getParent()->erase_instr(this); 728 } 729 730 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 731 if (!isCall(Type)) 732 return false; 733 switch (getOpcode()) { 734 case TargetOpcode::PATCHPOINT: 735 case TargetOpcode::STACKMAP: 736 case TargetOpcode::STATEPOINT: 737 case TargetOpcode::FENTRY_CALL: 738 return false; 739 } 740 return true; 741 } 742 743 bool MachineInstr::shouldUpdateCallSiteInfo() const { 744 if (isBundle()) 745 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 746 return isCandidateForCallSiteEntry(); 747 } 748 749 unsigned MachineInstr::getNumExplicitOperands() const { 750 unsigned NumOperands = MCID->getNumOperands(); 751 if (!MCID->isVariadic()) 752 return NumOperands; 753 754 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 755 const MachineOperand &MO = getOperand(I); 756 // The operands must always be in the following order: 757 // - explicit reg defs, 758 // - other explicit operands (reg uses, immediates, etc.), 759 // - implicit reg defs 760 // - implicit reg uses 761 if (MO.isReg() && MO.isImplicit()) 762 break; 763 ++NumOperands; 764 } 765 return NumOperands; 766 } 767 768 unsigned MachineInstr::getNumExplicitDefs() const { 769 unsigned NumDefs = MCID->getNumDefs(); 770 if (!MCID->isVariadic()) 771 return NumDefs; 772 773 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 774 const MachineOperand &MO = getOperand(I); 775 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 776 break; 777 ++NumDefs; 778 } 779 return NumDefs; 780 } 781 782 void MachineInstr::bundleWithPred() { 783 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 784 setFlag(BundledPred); 785 MachineBasicBlock::instr_iterator Pred = getIterator(); 786 --Pred; 787 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 788 Pred->setFlag(BundledSucc); 789 } 790 791 void MachineInstr::bundleWithSucc() { 792 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 793 setFlag(BundledSucc); 794 MachineBasicBlock::instr_iterator Succ = getIterator(); 795 ++Succ; 796 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 797 Succ->setFlag(BundledPred); 798 } 799 800 void MachineInstr::unbundleFromPred() { 801 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 802 clearFlag(BundledPred); 803 MachineBasicBlock::instr_iterator Pred = getIterator(); 804 --Pred; 805 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 806 Pred->clearFlag(BundledSucc); 807 } 808 809 void MachineInstr::unbundleFromSucc() { 810 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 811 clearFlag(BundledSucc); 812 MachineBasicBlock::instr_iterator Succ = getIterator(); 813 ++Succ; 814 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 815 Succ->clearFlag(BundledPred); 816 } 817 818 bool MachineInstr::isStackAligningInlineAsm() const { 819 if (isInlineAsm()) { 820 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 821 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 822 return true; 823 } 824 return false; 825 } 826 827 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 828 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 829 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 830 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 831 } 832 833 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 834 unsigned *GroupNo) const { 835 assert(isInlineAsm() && "Expected an inline asm instruction"); 836 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 837 838 // Ignore queries about the initial operands. 839 if (OpIdx < InlineAsm::MIOp_FirstOperand) 840 return -1; 841 842 unsigned Group = 0; 843 unsigned NumOps; 844 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 845 i += NumOps) { 846 const MachineOperand &FlagMO = getOperand(i); 847 // If we reach the implicit register operands, stop looking. 848 if (!FlagMO.isImm()) 849 return -1; 850 const InlineAsm::Flag F(FlagMO.getImm()); 851 NumOps = 1 + F.getNumOperandRegisters(); 852 if (i + NumOps > OpIdx) { 853 if (GroupNo) 854 *GroupNo = Group; 855 return i; 856 } 857 ++Group; 858 } 859 return -1; 860 } 861 862 const DILabel *MachineInstr::getDebugLabel() const { 863 assert(isDebugLabel() && "not a DBG_LABEL"); 864 return cast<DILabel>(getOperand(0).getMetadata()); 865 } 866 867 const MachineOperand &MachineInstr::getDebugVariableOp() const { 868 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 869 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 870 return getOperand(VariableOp); 871 } 872 873 MachineOperand &MachineInstr::getDebugVariableOp() { 874 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 875 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 876 return getOperand(VariableOp); 877 } 878 879 const DILocalVariable *MachineInstr::getDebugVariable() const { 880 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 881 } 882 883 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 884 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 885 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 886 return getOperand(ExpressionOp); 887 } 888 889 MachineOperand &MachineInstr::getDebugExpressionOp() { 890 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 891 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 892 return getOperand(ExpressionOp); 893 } 894 895 const DIExpression *MachineInstr::getDebugExpression() const { 896 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 897 } 898 899 bool MachineInstr::isDebugEntryValue() const { 900 return isDebugValue() && getDebugExpression()->isEntryValue(); 901 } 902 903 const TargetRegisterClass* 904 MachineInstr::getRegClassConstraint(unsigned OpIdx, 905 const TargetInstrInfo *TII, 906 const TargetRegisterInfo *TRI) const { 907 assert(getParent() && "Can't have an MBB reference here!"); 908 assert(getMF() && "Can't have an MF reference here!"); 909 const MachineFunction &MF = *getMF(); 910 911 // Most opcodes have fixed constraints in their MCInstrDesc. 912 if (!isInlineAsm()) 913 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 914 915 if (!getOperand(OpIdx).isReg()) 916 return nullptr; 917 918 // For tied uses on inline asm, get the constraint from the def. 919 unsigned DefIdx; 920 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 921 OpIdx = DefIdx; 922 923 // Inline asm stores register class constraints in the flag word. 924 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 925 if (FlagIdx < 0) 926 return nullptr; 927 928 const InlineAsm::Flag F(getOperand(FlagIdx).getImm()); 929 unsigned RCID; 930 if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && 931 F.hasRegClassConstraint(RCID)) 932 return TRI->getRegClass(RCID); 933 934 // Assume that all registers in a memory operand are pointers. 935 if (F.isMemKind()) 936 return TRI->getPointerRegClass(MF); 937 938 return nullptr; 939 } 940 941 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 942 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 943 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 944 // Check every operands inside the bundle if we have 945 // been asked to. 946 if (ExploreBundle) 947 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 948 ++OpndIt) 949 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 950 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 951 else 952 // Otherwise, just check the current operands. 953 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 954 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 955 return CurRC; 956 } 957 958 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 959 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 960 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 961 assert(CurRC && "Invalid initial register class"); 962 // Check if Reg is constrained by some of its use/def from MI. 963 const MachineOperand &MO = getOperand(OpIdx); 964 if (!MO.isReg() || MO.getReg() != Reg) 965 return CurRC; 966 // If yes, accumulate the constraints through the operand. 