1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/Hashing.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallBitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineInstrBundle.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetRegisterInfo.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/InlineAsm.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/ModuleSlotTracker.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/LowLevelTypeImpl.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <cstring> 59 #include <utility> 60 61 using namespace llvm; 62 63 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 64 if (const MachineBasicBlock *MBB = MI.getParent()) 65 if (const MachineFunction *MF = MBB->getParent()) 66 return MF; 67 return nullptr; 68 } 69 70 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 71 // it. 72 static void tryToGetTargetInfo(const MachineInstr &MI, 73 const TargetRegisterInfo *&TRI, 74 const MachineRegisterInfo *&MRI, 75 const TargetIntrinsicInfo *&IntrinsicInfo, 76 const TargetInstrInfo *&TII) { 77 78 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 79 TRI = MF->getSubtarget().getRegisterInfo(); 80 MRI = &MF->getRegInfo(); 81 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 82 TII = MF->getSubtarget().getInstrInfo(); 83 } 84 } 85 86 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 87 for (MCPhysReg ImpDef : MCID->implicit_defs()) 88 addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); 89 for (MCPhysReg ImpUse : MCID->implicit_uses()) 90 addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); 91 } 92 93 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 94 /// implicit operands. It reserves space for the number of operands specified by 95 /// the MCInstrDesc. 96 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, 97 DebugLoc DL, bool NoImp) 98 : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) { 99 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 100 101 // Reserve space for the expected number of operands. 102 if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + 103 MCID->implicit_uses().size()) { 104 CapOperands = OperandCapacity::get(NumOps); 105 Operands = MF.allocateOperandArray(CapOperands); 106 } 107 108 if (!NoImp) 109 addImplicitDefUseOperands(MF); 110 } 111 112 /// MachineInstr ctor - Copies MachineInstr arg exactly. 113 /// Does not copy the number from debug instruction numbering, to preserve 114 /// uniqueness. 115 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 116 : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()), 117 DebugInstrNum(0) { 118 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 119 120 CapOperands = OperandCapacity::get(MI.getNumOperands()); 121 Operands = MF.allocateOperandArray(CapOperands); 122 123 // Copy operands. 124 for (const MachineOperand &MO : MI.operands()) 125 addOperand(MF, MO); 126 127 // Replicate ties between the operands, which addOperand was not 128 // able to do reliably. 129 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 130 MachineOperand &NewMO = getOperand(i); 131 const MachineOperand &OrigMO = MI.getOperand(i); 132 NewMO.TiedTo = OrigMO.TiedTo; 133 } 134 135 // Copy all the sensible flags. 136 setFlags(MI.Flags); 137 } 138 139 void MachineInstr::moveBefore(MachineInstr *MovePos) { 140 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 141 } 142 143 /// getRegInfo - If this instruction is embedded into a MachineFunction, 144 /// return the MachineRegisterInfo object for the current function, otherwise 145 /// return null. 146 MachineRegisterInfo *MachineInstr::getRegInfo() { 147 if (MachineBasicBlock *MBB = getParent()) 148 return &MBB->getParent()->getRegInfo(); 149 return nullptr; 150 } 151 152 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 153 for (MachineOperand &MO : operands()) 154 if (MO.isReg()) 155 MRI.removeRegOperandFromUseList(&MO); 156 } 157 158 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { 159 for (MachineOperand &MO : operands()) 160 if (MO.isReg()) 161 MRI.addRegOperandToUseList(&MO); 162 } 163 164 void MachineInstr::addOperand(const MachineOperand &Op) { 165 MachineBasicBlock *MBB = getParent(); 166 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 167 MachineFunction *MF = MBB->getParent(); 168 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 169 addOperand(*MF, Op); 170 } 171 172 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 173 /// ranges. If MRI is non-null also update use-def chains. 174 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 175 unsigned NumOps, MachineRegisterInfo *MRI) { 176 if (MRI) 177 return MRI->moveOperands(Dst, Src, NumOps); 178 // MachineOperand is a trivially copyable type so we can just use memmove. 179 assert(Dst && Src && "Unknown operands"); 180 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 181 } 182 183 /// addOperand - Add the specified operand to the instruction. If it is an 184 /// implicit operand, it is added to the end of the operand list. If it is 185 /// an explicit operand it is added at the end of the explicit operand list 186 /// (before the first implicit operand). 187 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 188 assert(MCID && "Cannot add operands before providing an instr descriptor"); 189 190 // Check if we're adding one of our existing operands. 191 if (&Op >= Operands && &Op < Operands + NumOperands) { 192 // This is unusual: MI->addOperand(MI->getOperand(i)). 193 // If adding Op requires reallocating or moving existing operands around, 194 // the Op reference could go stale. Support it by copying Op. 195 MachineOperand CopyOp(Op); 196 return addOperand(MF, CopyOp); 197 } 198 199 // Find the insert location for the new operand. Implicit registers go at 200 // the end, everything else goes before the implicit regs. 201 // 202 // FIXME: Allow mixed explicit and implicit operands on inline asm. 203 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 204 // implicit-defs, but they must not be moved around. See the FIXME in 205 // InstrEmitter.cpp. 206 unsigned OpNo = getNumOperands(); 207 bool isImpReg = Op.isReg() && Op.isImplicit(); 208 if (!isImpReg && !isInlineAsm()) { 209 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 210 --OpNo; 211 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 212 } 213 } 214 215 // OpNo now points as the desired insertion point. Unless this is a variadic 216 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 217 // RegMask operands go between the explicit and implicit operands. 218 assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() || 219 Op.isValidExcessOperand()) && 220 "Trying to add an operand to a machine instr that is already done!"); 221 222 MachineRegisterInfo *MRI = getRegInfo(); 223 224 // Determine if the Operands array needs to be reallocated. 225 // Save the old capacity and operand array. 226 OperandCapacity OldCap = CapOperands; 227 MachineOperand *OldOperands = Operands; 228 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 229 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 230 Operands = MF.allocateOperandArray(CapOperands); 231 // Move the operands before the insertion point. 232 if (OpNo) 233 moveOperands(Operands, OldOperands, OpNo, MRI); 234 } 235 236 // Move the operands following the insertion point. 237 if (OpNo != NumOperands) 238 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 239 MRI); 240 ++NumOperands; 241 242 // Deallocate the old operand array. 243 if (OldOperands != Operands && OldOperands) 244 MF.deallocateOperandArray(OldCap, OldOperands); 245 246 // Copy Op into place. It still needs to be inserted into the MRI use lists. 247 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 248 NewMO->ParentMI = this; 249 250 // When adding a register operand, tell MRI about it. 251 if (NewMO->isReg()) { 252 // Ensure isOnRegUseList() returns false, regardless of Op's status. 253 NewMO->Contents.Reg.Prev = nullptr; 254 // Ignore existing ties. This is not a property that can be copied. 255 NewMO->TiedTo = 0; 256 // Add the new operand to MRI, but only for instructions in an MBB. 257 if (MRI) 258 MRI->addRegOperandToUseList(NewMO); 259 // The MCID operand information isn't accurate until we start adding 260 // explicit operands. The implicit operands are added first, then the 261 // explicits are inserted before them. 262 if (!isImpReg) { 263 // Tie uses to defs as indicated in MCInstrDesc. 