1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCInstrDesc.h" 57 #include "llvm/MC/MCRegisterInfo.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetIntrinsicInfo.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <cstring> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 80 if (const MachineBasicBlock *MBB = MI.getParent()) 81 if (const MachineFunction *MF = MBB->getParent()) 82 return MF; 83 return nullptr; 84 } 85 86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 87 // it. 88 static void tryToGetTargetInfo(const MachineInstr &MI, 89 const TargetRegisterInfo *&TRI, 90 const MachineRegisterInfo *&MRI, 91 const TargetIntrinsicInfo *&IntrinsicInfo, 92 const TargetInstrInfo *&TII) { 93 94 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 95 TRI = MF->getSubtarget().getRegisterInfo(); 96 MRI = &MF->getRegInfo(); 97 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 98 TII = MF->getSubtarget().getInstrInfo(); 99 } 100 } 101 102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 103 if (MCID->ImplicitDefs) 104 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 105 ++ImpDefs) 106 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 107 if (MCID->ImplicitUses) 108 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 109 ++ImpUses) 110 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 111 } 112 113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 114 /// implicit operands. It reserves space for the number of operands specified by 115 /// the MCInstrDesc. 116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 117 DebugLoc dl, bool NoImp) 118 : MCID(&tid), debugLoc(std::move(dl)) { 119 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 120 121 // Reserve space for the expected number of operands. 122 if (unsigned NumOps = MCID->getNumOperands() + 123 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 124 CapOperands = OperandCapacity::get(NumOps); 125 Operands = MF.allocateOperandArray(CapOperands); 126 } 127 128 if (!NoImp) 129 addImplicitDefUseOperands(MF); 130 } 131 132 /// MachineInstr ctor - Copies MachineInstr arg exactly 133 /// 134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 135 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { 136 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 137 138 CapOperands = OperandCapacity::get(MI.getNumOperands()); 139 Operands = MF.allocateOperandArray(CapOperands); 140 141 // Copy operands. 142 for (const MachineOperand &MO : MI.operands()) 143 addOperand(MF, MO); 144 145 // Copy all the sensible flags. 146 setFlags(MI.Flags); 147 } 148 149 /// getRegInfo - If this instruction is embedded into a MachineFunction, 150 /// return the MachineRegisterInfo object for the current function, otherwise 151 /// return null. 152 MachineRegisterInfo *MachineInstr::getRegInfo() { 153 if (MachineBasicBlock *MBB = getParent()) 154 return &MBB->getParent()->getRegInfo(); 155 return nullptr; 156 } 157 158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 159 /// this instruction from their respective use lists. This requires that the 160 /// operands already be on their use lists. 161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 162 for (MachineOperand &MO : operands()) 163 if (MO.isReg()) 164 MRI.removeRegOperandFromUseList(&MO); 165 } 166 167 /// AddRegOperandsToUseLists - Add all of the register operands in 168 /// this instruction from their respective use lists. This requires that the 169 /// operands not be on their use lists yet. 170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 171 for (MachineOperand &MO : operands()) 172 if (MO.isReg()) 173 MRI.addRegOperandToUseList(&MO); 174 } 175 176 void MachineInstr::addOperand(const MachineOperand &Op) { 177 MachineBasicBlock *MBB = getParent(); 178 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 179 MachineFunction *MF = MBB->getParent(); 180 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 181 addOperand(*MF, Op); 182 } 183 184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 185 /// ranges. If MRI is non-null also update use-def chains. 186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 187 unsigned NumOps, MachineRegisterInfo *MRI) { 188 if (MRI) 189 return MRI->moveOperands(Dst, Src, NumOps); 190 // MachineOperand is a trivially copyable type so we can just use memmove. 191 assert(Dst && Src && "Unknown operands"); 192 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 193 } 194 195 /// addOperand - Add the specified operand to the instruction. If it is an 196 /// implicit operand, it is added to the end of the operand list. If it is 197 /// an explicit operand it is added at the end of the explicit operand list 198 /// (before the first implicit operand). 199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 200 assert(MCID && "Cannot add operands before providing an instr descriptor"); 201 202 // Check if we're adding one of our existing operands. 203 if (&Op >= Operands && &Op < Operands + NumOperands) { 204 // This is unusual: MI->addOperand(MI->getOperand(i)). 205 // If adding Op requires reallocating or moving existing operands around, 206 // the Op reference could go stale. Support it by copying Op. 207 MachineOperand CopyOp(Op); 208 return addOperand(MF, CopyOp); 209 } 210 211 // Find the insert location for the new operand. Implicit registers go at 212 // the end, everything else goes before the implicit regs. 213 // 214 // FIXME: Allow mixed explicit and implicit operands on inline asm. 215 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 216 // implicit-defs, but they must not be moved around. See the FIXME in 217 // InstrEmitter.cpp. 218 unsigned OpNo = getNumOperands(); 219 bool isImpReg = Op.isReg() && Op.isImplicit(); 220 if (!isImpReg && !isInlineAsm()) { 221 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 222 --OpNo; 223 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 224 } 225 } 226 227 #ifndef NDEBUG 228 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 229 Op.getType() == MachineOperand::MO_MCSymbol; 230 // OpNo now points as the desired insertion point. Unless this is a variadic 231 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 232 // RegMask operands go between the explicit and implicit operands. 233 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 234 OpNo < MCID->getNumOperands() || isDebugOp) && 235 "Trying to add an operand to a machine instr that is already done!"); 236 #endif 237 238 MachineRegisterInfo *MRI = getRegInfo(); 239 240 // Determine if the Operands array needs to be reallocated. 241 // Save the old capacity and operand array. 242 OperandCapacity OldCap = CapOperands; 243 MachineOperand *OldOperands = Operands; 244 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 245 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 246 Operands = MF.allocateOperandArray(CapOperands); 247 // Move the operands before the insertion point. 248 if (OpNo) 249 moveOperands(Operands, OldOperands, OpNo, MRI); 250 } 251 252 // Move the operands following the insertion point. 253 if (OpNo != NumOperands) 254 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 255 MRI); 256 ++NumOperands; 257 258 // Deallocate the old operand array. 259 if (OldOperands != Operands && OldOperands) 260 MF.deallocateOperandArray(OldCap, OldOperands); 261 262 // Copy Op into place. It still needs to be inserted into the MRI use lists. 263 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 264 NewMO->ParentMI = this; 265 266 // When adding a register operand, tell MRI about it. 267 if (NewMO->isReg()) { 268 // Ensure isOnRegUseList() returns false, regardless of Op's status. 269 NewMO->Contents.Reg.Prev = nullptr; 270 // Ignore existing ties. This is not a property that can be copied. 271 NewMO->TiedTo = 0; 272 // Add the new operand to MRI, but only for instructions in an MBB. 273 if (MRI) 274 MRI->addRegOperandToUseList(NewMO); 275 // The MCID operand information isn't accurate until we start adding 276 // explicit operands. The implicit operands are added first, then the 277 // explicits are inserted before them. 278 if (!isImpReg) { 279 // Tie uses to defs as indicated in MCInstrDesc. 280 if (NewMO->isUse()) { 281 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 282 if (DefIdx != -1) 283 tieOperands(DefIdx, OpNo); 284 } 285 // If the register operand is flagged as early, mark the operand as such. 286 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 287 NewMO->setIsEarlyClobber(true); 288 } 289 } 290 } 291 292 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 293 /// fewer operand than it started with. 294 /// 295 void MachineInstr::RemoveOperand(unsigned OpNo) { 296 assert(OpNo < getNumOperands() && "Invalid operand number"); 297 untieRegOperand(OpNo); 298 299 #ifndef NDEBUG 300 // Moving tied operands would break the ties. 301 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 302 if (Operands[i].isReg()) 303 assert(!Operands[i].isTied() && "Cannot move tied operands"); 304 #endif 305 306 MachineRegisterInfo *MRI = getRegInfo(); 307 if (MRI && Operands[OpNo].isReg()) 308 MRI->removeRegOperandFromUseList(Operands + OpNo); 309 310 // Don't call the MachineOperand destructor. A lot of this code depends on 311 // MachineOperand having a trivial destructor anyway, and adding a call here 312 // wouldn't make it 'destructor-correct'. 