967 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 968 } 969 970 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 971 unsigned OpIdx, const TargetRegisterClass *CurRC, 972 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 973 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 974 const MachineOperand &MO = getOperand(OpIdx); 975 assert(MO.isReg() && 976 "Cannot get register constraints for non-register operand"); 977 assert(CurRC && "Invalid initial register class"); 978 if (unsigned SubIdx = MO.getSubReg()) { 979 if (OpRC) 980 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 981 else 982 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 983 } else if (OpRC) 984 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 985 return CurRC; 986 } 987 988 /// Return the number of instructions inside the MI bundle, not counting the 989 /// header instruction. 990 unsigned MachineInstr::getBundleSize() const { 991 MachineBasicBlock::const_instr_iterator I = getIterator(); 992 unsigned Size = 0; 993 while (I->isBundledWithSucc()) { 994 ++Size; 995 ++I; 996 } 997 return Size; 998 } 999 1000 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1001 /// the given register (not considering sub/super-registers). 1002 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 1003 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1004 const MachineOperand &MO = getOperand(i); 1005 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 1006 return true; 1007 } 1008 return false; 1009 } 1010 1011 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1012 /// the specific register or -1 if it is not found. It further tightens 1013 /// the search criteria to a use that kills the register if isKill is true. 1014 int MachineInstr::findRegisterUseOperandIdx( 1015 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1016 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1017 const MachineOperand &MO = getOperand(i); 1018 if (!MO.isReg() || !MO.isUse()) 1019 continue; 1020 Register MOReg = MO.getReg(); 1021 if (!MOReg) 1022 continue; 1023 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1024 if (!isKill || MO.isKill()) 1025 return i; 1026 } 1027 return -1; 1028 } 1029 1030 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1031 /// indicating if this instruction reads or writes Reg. This also considers 1032 /// partial defines. 1033 std::pair<bool,bool> 1034 MachineInstr::readsWritesVirtualRegister(Register Reg, 1035 SmallVectorImpl<unsigned> *Ops) const { 1036 bool PartDef = false; // Partial redefine. 1037 bool FullDef = false; // Full define. 1038 bool Use = false; 1039 1040 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1041 const MachineOperand &MO = getOperand(i); 1042 if (!MO.isReg() || MO.getReg() != Reg) 1043 continue; 1044 if (Ops) 1045 Ops->push_back(i); 1046 if (MO.isUse()) 1047 Use |= !MO.isUndef(); 1048 else if (MO.getSubReg() && !MO.isUndef()) 1049 // A partial def undef doesn't count as reading the register. 1050 PartDef = true; 1051 else 1052 FullDef = true; 1053 } 1054 // A partial redefine uses Reg unless there is also a full define. 1055 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1056 } 1057 1058 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1059 /// the specified register or -1 if it is not found. If isDead is true, defs 1060 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1061 /// also checks if there is a def of a super-register. 1062 int 1063 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1064 const TargetRegisterInfo *TRI) const { 1065 bool isPhys = Reg.isPhysical(); 1066 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1067 const MachineOperand &MO = getOperand(i); 1068 // Accept regmask operands when Overlap is set. 1069 // Ignore them when looking for a specific def operand (Overlap == false). 1070 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1071 return i; 1072 if (!MO.isReg() || !MO.isDef()) 1073 continue; 1074 Register MOReg = MO.getReg(); 1075 bool Found = (MOReg == Reg); 1076 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1077 if (Overlap) 1078 Found = TRI->regsOverlap(MOReg, Reg); 1079 else 1080 Found = TRI->isSubRegister(MOReg, Reg); 1081 } 1082 if (Found && (!isDead || MO.isDead())) 1083 return i; 1084 } 1085 return -1; 1086 } 1087 1088 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1089 /// operand list that is used to represent the predicate. It returns -1 if 1090 /// none is found. 1091 int MachineInstr::findFirstPredOperandIdx() const { 1092 // Don't call MCID.findFirstPredOperandIdx() because this variant 1093 // is sometimes called on an instruction that's not yet complete, and 1094 // so the number of operands is less than the MCID indicates. In 1095 // particular, the PTX target does this. 1096 const MCInstrDesc &MCID = getDesc(); 1097 if (MCID.isPredicable()) { 1098 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1099 if (MCID.operands()[i].isPredicate()) 1100 return i; 1101 } 1102 1103 return -1; 1104 } 1105 1106 // MachineOperand::TiedTo is 4 bits wide. 1107 const unsigned TiedMax = 15; 1108 1109 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1110 /// 1111 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1112 /// field. TiedTo can have these values: 1113 /// 1114 /// 0: Operand is not tied to anything. 1115 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1116 /// TiedMax: Tied to an operand >= TiedMax-1. 1117 /// 1118 /// The tied def must be one of the first TiedMax operands on a normal 1119 /// instruction. INLINEASM instructions allow more tied defs. 1120 /// 1121 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1122 MachineOperand &DefMO = getOperand(DefIdx); 1123 MachineOperand &UseMO = getOperand(UseIdx); 1124 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1125 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1126 assert(!DefMO.isTied() && "Def is already tied to another use"); 1127 assert(!UseMO.isTied() && "Use is already tied to another def"); 1128 1129 if (DefIdx < TiedMax) 1130 UseMO.TiedTo = DefIdx + 1; 1131 else { 1132 // Inline asm can use the group descriptors to find tied operands, 1133 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1134 // but on normal instruction, the tied def must be within the first TiedMax 1135 // operands. 1136 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1137 "DefIdx out of range"); 1138 UseMO.TiedTo = TiedMax; 1139 } 1140 1141 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1142 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1143 } 1144 1145 /// Given the index of a tied register operand, find the operand it is tied to. 1146 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1147 /// which must exist. 1148 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1149 const MachineOperand &MO = getOperand(OpIdx); 1150 assert(MO.isTied() && "Operand isn't tied"); 1151 1152 // Normally TiedTo is in range. 1153 if (MO.TiedTo < TiedMax) 1154 return MO.TiedTo - 1; 1155 1156 // Uses on normal instructions can be out of range. 1157 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1158 // Normal tied defs must be in the 0..TiedMax-1 range. 1159 if (MO.isUse()) 1160 return TiedMax - 1; 1161 // MO is a def. Search for the tied use. 1162 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1163 const MachineOperand &UseMO = getOperand(i); 1164 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1165 return i; 1166 } 1167 llvm_unreachable("Can't find tied use"); 1168 } 1169 1170 if (getOpcode() == TargetOpcode::STATEPOINT) { 1171 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1172 // on registers. 