264 if (NewMO->isUse()) { 265 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 266 if (DefIdx != -1) 267 tieOperands(DefIdx, OpNo); 268 } 269 // If the register operand is flagged as early, mark the operand as such. 270 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 271 NewMO->setIsEarlyClobber(true); 272 } 273 // Ensure debug instructions set debug flag on register uses. 274 if (NewMO->isUse() && isDebugInstr()) 275 NewMO->setIsDebug(); 276 } 277 } 278 279 void MachineInstr::removeOperand(unsigned OpNo) { 280 assert(OpNo < getNumOperands() && "Invalid operand number"); 281 untieRegOperand(OpNo); 282 283 #ifndef NDEBUG 284 // Moving tied operands would break the ties. 285 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 286 if (Operands[i].isReg()) 287 assert(!Operands[i].isTied() && "Cannot move tied operands"); 288 #endif 289 290 MachineRegisterInfo *MRI = getRegInfo(); 291 if (MRI && Operands[OpNo].isReg()) 292 MRI->removeRegOperandFromUseList(Operands + OpNo); 293 294 // Don't call the MachineOperand destructor. A lot of this code depends on 295 // MachineOperand having a trivial destructor anyway, and adding a call here 296 // wouldn't make it 'destructor-correct'. 297 298 if (unsigned N = NumOperands - 1 - OpNo) 299 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 300 --NumOperands; 301 } 302 303 void MachineInstr::setExtraInfo(MachineFunction &MF, 304 ArrayRef<MachineMemOperand *> MMOs, 305 MCSymbol *PreInstrSymbol, 306 MCSymbol *PostInstrSymbol, 307 MDNode *HeapAllocMarker, MDNode *PCSections, 308 uint32_t CFIType) { 309 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 310 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 311 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 312 bool HasPCSections = PCSections != nullptr; 313 bool HasCFIType = CFIType != 0; 314 int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + 315 HasHeapAllocMarker + HasPCSections + HasCFIType; 316 317 // Drop all extra info if there is none. 318 if (NumPointers <= 0) { 319 Info.clear(); 320 return; 321 } 322 323 // If more than one pointer, then store out of line. Store heap alloc markers 324 // out of line because PointerSumType cannot hold more than 4 tag types with 325 // 32-bit pointers. 326 // FIXME: Maybe we should make the symbols in the extra info mutable? 327 else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections || 328 HasCFIType) { 329 Info.set<EIIK_OutOfLine>( 330 MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, 331 HeapAllocMarker, PCSections, CFIType)); 332 return; 333 } 334 335 // Otherwise store the single pointer inline. 336 if (HasPreInstrSymbol) 337 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 338 else if (HasPostInstrSymbol) 339 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 340 else 341 Info.set<EIIK_MMO>(MMOs[0]); 342 } 343 344 void MachineInstr::dropMemRefs(MachineFunction &MF) { 345 if (memoperands_empty()) 346 return; 347 348 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 349 getHeapAllocMarker(), getPCSections(), getCFIType()); 350 } 351 352 void MachineInstr::setMemRefs(MachineFunction &MF, 353 ArrayRef<MachineMemOperand *> MMOs) { 354 if (MMOs.empty()) { 355 dropMemRefs(MF); 356 return; 357 } 358 359 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 360 getHeapAllocMarker(), getPCSections(), getCFIType()); 361 } 362 363 void MachineInstr::addMemOperand(MachineFunction &MF, 364 MachineMemOperand *MO) { 365 SmallVector<MachineMemOperand *, 2> MMOs; 366 MMOs.append(memoperands_begin(), memoperands_end()); 367 MMOs.push_back(MO); 368 setMemRefs(MF, MMOs); 369 } 370 371 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 372 if (this == &MI) 373 // Nothing to do for a self-clone! 374 return; 375 376 assert(&MF == MI.getMF() && 377 "Invalid machine functions when cloning memory refrences!"); 378 // See if we can just steal the extra info already allocated for the 379 // instruction. We can do this whenever the pre- and post-instruction symbols 380 // are the same (including null). 381 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 382 getPostInstrSymbol() == MI.getPostInstrSymbol() && 383 getHeapAllocMarker() == MI.getHeapAllocMarker() && 384 getPCSections() == MI.getPCSections()) { 385 Info = MI.Info; 386 return; 387 } 388 389 // Otherwise, fall back on a copy-based clone. 390 setMemRefs(MF, MI.memoperands()); 391 } 392 393 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 394 /// identical. 395 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 396 ArrayRef<MachineMemOperand *> RHS) { 397 if (LHS.size() != RHS.size()) 398 return false; 399 400 auto LHSPointees = make_pointee_range(LHS); 401 auto RHSPointees = make_pointee_range(RHS); 402 return std::equal(LHSPointees.begin(), LHSPointees.end(), 403 RHSPointees.begin()); 404 } 405 406 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 407 ArrayRef<const MachineInstr *> MIs) { 408 // Try handling easy numbers of MIs with simpler mechanisms. 409 if (MIs.empty()) { 410 dropMemRefs(MF); 411 return; 412 } 413 if (MIs.size() == 1) { 414 cloneMemRefs(MF, *MIs[0]); 415 return; 416 } 417 // Because an empty memoperands list provides *no* information and must be 418 // handled conservatively (assuming the instruction can do anything), the only 419 // way to merge with it is to drop all other memoperands. 420 if (MIs[0]->memoperands_empty()) { 421 dropMemRefs(MF); 422 return; 423 } 424 425 // Handle the general case. 426 SmallVector<MachineMemOperand *, 2> MergedMMOs; 427 // Start with the first instruction. 428 assert(&MF == MIs[0]->getMF() && 429 "Invalid machine functions when cloning memory references!"); 430 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 431 // Now walk all the other instructions and accumulate any different MMOs. 432 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 433 assert(&MF == MI.getMF() && 434 "Invalid machine functions when cloning memory references!"); 435 436 // Skip MIs with identical operands to the first. This is a somewhat 437 // arbitrary hack but will catch common cases without being quadratic. 438 // TODO: We could fully implement merge semantics here if needed. 439 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 440 continue; 441 442 // Because an empty memoperands list provides *no* information and must be 443 // handled conservatively (assuming the instruction can do anything), the 444 // only way to merge with it is to drop all other memoperands. 445 if (MI.memoperands_empty()) { 446 dropMemRefs(MF); 447 return; 448 } 449 450 // Otherwise accumulate these into our temporary buffer of the merged state. 451 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 452 } 453 454 setMemRefs(MF, MergedMMOs); 455 } 456 457 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 458 // Do nothing if old and new symbols are the same. 459 if (Symbol == getPreInstrSymbol()) 460 return; 461 462 // If there was only one symbol and we're removing it, just clear info. 463 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 464 Info.clear(); 465 return; 466 } 467 468 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 469 getHeapAllocMarker(), getPCSections(), getCFIType()); 470 } 471 472 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 473 // Do nothing if old and new symbols are the same. 474 if (Symbol == getPostInstrSymbol()) 475 return; 476 477 // If there was only one symbol and we're removing it, just clear info. 478 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 479 Info.clear(); 480 return; 481 } 482 483 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 484 getHeapAllocMarker(), getPCSections(), getCFIType()); 485 } 486 487 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 488 // Do nothing if old and new symbols are the same. 489 if (Marker == getHeapAllocMarker()) 490 return; 491 492 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 493 Marker, getPCSections(), getCFIType()); 494 } 495 496 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { 497 // Do nothing if old and new symbols are the same. 498 if (PCSections == getPCSections()) 499 return; 500 501 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 502 getHeapAllocMarker(), PCSections, getCFIType()); 503 } 504 505 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { 506 // Do nothing if old and new types are the same. 507 if (Type == getCFIType()) 508 return; 509 510 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 511 getHeapAllocMarker(), getPCSections(), Type); 512 } 513 514 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 515 const MachineInstr &MI) { 516 if (this == &MI) 517 // Nothing to do for a self-clone! 518 return; 519 520 assert(&MF == MI.getMF() && 521 "Invalid machine functions when cloning instruction symbols!"); 522 523 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 524 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 525 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 526 setPCSections(MF, MI.getPCSections()); 527 } 528 529 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 530 // For now, the just return the union of the flags. If the flags get more 531 // complicated over time, we might need more logic here. 532 return getFlags() | Other.getFlags(); 533 } 534 535 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 536 uint16_t MIFlags = 0; 537 // Copy the wrapping flags. 