313 314 if (unsigned N = NumOperands - 1 - OpNo) 315 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 316 --NumOperands; 317 } 318 319 void MachineInstr::setExtraInfo(MachineFunction &MF, 320 ArrayRef<MachineMemOperand *> MMOs, 321 MCSymbol *PreInstrSymbol, 322 MCSymbol *PostInstrSymbol, 323 MDNode *HeapAllocMarker) { 324 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 325 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 326 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 327 int NumPointers = 328 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; 329 330 // Drop all extra info if there is none. 331 if (NumPointers <= 0) { 332 Info.clear(); 333 return; 334 } 335 336 // If more than one pointer, then store out of line. Store heap alloc markers 337 // out of line because PointerSumType cannot hold more than 4 tag types with 338 // 32-bit pointers. 339 // FIXME: Maybe we should make the symbols in the extra info mutable? 340 else if (NumPointers > 1 || HasHeapAllocMarker) { 341 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( 342 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); 343 return; 344 } 345 346 // Otherwise store the single pointer inline. 347 if (HasPreInstrSymbol) 348 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 349 else if (HasPostInstrSymbol) 350 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 351 else 352 Info.set<EIIK_MMO>(MMOs[0]); 353 } 354 355 void MachineInstr::dropMemRefs(MachineFunction &MF) { 356 if (memoperands_empty()) 357 return; 358 359 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 360 getHeapAllocMarker()); 361 } 362 363 void MachineInstr::setMemRefs(MachineFunction &MF, 364 ArrayRef<MachineMemOperand *> MMOs) { 365 if (MMOs.empty()) { 366 dropMemRefs(MF); 367 return; 368 } 369 370 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 371 getHeapAllocMarker()); 372 } 373 374 void MachineInstr::addMemOperand(MachineFunction &MF, 375 MachineMemOperand *MO) { 376 SmallVector<MachineMemOperand *, 2> MMOs; 377 MMOs.append(memoperands_begin(), memoperands_end()); 378 MMOs.push_back(MO); 379 setMemRefs(MF, MMOs); 380 } 381 382 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 383 if (this == &MI) 384 // Nothing to do for a self-clone! 385 return; 386 387 assert(&MF == MI.getMF() && 388 "Invalid machine functions when cloning memory refrences!"); 389 // See if we can just steal the extra info already allocated for the 390 // instruction. We can do this whenever the pre- and post-instruction symbols 391 // are the same (including null). 392 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 393 getPostInstrSymbol() == MI.getPostInstrSymbol() && 394 getHeapAllocMarker() == MI.getHeapAllocMarker()) { 395 Info = MI.Info; 396 return; 397 } 398 399 // Otherwise, fall back on a copy-based clone. 400 setMemRefs(MF, MI.memoperands()); 401 } 402 403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 404 /// identical. 405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 406 ArrayRef<MachineMemOperand *> RHS) { 407 if (LHS.size() != RHS.size()) 408 return false; 409 410 auto LHSPointees = make_pointee_range(LHS); 411 auto RHSPointees = make_pointee_range(RHS); 412 return std::equal(LHSPointees.begin(), LHSPointees.end(), 413 RHSPointees.begin()); 414 } 415 416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 417 ArrayRef<const MachineInstr *> MIs) { 418 // Try handling easy numbers of MIs with simpler mechanisms. 419 if (MIs.empty()) { 420 dropMemRefs(MF); 421 return; 422 } 423 if (MIs.size() == 1) { 424 cloneMemRefs(MF, *MIs[0]); 425 return; 426 } 427 // Because an empty memoperands list provides *no* information and must be 428 // handled conservatively (assuming the instruction can do anything), the only 429 // way to merge with it is to drop all other memoperands. 430 if (MIs[0]->memoperands_empty()) { 431 dropMemRefs(MF); 432 return; 433 } 434 435 // Handle the general case. 436 SmallVector<MachineMemOperand *, 2> MergedMMOs; 437 // Start with the first instruction. 438 assert(&MF == MIs[0]->getMF() && 439 "Invalid machine functions when cloning memory references!"); 440 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 441 // Now walk all the other instructions and accumulate any different MMOs. 442 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 443 assert(&MF == MI.getMF() && 444 "Invalid machine functions when cloning memory references!"); 445 446 // Skip MIs with identical operands to the first. This is a somewhat 447 // arbitrary hack but will catch common cases without being quadratic. 448 // TODO: We could fully implement merge semantics here if needed. 449 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 450 continue; 451 452 // Because an empty memoperands list provides *no* information and must be 453 // handled conservatively (assuming the instruction can do anything), the 454 // only way to merge with it is to drop all other memoperands. 455 if (MI.memoperands_empty()) { 456 dropMemRefs(MF); 457 return; 458 } 459 460 // Otherwise accumulate these into our temporary buffer of the merged state. 461 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 462 } 463 464 setMemRefs(MF, MergedMMOs); 465 } 466 467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 468 // Do nothing if old and new symbols are the same. 469 if (Symbol == getPreInstrSymbol()) 470 return; 471 472 // If there was only one symbol and we're removing it, just clear info. 473 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 474 Info.clear(); 475 return; 476 } 477 478 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 479 getHeapAllocMarker()); 480 } 481 482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 483 // Do nothing if old and new symbols are the same. 484 if (Symbol == getPostInstrSymbol()) 485 return; 486 487 // If there was only one symbol and we're removing it, just clear info. 488 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 489 Info.clear(); 490 return; 491 } 492 493 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 494 getHeapAllocMarker()); 495 } 496 497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 498 // Do nothing if old and new symbols are the same. 499 if (Marker == getHeapAllocMarker()) 500 return; 501 502 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 503 Marker); 504 } 505 506 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 507 const MachineInstr &MI) { 508 if (this == &MI) 509 // Nothing to do for a self-clone! 510 return; 511 512 assert(&MF == MI.getMF() && 513 "Invalid machine functions when cloning instruction symbols!"); 514 515 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 516 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 517 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 518 } 519 520 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 521 // For now, the just return the union of the flags. If the flags get more 522 // complicated over time, we might need more logic here. 523 return getFlags() | Other.getFlags(); 524 } 525 526 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 527 uint16_t MIFlags = 0; 528 // Copy the wrapping flags. 529 if (const OverflowingBinaryOperator *OB = 530 dyn_cast<OverflowingBinaryOperator>(&I)) { 531 if (OB->hasNoSignedWrap()) 532 MIFlags |= MachineInstr::MIFlag::NoSWrap; 533 if (OB->hasNoUnsignedWrap()) 534 MIFlags |= MachineInstr::MIFlag::NoUWrap; 535 } 536 537 // Copy the exact flag. 538 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 539 if (PE->isExact()) 540 MIFlags |= MachineInstr::MIFlag::IsExact; 541 542 // Copy the fast-math flags. 543 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 544 const FastMathFlags Flags = FP->getFastMathFlags(); 545 if (Flags.noNaNs()) 546 MIFlags |= MachineInstr::MIFlag::FmNoNans; 547 if (Flags.noInfs()) 548 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 549 if (Flags.noSignedZeros()) 550 MIFlags |= MachineInstr::MIFlag::FmNsz; 551 if (Flags.allowReciprocal()) 552 MIFlags |= MachineInstr::MIFlag::FmArcp; 553 if (Flags.allowContract()) 554 MIFlags |= MachineInstr::MIFlag::FmContract; 555 if (Flags.approxFunc()) 556 MIFlags |= MachineInstr::MIFlag::FmAfn; 557 if (Flags.allowReassoc()) 558 MIFlags |= MachineInstr::MIFlag::FmReassoc; 559 } 560 561 return MIFlags; 562 } 563 564 void MachineInstr::copyIRFlags(const Instruction &I) { 565 Flags = copyFlagsFromInstruction(I); 566 } 567 568 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 569 assert(!isBundledWithPred() && "Must be called on bundle header"); 570 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 571 if (MII->getDesc().getFlags() & Mask) { 572 if (Type == AnyInBundle) 573 return true; 574 } else { 575 if (Type == AllInBundle && !MII->isBundle()) 576 return false; 577 } 578 // This was the last instruction in the bundle. 