1173 StatepointOpers SO(this); 1174 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1175 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1176 unsigned NumDefs = getNumDefs(); 1177 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1178 while (!getOperand(CurUseIdx).isReg()) 1179 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1180 if (OpIdx == CurDefIdx) 1181 return CurUseIdx; 1182 if (OpIdx == CurUseIdx) 1183 return CurDefIdx; 1184 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1185 } 1186 llvm_unreachable("Can't find tied use"); 1187 } 1188 1189 // Now deal with inline asm by parsing the operand group descriptor flags. 1190 // Find the beginning of each operand group. 1191 SmallVector<unsigned, 8> GroupIdx; 1192 unsigned OpIdxGroup = ~0u; 1193 unsigned NumOps; 1194 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1195 i += NumOps) { 1196 const MachineOperand &FlagMO = getOperand(i); 1197 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1198 unsigned CurGroup = GroupIdx.size(); 1199 GroupIdx.push_back(i); 1200 const InlineAsm::Flag F(FlagMO.getImm()); 1201 NumOps = 1 + F.getNumOperandRegisters(); 1202 // OpIdx belongs to this operand group. 1203 if (OpIdx > i && OpIdx < i + NumOps) 1204 OpIdxGroup = CurGroup; 1205 unsigned TiedGroup; 1206 if (!F.isUseOperandTiedToDef(TiedGroup)) 1207 continue; 1208 // Operands in this group are tied to operands in TiedGroup which must be 1209 // earlier. Find the number of operands between the two groups. 1210 unsigned Delta = i - GroupIdx[TiedGroup]; 1211 1212 // OpIdx is a use tied to TiedGroup. 1213 if (OpIdxGroup == CurGroup) 1214 return OpIdx - Delta; 1215 1216 // OpIdx is a def tied to this use group. 1217 if (OpIdxGroup == TiedGroup) 1218 return OpIdx + Delta; 1219 } 1220 llvm_unreachable("Invalid tied operand on inline asm"); 1221 } 1222 1223 /// clearKillInfo - Clears kill flags on all operands. 1224 /// 1225 void MachineInstr::clearKillInfo() { 1226 for (MachineOperand &MO : operands()) { 1227 if (MO.isReg() && MO.isUse()) 1228 MO.setIsKill(false); 1229 } 1230 } 1231 1232 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1233 unsigned SubIdx, 1234 const TargetRegisterInfo &RegInfo) { 1235 if (ToReg.isPhysical()) { 1236 if (SubIdx) 1237 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1238 for (MachineOperand &MO : operands()) { 1239 if (!MO.isReg() || MO.getReg() != FromReg) 1240 continue; 1241 MO.substPhysReg(ToReg, RegInfo); 1242 } 1243 } else { 1244 for (MachineOperand &MO : operands()) { 1245 if (!MO.isReg() || MO.getReg() != FromReg) 1246 continue; 1247 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1248 } 1249 } 1250 } 1251 1252 /// isSafeToMove - Return true if it is safe to move this instruction. If 1253 /// SawStore is set to true, it means that there is a store (or call) between 1254 /// the instruction's location and its intended destination. 1255 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1256 // Ignore stuff that we obviously can't move. 1257 // 1258 // Treat volatile loads as stores. This is not strictly necessary for 1259 // volatiles, but it is required for atomic loads. It is not allowed to move 1260 // a load across an atomic load with Ordering > Monotonic. 1261 if (mayStore() || isCall() || isPHI() || 1262 (mayLoad() && hasOrderedMemoryRef())) { 1263 SawStore = true; 1264 return false; 1265 } 1266 1267 if (isPosition() || isDebugInstr() || isTerminator() || 1268 mayRaiseFPException() || hasUnmodeledSideEffects() || 1269 isJumpTableDebugInfo()) 1270 return false; 1271 1272 // See if this instruction does a load. If so, we have to guarantee that the 1273 // loaded value doesn't change between the load and the its intended 1274 // destination. The check for isInvariantLoad gives the target the chance to 1275 // classify the load as always returning a constant, e.g. a constant pool 1276 // load. 1277 if (mayLoad() && !isDereferenceableInvariantLoad()) 1278 // Otherwise, this is a real load. If there is a store between the load and 1279 // end of block, we can't move it. 1280 return !SawStore; 1281 1282 return true; 1283 } 1284 1285 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1286 bool UseTBAA, const MachineMemOperand *MMOa, 1287 const MachineMemOperand *MMOb) { 1288 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1289 // operates with MachineMemOperand offset with some important assumptions: 1290 // - LLVM fundamentally assumes flat address spaces. 1291 // - MachineOperand offset can *only* result from legalization and cannot 1292 // affect queries other than the trivial case of overlap checking. 1293 // - These offsets never wrap and never step outside of allocated objects. 1294 // - There should never be any negative offsets here. 1295 // 1296 // FIXME: Modify API to hide this math from "user" 1297 // Even before we go to AA we can reason locally about some memory objects. It 1298 // can save compile time, and possibly catch some corner cases not currently 1299 // covered. 1300 1301 int64_t OffsetA = MMOa->getOffset(); 1302 int64_t OffsetB = MMOb->getOffset(); 1303 int64_t MinOffset = std::min(OffsetA, OffsetB); 1304 1305 uint64_t WidthA = MMOa->getSize(); 1306 uint64_t WidthB = MMOb->getSize(); 1307 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1308 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1309 1310 const Value *ValA = MMOa->getValue(); 1311 const Value *ValB = MMOb->getValue(); 1312 bool SameVal = (ValA && ValB && (ValA == ValB)); 1313 if (!SameVal) { 1314 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1315 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1316 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1317 return false; 1318 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1319 return false; 1320 if (PSVa && PSVb && (PSVa == PSVb)) 1321 SameVal = true; 1322 } 1323 1324 if (SameVal) { 1325 if (!KnownWidthA || !KnownWidthB) 1326 return true; 1327 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1328 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1329 return (MinOffset + LowWidth > MaxOffset); 1330 } 1331 1332 if (!AA) 1333 return true; 1334 1335 if (!ValA || !ValB) 1336 return true; 1337 1338 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1339 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1340 1341 int64_t OverlapA = 1342 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1343 int64_t OverlapB = 1344 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1345 1346 return !AA->isNoAlias( 1347 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1348 MemoryLocation(ValB, OverlapB, 1349 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1350 } 1351 1352 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1353 bool UseTBAA) const { 1354 const MachineFunction *MF = getMF(); 1355 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1356 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1357 1358 // Exclude call instruction which may alter the memory but can not be handled 1359 // by this function. 1360 if (isCall() || Other.isCall()) 1361 return true; 1362 1363 // If neither instruction stores to memory, they can't alias in any 1364 // meaningful way, even if they read from the same address. 1365 if (!mayStore() && !Other.mayStore()) 1366 return false; 1367 1368 // Both instructions must be memory operations to be able to alias. 1369 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1370 return false; 1371 1372 // Let the target decide if memory accesses cannot possibly overlap. 