538 if (const OverflowingBinaryOperator *OB = 539 dyn_cast<OverflowingBinaryOperator>(&I)) { 540 if (OB->hasNoSignedWrap()) 541 MIFlags |= MachineInstr::MIFlag::NoSWrap; 542 if (OB->hasNoUnsignedWrap()) 543 MIFlags |= MachineInstr::MIFlag::NoUWrap; 544 } 545 546 // Copy the exact flag. 547 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 548 if (PE->isExact()) 549 MIFlags |= MachineInstr::MIFlag::IsExact; 550 551 // Copy the fast-math flags. 552 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 553 const FastMathFlags Flags = FP->getFastMathFlags(); 554 if (Flags.noNaNs()) 555 MIFlags |= MachineInstr::MIFlag::FmNoNans; 556 if (Flags.noInfs()) 557 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 558 if (Flags.noSignedZeros()) 559 MIFlags |= MachineInstr::MIFlag::FmNsz; 560 if (Flags.allowReciprocal()) 561 MIFlags |= MachineInstr::MIFlag::FmArcp; 562 if (Flags.allowContract()) 563 MIFlags |= MachineInstr::MIFlag::FmContract; 564 if (Flags.approxFunc()) 565 MIFlags |= MachineInstr::MIFlag::FmAfn; 566 if (Flags.allowReassoc()) 567 MIFlags |= MachineInstr::MIFlag::FmReassoc; 568 } 569 570 return MIFlags; 571 } 572 573 void MachineInstr::copyIRFlags(const Instruction &I) { 574 Flags = copyFlagsFromInstruction(I); 575 } 576 577 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 578 assert(!isBundledWithPred() && "Must be called on bundle header"); 579 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 580 if (MII->getDesc().getFlags() & Mask) { 581 if (Type == AnyInBundle) 582 return true; 583 } else { 584 if (Type == AllInBundle && !MII->isBundle()) 585 return false; 586 } 587 // This was the last instruction in the bundle. 588 if (!MII->isBundledWithSucc()) 589 return Type == AllInBundle; 590 } 591 } 592 593 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 594 MICheckType Check) const { 595 // If opcodes or number of operands are not the same then the two 596 // instructions are obviously not identical. 597 if (Other.getOpcode() != getOpcode() || 598 Other.getNumOperands() != getNumOperands()) 599 return false; 600 601 if (isBundle()) { 602 // We have passed the test above that both instructions have the same 603 // opcode, so we know that both instructions are bundles here. Let's compare 604 // MIs inside the bundle. 605 assert(Other.isBundle() && "Expected that both instructions are bundles."); 606 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 607 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 608 // Loop until we analysed the last intruction inside at least one of the 609 // bundles. 610 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 611 ++I1; 612 ++I2; 613 if (!I1->isIdenticalTo(*I2, Check)) 614 return false; 615 } 616 // If we've reached the end of just one of the two bundles, but not both, 617 // the instructions are not identical. 618 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 619 return false; 620 } 621 622 // Check operands to make sure they match. 623 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 624 const MachineOperand &MO = getOperand(i); 625 const MachineOperand &OMO = Other.getOperand(i); 626 if (!MO.isReg()) { 627 if (!MO.isIdenticalTo(OMO)) 628 return false; 629 continue; 630 } 631 632 // Clients may or may not want to ignore defs when testing for equality. 633 // For example, machine CSE pass only cares about finding common 634 // subexpressions, so it's safe to ignore virtual register defs. 635 if (MO.isDef()) { 636 if (Check == IgnoreDefs) 637 continue; 638 else if (Check == IgnoreVRegDefs) { 639 if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) 640 if (!MO.isIdenticalTo(OMO)) 641 return false; 642 } else { 643 if (!MO.isIdenticalTo(OMO)) 644 return false; 645 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 646 return false; 647 } 648 } else { 649 if (!MO.isIdenticalTo(OMO)) 650 return false; 651 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 652 return false; 653 } 654 } 655 // If DebugLoc does not match then two debug instructions are not identical. 656 if (isDebugInstr()) 657 if (getDebugLoc() && Other.getDebugLoc() && 658 getDebugLoc() != Other.getDebugLoc()) 659 return false; 660 // If pre- or post-instruction symbols do not match then the two instructions 661 // are not identical. 662 if (getPreInstrSymbol() != Other.getPreInstrSymbol() || 663 getPostInstrSymbol() != Other.getPostInstrSymbol()) 664 return false; 665 // Call instructions with different CFI types are not identical. 666 if (isCall() && getCFIType() != Other.getCFIType()) 667 return false; 668 669 return true; 670 } 671 672 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { 673 if (!isDebugValueLike() || !Other.isDebugValueLike()) 674 return false; 675 if (getDebugLoc() != Other.getDebugLoc()) 676 return false; 677 if (getDebugVariable() != Other.getDebugVariable()) 678 return false; 679 if (getNumDebugOperands() != Other.getNumDebugOperands()) 680 return false; 681 for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) 682 if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) 683 return false; 684 if (!DIExpression::isEqualExpression( 685 getDebugExpression(), isIndirectDebugValue(), 686 Other.getDebugExpression(), Other.isIndirectDebugValue())) 687 return false; 688 return true; 689 } 690 691 const MachineFunction *MachineInstr::getMF() const { 692 return getParent()->getParent(); 693 } 694 695 MachineInstr *MachineInstr::removeFromParent() { 696 assert(getParent() && "Not embedded in a basic block!"); 697 return getParent()->remove(this); 698 } 699 700 MachineInstr *MachineInstr::removeFromBundle() { 701 assert(getParent() && "Not embedded in a basic block!"); 702 return getParent()->remove_instr(this); 703 } 704 705 void MachineInstr::eraseFromParent() { 706 assert(getParent() && "Not embedded in a basic block!"); 707 getParent()->erase(this); 708 } 709 710 void MachineInstr::eraseFromBundle() { 711 assert(getParent() && "Not embedded in a basic block!"); 712 getParent()->erase_instr(this); 713 } 714 715 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 716 if (!isCall(Type)) 717 return false; 718 switch (getOpcode()) { 719 case TargetOpcode::PATCHPOINT: 720 case TargetOpcode::STACKMAP: 721 case TargetOpcode::STATEPOINT: 722 case TargetOpcode::FENTRY_CALL: 723 return false; 724 } 725 return true; 726 } 727 728 bool MachineInstr::shouldUpdateCallSiteInfo() const { 729 if (isBundle()) 730 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 731 return isCandidateForCallSiteEntry(); 732 } 733 734 unsigned MachineInstr::getNumExplicitOperands() const { 735 unsigned NumOperands = MCID->getNumOperands(); 736 if (!MCID->isVariadic()) 737 return NumOperands; 738 739 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 740 const MachineOperand &MO = getOperand(I); 741 // The operands must always be in the following order: 742 // - explicit reg defs, 743 // - other explicit operands (reg uses, immediates, etc.), 744 // - implicit reg defs 745 // - implicit reg uses 746 if (MO.isReg() && MO.isImplicit()) 747 break; 748 ++NumOperands; 749 } 750 return NumOperands; 751 } 752 753 unsigned MachineInstr::getNumExplicitDefs() const { 754 unsigned NumDefs = MCID->getNumDefs(); 755 if (!MCID->isVariadic()) 756 return NumDefs; 757 758 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 759 const MachineOperand &MO = getOperand(I); 760 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 761 break; 762 ++NumDefs; 763 } 764 return NumDefs; 765 } 766 767 void MachineInstr::bundleWithPred() { 768 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 769 setFlag(BundledPred); 770 MachineBasicBlock::instr_iterator Pred = getIterator(); 771 --Pred; 772 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 773 Pred->setFlag(BundledSucc); 774 } 775 776 void MachineInstr::bundleWithSucc() { 777 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 778 setFlag(BundledSucc); 779 MachineBasicBlock::instr_iterator Succ = getIterator(); 780 ++Succ; 781 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 782 Succ->setFlag(BundledPred); 783 } 784 785 void MachineInstr::unbundleFromPred() { 786 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 787 clearFlag(BundledPred); 788 MachineBasicBlock::instr_iterator Pred = getIterator(); 789 --Pred; 790 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 791 Pred->clearFlag(BundledSucc); 792 } 793 794 void MachineInstr::unbundleFromSucc() { 795 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 796 clearFlag(BundledSucc); 797 MachineBasicBlock::instr_iterator Succ = getIterator(); 798 ++Succ; 799 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 800 Succ->clearFlag(BundledPred); 801 } 802 803 bool MachineInstr::isStackAligningInlineAsm() const { 804 if (isInlineAsm()) { 805 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 806 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 807 return true; 808 } 809 return false; 810 } 811 812 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 813 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 814 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 815 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 816 } 817 818 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 819 unsigned *GroupNo) const { 820 assert(isInlineAsm() && "Expected an inline asm instruction"); 821 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 822 823 // Ignore queries about the initial operands. 