579 if (!MII->isBundledWithSucc()) 580 return Type == AllInBundle; 581 } 582 } 583 584 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 585 MICheckType Check) const { 586 // If opcodes or number of operands are not the same then the two 587 // instructions are obviously not identical. 588 if (Other.getOpcode() != getOpcode() || 589 Other.getNumOperands() != getNumOperands()) 590 return false; 591 592 if (isBundle()) { 593 // We have passed the test above that both instructions have the same 594 // opcode, so we know that both instructions are bundles here. Let's compare 595 // MIs inside the bundle. 596 assert(Other.isBundle() && "Expected that both instructions are bundles."); 597 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 598 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 599 // Loop until we analysed the last intruction inside at least one of the 600 // bundles. 601 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 602 ++I1; 603 ++I2; 604 if (!I1->isIdenticalTo(*I2, Check)) 605 return false; 606 } 607 // If we've reached the end of just one of the two bundles, but not both, 608 // the instructions are not identical. 609 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 610 return false; 611 } 612 613 // Check operands to make sure they match. 614 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 615 const MachineOperand &MO = getOperand(i); 616 const MachineOperand &OMO = Other.getOperand(i); 617 if (!MO.isReg()) { 618 if (!MO.isIdenticalTo(OMO)) 619 return false; 620 continue; 621 } 622 623 // Clients may or may not want to ignore defs when testing for equality. 624 // For example, machine CSE pass only cares about finding common 625 // subexpressions, so it's safe to ignore virtual register defs. 626 if (MO.isDef()) { 627 if (Check == IgnoreDefs) 628 continue; 629 else if (Check == IgnoreVRegDefs) { 630 if (!Register::isVirtualRegister(MO.getReg()) || 631 !Register::isVirtualRegister(OMO.getReg())) 632 if (!MO.isIdenticalTo(OMO)) 633 return false; 634 } else { 635 if (!MO.isIdenticalTo(OMO)) 636 return false; 637 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 638 return false; 639 } 640 } else { 641 if (!MO.isIdenticalTo(OMO)) 642 return false; 643 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 644 return false; 645 } 646 } 647 // If DebugLoc does not match then two debug instructions are not identical. 648 if (isDebugInstr()) 649 if (getDebugLoc() && Other.getDebugLoc() && 650 getDebugLoc() != Other.getDebugLoc()) 651 return false; 652 return true; 653 } 654 655 const MachineFunction *MachineInstr::getMF() const { 656 return getParent()->getParent(); 657 } 658 659 MachineInstr *MachineInstr::removeFromParent() { 660 assert(getParent() && "Not embedded in a basic block!"); 661 return getParent()->remove(this); 662 } 663 664 MachineInstr *MachineInstr::removeFromBundle() { 665 assert(getParent() && "Not embedded in a basic block!"); 666 return getParent()->remove_instr(this); 667 } 668 669 void MachineInstr::eraseFromParent() { 670 assert(getParent() && "Not embedded in a basic block!"); 671 getParent()->erase(this); 672 } 673 674 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 675 assert(getParent() && "Not embedded in a basic block!"); 676 MachineBasicBlock *MBB = getParent(); 677 MachineFunction *MF = MBB->getParent(); 678 assert(MF && "Not embedded in a function!"); 679 680 MachineInstr *MI = (MachineInstr *)this; 681 MachineRegisterInfo &MRI = MF->getRegInfo(); 682 683 for (const MachineOperand &MO : MI->operands()) { 684 if (!MO.isReg() || !MO.isDef()) 685 continue; 686 Register Reg = MO.getReg(); 687 if (!Reg.isVirtual()) 688 continue; 689 MRI.markUsesInDebugValueAsUndef(Reg); 690 } 691 MI->eraseFromParent(); 692 } 693 694 void MachineInstr::eraseFromBundle() { 695 assert(getParent() && "Not embedded in a basic block!"); 696 getParent()->erase_instr(this); 697 } 698 699 unsigned MachineInstr::getNumExplicitOperands() const { 700 unsigned NumOperands = MCID->getNumOperands(); 701 if (!MCID->isVariadic()) 702 return NumOperands; 703 704 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 705 const MachineOperand &MO = getOperand(I); 706 // The operands must always be in the following order: 707 // - explicit reg defs, 708 // - other explicit operands (reg uses, immediates, etc.), 709 // - implicit reg defs 710 // - implicit reg uses 711 if (MO.isReg() && MO.isImplicit()) 712 break; 713 ++NumOperands; 714 } 715 return NumOperands; 716 } 717 718 unsigned MachineInstr::getNumExplicitDefs() const { 719 unsigned NumDefs = MCID->getNumDefs(); 720 if (!MCID->isVariadic()) 721 return NumDefs; 722 723 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 724 const MachineOperand &MO = getOperand(I); 725 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 726 break; 727 ++NumDefs; 728 } 729 return NumDefs; 730 } 731 732 void MachineInstr::bundleWithPred() { 733 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 734 setFlag(BundledPred); 735 MachineBasicBlock::instr_iterator Pred = getIterator(); 736 --Pred; 737 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 738 Pred->setFlag(BundledSucc); 739 } 740 741 void MachineInstr::bundleWithSucc() { 742 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 743 setFlag(BundledSucc); 744 MachineBasicBlock::instr_iterator Succ = getIterator(); 745 ++Succ; 746 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 747 Succ->setFlag(BundledPred); 748 } 749 750 void MachineInstr::unbundleFromPred() { 751 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 752 clearFlag(BundledPred); 753 MachineBasicBlock::instr_iterator Pred = getIterator(); 754 --Pred; 755 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 756 Pred->clearFlag(BundledSucc); 757 } 758 759 void MachineInstr::unbundleFromSucc() { 760 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 761 clearFlag(BundledSucc); 762 MachineBasicBlock::instr_iterator Succ = getIterator(); 763 ++Succ; 764 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 765 Succ->clearFlag(BundledPred); 766 } 767 768 bool MachineInstr::isStackAligningInlineAsm() const { 769 if (isInlineAsm()) { 770 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 771 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 772 return true; 773 } 774 return false; 775 } 776 777 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 778 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 779 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 780 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 781 } 782 783 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 784 unsigned *GroupNo) const { 785 assert(isInlineAsm() && "Expected an inline asm instruction"); 786 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 787 788 // Ignore queries about the initial operands. 789 if (OpIdx < InlineAsm::MIOp_FirstOperand) 790 return -1; 791 792 unsigned Group = 0; 793 unsigned NumOps; 794 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 795 i += NumOps) { 796 const MachineOperand &FlagMO = getOperand(i); 797 // If we reach the implicit register operands, stop looking. 798 if (!FlagMO.isImm()) 799 return -1; 800 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 801 if (i + NumOps > OpIdx) { 802 if (GroupNo) 803 *GroupNo = Group; 804 return i; 805 } 806 ++Group; 807 } 808 return -1; 809 } 810 811 const DILabel *MachineInstr::getDebugLabel() const { 812 assert(isDebugLabel() && "not a DBG_LABEL"); 813 return cast<DILabel>(getOperand(0).getMetadata()); 814 } 815 816 const DILocalVariable *MachineInstr::getDebugVariable() const { 817 assert(isDebugValue() && "not a DBG_VALUE"); 818 return cast<DILocalVariable>(getOperand(2).getMetadata()); 819 } 820 821 const DIExpression *MachineInstr::getDebugExpression() const { 822 assert(isDebugValue() && "not a DBG_VALUE"); 823 return cast<DIExpression>(getOperand(3).getMetadata()); 824 } 825 826 bool MachineInstr::isDebugEntryValue() const { 827 return isDebugValue() && getDebugExpression()->isEntryValue(); 828 } 829 830 const TargetRegisterClass* 831 MachineInstr::getRegClassConstraint(unsigned OpIdx, 832 const TargetInstrInfo *TII, 833 const TargetRegisterInfo *TRI) const { 834 assert(getParent() && "Can't have an MBB reference here!"); 835 assert(getMF() && "Can't have an MF reference here!"); 836 const MachineFunction &MF = *getMF(); 837 838 // Most opcodes have fixed constraints in their MCInstrDesc. 839 if (!isInlineAsm()) 840 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 841 842 if (!getOperand(OpIdx).isReg()) 843 return nullptr; 844 845 // For tied uses on inline asm, get the constraint from the def. 846 unsigned DefIdx; 847 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 848 OpIdx = DefIdx; 849 850 // Inline asm stores register class constraints in the flag word. 851 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 852 if (FlagIdx < 0) 853 return nullptr; 854 855 unsigned Flag = getOperand(FlagIdx).getImm(); 856 unsigned RCID; 857 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 858 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 859 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 860 InlineAsm::hasRegClassConstraint(Flag, RCID)) 861 return TRI->getRegClass(RCID); 862 863 // Assume that all registers in a memory operand are pointers. 