1373 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1374 return false; 1375 1376 // Memory operations without memory operands may access anything. Be 1377 // conservative and assume `MayAlias`. 1378 if (memoperands_empty() || Other.memoperands_empty()) 1379 return true; 1380 1381 // Skip if there are too many memory operands. 1382 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1383 if (NumChecks > TII->getMemOperandAACheckLimit()) 1384 return true; 1385 1386 // Check each pair of memory operands from both instructions, which can't 1387 // alias only if all pairs won't alias. 1388 for (auto *MMOa : memoperands()) 1389 for (auto *MMOb : Other.memoperands()) 1390 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1391 return true; 1392 1393 return false; 1394 } 1395 1396 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1397 /// or volatile memory reference, or if the information describing the memory 1398 /// reference is not available. Return false if it is known to have no ordered 1399 /// memory references. 1400 bool MachineInstr::hasOrderedMemoryRef() const { 1401 // An instruction known never to access memory won't have a volatile access. 1402 if (!mayStore() && 1403 !mayLoad() && 1404 !isCall() && 1405 !hasUnmodeledSideEffects()) 1406 return false; 1407 1408 // Otherwise, if the instruction has no memory reference information, 1409 // conservatively assume it wasn't preserved. 1410 if (memoperands_empty()) 1411 return true; 1412 1413 // Check if any of our memory operands are ordered. 1414 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1415 return !MMO->isUnordered(); 1416 }); 1417 } 1418 1419 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1420 /// trap and is loading from a location whose value is invariant across a run of 1421 /// this function. 1422 bool MachineInstr::isDereferenceableInvariantLoad() const { 1423 // If the instruction doesn't load at all, it isn't an invariant load. 1424 if (!mayLoad()) 1425 return false; 1426 1427 // If the instruction has lost its memoperands, conservatively assume that 1428 // it may not be an invariant load. 1429 if (memoperands_empty()) 1430 return false; 1431 1432 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1433 1434 for (MachineMemOperand *MMO : memoperands()) { 1435 if (!MMO->isUnordered()) 1436 // If the memory operand has ordering side effects, we can't move the 1437 // instruction. Such an instruction is technically an invariant load, 1438 // but the caller code would need updated to expect that. 1439 return false; 1440 if (MMO->isStore()) return false; 1441 if (MMO->isInvariant() && MMO->isDereferenceable()) 1442 continue; 1443 1444 // A load from a constant PseudoSourceValue is invariant. 1445 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1446 if (PSV->isConstant(&MFI)) 1447 continue; 1448 } 1449 1450 // Otherwise assume conservatively. 1451 return false; 1452 } 1453 1454 // Everything checks out. 1455 return true; 1456 } 1457 1458 /// isConstantValuePHI - If the specified instruction is a PHI that always 1459 /// merges together the same virtual register, return the register, otherwise 1460 /// return 0. 1461 unsigned MachineInstr::isConstantValuePHI() const { 1462 if (!isPHI()) 1463 return 0; 1464 assert(getNumOperands() >= 3 && 1465 "It's illegal to have a PHI without source operands"); 1466 1467 Register Reg = getOperand(1).getReg(); 1468 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1469 if (getOperand(i).getReg() != Reg) 1470 return 0; 1471 return Reg; 1472 } 1473 1474 bool MachineInstr::hasUnmodeledSideEffects() const { 1475 if (hasProperty(MCID::UnmodeledSideEffects)) 1476 return true; 1477 if (isInlineAsm()) { 1478 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1479 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1480 return true; 1481 } 1482 1483 return false; 1484 } 1485 1486 bool MachineInstr::isLoadFoldBarrier() const { 1487 return mayStore() || isCall() || 1488 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1489 } 1490 1491 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1492 /// 1493 bool MachineInstr::allDefsAreDead() const { 1494 for (const MachineOperand &MO : operands()) { 1495 if (!MO.isReg() || MO.isUse()) 1496 continue; 1497 if (!MO.isDead()) 1498 return false; 1499 } 1500 return true; 1501 } 1502 1503 bool MachineInstr::allImplicitDefsAreDead() const { 1504 for (const MachineOperand &MO : implicit_operands()) { 1505 if (!MO.isReg() || MO.isUse()) 1506 continue; 1507 if (!MO.isDead()) 1508 return false; 1509 } 1510 return true; 1511 } 1512 1513 /// copyImplicitOps - Copy implicit register operands from specified 1514 /// instruction to this instruction. 1515 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1516 const MachineInstr &MI) { 1517 for (const MachineOperand &MO : 1518 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1519 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1520 addOperand(MF, MO); 1521 } 1522 1523 bool MachineInstr::hasComplexRegisterTies() const { 1524 const MCInstrDesc &MCID = getDesc(); 1525 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1526 return true; 1527 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1528 const auto &Operand = getOperand(I); 1529 if (!Operand.isReg() || Operand.isDef()) 1530 // Ignore the defined registers as MCID marks only the uses as tied. 1531 continue; 1532 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1533 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1534 if (ExpectedTiedIdx != TiedIdx) 1535 return true; 1536 } 1537 return false; 1538 } 1539 1540 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1541 const MachineRegisterInfo &MRI) const { 1542 const MachineOperand &Op = getOperand(OpIdx); 1543 if (!Op.isReg()) 1544 return LLT{}; 1545 1546 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1547 return MRI.getType(Op.getReg()); 1548 1549 auto &OpInfo = getDesc().operands()[OpIdx]; 1550 if (!OpInfo.isGenericType()) 1551 return MRI.getType(Op.getReg()); 1552 1553 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1554 return LLT{}; 1555 1556 LLT TypeToPrint = MRI.getType(Op.getReg()); 1557 // Don't mark the type index printed if it wasn't actually printed: maybe 1558 // another operand with the same type index has an actual type attached: 1559 if (TypeToPrint.isValid()) 1560 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1561 return TypeToPrint; 1562 } 1563 1564 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1565 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1566 dbgs() << " "; 1567 print(dbgs()); 1568 } 1569 1570 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1571 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1572 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1573 if (Depth >= MaxDepth) 1574 return; 1575 if (!AlreadySeenInstrs.insert(this).second) 1576 return; 1577 // PadToColumn always inserts at least one space. 1578 // Don't mess up the alignment if we don't want any space. 1579 if (Depth) 1580 fdbgs().PadToColumn(Depth * 2); 1581 print(fdbgs()); 1582 for (const MachineOperand &MO : operands()) { 1583 if (!MO.isReg() || MO.isDef()) 1584 continue; 1585 Register Reg = MO.getReg(); 1586 if (Reg.isPhysical()) 1587 continue; 1588 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1589 if (NewMI == nullptr) 1590 continue; 1591 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1592 } 1593 } 1594 1595 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1596 unsigned MaxDepth) const { 1597 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1598 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1599 } 1600 #endif 1601 1602 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1603 bool SkipDebugLoc, bool AddNewLine, 1604 const TargetInstrInfo *TII) const { 1605 const Module *M = nullptr; 1606 const Function *F = nullptr; 1607 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1608 F = &MF->getFunction(); 1609 M = F->getParent(); 1610 if (!TII) 1611 TII = MF->getSubtarget().getInstrInfo(); 1612 } 1613 1614 ModuleSlotTracker MST(M); 1615 if (F) 1616 MST.incorporateFunction(*F); 1617 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1618 } 1619 1620 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1621 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1622 bool AddNewLine, const TargetInstrInfo *TII) const { 1623 // We can be a bit tidier if we know the MachineFunction. 