824 if (OpIdx < InlineAsm::MIOp_FirstOperand) 825 return -1; 826 827 unsigned Group = 0; 828 unsigned NumOps; 829 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 830 i += NumOps) { 831 const MachineOperand &FlagMO = getOperand(i); 832 // If we reach the implicit register operands, stop looking. 833 if (!FlagMO.isImm()) 834 return -1; 835 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 836 if (i + NumOps > OpIdx) { 837 if (GroupNo) 838 *GroupNo = Group; 839 return i; 840 } 841 ++Group; 842 } 843 return -1; 844 } 845 846 const DILabel *MachineInstr::getDebugLabel() const { 847 assert(isDebugLabel() && "not a DBG_LABEL"); 848 return cast<DILabel>(getOperand(0).getMetadata()); 849 } 850 851 const MachineOperand &MachineInstr::getDebugVariableOp() const { 852 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 853 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 854 return getOperand(VariableOp); 855 } 856 857 MachineOperand &MachineInstr::getDebugVariableOp() { 858 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 859 unsigned VariableOp = isNonListDebugValue() ? 2 : 0; 860 return getOperand(VariableOp); 861 } 862 863 const DILocalVariable *MachineInstr::getDebugVariable() const { 864 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 865 } 866 867 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 868 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 869 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 870 return getOperand(ExpressionOp); 871 } 872 873 MachineOperand &MachineInstr::getDebugExpressionOp() { 874 assert((isDebugValueLike()) && "not a DBG_VALUE*"); 875 unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; 876 return getOperand(ExpressionOp); 877 } 878 879 const DIExpression *MachineInstr::getDebugExpression() const { 880 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 881 } 882 883 bool MachineInstr::isDebugEntryValue() const { 884 return isDebugValue() && getDebugExpression()->isEntryValue(); 885 } 886 887 const TargetRegisterClass* 888 MachineInstr::getRegClassConstraint(unsigned OpIdx, 889 const TargetInstrInfo *TII, 890 const TargetRegisterInfo *TRI) const { 891 assert(getParent() && "Can't have an MBB reference here!"); 892 assert(getMF() && "Can't have an MF reference here!"); 893 const MachineFunction &MF = *getMF(); 894 895 // Most opcodes have fixed constraints in their MCInstrDesc. 896 if (!isInlineAsm()) 897 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 898 899 if (!getOperand(OpIdx).isReg()) 900 return nullptr; 901 902 // For tied uses on inline asm, get the constraint from the def. 903 unsigned DefIdx; 904 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 905 OpIdx = DefIdx; 906 907 // Inline asm stores register class constraints in the flag word. 908 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 909 if (FlagIdx < 0) 910 return nullptr; 911 912 unsigned Flag = getOperand(FlagIdx).getImm(); 913 unsigned RCID; 914 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 915 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 916 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 917 InlineAsm::hasRegClassConstraint(Flag, RCID)) 918 return TRI->getRegClass(RCID); 919 920 // Assume that all registers in a memory operand are pointers. 921 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 922 return TRI->getPointerRegClass(MF); 923 924 return nullptr; 925 } 926 927 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 928 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 929 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 930 // Check every operands inside the bundle if we have 931 // been asked to. 932 if (ExploreBundle) 933 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 934 ++OpndIt) 935 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 936 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 937 else 938 // Otherwise, just check the current operands. 939 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 940 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 941 return CurRC; 942 } 943 944 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 945 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 946 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 947 assert(CurRC && "Invalid initial register class"); 948 // Check if Reg is constrained by some of its use/def from MI. 949 const MachineOperand &MO = getOperand(OpIdx); 950 if (!MO.isReg() || MO.getReg() != Reg) 951 return CurRC; 952 // If yes, accumulate the constraints through the operand. 953 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 954 } 955 956 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 957 unsigned OpIdx, const TargetRegisterClass *CurRC, 958 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 959 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 960 const MachineOperand &MO = getOperand(OpIdx); 961 assert(MO.isReg() && 962 "Cannot get register constraints for non-register operand"); 963 assert(CurRC && "Invalid initial register class"); 964 if (unsigned SubIdx = MO.getSubReg()) { 965 if (OpRC) 966 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 967 else 968 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 969 } else if (OpRC) 970 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 971 return CurRC; 972 } 973 974 /// Return the number of instructions inside the MI bundle, not counting the 975 /// header instruction. 976 unsigned MachineInstr::getBundleSize() const { 977 MachineBasicBlock::const_instr_iterator I = getIterator(); 978 unsigned Size = 0; 979 while (I->isBundledWithSucc()) { 980 ++Size; 981 ++I; 982 } 983 return Size; 984 } 985 986 /// Returns true if the MachineInstr has an implicit-use operand of exactly 987 /// the given register (not considering sub/super-registers). 988 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 989 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 990 const MachineOperand &MO = getOperand(i); 991 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 992 return true; 993 } 994 return false; 995 } 996 997 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 998 /// the specific register or -1 if it is not found. It further tightens 999 /// the search criteria to a use that kills the register if isKill is true. 1000 int MachineInstr::findRegisterUseOperandIdx( 1001 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 1002 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1003 const MachineOperand &MO = getOperand(i); 1004 if (!MO.isReg() || !MO.isUse()) 1005 continue; 1006 Register MOReg = MO.getReg(); 1007 if (!MOReg) 1008 continue; 1009 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1010 if (!isKill || MO.isKill()) 1011 return i; 1012 } 1013 return -1; 1014 } 1015 1016 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1017 /// indicating if this instruction reads or writes Reg. This also considers 1018 /// partial defines. 1019 std::pair<bool,bool> 1020 MachineInstr::readsWritesVirtualRegister(Register Reg, 1021 SmallVectorImpl<unsigned> *Ops) const { 1022 bool PartDef = false; // Partial redefine. 1023 bool FullDef = false; // Full define. 1024 bool Use = false; 1025 1026 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1027 const MachineOperand &MO = getOperand(i); 1028 if (!MO.isReg() || MO.getReg() != Reg) 1029 continue; 1030 if (Ops) 1031 Ops->push_back(i); 1032 if (MO.isUse()) 1033 Use |= !MO.isUndef(); 1034 else if (MO.getSubReg() && !MO.isUndef()) 1035 // A partial def undef doesn't count as reading the register. 1036 PartDef = true; 1037 else 1038 FullDef = true; 1039 } 1040 // A partial redefine uses Reg unless there is also a full define. 