864 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 865 return TRI->getPointerRegClass(MF); 866 867 return nullptr; 868 } 869 870 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 871 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 872 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 873 // Check every operands inside the bundle if we have 874 // been asked to. 875 if (ExploreBundle) 876 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 877 ++OpndIt) 878 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 879 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 880 else 881 // Otherwise, just check the current operands. 882 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 883 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 884 return CurRC; 885 } 886 887 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 888 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 889 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 890 assert(CurRC && "Invalid initial register class"); 891 // Check if Reg is constrained by some of its use/def from MI. 892 const MachineOperand &MO = getOperand(OpIdx); 893 if (!MO.isReg() || MO.getReg() != Reg) 894 return CurRC; 895 // If yes, accumulate the constraints through the operand. 896 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 897 } 898 899 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 900 unsigned OpIdx, const TargetRegisterClass *CurRC, 901 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 902 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 903 const MachineOperand &MO = getOperand(OpIdx); 904 assert(MO.isReg() && 905 "Cannot get register constraints for non-register operand"); 906 assert(CurRC && "Invalid initial register class"); 907 if (unsigned SubIdx = MO.getSubReg()) { 908 if (OpRC) 909 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 910 else 911 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 912 } else if (OpRC) 913 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 914 return CurRC; 915 } 916 917 /// Return the number of instructions inside the MI bundle, not counting the 918 /// header instruction. 919 unsigned MachineInstr::getBundleSize() const { 920 MachineBasicBlock::const_instr_iterator I = getIterator(); 921 unsigned Size = 0; 922 while (I->isBundledWithSucc()) { 923 ++Size; 924 ++I; 925 } 926 return Size; 927 } 928 929 /// Returns true if the MachineInstr has an implicit-use operand of exactly 930 /// the given register (not considering sub/super-registers). 931 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 932 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 933 const MachineOperand &MO = getOperand(i); 934 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 935 return true; 936 } 937 return false; 938 } 939 940 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 941 /// the specific register or -1 if it is not found. It further tightens 942 /// the search criteria to a use that kills the register if isKill is true. 943 int MachineInstr::findRegisterUseOperandIdx( 944 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 945 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 946 const MachineOperand &MO = getOperand(i); 947 if (!MO.isReg() || !MO.isUse()) 948 continue; 949 Register MOReg = MO.getReg(); 950 if (!MOReg) 951 continue; 952 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 953 if (!isKill || MO.isKill()) 954 return i; 955 } 956 return -1; 957 } 958 959 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 960 /// indicating if this instruction reads or writes Reg. This also considers 961 /// partial defines. 962 std::pair<bool,bool> 963 MachineInstr::readsWritesVirtualRegister(Register Reg, 964 SmallVectorImpl<unsigned> *Ops) const { 965 bool PartDef = false; // Partial redefine. 966 bool FullDef = false; // Full define. 967 bool Use = false; 968 969 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 970 const MachineOperand &MO = getOperand(i); 971 if (!MO.isReg() || MO.getReg() != Reg) 972 continue; 973 if (Ops) 974 Ops->push_back(i); 975 if (MO.isUse()) 976 Use |= !MO.isUndef(); 977 else if (MO.getSubReg() && !MO.isUndef()) 978 // A partial def undef doesn't count as reading the register. 979 PartDef = true; 980 else 981 FullDef = true; 982 } 983 // A partial redefine uses Reg unless there is also a full define. 984 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 985 } 986 987 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 988 /// the specified register or -1 if it is not found. If isDead is true, defs 989 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 990 /// also checks if there is a def of a super-register. 991 int 992 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 993 const TargetRegisterInfo *TRI) const { 994 bool isPhys = Register::isPhysicalRegister(Reg); 995 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 996 const MachineOperand &MO = getOperand(i); 997 // Accept regmask operands when Overlap is set. 998 // Ignore them when looking for a specific def operand (Overlap == false). 999 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1000 return i; 1001 if (!MO.isReg() || !MO.isDef()) 1002 continue; 1003 Register MOReg = MO.getReg(); 1004 bool Found = (MOReg == Reg); 1005 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1006 if (Overlap) 1007 Found = TRI->regsOverlap(MOReg, Reg); 1008 else 1009 Found = TRI->isSubRegister(MOReg, Reg); 1010 } 1011 if (Found && (!isDead || MO.isDead())) 1012 return i; 1013 } 1014 return -1; 1015 } 1016 1017 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1018 /// operand list that is used to represent the predicate. It returns -1 if 1019 /// none is found. 1020 int MachineInstr::findFirstPredOperandIdx() const { 1021 // Don't call MCID.findFirstPredOperandIdx() because this variant 1022 // is sometimes called on an instruction that's not yet complete, and 1023 // so the number of operands is less than the MCID indicates. In 1024 // particular, the PTX target does this. 1025 const MCInstrDesc &MCID = getDesc(); 1026 if (MCID.isPredicable()) { 1027 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1028 if (MCID.OpInfo[i].isPredicate()) 1029 return i; 1030 } 1031 1032 return -1; 1033 } 1034 1035 // MachineOperand::TiedTo is 4 bits wide. 1036 const unsigned TiedMax = 15; 1037 1038 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1039 /// 1040 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1041 /// field. TiedTo can have these values: 1042 /// 1043 /// 0: Operand is not tied to anything. 1044 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1045 /// TiedMax: Tied to an operand >= TiedMax-1. 1046 /// 1047 /// The tied def must be one of the first TiedMax operands on a normal 1048 /// instruction. INLINEASM instructions allow more tied defs. 1049 /// 1050 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1051 MachineOperand &DefMO = getOperand(DefIdx); 1052 MachineOperand &UseMO = getOperand(UseIdx); 1053 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1054 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1055 assert(!DefMO.isTied() && "Def is already tied to another use"); 1056 assert(!UseMO.isTied() && "Use is already tied to another def"); 1057 1058 if (DefIdx < TiedMax) 1059 UseMO.TiedTo = DefIdx + 1; 1060 else { 1061 // Inline asm can use the group descriptors to find tied operands, but on 1062 // normal instruction, the tied def must be within the first TiedMax 1063 // operands. 1064 assert(isInlineAsm() && "DefIdx out of range"); 1065 UseMO.TiedTo = TiedMax; 1066 } 1067 1068 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1069 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1070 } 1071 1072 /// Given the index of a tied register operand, find the operand it is tied to. 1073 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1074 /// which must exist. 1075 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1076 const MachineOperand &MO = getOperand(OpIdx); 1077 assert(MO.isTied() && "Operand isn't tied"); 1078 1079 // Normally TiedTo is in range. 1080 if (MO.TiedTo < TiedMax) 1081 return MO.TiedTo - 1; 1082 1083 // Uses on normal instructions can be out of range. 1084 if (!isInlineAsm()) { 1085 // Normal tied defs must be in the 0..TiedMax-1 range. 1086 if (MO.isUse()) 1087 return TiedMax - 1; 1088 // MO is a def. Search for the tied use. 1089 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1090 const MachineOperand &UseMO = getOperand(i); 1091 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1092 return i; 1093 } 1094 llvm_unreachable("Can't find tied use"); 1095 } 1096 1097 // Now deal with inline asm by parsing the operand group descriptor flags. 1098 // Find the beginning of each operand group. 1099 SmallVector<unsigned, 8> GroupIdx; 1100 unsigned OpIdxGroup = ~0u; 1101 unsigned NumOps; 1102 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1103 i += NumOps) { 1104 const MachineOperand &FlagMO = getOperand(i); 1105 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1106 unsigned CurGroup = GroupIdx.size(); 1107 GroupIdx.push_back(i); 1108 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1109 // OpIdx belongs to this operand group. 