1624 const TargetRegisterInfo *TRI = nullptr; 1625 const MachineRegisterInfo *MRI = nullptr; 1626 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1627 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1628 1629 if (isCFIInstruction()) 1630 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1631 1632 SmallBitVector PrintedTypes(8); 1633 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1634 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1635 if (!ShouldPrintRegisterTies) 1636 return 0U; 1637 const MachineOperand &MO = getOperand(OpIdx); 1638 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1639 return findTiedOperandIdx(OpIdx); 1640 return 0U; 1641 }; 1642 unsigned StartOp = 0; 1643 unsigned e = getNumOperands(); 1644 1645 // Print explicitly defined operands on the left of an assignment syntax. 1646 while (StartOp < e) { 1647 const MachineOperand &MO = getOperand(StartOp); 1648 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1649 break; 1650 1651 if (StartOp != 0) 1652 OS << ", "; 1653 1654 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1655 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1656 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1657 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1658 ++StartOp; 1659 } 1660 1661 if (StartOp != 0) 1662 OS << " = "; 1663 1664 if (getFlag(MachineInstr::FrameSetup)) 1665 OS << "frame-setup "; 1666 if (getFlag(MachineInstr::FrameDestroy)) 1667 OS << "frame-destroy "; 1668 if (getFlag(MachineInstr::FmNoNans)) 1669 OS << "nnan "; 1670 if (getFlag(MachineInstr::FmNoInfs)) 1671 OS << "ninf "; 1672 if (getFlag(MachineInstr::FmNsz)) 1673 OS << "nsz "; 1674 if (getFlag(MachineInstr::FmArcp)) 1675 OS << "arcp "; 1676 if (getFlag(MachineInstr::FmContract)) 1677 OS << "contract "; 1678 if (getFlag(MachineInstr::FmAfn)) 1679 OS << "afn "; 1680 if (getFlag(MachineInstr::FmReassoc)) 1681 OS << "reassoc "; 1682 if (getFlag(MachineInstr::NoUWrap)) 1683 OS << "nuw "; 1684 if (getFlag(MachineInstr::NoSWrap)) 1685 OS << "nsw "; 1686 if (getFlag(MachineInstr::IsExact)) 1687 OS << "exact "; 1688 if (getFlag(MachineInstr::NoFPExcept)) 1689 OS << "nofpexcept "; 1690 if (getFlag(MachineInstr::NoMerge)) 1691 OS << "nomerge "; 1692 1693 // Print the opcode name. 1694 if (TII) 1695 OS << TII->getName(getOpcode()); 1696 else 1697 OS << "UNKNOWN"; 1698 1699 if (SkipOpers) 1700 return; 1701 1702 // Print the rest of the operands. 1703 bool FirstOp = true; 1704 unsigned AsmDescOp = ~0u; 1705 unsigned AsmOpCount = 0; 1706 1707 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1708 // Print asm string. 1709 OS << " "; 1710 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1711 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1712 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1713 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1714 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1715 IntrinsicInfo); 1716 1717 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1718 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1719 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1720 OS << " [sideeffect]"; 1721 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1722 OS << " [mayload]"; 1723 if (ExtraInfo & InlineAsm::Extra_MayStore) 1724 OS << " [maystore]"; 1725 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1726 OS << " [isconvergent]"; 1727 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1728 OS << " [alignstack]"; 1729 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1730 OS << " [attdialect]"; 1731 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1732 OS << " [inteldialect]"; 1733 1734 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1735 FirstOp = false; 1736 } 1737 1738 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1739 const MachineOperand &MO = getOperand(i); 1740 1741 if (FirstOp) FirstOp = false; else OS << ","; 1742 OS << " "; 1743 1744 if (isDebugValueLike() && MO.isMetadata()) { 1745 // Pretty print DBG_VALUE* instructions. 1746 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1747 if (DIV && !DIV->getName().empty()) 1748 OS << "!\"" << DIV->getName() << '\"'; 1749 else { 1750 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1751 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1752 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1753 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1754 } 1755 } else if (isDebugLabel() && MO.isMetadata()) { 1756 // Pretty print DBG_LABEL instructions. 1757 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1758 if (DIL && !DIL->getName().empty()) 1759 OS << "\"" << DIL->getName() << '\"'; 1760 else { 1761 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1762 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1763 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1764 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1765 } 1766 } else if (i == AsmDescOp && MO.isImm()) { 1767 // Pretty print the inline asm operand descriptor. 1768 OS << '$' << AsmOpCount++; 1769 unsigned Flag = MO.getImm(); 1770 const InlineAsm::Flag F(Flag); 1771 OS << ":["; 1772 OS << F.getKindName(); 1773 1774 unsigned RCID; 1775 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { 1776 if (TRI) { 1777 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1778 } else 1779 OS << ":RC" << RCID; 1780 } 1781 1782 if (F.isMemKind()) { 1783 const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); 1784 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1785 } 1786 1787 unsigned TiedTo; 1788 if (F.isUseOperandTiedToDef(TiedTo)) 1789 OS << " tiedto:$" << TiedTo; 1790 1791 if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || 1792 F.isRegUseKind()) && 1793 F.getRegMayBeFolded()) { 1794 OS << " foldable"; 1795 } 1796 1797 OS << ']'; 1798 1799 // Compute the index of the next operand descriptor. 1800 AsmDescOp += 1 + F.getNumOperandRegisters(); 1801 } else { 1802 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1803 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1804 if (MO.isImm() && isOperandSubregIdx(i)) 1805 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1806 else 1807 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1808 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1809 } 1810 } 1811 1812 // Print any optional symbols attached to this instruction as-if they were 1813 // operands. 