1041 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1042 } 1043 1044 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1045 /// the specified register or -1 if it is not found. If isDead is true, defs 1046 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1047 /// also checks if there is a def of a super-register. 1048 int 1049 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1050 const TargetRegisterInfo *TRI) const { 1051 bool isPhys = Reg.isPhysical(); 1052 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1053 const MachineOperand &MO = getOperand(i); 1054 // Accept regmask operands when Overlap is set. 1055 // Ignore them when looking for a specific def operand (Overlap == false). 1056 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1057 return i; 1058 if (!MO.isReg() || !MO.isDef()) 1059 continue; 1060 Register MOReg = MO.getReg(); 1061 bool Found = (MOReg == Reg); 1062 if (!Found && TRI && isPhys && MOReg.isPhysical()) { 1063 if (Overlap) 1064 Found = TRI->regsOverlap(MOReg, Reg); 1065 else 1066 Found = TRI->isSubRegister(MOReg, Reg); 1067 } 1068 if (Found && (!isDead || MO.isDead())) 1069 return i; 1070 } 1071 return -1; 1072 } 1073 1074 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1075 /// operand list that is used to represent the predicate. It returns -1 if 1076 /// none is found. 1077 int MachineInstr::findFirstPredOperandIdx() const { 1078 // Don't call MCID.findFirstPredOperandIdx() because this variant 1079 // is sometimes called on an instruction that's not yet complete, and 1080 // so the number of operands is less than the MCID indicates. In 1081 // particular, the PTX target does this. 1082 const MCInstrDesc &MCID = getDesc(); 1083 if (MCID.isPredicable()) { 1084 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1085 if (MCID.operands()[i].isPredicate()) 1086 return i; 1087 } 1088 1089 return -1; 1090 } 1091 1092 // MachineOperand::TiedTo is 4 bits wide. 1093 const unsigned TiedMax = 15; 1094 1095 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1096 /// 1097 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1098 /// field. TiedTo can have these values: 1099 /// 1100 /// 0: Operand is not tied to anything. 1101 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1102 /// TiedMax: Tied to an operand >= TiedMax-1. 1103 /// 1104 /// The tied def must be one of the first TiedMax operands on a normal 1105 /// instruction. INLINEASM instructions allow more tied defs. 1106 /// 1107 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1108 MachineOperand &DefMO = getOperand(DefIdx); 1109 MachineOperand &UseMO = getOperand(UseIdx); 1110 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1111 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1112 assert(!DefMO.isTied() && "Def is already tied to another use"); 1113 assert(!UseMO.isTied() && "Use is already tied to another def"); 1114 1115 if (DefIdx < TiedMax) 1116 UseMO.TiedTo = DefIdx + 1; 1117 else { 1118 // Inline asm can use the group descriptors to find tied operands, 1119 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1120 // but on normal instruction, the tied def must be within the first TiedMax 1121 // operands. 1122 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1123 "DefIdx out of range"); 1124 UseMO.TiedTo = TiedMax; 1125 } 1126 1127 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1128 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1129 } 1130 1131 /// Given the index of a tied register operand, find the operand it is tied to. 1132 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1133 /// which must exist. 1134 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1135 const MachineOperand &MO = getOperand(OpIdx); 1136 assert(MO.isTied() && "Operand isn't tied"); 1137 1138 // Normally TiedTo is in range. 1139 if (MO.TiedTo < TiedMax) 1140 return MO.TiedTo - 1; 1141 1142 // Uses on normal instructions can be out of range. 1143 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1144 // Normal tied defs must be in the 0..TiedMax-1 range. 1145 if (MO.isUse()) 1146 return TiedMax - 1; 1147 // MO is a def. Search for the tied use. 1148 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1149 const MachineOperand &UseMO = getOperand(i); 1150 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1151 return i; 1152 } 1153 llvm_unreachable("Can't find tied use"); 1154 } 1155 1156 if (getOpcode() == TargetOpcode::STATEPOINT) { 1157 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1158 // on registers. 1159 StatepointOpers SO(this); 1160 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1161 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1162 unsigned NumDefs = getNumDefs(); 1163 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1164 while (!getOperand(CurUseIdx).isReg()) 1165 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1166 if (OpIdx == CurDefIdx) 1167 return CurUseIdx; 1168 if (OpIdx == CurUseIdx) 1169 return CurDefIdx; 1170 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1171 } 1172 llvm_unreachable("Can't find tied use"); 1173 } 1174 1175 // Now deal with inline asm by parsing the operand group descriptor flags. 1176 // Find the beginning of each operand group. 1177 SmallVector<unsigned, 8> GroupIdx; 1178 unsigned OpIdxGroup = ~0u; 1179 unsigned NumOps; 1180 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1181 i += NumOps) { 1182 const MachineOperand &FlagMO = getOperand(i); 1183 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1184 unsigned CurGroup = GroupIdx.size(); 1185 GroupIdx.push_back(i); 1186 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1187 // OpIdx belongs to this operand group. 1188 if (OpIdx > i && OpIdx < i + NumOps) 1189 OpIdxGroup = CurGroup; 1190 unsigned TiedGroup; 1191 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1192 continue; 1193 // Operands in this group are tied to operands in TiedGroup which must be 1194 // earlier. Find the number of operands between the two groups. 1195 unsigned Delta = i - GroupIdx[TiedGroup]; 1196 1197 // OpIdx is a use tied to TiedGroup. 1198 if (OpIdxGroup == CurGroup) 1199 return OpIdx - Delta; 1200 1201 // OpIdx is a def tied to this use group. 1202 if (OpIdxGroup == TiedGroup) 1203 return OpIdx + Delta; 1204 } 1205 llvm_unreachable("Invalid tied operand on inline asm"); 1206 } 1207 1208 /// clearKillInfo - Clears kill flags on all operands. 1209 /// 1210 void MachineInstr::clearKillInfo() { 1211 for (MachineOperand &MO : operands()) { 1212 if (MO.isReg() && MO.isUse()) 1213 MO.setIsKill(false); 1214 } 1215 } 1216 1217 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1218 unsigned SubIdx, 1219 const TargetRegisterInfo &RegInfo) { 1220 if (ToReg.isPhysical()) { 1221 if (SubIdx) 1222 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1223 for (MachineOperand &MO : operands()) { 1224 if (!MO.isReg() || MO.getReg() != FromReg) 1225 continue; 1226 MO.substPhysReg(ToReg, RegInfo); 1227 } 1228 } else { 1229 for (MachineOperand &MO : operands()) { 1230 if (!MO.isReg() || MO.getReg() != FromReg) 1231 continue; 1232 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1233 } 1234 } 1235 } 1236 1237 /// isSafeToMove - Return true if it is safe to move this instruction. If 1238 /// SawStore is set to true, it means that there is a store (or call) between 1239 /// the instruction's location and its intended destination. 1240 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1241 // Ignore stuff that we obviously can't move. 1242 // 1243 // Treat volatile loads as stores. This is not strictly necessary for 1244 // volatiles, but it is required for atomic loads. It is not allowed to move 1245 // a load across an atomic load with Ordering > Monotonic. 1246 if (mayStore() || isCall() || isPHI() || 1247 (mayLoad() && hasOrderedMemoryRef())) { 1248 SawStore = true; 1249 return false; 1250 } 1251 1252 if (isPosition() || isDebugInstr() || isTerminator() || 1253 mayRaiseFPException() || hasUnmodeledSideEffects()) 1254 return false; 1255 1256 // See if this instruction does a load. If so, we have to guarantee that the 1257 // loaded value doesn't change between the load and the its intended 1258 // destination. The check for isInvariantLoad gives the target the chance to 1259 // classify the load as always returning a constant, e.g. a constant pool 1260 // load. 1261 if (mayLoad() && !isDereferenceableInvariantLoad()) 1262 // Otherwise, this is a real load. If there is a store between the load and 1263 // end of block, we can't move it. 1264 return !SawStore; 1265 1266 return true; 1267 } 1268 1269 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1270 bool UseTBAA, const MachineMemOperand *MMOa, 1271 const MachineMemOperand *MMOb) { 1272 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1273 // operates with MachineMemOperand offset with some important assumptions: 1274 // - LLVM fundamentally assumes flat address spaces. 