1110 if (OpIdx > i && OpIdx < i + NumOps) 1111 OpIdxGroup = CurGroup; 1112 unsigned TiedGroup; 1113 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1114 continue; 1115 // Operands in this group are tied to operands in TiedGroup which must be 1116 // earlier. Find the number of operands between the two groups. 1117 unsigned Delta = i - GroupIdx[TiedGroup]; 1118 1119 // OpIdx is a use tied to TiedGroup. 1120 if (OpIdxGroup == CurGroup) 1121 return OpIdx - Delta; 1122 1123 // OpIdx is a def tied to this use group. 1124 if (OpIdxGroup == TiedGroup) 1125 return OpIdx + Delta; 1126 } 1127 llvm_unreachable("Invalid tied operand on inline asm"); 1128 } 1129 1130 /// clearKillInfo - Clears kill flags on all operands. 1131 /// 1132 void MachineInstr::clearKillInfo() { 1133 for (MachineOperand &MO : operands()) { 1134 if (MO.isReg() && MO.isUse()) 1135 MO.setIsKill(false); 1136 } 1137 } 1138 1139 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1140 unsigned SubIdx, 1141 const TargetRegisterInfo &RegInfo) { 1142 if (Register::isPhysicalRegister(ToReg)) { 1143 if (SubIdx) 1144 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1145 for (MachineOperand &MO : operands()) { 1146 if (!MO.isReg() || MO.getReg() != FromReg) 1147 continue; 1148 MO.substPhysReg(ToReg, RegInfo); 1149 } 1150 } else { 1151 for (MachineOperand &MO : operands()) { 1152 if (!MO.isReg() || MO.getReg() != FromReg) 1153 continue; 1154 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1155 } 1156 } 1157 } 1158 1159 /// isSafeToMove - Return true if it is safe to move this instruction. If 1160 /// SawStore is set to true, it means that there is a store (or call) between 1161 /// the instruction's location and its intended destination. 1162 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1163 // Ignore stuff that we obviously can't move. 1164 // 1165 // Treat volatile loads as stores. This is not strictly necessary for 1166 // volatiles, but it is required for atomic loads. It is not allowed to move 1167 // a load across an atomic load with Ordering > Monotonic. 1168 if (mayStore() || isCall() || isPHI() || 1169 (mayLoad() && hasOrderedMemoryRef())) { 1170 SawStore = true; 1171 return false; 1172 } 1173 1174 if (isPosition() || isDebugInstr() || isTerminator() || 1175 mayRaiseFPException() || hasUnmodeledSideEffects()) 1176 return false; 1177 1178 // See if this instruction does a load. If so, we have to guarantee that the 1179 // loaded value doesn't change between the load and the its intended 1180 // destination. The check for isInvariantLoad gives the targe the chance to 1181 // classify the load as always returning a constant, e.g. a constant pool 1182 // load. 1183 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1184 // Otherwise, this is a real load. If there is a store between the load and 1185 // end of block, we can't move it. 1186 return !SawStore; 1187 1188 return true; 1189 } 1190 1191 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1192 bool UseTBAA) const { 1193 const MachineFunction *MF = getMF(); 1194 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1195 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1196 1197 // If neither instruction stores to memory, they can't alias in any 1198 // meaningful way, even if they read from the same address. 1199 if (!mayStore() && !Other.mayStore()) 1200 return false; 1201 1202 // Let the target decide if memory accesses cannot possibly overlap. 1203 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1204 return false; 1205 1206 // FIXME: Need to handle multiple memory operands to support all targets. 1207 if (!hasOneMemOperand() || !Other.hasOneMemOperand()) 1208 return true; 1209 1210 MachineMemOperand *MMOa = *memoperands_begin(); 1211 MachineMemOperand *MMOb = *Other.memoperands_begin(); 1212 1213 // The following interface to AA is fashioned after DAGCombiner::isAlias 1214 // and operates with MachineMemOperand offset with some important 1215 // assumptions: 1216 // - LLVM fundamentally assumes flat address spaces. 1217 // - MachineOperand offset can *only* result from legalization and 1218 // cannot affect queries other than the trivial case of overlap 1219 // checking. 1220 // - These offsets never wrap and never step outside 1221 // of allocated objects. 1222 // - There should never be any negative offsets here. 1223 // 1224 // FIXME: Modify API to hide this math from "user" 1225 // Even before we go to AA we can reason locally about some 1226 // memory objects. It can save compile time, and possibly catch some 1227 // corner cases not currently covered. 1228 1229 int64_t OffsetA = MMOa->getOffset(); 1230 int64_t OffsetB = MMOb->getOffset(); 1231 int64_t MinOffset = std::min(OffsetA, OffsetB); 1232 1233 uint64_t WidthA = MMOa->getSize(); 1234 uint64_t WidthB = MMOb->getSize(); 1235 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1236 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1237 1238 const Value *ValA = MMOa->getValue(); 1239 const Value *ValB = MMOb->getValue(); 1240 bool SameVal = (ValA && ValB && (ValA == ValB)); 1241 if (!SameVal) { 1242 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1243 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1244 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1245 return false; 1246 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1247 return false; 1248 if (PSVa && PSVb && (PSVa == PSVb)) 1249 SameVal = true; 1250 } 1251 1252 if (SameVal) { 1253 if (!KnownWidthA || !KnownWidthB) 1254 return true; 1255 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1256 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1257 return (MinOffset + LowWidth > MaxOffset); 1258 } 1259 1260 if (!AA) 1261 return true; 1262 1263 if (!ValA || !ValB) 1264 return true; 1265 1266 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1267 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1268 1269 int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset 1270 : MemoryLocation::UnknownSize; 1271 int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset 1272 : MemoryLocation::UnknownSize; 1273 1274 AliasResult AAResult = AA->alias( 1275 MemoryLocation(ValA, OverlapA, 1276 UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1277 MemoryLocation(ValB, OverlapB, 1278 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1279 1280 return (AAResult != NoAlias); 1281 } 1282 1283 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1284 /// or volatile memory reference, or if the information describing the memory 1285 /// reference is not available. Return false if it is known to have no ordered 1286 /// memory references. 1287 bool MachineInstr::hasOrderedMemoryRef() const { 1288 // An instruction known never to access memory won't have a volatile access. 1289 if (!mayStore() && 1290 !mayLoad() && 1291 !isCall() && 1292 !hasUnmodeledSideEffects()) 1293 return false; 1294 1295 // Otherwise, if the instruction has no memory reference information, 1296 // conservatively assume it wasn't preserved. 1297 if (memoperands_empty()) 1298 return true; 1299 1300 // Check if any of our memory operands are ordered. 1301 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1302 return !MMO->isUnordered(); 1303 }); 1304 } 1305 1306 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1307 /// trap and is loading from a location whose value is invariant across a run of 1308 /// this function. 1309 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { 1310 // If the instruction doesn't load at all, it isn't an invariant load. 1311 if (!mayLoad()) 1312 return false; 1313 1314 // If the instruction has lost its memoperands, conservatively assume that 1315 // it may not be an invariant load. 1316 if (memoperands_empty()) 1317 return false; 1318 1319 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1320 1321 for (MachineMemOperand *MMO : memoperands()) { 1322 if (!MMO->isUnordered()) 1323 // If the memory operand has ordering side effects, we can't move the 1324 // instruction. Such an instruction is technically an invariant load, 1325 // but the caller code would need updated to expect that. 1326 return false; 1327 if (MMO->isStore()) return false; 1328 if (MMO->isInvariant() && MMO->isDereferenceable()) 1329 continue; 1330 1331 // A load from a constant PseudoSourceValue is invariant. 1332 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1333 if (PSV->isConstant(&MFI)) 1334 continue; 1335 1336 if (const Value *V = MMO->getValue()) { 1337 // If we have an AliasAnalysis, ask it whether the memory is constant. 1338 if (AA && 1339 AA->pointsToConstantMemory( 1340 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1341 continue; 1342 } 1343 1344 // Otherwise assume conservatively. 1345 return false; 1346 } 1347 1348 // Everything checks out. 1349 return true; 1350 } 1351 1352 /// isConstantValuePHI - If the specified instruction is a PHI that always 1353 /// merges together the same virtual register, return the register, otherwise 1354 /// return 0. 