1814 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1815 if (!FirstOp) { 1816 FirstOp = false; 1817 OS << ','; 1818 } 1819 OS << " pre-instr-symbol "; 1820 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1821 } 1822 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1823 if (!FirstOp) { 1824 FirstOp = false; 1825 OS << ','; 1826 } 1827 OS << " post-instr-symbol "; 1828 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1829 } 1830 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1831 if (!FirstOp) { 1832 FirstOp = false; 1833 OS << ','; 1834 } 1835 OS << " heap-alloc-marker "; 1836 HeapAllocMarker->printAsOperand(OS, MST); 1837 } 1838 if (MDNode *PCSections = getPCSections()) { 1839 if (!FirstOp) { 1840 FirstOp = false; 1841 OS << ','; 1842 } 1843 OS << " pcsections "; 1844 PCSections->printAsOperand(OS, MST); 1845 } 1846 if (uint32_t CFIType = getCFIType()) { 1847 if (!FirstOp) 1848 OS << ','; 1849 OS << " cfi-type " << CFIType; 1850 } 1851 1852 if (DebugInstrNum) { 1853 if (!FirstOp) 1854 OS << ","; 1855 OS << " debug-instr-number " << DebugInstrNum; 1856 } 1857 1858 if (!SkipDebugLoc) { 1859 if (const DebugLoc &DL = getDebugLoc()) { 1860 if (!FirstOp) 1861 OS << ','; 1862 OS << " debug-location "; 1863 DL->printAsOperand(OS, MST); 1864 } 1865 } 1866 1867 if (!memoperands_empty()) { 1868 SmallVector<StringRef, 0> SSNs; 1869 const LLVMContext *Context = nullptr; 1870 std::unique_ptr<LLVMContext> CtxPtr; 1871 const MachineFrameInfo *MFI = nullptr; 1872 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1873 MFI = &MF->getFrameInfo(); 1874 Context = &MF->getFunction().getContext(); 1875 } else { 1876 CtxPtr = std::make_unique<LLVMContext>(); 1877 Context = CtxPtr.get(); 1878 } 1879 1880 OS << " :: "; 1881 bool NeedComma = false; 1882 for (const MachineMemOperand *Op : memoperands()) { 1883 if (NeedComma) 1884 OS << ", "; 1885 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1886 NeedComma = true; 1887 } 1888 } 1889 1890 if (SkipDebugLoc) 1891 return; 1892 1893 bool HaveSemi = false; 1894 1895 // Print debug location information. 1896 if (const DebugLoc &DL = getDebugLoc()) { 1897 if (!HaveSemi) { 1898 OS << ';'; 1899 HaveSemi = true; 1900 } 1901 OS << ' '; 1902 DL.print(OS); 1903 } 1904 1905 // Print extra comments for DEBUG_VALUE and friends if they are well-formed. 1906 if ((isNonListDebugValue() && getNumOperands() >= 4) || 1907 (isDebugValueList() && getNumOperands() >= 2) || 1908 (isDebugRef() && getNumOperands() >= 3)) { 1909 if (getDebugVariableOp().isMetadata()) { 1910 if (!HaveSemi) { 1911 OS << ";"; 1912 HaveSemi = true; 1913 } 1914 auto *DV = getDebugVariable(); 1915 OS << " line no:" << DV->getLine(); 1916 if (isIndirectDebugValue()) 1917 OS << " indirect"; 1918 } 1919 } 1920 // TODO: DBG_LABEL 1921 1922 if (AddNewLine) 1923 OS << '\n'; 1924 } 1925 1926 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1927 const TargetRegisterInfo *RegInfo, 1928 bool AddIfNotFound) { 1929 bool isPhysReg = IncomingReg.isPhysical(); 1930 bool hasAliases = isPhysReg && 1931 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1932 bool Found = false; 1933 SmallVector<unsigned,4> DeadOps; 1934 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1935 MachineOperand &MO = getOperand(i); 1936 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1937 continue; 1938 1939 // DEBUG_VALUE nodes do not contribute to code generation and should 1940 // always be ignored. Failure to do so may result in trying to modify 1941 // KILL flags on DEBUG_VALUE nodes. 1942 if (MO.isDebug()) 1943 continue; 1944 1945 Register Reg = MO.getReg(); 1946 if (!Reg) 1947 continue; 1948 1949 if (Reg == IncomingReg) { 1950 if (!Found) { 1951 if (MO.isKill()) 1952 // The register is already marked kill. 1953 return true; 1954 if (isPhysReg && isRegTiedToDefOperand(i)) 1955 // Two-address uses of physregs must not be marked kill. 1956 return true; 1957 MO.setIsKill(); 1958 Found = true; 1959 } 1960 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 1961 // A super-register kill already exists. 1962 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1963 return true; 1964 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1965 DeadOps.push_back(i); 1966 } 1967 } 1968 1969 // Trim unneeded kill operands. 1970 while (!DeadOps.empty()) { 1971 unsigned OpIdx = DeadOps.back(); 1972 if (getOperand(OpIdx).isImplicit() && 1973 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1974 removeOperand(OpIdx); 1975 else 1976 getOperand(OpIdx).setIsKill(false); 1977 DeadOps.pop_back(); 1978 } 1979 1980 // If not found, this means an alias of one of the operands is killed. Add a 1981 // new implicit operand if required. 1982 if (!Found && AddIfNotFound) { 1983 addOperand(MachineOperand::CreateReg(IncomingReg, 1984 false /*IsDef*/, 1985 true /*IsImp*/, 1986 true /*IsKill*/)); 1987 return true; 1988 } 1989 return Found; 1990 } 1991 1992 void MachineInstr::clearRegisterKills(Register Reg, 1993 const TargetRegisterInfo *RegInfo) { 1994 if (!Reg.isPhysical()) 1995 RegInfo = nullptr; 1996 for (MachineOperand &MO : operands()) { 1997 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1998 continue; 1999 Register OpReg = MO.getReg(); 2000 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 2001 MO.setIsKill(false); 2002 } 2003 } 2004 2005 bool MachineInstr::addRegisterDead(Register Reg, 2006 const TargetRegisterInfo *RegInfo, 2007 bool AddIfNotFound) { 2008 bool isPhysReg = Reg.isPhysical(); 2009 bool hasAliases = isPhysReg && 2010 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 2011 bool Found = false; 2012 SmallVector<unsigned,4> DeadOps; 2013 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2014 MachineOperand &MO = getOperand(i); 2015 if (!MO.isReg() || !MO.isDef()) 2016 continue; 2017 Register MOReg = MO.getReg(); 2018 if (!MOReg) 2019 continue; 2020 2021 if (MOReg == Reg) { 2022 MO.setIsDead(); 2023 Found = true; 2024 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 2025 // There exists a super-register that's marked dead. 2026 if (RegInfo->isSuperRegister(Reg, MOReg)) 2027 return true; 2028 if (RegInfo->isSubRegister(Reg, MOReg)) 2029 DeadOps.push_back(i); 2030 } 2031 } 2032 2033 // Trim unneeded dead operands. 2034 while (!DeadOps.empty()) { 2035 unsigned OpIdx = DeadOps.back(); 2036 if (getOperand(OpIdx).isImplicit() && 2037 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2038 removeOperand(OpIdx); 2039 else 2040 getOperand(OpIdx).setIsDead(false); 2041 DeadOps.pop_back(); 2042 } 2043 2044 // If not found, this means an alias of one of the operands is dead. Add a 2045 // new implicit operand if required. 2046 if (Found || !AddIfNotFound) 2047 return Found; 2048 2049 addOperand(MachineOperand::CreateReg(Reg, 2050 true /*IsDef*/, 2051 true /*IsImp*/, 2052 false /*IsKill*/, 2053 true /*IsDead*/)); 2054 return true; 2055 } 2056 2057 void MachineInstr::clearRegisterDeads(Register Reg) { 2058 for (MachineOperand &MO : operands()) { 2059 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2060 continue; 2061 MO.setIsDead(false); 2062 } 2063 } 2064 2065 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2066 for (MachineOperand &MO : operands()) { 2067 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2068 continue; 2069 MO.setIsUndef(IsUndef); 2070 } 2071 } 2072 2073 void MachineInstr::addRegisterDefined(Register Reg, 2074 const TargetRegisterInfo *RegInfo) { 2075 if (Reg.isPhysical()) { 2076 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2077 if (MO) 2078 return; 2079 } else { 2080 for (const MachineOperand &MO : operands()) { 2081 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2082 MO.getSubReg() == 0) 2083 return; 2084 } 2085 } 2086 addOperand(MachineOperand::CreateReg(Reg, 2087 true /*IsDef*/, 2088 true /*IsImp*/)); 2089 } 2090 2091 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2092 const TargetRegisterInfo &TRI) { 2093 bool HasRegMask = false; 2094 for (MachineOperand &MO : operands()) { 2095 if (MO.isRegMask()) { 2096 HasRegMask = true; 2097 continue; 2098 } 2099 if (!MO.isReg() || !MO.isDef()) continue; 2100 Register Reg = MO.getReg(); 2101 if (!Reg.isPhysical()) 2102 continue; 2103 // If there are no uses, including partial uses, the def is dead. 2104 if (llvm::none_of(UsedRegs, 2105 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2106 MO.setIsDead(); 2107 } 2108 2109 // This is a call with a register mask operand. 