1275 // - MachineOperand offset can *only* result from legalization and cannot 1276 // affect queries other than the trivial case of overlap checking. 1277 // - These offsets never wrap and never step outside of allocated objects. 1278 // - There should never be any negative offsets here. 1279 // 1280 // FIXME: Modify API to hide this math from "user" 1281 // Even before we go to AA we can reason locally about some memory objects. It 1282 // can save compile time, and possibly catch some corner cases not currently 1283 // covered. 1284 1285 int64_t OffsetA = MMOa->getOffset(); 1286 int64_t OffsetB = MMOb->getOffset(); 1287 int64_t MinOffset = std::min(OffsetA, OffsetB); 1288 1289 uint64_t WidthA = MMOa->getSize(); 1290 uint64_t WidthB = MMOb->getSize(); 1291 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1292 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1293 1294 const Value *ValA = MMOa->getValue(); 1295 const Value *ValB = MMOb->getValue(); 1296 bool SameVal = (ValA && ValB && (ValA == ValB)); 1297 if (!SameVal) { 1298 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1299 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1300 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1301 return false; 1302 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1303 return false; 1304 if (PSVa && PSVb && (PSVa == PSVb)) 1305 SameVal = true; 1306 } 1307 1308 if (SameVal) { 1309 if (!KnownWidthA || !KnownWidthB) 1310 return true; 1311 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1312 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1313 return (MinOffset + LowWidth > MaxOffset); 1314 } 1315 1316 if (!AA) 1317 return true; 1318 1319 if (!ValA || !ValB) 1320 return true; 1321 1322 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1323 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1324 1325 int64_t OverlapA = 1326 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1327 int64_t OverlapB = 1328 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1329 1330 return !AA->isNoAlias( 1331 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1332 MemoryLocation(ValB, OverlapB, 1333 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1334 } 1335 1336 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1337 bool UseTBAA) const { 1338 const MachineFunction *MF = getMF(); 1339 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1340 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1341 1342 // Exclude call instruction which may alter the memory but can not be handled 1343 // by this function. 1344 if (isCall() || Other.isCall()) 1345 return true; 1346 1347 // If neither instruction stores to memory, they can't alias in any 1348 // meaningful way, even if they read from the same address. 1349 if (!mayStore() && !Other.mayStore()) 1350 return false; 1351 1352 // Both instructions must be memory operations to be able to alias. 1353 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1354 return false; 1355 1356 // Let the target decide if memory accesses cannot possibly overlap. 1357 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1358 return false; 1359 1360 // Memory operations without memory operands may access anything. Be 1361 // conservative and assume `MayAlias`. 1362 if (memoperands_empty() || Other.memoperands_empty()) 1363 return true; 1364 1365 // Skip if there are too many memory operands. 1366 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1367 if (NumChecks > TII->getMemOperandAACheckLimit()) 1368 return true; 1369 1370 // Check each pair of memory operands from both instructions, which can't 1371 // alias only if all pairs won't alias. 1372 for (auto *MMOa : memoperands()) 1373 for (auto *MMOb : Other.memoperands()) 1374 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1375 return true; 1376 1377 return false; 1378 } 1379 1380 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1381 /// or volatile memory reference, or if the information describing the memory 1382 /// reference is not available. Return false if it is known to have no ordered 1383 /// memory references. 1384 bool MachineInstr::hasOrderedMemoryRef() const { 1385 // An instruction known never to access memory won't have a volatile access. 1386 if (!mayStore() && 1387 !mayLoad() && 1388 !isCall() && 1389 !hasUnmodeledSideEffects()) 1390 return false; 1391 1392 // Otherwise, if the instruction has no memory reference information, 1393 // conservatively assume it wasn't preserved. 1394 if (memoperands_empty()) 1395 return true; 1396 1397 // Check if any of our memory operands are ordered. 1398 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1399 return !MMO->isUnordered(); 1400 }); 1401 } 1402 1403 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1404 /// trap and is loading from a location whose value is invariant across a run of 1405 /// this function. 1406 bool MachineInstr::isDereferenceableInvariantLoad() const { 1407 // If the instruction doesn't load at all, it isn't an invariant load. 1408 if (!mayLoad()) 1409 return false; 1410 1411 // If the instruction has lost its memoperands, conservatively assume that 1412 // it may not be an invariant load. 1413 if (memoperands_empty()) 1414 return false; 1415 1416 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1417 1418 for (MachineMemOperand *MMO : memoperands()) { 1419 if (!MMO->isUnordered()) 1420 // If the memory operand has ordering side effects, we can't move the 1421 // instruction. Such an instruction is technically an invariant load, 1422 // but the caller code would need updated to expect that. 1423 return false; 1424 if (MMO->isStore()) return false; 1425 if (MMO->isInvariant() && MMO->isDereferenceable()) 1426 continue; 1427 1428 // A load from a constant PseudoSourceValue is invariant. 1429 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 1430 if (PSV->isConstant(&MFI)) 1431 continue; 1432 } 1433 1434 // Otherwise assume conservatively. 1435 return false; 1436 } 1437 1438 // Everything checks out. 1439 return true; 1440 } 1441 1442 /// isConstantValuePHI - If the specified instruction is a PHI that always 1443 /// merges together the same virtual register, return the register, otherwise 1444 /// return 0. 1445 unsigned MachineInstr::isConstantValuePHI() const { 1446 if (!isPHI()) 1447 return 0; 1448 assert(getNumOperands() >= 3 && 1449 "It's illegal to have a PHI without source operands"); 1450 1451 Register Reg = getOperand(1).getReg(); 1452 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1453 if (getOperand(i).getReg() != Reg) 1454 return 0; 1455 return Reg; 1456 } 1457 1458 bool MachineInstr::hasUnmodeledSideEffects() const { 1459 if (hasProperty(MCID::UnmodeledSideEffects)) 1460 return true; 1461 if (isInlineAsm()) { 1462 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1463 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1464 return true; 1465 } 1466 1467 return false; 1468 } 1469 1470 bool MachineInstr::isLoadFoldBarrier() const { 1471 return mayStore() || isCall() || 1472 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1473 } 1474 1475 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1476 /// 1477 bool MachineInstr::allDefsAreDead() const { 1478 for (const MachineOperand &MO : operands()) { 1479 if (!MO.isReg() || MO.isUse()) 1480 continue; 1481 if (!MO.isDead()) 1482 return false; 1483 } 1484 return true; 1485 } 1486 1487 /// copyImplicitOps - Copy implicit register operands from specified 1488 /// instruction to this instruction. 1489 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1490 const MachineInstr &MI) { 1491 for (const MachineOperand &MO : 1492 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1493 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1494 addOperand(MF, MO); 1495 } 1496 1497 bool MachineInstr::hasComplexRegisterTies() const { 1498 const MCInstrDesc &MCID = getDesc(); 1499 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1500 return true; 1501 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1502 const auto &Operand = getOperand(I); 1503 if (!Operand.isReg() || Operand.isDef()) 1504 // Ignore the defined registers as MCID marks only the uses as tied. 1505 continue; 1506 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1507 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1508 if (ExpectedTiedIdx != TiedIdx) 1509 return true; 1510 } 1511 return false; 1512 } 1513 1514 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1515 const MachineRegisterInfo &MRI) const { 1516 const MachineOperand &Op = getOperand(OpIdx); 1517 if (!Op.isReg()) 1518 return LLT{}; 1519 1520 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1521 return MRI.getType(Op.getReg()); 1522 1523 auto &OpInfo = getDesc().operands()[OpIdx]; 1524 if (!OpInfo.isGenericType()) 1525 return MRI.getType(Op.getReg()); 1526 1527 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1528 return LLT{}; 1529 1530 LLT TypeToPrint = MRI.getType(Op.getReg()); 1531 // Don't mark the type index printed if it wasn't actually printed: maybe 1532 // another operand with the same type index has an actual type attached: 1533 if (TypeToPrint.isValid()) 1534 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1535 return TypeToPrint; 1536 } 1537 1538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1539 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1540 dbgs() << " "; 1541 print(dbgs()); 1542 } 1543 1544 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1545 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1546 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1547 if (Depth >= MaxDepth) 1548 return; 1549 if (!AlreadySeenInstrs.insert(this).second) 1550 return; 1551 // PadToColumn always inserts at least one space. 