1355 unsigned MachineInstr::isConstantValuePHI() const { 1356 if (!isPHI()) 1357 return 0; 1358 assert(getNumOperands() >= 3 && 1359 "It's illegal to have a PHI without source operands"); 1360 1361 Register Reg = getOperand(1).getReg(); 1362 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1363 if (getOperand(i).getReg() != Reg) 1364 return 0; 1365 return Reg; 1366 } 1367 1368 bool MachineInstr::hasUnmodeledSideEffects() const { 1369 if (hasProperty(MCID::UnmodeledSideEffects)) 1370 return true; 1371 if (isInlineAsm()) { 1372 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1373 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1374 return true; 1375 } 1376 1377 return false; 1378 } 1379 1380 bool MachineInstr::isLoadFoldBarrier() const { 1381 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1382 } 1383 1384 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1385 /// 1386 bool MachineInstr::allDefsAreDead() const { 1387 for (const MachineOperand &MO : operands()) { 1388 if (!MO.isReg() || MO.isUse()) 1389 continue; 1390 if (!MO.isDead()) 1391 return false; 1392 } 1393 return true; 1394 } 1395 1396 /// copyImplicitOps - Copy implicit register operands from specified 1397 /// instruction to this instruction. 1398 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1399 const MachineInstr &MI) { 1400 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1401 i != e; ++i) { 1402 const MachineOperand &MO = MI.getOperand(i); 1403 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1404 addOperand(MF, MO); 1405 } 1406 } 1407 1408 bool MachineInstr::hasComplexRegisterTies() const { 1409 const MCInstrDesc &MCID = getDesc(); 1410 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1411 const auto &Operand = getOperand(I); 1412 if (!Operand.isReg() || Operand.isDef()) 1413 // Ignore the defined registers as MCID marks only the uses as tied. 1414 continue; 1415 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1416 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1417 if (ExpectedTiedIdx != TiedIdx) 1418 return true; 1419 } 1420 return false; 1421 } 1422 1423 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1424 const MachineRegisterInfo &MRI) const { 1425 const MachineOperand &Op = getOperand(OpIdx); 1426 if (!Op.isReg()) 1427 return LLT{}; 1428 1429 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1430 return MRI.getType(Op.getReg()); 1431 1432 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1433 if (!OpInfo.isGenericType()) 1434 return MRI.getType(Op.getReg()); 1435 1436 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1437 return LLT{}; 1438 1439 LLT TypeToPrint = MRI.getType(Op.getReg()); 1440 // Don't mark the type index printed if it wasn't actually printed: maybe 1441 // another operand with the same type index has an actual type attached: 1442 if (TypeToPrint.isValid()) 1443 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1444 return TypeToPrint; 1445 } 1446 1447 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1448 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1449 dbgs() << " "; 1450 print(dbgs()); 1451 } 1452 #endif 1453 1454 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1455 bool SkipDebugLoc, bool AddNewLine, 1456 const TargetInstrInfo *TII) const { 1457 const Module *M = nullptr; 1458 const Function *F = nullptr; 1459 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1460 F = &MF->getFunction(); 1461 M = F->getParent(); 1462 if (!TII) 1463 TII = MF->getSubtarget().getInstrInfo(); 1464 } 1465 1466 ModuleSlotTracker MST(M); 1467 if (F) 1468 MST.incorporateFunction(*F); 1469 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1470 } 1471 1472 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1473 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1474 bool AddNewLine, const TargetInstrInfo *TII) const { 1475 // We can be a bit tidier if we know the MachineFunction. 1476 const MachineFunction *MF = nullptr; 1477 const TargetRegisterInfo *TRI = nullptr; 1478 const MachineRegisterInfo *MRI = nullptr; 1479 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1480 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1481 1482 if (isCFIInstruction()) 1483 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1484 1485 SmallBitVector PrintedTypes(8); 1486 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1487 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1488 if (!ShouldPrintRegisterTies) 1489 return 0U; 1490 const MachineOperand &MO = getOperand(OpIdx); 1491 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1492 return findTiedOperandIdx(OpIdx); 1493 return 0U; 1494 }; 1495 unsigned StartOp = 0; 1496 unsigned e = getNumOperands(); 1497 1498 // Print explicitly defined operands on the left of an assignment syntax. 1499 while (StartOp < e) { 1500 const MachineOperand &MO = getOperand(StartOp); 1501 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1502 break; 1503 1504 if (StartOp != 0) 1505 OS << ", "; 1506 1507 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1508 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1509 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1510 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1511 ++StartOp; 1512 } 1513 1514 if (StartOp != 0) 1515 OS << " = "; 1516 1517 if (getFlag(MachineInstr::FrameSetup)) 1518 OS << "frame-setup "; 1519 if (getFlag(MachineInstr::FrameDestroy)) 1520 OS << "frame-destroy "; 1521 if (getFlag(MachineInstr::FmNoNans)) 1522 OS << "nnan "; 1523 if (getFlag(MachineInstr::FmNoInfs)) 1524 OS << "ninf "; 1525 if (getFlag(MachineInstr::FmNsz)) 1526 OS << "nsz "; 1527 if (getFlag(MachineInstr::FmArcp)) 1528 OS << "arcp "; 1529 if (getFlag(MachineInstr::FmContract)) 1530 OS << "contract "; 1531 if (getFlag(MachineInstr::FmAfn)) 1532 OS << "afn "; 1533 if (getFlag(MachineInstr::FmReassoc)) 1534 OS << "reassoc "; 1535 if (getFlag(MachineInstr::NoUWrap)) 1536 OS << "nuw "; 1537 if (getFlag(MachineInstr::NoSWrap)) 1538 OS << "nsw "; 1539 if (getFlag(MachineInstr::IsExact)) 1540 OS << "exact "; 1541 if (getFlag(MachineInstr::NoFPExcept)) 1542 OS << "nofpexcept "; 1543 1544 // Print the opcode name. 1545 if (TII) 1546 OS << TII->getName(getOpcode()); 1547 else 1548 OS << "UNKNOWN"; 1549 1550 if (SkipOpers) 1551 return; 1552 1553 // Print the rest of the operands. 1554 bool FirstOp = true; 1555 unsigned AsmDescOp = ~0u; 1556 unsigned AsmOpCount = 0; 1557 1558 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1559 // Print asm string. 1560 OS << " "; 1561 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1562 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1563 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1564 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1565 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1566 IntrinsicInfo); 1567 1568 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1569 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1570 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1571 OS << " [sideeffect]"; 1572 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1573 OS << " [mayload]"; 1574 if (ExtraInfo & InlineAsm::Extra_MayStore) 1575 OS << " [maystore]"; 1576 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1577 OS << " [isconvergent]"; 1578 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1579 OS << " [alignstack]"; 1580 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1581 OS << " [attdialect]"; 1582 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1583 OS << " [inteldialect]"; 1584 1585 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1586 FirstOp = false; 1587 } 1588 1589 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1590 const MachineOperand &MO = getOperand(i); 1591 1592 if (FirstOp) FirstOp = false; else OS << ","; 1593 OS << " "; 1594 1595 if (isDebugValue() && MO.isMetadata()) { 1596 // Pretty print DBG_VALUE instructions. 1597 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1598 if (DIV && !DIV->getName().empty()) 1599 OS << "!\"" << DIV->getName() << '\"'; 1600 else { 1601 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1602 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1603 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1604 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1605 } 1606 } else if (isDebugLabel() && MO.isMetadata()) { 1607 // Pretty print DBG_LABEL instructions. 1608 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1609 if (DIL && !DIL->getName().empty()) 1610 OS << "\"" << DIL->getName() << '\"'; 1611 else { 1612 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1613 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1614 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1615 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1616 } 1617 } else if (i == AsmDescOp && MO.isImm()) { 1618 // Pretty print the inline asm operand descriptor. 