2110 // Mask clobbers are always dead, so add defs for the non-dead defines. 2111 if (HasRegMask) 2112 for (const Register &UsedReg : UsedRegs) 2113 addRegisterDefined(UsedReg, &TRI); 2114 } 2115 2116 unsigned 2117 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2118 // Build up a buffer of hash code components. 2119 SmallVector<size_t, 16> HashComponents; 2120 HashComponents.reserve(MI->getNumOperands() + 1); 2121 HashComponents.push_back(MI->getOpcode()); 2122 for (const MachineOperand &MO : MI->operands()) { 2123 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2124 continue; // Skip virtual register defs. 2125 2126 HashComponents.push_back(hash_value(MO)); 2127 } 2128 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2129 } 2130 2131 void MachineInstr::emitError(StringRef Msg) const { 2132 // Find the source location cookie. 2133 uint64_t LocCookie = 0; 2134 const MDNode *LocMD = nullptr; 2135 for (unsigned i = getNumOperands(); i != 0; --i) { 2136 if (getOperand(i-1).isMetadata() && 2137 (LocMD = getOperand(i-1).getMetadata()) && 2138 LocMD->getNumOperands() != 0) { 2139 if (const ConstantInt *CI = 2140 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2141 LocCookie = CI->getZExtValue(); 2142 break; 2143 } 2144 } 2145 } 2146 2147 if (const MachineBasicBlock *MBB = getParent()) 2148 if (const MachineFunction *MF = MBB->getParent()) 2149 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2150 report_fatal_error(Msg); 2151 } 2152 2153 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2154 const MCInstrDesc &MCID, bool IsIndirect, 2155 Register Reg, const MDNode *Variable, 2156 const MDNode *Expr) { 2157 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2158 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2159 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2160 "Expected inlined-at fields to agree"); 2161 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2162 if (IsIndirect) 2163 MIB.addImm(0U); 2164 else 2165 MIB.addReg(0U); 2166 return MIB.addMetadata(Variable).addMetadata(Expr); 2167 } 2168 2169 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2170 const MCInstrDesc &MCID, bool IsIndirect, 2171 ArrayRef<MachineOperand> DebugOps, 2172 const MDNode *Variable, const MDNode *Expr) { 2173 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2174 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2175 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2176 "Expected inlined-at fields to agree"); 2177 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2178 assert(DebugOps.size() == 1 && 2179 "DBG_VALUE must contain exactly one debug operand"); 2180 MachineOperand DebugOp = DebugOps[0]; 2181 if (DebugOp.isReg()) 2182 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2183 Expr); 2184 2185 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2186 if (IsIndirect) 2187 MIB.addImm(0U); 2188 else 2189 MIB.addReg(0U); 2190 return MIB.addMetadata(Variable).addMetadata(Expr); 2191 } 2192 2193 auto MIB = BuildMI(MF, DL, MCID); 2194 MIB.addMetadata(Variable).addMetadata(Expr); 2195 for (const MachineOperand &DebugOp : DebugOps) 2196 if (DebugOp.isReg()) 2197 MIB.addReg(DebugOp.getReg()); 2198 else 2199 MIB.add(DebugOp); 2200 return MIB; 2201 } 2202 2203 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2204 MachineBasicBlock::iterator I, 2205 const DebugLoc &DL, const MCInstrDesc &MCID, 2206 bool IsIndirect, Register Reg, 2207 const MDNode *Variable, const MDNode *Expr) { 2208 MachineFunction &MF = *BB.getParent(); 2209 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2210 BB.insert(I, MI); 2211 return MachineInstrBuilder(MF, MI); 2212 } 2213 2214 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2215 MachineBasicBlock::iterator I, 2216 const DebugLoc &DL, const MCInstrDesc &MCID, 2217 bool IsIndirect, 2218 ArrayRef<MachineOperand> DebugOps, 2219 const MDNode *Variable, const MDNode *Expr) { 2220 MachineFunction &MF = *BB.getParent(); 2221 MachineInstr *MI = 2222 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2223 BB.insert(I, MI); 2224 return MachineInstrBuilder(MF, *MI); 2225 } 2226 2227 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2228 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2229 static const DIExpression * 2230 computeExprForSpill(const MachineInstr &MI, 2231 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2232 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2233 "Expected inlined-at fields to agree"); 2234 2235 const DIExpression *Expr = MI.getDebugExpression(); 2236 if (MI.isIndirectDebugValue()) { 2237 assert(MI.getDebugOffset().getImm() == 0 && 2238 "DBG_VALUE with nonzero offset"); 2239 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2240 } else if (MI.isDebugValueList()) { 2241 // We will replace the spilled register with a frame index, so 2242 // immediately deref all references to the spilled register. 2243 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2244 for (const MachineOperand *Op : SpilledOperands) { 2245 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2246 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2247 } 2248 } 2249 return Expr; 2250 } 2251 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2252 Register SpillReg) { 2253 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2254 SmallVector<const MachineOperand *> SpillOperands; 2255 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2256 SpillOperands.push_back(&Op); 2257 return computeExprForSpill(MI, SpillOperands); 2258 } 2259 2260 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2261 MachineBasicBlock::iterator I, 2262 const MachineInstr &Orig, 2263 int FrameIndex, Register SpillReg) { 2264 assert(!Orig.isDebugRef() && 2265 "DBG_INSTR_REF should not reference a virtual register."); 2266 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2267 MachineInstrBuilder NewMI = 2268 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2269 // Non-Variadic Operands: Location, Offset, Variable, Expression 2270 // Variadic Operands: Variable, Expression, Locations... 2271 if (Orig.isNonListDebugValue()) 2272 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2273 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2274 if (Orig.isDebugValueList()) { 2275 for (const MachineOperand &Op : Orig.debug_operands()) 2276 if (Op.isReg() && Op.getReg() == SpillReg) 2277 NewMI.addFrameIndex(FrameIndex); 2278 else 2279 NewMI.add(MachineOperand(Op)); 2280 } 2281 return NewMI; 2282 } 2283 MachineInstr *llvm::buildDbgValueForSpill( 2284 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2285 const MachineInstr &Orig, int FrameIndex, 2286 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2287 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2288 MachineInstrBuilder NewMI = 2289 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2290 // Non-Variadic Operands: Location, Offset, Variable, Expression 2291 // Variadic Operands: Variable, Expression, Locations... 2292 if (Orig.isNonListDebugValue()) 2293 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2294 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2295 if (Orig.isDebugValueList()) { 2296 for (const MachineOperand &Op : Orig.debug_operands()) 2297 if (is_contained(SpilledOperands, &Op)) 2298 NewMI.addFrameIndex(FrameIndex); 2299 else 2300 NewMI.add(MachineOperand(Op)); 2301 } 2302 return NewMI; 2303 } 2304 2305 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2306 Register Reg) { 2307 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2308 if (Orig.isNonListDebugValue()) 2309 Orig.getDebugOffset().ChangeToImmediate(0U); 2310 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2311 Op.ChangeToFrameIndex(FrameIndex); 2312 Orig.getDebugExpressionOp().setMetadata(Expr); 2313 } 2314 2315 void MachineInstr::collectDebugValues( 2316 SmallVectorImpl<MachineInstr *> &DbgValues) { 2317 MachineInstr &MI = *this; 2318 if (!MI.getOperand(0).isReg()) 2319 return; 2320 2321 MachineBasicBlock::iterator DI = MI; ++DI; 2322 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2323 DI != DE; ++DI) { 2324 if (!DI->isDebugValue()) 2325 return; 2326 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2327 DbgValues.push_back(&*DI); 2328 } 2329 } 2330 2331 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2332 // Collect matching debug values. 