1552 // Don't mess up the alignment if we don't want any space. 1553 if (Depth) 1554 fdbgs().PadToColumn(Depth * 2); 1555 print(fdbgs()); 1556 for (const MachineOperand &MO : operands()) { 1557 if (!MO.isReg() || MO.isDef()) 1558 continue; 1559 Register Reg = MO.getReg(); 1560 if (Reg.isPhysical()) 1561 continue; 1562 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1563 if (NewMI == nullptr) 1564 continue; 1565 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1566 } 1567 } 1568 1569 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1570 unsigned MaxDepth) const { 1571 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1572 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1573 } 1574 #endif 1575 1576 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1577 bool SkipDebugLoc, bool AddNewLine, 1578 const TargetInstrInfo *TII) const { 1579 const Module *M = nullptr; 1580 const Function *F = nullptr; 1581 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1582 F = &MF->getFunction(); 1583 M = F->getParent(); 1584 if (!TII) 1585 TII = MF->getSubtarget().getInstrInfo(); 1586 } 1587 1588 ModuleSlotTracker MST(M); 1589 if (F) 1590 MST.incorporateFunction(*F); 1591 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1592 } 1593 1594 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1595 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1596 bool AddNewLine, const TargetInstrInfo *TII) const { 1597 // We can be a bit tidier if we know the MachineFunction. 1598 const TargetRegisterInfo *TRI = nullptr; 1599 const MachineRegisterInfo *MRI = nullptr; 1600 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1601 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1602 1603 if (isCFIInstruction()) 1604 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1605 1606 SmallBitVector PrintedTypes(8); 1607 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1608 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1609 if (!ShouldPrintRegisterTies) 1610 return 0U; 1611 const MachineOperand &MO = getOperand(OpIdx); 1612 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1613 return findTiedOperandIdx(OpIdx); 1614 return 0U; 1615 }; 1616 unsigned StartOp = 0; 1617 unsigned e = getNumOperands(); 1618 1619 // Print explicitly defined operands on the left of an assignment syntax. 1620 while (StartOp < e) { 1621 const MachineOperand &MO = getOperand(StartOp); 1622 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1623 break; 1624 1625 if (StartOp != 0) 1626 OS << ", "; 1627 1628 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1629 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1630 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1631 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1632 ++StartOp; 1633 } 1634 1635 if (StartOp != 0) 1636 OS << " = "; 1637 1638 if (getFlag(MachineInstr::FrameSetup)) 1639 OS << "frame-setup "; 1640 if (getFlag(MachineInstr::FrameDestroy)) 1641 OS << "frame-destroy "; 1642 if (getFlag(MachineInstr::FmNoNans)) 1643 OS << "nnan "; 1644 if (getFlag(MachineInstr::FmNoInfs)) 1645 OS << "ninf "; 1646 if (getFlag(MachineInstr::FmNsz)) 1647 OS << "nsz "; 1648 if (getFlag(MachineInstr::FmArcp)) 1649 OS << "arcp "; 1650 if (getFlag(MachineInstr::FmContract)) 1651 OS << "contract "; 1652 if (getFlag(MachineInstr::FmAfn)) 1653 OS << "afn "; 1654 if (getFlag(MachineInstr::FmReassoc)) 1655 OS << "reassoc "; 1656 if (getFlag(MachineInstr::NoUWrap)) 1657 OS << "nuw "; 1658 if (getFlag(MachineInstr::NoSWrap)) 1659 OS << "nsw "; 1660 if (getFlag(MachineInstr::IsExact)) 1661 OS << "exact "; 1662 if (getFlag(MachineInstr::NoFPExcept)) 1663 OS << "nofpexcept "; 1664 if (getFlag(MachineInstr::NoMerge)) 1665 OS << "nomerge "; 1666 1667 // Print the opcode name. 1668 if (TII) 1669 OS << TII->getName(getOpcode()); 1670 else 1671 OS << "UNKNOWN"; 1672 1673 if (SkipOpers) 1674 return; 1675 1676 // Print the rest of the operands. 1677 bool FirstOp = true; 1678 unsigned AsmDescOp = ~0u; 1679 unsigned AsmOpCount = 0; 1680 1681 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1682 // Print asm string. 1683 OS << " "; 1684 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1685 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1686 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1687 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1688 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1689 IntrinsicInfo); 1690 1691 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1692 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1693 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1694 OS << " [sideeffect]"; 1695 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1696 OS << " [mayload]"; 1697 if (ExtraInfo & InlineAsm::Extra_MayStore) 1698 OS << " [maystore]"; 1699 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1700 OS << " [isconvergent]"; 1701 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1702 OS << " [alignstack]"; 1703 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1704 OS << " [attdialect]"; 1705 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1706 OS << " [inteldialect]"; 1707 1708 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1709 FirstOp = false; 1710 } 1711 1712 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1713 const MachineOperand &MO = getOperand(i); 1714 1715 if (FirstOp) FirstOp = false; else OS << ","; 1716 OS << " "; 1717 1718 if (isDebugValue() && MO.isMetadata()) { 1719 // Pretty print DBG_VALUE* instructions. 1720 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1721 if (DIV && !DIV->getName().empty()) 1722 OS << "!\"" << DIV->getName() << '\"'; 1723 else { 1724 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1725 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1726 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1727 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1728 } 1729 } else if (isDebugLabel() && MO.isMetadata()) { 1730 // Pretty print DBG_LABEL instructions. 1731 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1732 if (DIL && !DIL->getName().empty()) 1733 OS << "\"" << DIL->getName() << '\"'; 1734 else { 1735 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1736 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1737 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1738 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1739 } 1740 } else if (i == AsmDescOp && MO.isImm()) { 1741 // Pretty print the inline asm operand descriptor. 1742 OS << '$' << AsmOpCount++; 1743 unsigned Flag = MO.getImm(); 1744 OS << ":["; 1745 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); 1746 1747 unsigned RCID = 0; 1748 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1749 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1750 if (TRI) { 1751 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1752 } else 1753 OS << ":RC" << RCID; 1754 } 1755 1756 if (InlineAsm::isMemKind(Flag)) { 1757 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1758 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1759 } 1760 1761 unsigned TiedTo = 0; 1762 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1763 OS << " tiedto:$" << TiedTo; 1764 1765 OS << ']'; 1766 1767 // Compute the index of the next operand descriptor. 1768 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1769 } else { 1770 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1771 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1772 if (MO.isImm() && isOperandSubregIdx(i)) 1773 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1774 else 1775 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1776 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1777 } 1778 } 1779 1780 // Print any optional symbols attached to this instruction as-if they were 1781 // operands. 