1619 OS << '$' << AsmOpCount++; 1620 unsigned Flag = MO.getImm(); 1621 switch (InlineAsm::getKind(Flag)) { 1622 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1623 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1624 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1625 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1626 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1627 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1628 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1629 } 1630 1631 unsigned RCID = 0; 1632 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1633 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1634 if (TRI) { 1635 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1636 } else 1637 OS << ":RC" << RCID; 1638 } 1639 1640 if (InlineAsm::isMemKind(Flag)) { 1641 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1642 switch (MCID) { 1643 case InlineAsm::Constraint_es: OS << ":es"; break; 1644 case InlineAsm::Constraint_i: OS << ":i"; break; 1645 case InlineAsm::Constraint_m: OS << ":m"; break; 1646 case InlineAsm::Constraint_o: OS << ":o"; break; 1647 case InlineAsm::Constraint_v: OS << ":v"; break; 1648 case InlineAsm::Constraint_Q: OS << ":Q"; break; 1649 case InlineAsm::Constraint_R: OS << ":R"; break; 1650 case InlineAsm::Constraint_S: OS << ":S"; break; 1651 case InlineAsm::Constraint_T: OS << ":T"; break; 1652 case InlineAsm::Constraint_Um: OS << ":Um"; break; 1653 case InlineAsm::Constraint_Un: OS << ":Un"; break; 1654 case InlineAsm::Constraint_Uq: OS << ":Uq"; break; 1655 case InlineAsm::Constraint_Us: OS << ":Us"; break; 1656 case InlineAsm::Constraint_Ut: OS << ":Ut"; break; 1657 case InlineAsm::Constraint_Uv: OS << ":Uv"; break; 1658 case InlineAsm::Constraint_Uy: OS << ":Uy"; break; 1659 case InlineAsm::Constraint_X: OS << ":X"; break; 1660 case InlineAsm::Constraint_Z: OS << ":Z"; break; 1661 case InlineAsm::Constraint_ZC: OS << ":ZC"; break; 1662 case InlineAsm::Constraint_Zy: OS << ":Zy"; break; 1663 default: OS << ":?"; break; 1664 } 1665 } 1666 1667 unsigned TiedTo = 0; 1668 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1669 OS << " tiedto:$" << TiedTo; 1670 1671 OS << ']'; 1672 1673 // Compute the index of the next operand descriptor. 1674 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1675 } else { 1676 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1677 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1678 if (MO.isImm() && isOperandSubregIdx(i)) 1679 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1680 else 1681 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1682 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1683 } 1684 } 1685 1686 // Print any optional symbols attached to this instruction as-if they were 1687 // operands. 1688 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1689 if (!FirstOp) { 1690 FirstOp = false; 1691 OS << ','; 1692 } 1693 OS << " pre-instr-symbol "; 1694 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1695 } 1696 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1697 if (!FirstOp) { 1698 FirstOp = false; 1699 OS << ','; 1700 } 1701 OS << " post-instr-symbol "; 1702 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1703 } 1704 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1705 if (!FirstOp) { 1706 FirstOp = false; 1707 OS << ','; 1708 } 1709 OS << " heap-alloc-marker "; 1710 HeapAllocMarker->printAsOperand(OS, MST); 1711 } 1712 1713 if (!SkipDebugLoc) { 1714 if (const DebugLoc &DL = getDebugLoc()) { 1715 if (!FirstOp) 1716 OS << ','; 1717 OS << " debug-location "; 1718 DL->printAsOperand(OS, MST); 1719 } 1720 } 1721 1722 if (!memoperands_empty()) { 1723 SmallVector<StringRef, 0> SSNs; 1724 const LLVMContext *Context = nullptr; 1725 std::unique_ptr<LLVMContext> CtxPtr; 1726 const MachineFrameInfo *MFI = nullptr; 1727 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1728 MFI = &MF->getFrameInfo(); 1729 Context = &MF->getFunction().getContext(); 1730 } else { 1731 CtxPtr = std::make_unique<LLVMContext>(); 1732 Context = CtxPtr.get(); 1733 } 1734 1735 OS << " :: "; 1736 bool NeedComma = false; 1737 for (const MachineMemOperand *Op : memoperands()) { 1738 if (NeedComma) 1739 OS << ", "; 1740 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1741 NeedComma = true; 1742 } 1743 } 1744 1745 if (SkipDebugLoc) 1746 return; 1747 1748 bool HaveSemi = false; 1749 1750 // Print debug location information. 1751 if (const DebugLoc &DL = getDebugLoc()) { 1752 if (!HaveSemi) { 1753 OS << ';'; 1754 HaveSemi = true; 1755 } 1756 OS << ' '; 1757 DL.print(OS); 1758 } 1759 1760 // Print extra comments for DEBUG_VALUE. 1761 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1762 if (!HaveSemi) { 1763 OS << ";"; 1764 HaveSemi = true; 1765 } 1766 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1767 OS << " line no:" << DV->getLine(); 1768 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1769 DebugLoc InlinedAtDL(InlinedAt); 1770 if (InlinedAtDL && MF) { 1771 OS << " inlined @[ "; 1772 InlinedAtDL.print(OS); 1773 OS << " ]"; 1774 } 1775 } 1776 if (isIndirectDebugValue()) 1777 OS << " indirect"; 1778 } 1779 // TODO: DBG_LABEL 1780 1781 if (AddNewLine) 1782 OS << '\n'; 1783 } 1784 1785 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1786 const TargetRegisterInfo *RegInfo, 1787 bool AddIfNotFound) { 1788 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1789 bool hasAliases = isPhysReg && 1790 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1791 bool Found = false; 1792 SmallVector<unsigned,4> DeadOps; 1793 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1794 MachineOperand &MO = getOperand(i); 1795 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1796 continue; 1797 1798 // DEBUG_VALUE nodes do not contribute to code generation and should 1799 // always be ignored. Failure to do so may result in trying to modify 1800 // KILL flags on DEBUG_VALUE nodes. 1801 if (MO.isDebug()) 1802 continue; 1803 1804 Register Reg = MO.getReg(); 1805 if (!Reg) 1806 continue; 1807 1808 if (Reg == IncomingReg) { 1809 if (!Found) { 1810 if (MO.isKill()) 1811 // The register is already marked kill. 1812 return true; 1813 if (isPhysReg && isRegTiedToDefOperand(i)) 1814 // Two-address uses of physregs must not be marked kill. 1815 return true; 1816 MO.setIsKill(); 1817 Found = true; 1818 } 1819 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1820 // A super-register kill already exists. 1821 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1822 return true; 1823 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1824 DeadOps.push_back(i); 1825 } 1826 } 1827 1828 // Trim unneeded kill operands. 1829 while (!DeadOps.empty()) { 1830 unsigned OpIdx = DeadOps.back(); 1831 if (getOperand(OpIdx).isImplicit() && 1832 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1833 RemoveOperand(OpIdx); 1834 else 1835 getOperand(OpIdx).setIsKill(false); 1836 DeadOps.pop_back(); 1837 } 1838 1839 // If not found, this means an alias of one of the operands is killed. Add a 1840 // new implicit operand if required. 1841 if (!Found && AddIfNotFound) { 1842 addOperand(MachineOperand::CreateReg(IncomingReg, 1843 false /*IsDef*/, 1844 true /*IsImp*/, 1845 true /*IsKill*/)); 1846 return true; 1847 } 1848 return Found; 1849 } 1850 1851 void MachineInstr::clearRegisterKills(Register Reg, 1852 const TargetRegisterInfo *RegInfo) { 1853 if (!Register::isPhysicalRegister(Reg)) 1854 RegInfo = nullptr; 1855 for (MachineOperand &MO : operands()) { 1856 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1857 continue; 1858 Register OpReg = MO.getReg(); 1859 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1860 MO.setIsKill(false); 1861 } 1862 } 1863 1864 bool MachineInstr::addRegisterDead(Register Reg, 1865 const TargetRegisterInfo *RegInfo, 1866 bool AddIfNotFound) { 1867 bool isPhysReg = Register::isPhysicalRegister(Reg); 1868 bool hasAliases = isPhysReg && 1869 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1870 bool Found = false; 1871 SmallVector<unsigned,4> DeadOps; 1872 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1873 MachineOperand &MO = getOperand(i); 1874 if (!MO.isReg() || !MO.isDef()) 1875 continue; 1876 Register MOReg = MO.getReg(); 1877 if (!MOReg) 1878 continue; 1879 1880 if (MOReg == Reg) { 1881 MO.setIsDead(); 1882 Found = true; 1883 } else if (hasAliases && MO.isDead() && 1884 Register::isPhysicalRegister(MOReg)) { 1885 // There exists a super-register that's marked dead. 1886 if (RegInfo->isSuperRegister(Reg, MOReg)) 1887 return true; 1888 if (RegInfo->isSubRegister(Reg, MOReg)) 1889 DeadOps.push_back(i); 1890 } 1891 } 1892 1893 // Trim unneeded dead operands. 1894 while (!DeadOps.empty()) { 1895 unsigned OpIdx = DeadOps.back(); 1896 if (getOperand(OpIdx).isImplicit() && 1897 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1898 RemoveOperand(OpIdx); 1899 else 1900 getOperand(OpIdx).setIsDead(false); 1901 DeadOps.pop_back(); 1902 } 1903 1904 // If not found, this means an alias of one of the operands is dead. Add a 1905 // new implicit operand if required. 