2333 SmallVector<MachineInstr *, 2> DbgValues; 2334 2335 if (!getOperand(0).isReg()) 2336 return; 2337 2338 Register DefReg = getOperand(0).getReg(); 2339 auto *MRI = getRegInfo(); 2340 for (auto &MO : MRI->use_operands(DefReg)) { 2341 auto *DI = MO.getParent(); 2342 if (!DI->isDebugValue()) 2343 continue; 2344 if (DI->hasDebugOperandForReg(DefReg)) { 2345 DbgValues.push_back(DI); 2346 } 2347 } 2348 2349 // Propagate Reg to debug value instructions. 2350 for (auto *DBI : DbgValues) 2351 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2352 Op.setReg(Reg); 2353 } 2354 2355 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2356 2357 static unsigned getSpillSlotSize(const MMOList &Accesses, 2358 const MachineFrameInfo &MFI) { 2359 unsigned Size = 0; 2360 for (const auto *A : Accesses) 2361 if (MFI.isSpillSlotObjectIndex( 2362 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2363 ->getFrameIndex())) 2364 Size += A->getSize(); 2365 return Size; 2366 } 2367 2368 std::optional<unsigned> 2369 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2370 int FI; 2371 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2372 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2373 if (MFI.isSpillSlotObjectIndex(FI)) 2374 return (*memoperands_begin())->getSize(); 2375 } 2376 return std::nullopt; 2377 } 2378 2379 std::optional<unsigned> 2380 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2381 MMOList Accesses; 2382 if (TII->hasStoreToStackSlot(*this, Accesses)) 2383 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2384 return std::nullopt; 2385 } 2386 2387 std::optional<unsigned> 2388 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2389 int FI; 2390 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2391 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2392 if (MFI.isSpillSlotObjectIndex(FI)) 2393 return (*memoperands_begin())->getSize(); 2394 } 2395 return std::nullopt; 2396 } 2397 2398 std::optional<unsigned> 2399 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2400 MMOList Accesses; 2401 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2402 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2403 return std::nullopt; 2404 } 2405 2406 unsigned MachineInstr::getDebugInstrNum() { 2407 if (DebugInstrNum == 0) 2408 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2409 return DebugInstrNum; 2410 } 2411 2412 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2413 if (DebugInstrNum == 0) 2414 DebugInstrNum = MF.getNewDebugInstrNum(); 2415 return DebugInstrNum; 2416 } 2417 2418 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { 2419 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2420 getRegInfo()->getType(getOperand(1).getReg())); 2421 } 2422 2423 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { 2424 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2425 getRegInfo()->getType(getOperand(1).getReg()), 2426 getRegInfo()->getType(getOperand(2).getReg())); 2427 } 2428 2429 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { 2430 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2431 getRegInfo()->getType(getOperand(1).getReg()), 2432 getRegInfo()->getType(getOperand(2).getReg()), 2433 getRegInfo()->getType(getOperand(3).getReg())); 2434 } 2435 2436 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { 2437 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), 2438 getRegInfo()->getType(getOperand(1).getReg()), 2439 getRegInfo()->getType(getOperand(2).getReg()), 2440 getRegInfo()->getType(getOperand(3).getReg()), 2441 getRegInfo()->getType(getOperand(4).getReg())); 2442 } 2443 2444 std::tuple<Register, LLT, Register, LLT> 2445 MachineInstr::getFirst2RegLLTs() const { 2446 Register Reg0 = getOperand(0).getReg(); 2447 Register Reg1 = getOperand(1).getReg(); 2448 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2449 getRegInfo()->getType(Reg1)); 2450 } 2451 2452 std::tuple<Register, LLT, Register, LLT, Register, LLT> 2453 MachineInstr::getFirst3RegLLTs() const { 2454 Register Reg0 = getOperand(0).getReg(); 2455 Register Reg1 = getOperand(1).getReg(); 2456 Register Reg2 = getOperand(2).getReg(); 2457 return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, 2458 getRegInfo()->getType(Reg1), Reg2, 2459 getRegInfo()->getType(Reg2)); 2460 } 2461 2462 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> 2463 MachineInstr::getFirst4RegLLTs() const { 2464 Register Reg0 = getOperand(0).getReg(); 2465 Register Reg1 = getOperand(1).getReg(); 2466 Register Reg2 = getOperand(2).getReg(); 2467 Register Reg3 = getOperand(3).getReg(); 2468 return std::tuple( 2469 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2470 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3)); 2471 } 2472 2473 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, 2474 LLT> 2475 MachineInstr::getFirst5RegLLTs() const { 2476 Register Reg0 = getOperand(0).getReg(); 2477 Register Reg1 = getOperand(1).getReg(); 2478 Register Reg2 = getOperand(2).getReg(); 2479 Register Reg3 = getOperand(3).getReg(); 2480 Register Reg4 = getOperand(4).getReg(); 2481 return std::tuple( 2482 Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), 2483 Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3), 2484 Reg4, getRegInfo()->getType(Reg4)); 2485 } 2486 2487 void MachineInstr::insert(mop_iterator InsertBefore, 2488 ArrayRef<MachineOperand> Ops) { 2489 assert(InsertBefore != nullptr && "invalid iterator"); 2490 assert(InsertBefore->getParent() == this && 2491 "iterator points to operand of other inst"); 2492 if (Ops.empty()) 2493 return; 2494 2495 // Do one pass to untie operands. 2496 SmallDenseMap<unsigned, unsigned> TiedOpIndices; 2497 for (const MachineOperand &MO : operands()) { 2498 if (MO.isReg() && MO.isTied()) { 2499 unsigned OpNo = getOperandNo(&MO); 2500 unsigned TiedTo = findTiedOperandIdx(OpNo); 2501 TiedOpIndices[OpNo] = TiedTo; 2502 untieRegOperand(OpNo); 2503 } 2504 } 2505 2506 unsigned OpIdx = getOperandNo(InsertBefore); 2507 unsigned NumOperands = getNumOperands(); 2508 unsigned OpsToMove = NumOperands - OpIdx; 2509 2510 SmallVector<MachineOperand> MovingOps; 2511 MovingOps.reserve(OpsToMove); 2512 2513 for (unsigned I = 0; I < OpsToMove; ++I) { 2514 MovingOps.emplace_back(getOperand(OpIdx)); 2515 removeOperand(OpIdx); 2516 } 2517 for (const MachineOperand &MO : Ops) 2518 addOperand(MO); 2519 for (const MachineOperand &OpMoved : MovingOps) 2520 addOperand(OpMoved); 2521 2522 // Re-tie operands. 2523 for (auto [Tie1, Tie2] : TiedOpIndices) { 2524 if (Tie1 >= OpIdx) 2525 Tie1 += Ops.size(); 2526 if (Tie2 >= OpIdx) 2527 Tie2 += Ops.size(); 2528 tieOperands(Tie1, Tie2); 2529 } 2530 } 2531 2532 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const { 2533 assert(OpId && "expected non-zero operand id"); 2534 assert(isInlineAsm() && "should only be used on inline asm"); 2535 2536 if (!getOperand(OpId).isReg()) 2537 return false; 2538 2539 const MachineOperand &MD = getOperand(OpId - 1); 2540 if (!MD.isImm()) 2541 return false; 2542 2543 InlineAsm::Flag F(MD.getImm()); 2544 if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) 2545 return F.getRegMayBeFolded(); 2546 return false; 2547 } 2548