1906 if (Found || !AddIfNotFound) 1907 return Found; 1908 1909 addOperand(MachineOperand::CreateReg(Reg, 1910 true /*IsDef*/, 1911 true /*IsImp*/, 1912 false /*IsKill*/, 1913 true /*IsDead*/)); 1914 return true; 1915 } 1916 1917 void MachineInstr::clearRegisterDeads(Register Reg) { 1918 for (MachineOperand &MO : operands()) { 1919 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1920 continue; 1921 MO.setIsDead(false); 1922 } 1923 } 1924 1925 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 1926 for (MachineOperand &MO : operands()) { 1927 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1928 continue; 1929 MO.setIsUndef(IsUndef); 1930 } 1931 } 1932 1933 void MachineInstr::addRegisterDefined(Register Reg, 1934 const TargetRegisterInfo *RegInfo) { 1935 if (Register::isPhysicalRegister(Reg)) { 1936 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 1937 if (MO) 1938 return; 1939 } else { 1940 for (const MachineOperand &MO : operands()) { 1941 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1942 MO.getSubReg() == 0) 1943 return; 1944 } 1945 } 1946 addOperand(MachineOperand::CreateReg(Reg, 1947 true /*IsDef*/, 1948 true /*IsImp*/)); 1949 } 1950 1951 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1952 const TargetRegisterInfo &TRI) { 1953 bool HasRegMask = false; 1954 for (MachineOperand &MO : operands()) { 1955 if (MO.isRegMask()) { 1956 HasRegMask = true; 1957 continue; 1958 } 1959 if (!MO.isReg() || !MO.isDef()) continue; 1960 Register Reg = MO.getReg(); 1961 if (!Reg.isPhysical()) 1962 continue; 1963 // If there are no uses, including partial uses, the def is dead. 1964 if (llvm::none_of(UsedRegs, 1965 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 1966 MO.setIsDead(); 1967 } 1968 1969 // This is a call with a register mask operand. 1970 // Mask clobbers are always dead, so add defs for the non-dead defines. 1971 if (HasRegMask) 1972 for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1973 I != E; ++I) 1974 addRegisterDefined(*I, &TRI); 1975 } 1976 1977 unsigned 1978 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1979 // Build up a buffer of hash code components. 1980 SmallVector<size_t, 16> HashComponents; 1981 HashComponents.reserve(MI->getNumOperands() + 1); 1982 HashComponents.push_back(MI->getOpcode()); 1983 for (const MachineOperand &MO : MI->operands()) { 1984 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 1985 continue; // Skip virtual register defs. 1986 1987 HashComponents.push_back(hash_value(MO)); 1988 } 1989 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1990 } 1991 1992 void MachineInstr::emitError(StringRef Msg) const { 1993 // Find the source location cookie. 1994 unsigned LocCookie = 0; 1995 const MDNode *LocMD = nullptr; 1996 for (unsigned i = getNumOperands(); i != 0; --i) { 1997 if (getOperand(i-1).isMetadata() && 1998 (LocMD = getOperand(i-1).getMetadata()) && 1999 LocMD->getNumOperands() != 0) { 2000 if (const ConstantInt *CI = 2001 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2002 LocCookie = CI->getZExtValue(); 2003 break; 2004 } 2005 } 2006 } 2007 2008 if (const MachineBasicBlock *MBB = getParent()) 2009 if (const MachineFunction *MF = MBB->getParent()) 2010 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2011 report_fatal_error(Msg); 2012 } 2013 2014 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2015 const MCInstrDesc &MCID, bool IsIndirect, 2016 Register Reg, const MDNode *Variable, 2017 const MDNode *Expr) { 2018 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2019 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2020 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2021 "Expected inlined-at fields to agree"); 2022 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 2023 if (IsIndirect) 2024 MIB.addImm(0U); 2025 else 2026 MIB.addReg(0U, RegState::Debug); 2027 return MIB.addMetadata(Variable).addMetadata(Expr); 2028 } 2029 2030 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2031 const MCInstrDesc &MCID, bool IsIndirect, 2032 MachineOperand &MO, const MDNode *Variable, 2033 const MDNode *Expr) { 2034 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2035 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2036 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2037 "Expected inlined-at fields to agree"); 2038 if (MO.isReg()) 2039 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2040 2041 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2042 if (IsIndirect) 2043 MIB.addImm(0U); 2044 else 2045 MIB.addReg(0U, RegState::Debug); 2046 return MIB.addMetadata(Variable).addMetadata(Expr); 2047 } 2048 2049 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2050 MachineBasicBlock::iterator I, 2051 const DebugLoc &DL, const MCInstrDesc &MCID, 2052 bool IsIndirect, Register Reg, 2053 const MDNode *Variable, const MDNode *Expr) { 2054 MachineFunction &MF = *BB.getParent(); 2055 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2056 BB.insert(I, MI); 2057 return MachineInstrBuilder(MF, MI); 2058 } 2059 2060 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2061 MachineBasicBlock::iterator I, 2062 const DebugLoc &DL, const MCInstrDesc &MCID, 2063 bool IsIndirect, MachineOperand &MO, 2064 const MDNode *Variable, const MDNode *Expr) { 2065 MachineFunction &MF = *BB.getParent(); 2066 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2067 BB.insert(I, MI); 2068 return MachineInstrBuilder(MF, *MI); 2069 } 2070 2071 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2072 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2073 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2074 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2075 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2076 "Expected inlined-at fields to agree"); 2077 2078 const DIExpression *Expr = MI.getDebugExpression(); 2079 if (MI.isIndirectDebugValue()) { 2080 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 2081 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2082 } 2083 return Expr; 2084 } 2085 2086 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2087 MachineBasicBlock::iterator I, 2088 const MachineInstr &Orig, 2089 int FrameIndex) { 2090 const DIExpression *Expr = computeExprForSpill(Orig); 2091 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2092 .addFrameIndex(FrameIndex) 2093 .addImm(0U) 2094 .addMetadata(Orig.getDebugVariable()) 2095 .addMetadata(Expr); 2096 } 2097 2098 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2099 const DIExpression *Expr = computeExprForSpill(Orig); 2100 Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); 2101 Orig.getOperand(1).ChangeToImmediate(0U); 2102 Orig.getOperand(3).setMetadata(Expr); 2103 } 2104 2105 void MachineInstr::collectDebugValues( 2106 SmallVectorImpl<MachineInstr *> &DbgValues) { 2107 MachineInstr &MI = *this; 2108 if (!MI.getOperand(0).isReg()) 2109 return; 2110 2111 MachineBasicBlock::iterator DI = MI; ++DI; 2112 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2113 DI != DE; ++DI) { 2114 if (!DI->isDebugValue()) 2115 return; 2116 if (DI->getOperand(0).isReg() && 2117 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 2118 DbgValues.push_back(&*DI); 2119 } 2120 } 2121 2122 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2123 // Collect matching debug values. 2124 SmallVector<MachineInstr *, 2> DbgValues; 2125 2126 if (!getOperand(0).isReg()) 2127 return; 2128 2129 unsigned DefReg = getOperand(0).getReg(); 2130 auto *MRI = getRegInfo(); 2131 for (auto &MO : MRI->use_operands(DefReg)) { 2132 auto *DI = MO.getParent(); 2133 if (!DI->isDebugValue()) 2134 continue; 2135 if (DI->getOperand(0).isReg() && 2136 DI->getOperand(0).getReg() == DefReg){ 2137 DbgValues.push_back(DI); 2138 } 2139 } 2140 2141 // Propagate Reg to debug value instructions. 2142 for (auto *DBI : DbgValues) 2143 DBI->getOperand(0).setReg(Reg); 2144 } 2145 2146 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2147 2148 static unsigned getSpillSlotSize(MMOList &Accesses, 2149 const MachineFrameInfo &MFI) { 2150 unsigned Size = 0; 2151 for (auto A : Accesses) 2152 if (MFI.isSpillSlotObjectIndex( 2153 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2154 ->getFrameIndex())) 2155 Size += A->getSize(); 2156 return Size; 2157 } 2158 2159 Optional<unsigned> 2160 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2161 int FI; 2162 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2163 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2164 if (MFI.isSpillSlotObjectIndex(FI)) 2165 return (*memoperands_begin())->getSize(); 2166 } 2167 return None; 2168 } 2169 2170 Optional<unsigned> 2171 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2172 MMOList Accesses; 2173 if (TII->hasStoreToStackSlot(*this, Accesses)) 2174 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2175 return None; 2176 } 2177 2178 Optional<unsigned> 2179 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2180 int FI; 2181 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2182 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2183 if (MFI.isSpillSlotObjectIndex(FI)) 2184 return (*memoperands_begin())->getSize(); 2185 } 2186 return None; 2187 } 2188 2189 Optional<unsigned> 2190 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2191 MMOList Accesses; 2192 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2193 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2194 return None; 2195 } 2196