1782 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1783 if (!FirstOp) { 1784 FirstOp = false; 1785 OS << ','; 1786 } 1787 OS << " pre-instr-symbol "; 1788 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1789 } 1790 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1791 if (!FirstOp) { 1792 FirstOp = false; 1793 OS << ','; 1794 } 1795 OS << " post-instr-symbol "; 1796 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1797 } 1798 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1799 if (!FirstOp) { 1800 FirstOp = false; 1801 OS << ','; 1802 } 1803 OS << " heap-alloc-marker "; 1804 HeapAllocMarker->printAsOperand(OS, MST); 1805 } 1806 if (MDNode *PCSections = getPCSections()) { 1807 if (!FirstOp) { 1808 FirstOp = false; 1809 OS << ','; 1810 } 1811 OS << " pcsections "; 1812 PCSections->printAsOperand(OS, MST); 1813 } 1814 if (uint32_t CFIType = getCFIType()) { 1815 if (!FirstOp) 1816 OS << ','; 1817 OS << " cfi-type " << CFIType; 1818 } 1819 1820 if (DebugInstrNum) { 1821 if (!FirstOp) 1822 OS << ","; 1823 OS << " debug-instr-number " << DebugInstrNum; 1824 } 1825 1826 if (!SkipDebugLoc) { 1827 if (const DebugLoc &DL = getDebugLoc()) { 1828 if (!FirstOp) 1829 OS << ','; 1830 OS << " debug-location "; 1831 DL->printAsOperand(OS, MST); 1832 } 1833 } 1834 1835 if (!memoperands_empty()) { 1836 SmallVector<StringRef, 0> SSNs; 1837 const LLVMContext *Context = nullptr; 1838 std::unique_ptr<LLVMContext> CtxPtr; 1839 const MachineFrameInfo *MFI = nullptr; 1840 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1841 MFI = &MF->getFrameInfo(); 1842 Context = &MF->getFunction().getContext(); 1843 } else { 1844 CtxPtr = std::make_unique<LLVMContext>(); 1845 Context = CtxPtr.get(); 1846 } 1847 1848 OS << " :: "; 1849 bool NeedComma = false; 1850 for (const MachineMemOperand *Op : memoperands()) { 1851 if (NeedComma) 1852 OS << ", "; 1853 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1854 NeedComma = true; 1855 } 1856 } 1857 1858 if (SkipDebugLoc) 1859 return; 1860 1861 bool HaveSemi = false; 1862 1863 // Print debug location information. 1864 if (const DebugLoc &DL = getDebugLoc()) { 1865 if (!HaveSemi) { 1866 OS << ';'; 1867 HaveSemi = true; 1868 } 1869 OS << ' '; 1870 DL.print(OS); 1871 } 1872 1873 // Print extra comments for DEBUG_VALUE. 1874 if (isDebugValue() && getDebugVariableOp().isMetadata()) { 1875 if (!HaveSemi) { 1876 OS << ";"; 1877 HaveSemi = true; 1878 } 1879 auto *DV = getDebugVariable(); 1880 OS << " line no:" << DV->getLine(); 1881 if (isIndirectDebugValue()) 1882 OS << " indirect"; 1883 } 1884 // TODO: DBG_LABEL 1885 1886 if (AddNewLine) 1887 OS << '\n'; 1888 } 1889 1890 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1891 const TargetRegisterInfo *RegInfo, 1892 bool AddIfNotFound) { 1893 bool isPhysReg = IncomingReg.isPhysical(); 1894 bool hasAliases = isPhysReg && 1895 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1896 bool Found = false; 1897 SmallVector<unsigned,4> DeadOps; 1898 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1899 MachineOperand &MO = getOperand(i); 1900 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1901 continue; 1902 1903 // DEBUG_VALUE nodes do not contribute to code generation and should 1904 // always be ignored. Failure to do so may result in trying to modify 1905 // KILL flags on DEBUG_VALUE nodes. 1906 if (MO.isDebug()) 1907 continue; 1908 1909 Register Reg = MO.getReg(); 1910 if (!Reg) 1911 continue; 1912 1913 if (Reg == IncomingReg) { 1914 if (!Found) { 1915 if (MO.isKill()) 1916 // The register is already marked kill. 1917 return true; 1918 if (isPhysReg && isRegTiedToDefOperand(i)) 1919 // Two-address uses of physregs must not be marked kill. 1920 return true; 1921 MO.setIsKill(); 1922 Found = true; 1923 } 1924 } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { 1925 // A super-register kill already exists. 1926 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1927 return true; 1928 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1929 DeadOps.push_back(i); 1930 } 1931 } 1932 1933 // Trim unneeded kill operands. 1934 while (!DeadOps.empty()) { 1935 unsigned OpIdx = DeadOps.back(); 1936 if (getOperand(OpIdx).isImplicit() && 1937 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1938 removeOperand(OpIdx); 1939 else 1940 getOperand(OpIdx).setIsKill(false); 1941 DeadOps.pop_back(); 1942 } 1943 1944 // If not found, this means an alias of one of the operands is killed. Add a 1945 // new implicit operand if required. 1946 if (!Found && AddIfNotFound) { 1947 addOperand(MachineOperand::CreateReg(IncomingReg, 1948 false /*IsDef*/, 1949 true /*IsImp*/, 1950 true /*IsKill*/)); 1951 return true; 1952 } 1953 return Found; 1954 } 1955 1956 void MachineInstr::clearRegisterKills(Register Reg, 1957 const TargetRegisterInfo *RegInfo) { 1958 if (!Reg.isPhysical()) 1959 RegInfo = nullptr; 1960 for (MachineOperand &MO : operands()) { 1961 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1962 continue; 1963 Register OpReg = MO.getReg(); 1964 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1965 MO.setIsKill(false); 1966 } 1967 } 1968 1969 bool MachineInstr::addRegisterDead(Register Reg, 1970 const TargetRegisterInfo *RegInfo, 1971 bool AddIfNotFound) { 1972 bool isPhysReg = Reg.isPhysical(); 1973 bool hasAliases = isPhysReg && 1974 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1975 bool Found = false; 1976 SmallVector<unsigned,4> DeadOps; 1977 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1978 MachineOperand &MO = getOperand(i); 1979 if (!MO.isReg() || !MO.isDef()) 1980 continue; 1981 Register MOReg = MO.getReg(); 1982 if (!MOReg) 1983 continue; 1984 1985 if (MOReg == Reg) { 1986 MO.setIsDead(); 1987 Found = true; 1988 } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { 1989 // There exists a super-register that's marked dead. 1990 if (RegInfo->isSuperRegister(Reg, MOReg)) 1991 return true; 1992 if (RegInfo->isSubRegister(Reg, MOReg)) 1993 DeadOps.push_back(i); 1994 } 1995 } 1996 1997 // Trim unneeded dead operands. 1998 while (!DeadOps.empty()) { 1999 unsigned OpIdx = DeadOps.back(); 2000 if (getOperand(OpIdx).isImplicit() && 2001 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 2002 removeOperand(OpIdx); 2003 else 2004 getOperand(OpIdx).setIsDead(false); 2005 DeadOps.pop_back(); 2006 } 2007 2008 // If not found, this means an alias of one of the operands is dead. Add a 2009 // new implicit operand if required. 2010 if (Found || !AddIfNotFound) 2011 return Found; 2012 2013 addOperand(MachineOperand::CreateReg(Reg, 2014 true /*IsDef*/, 2015 true /*IsImp*/, 2016 false /*IsKill*/, 2017 true /*IsDead*/)); 2018 return true; 2019 } 2020 2021 void MachineInstr::clearRegisterDeads(Register Reg) { 2022 for (MachineOperand &MO : operands()) { 2023 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2024 continue; 2025 MO.setIsDead(false); 2026 } 2027 } 2028 2029 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2030 for (MachineOperand &MO : operands()) { 2031 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2032 continue; 2033 MO.setIsUndef(IsUndef); 2034 } 2035 } 2036 2037 void MachineInstr::addRegisterDefined(Register Reg, 2038 const TargetRegisterInfo *RegInfo) { 2039 if (Reg.isPhysical()) { 2040 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2041 if (MO) 2042 return; 2043 } else { 2044 for (const MachineOperand &MO : operands()) { 2045 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2046 MO.getSubReg() == 0) 2047 return; 2048 } 2049 } 2050 addOperand(MachineOperand::CreateReg(Reg, 2051 true /*IsDef*/, 2052 true /*IsImp*/)); 2053 } 2054 2055 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2056 const TargetRegisterInfo &TRI) { 2057 bool HasRegMask = false; 2058 for (MachineOperand &MO : operands()) { 2059 if (MO.isRegMask()) { 2060 HasRegMask = true; 2061 continue; 2062 } 2063 if (!MO.isReg() || !MO.isDef()) continue; 2064 Register Reg = MO.getReg(); 2065 if (!Reg.isPhysical()) 2066 continue; 2067 // If there are no uses, including partial uses, the def is dead. 2068 if (llvm::none_of(UsedRegs, 2069 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2070 MO.setIsDead(); 2071 } 2072 2073 // This is a call with a register mask operand. 2074 // Mask clobbers are always dead, so add defs for the non-dead defines. 2075 if (HasRegMask) 2076 for (const Register &UsedReg : UsedRegs) 2077 addRegisterDefined(UsedReg, &TRI); 2078 } 2079 2080 unsigned 2081 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2082 // Build up a buffer of hash code components. 2083 SmallVector<size_t, 16> HashComponents; 2084 HashComponents.reserve(MI->getNumOperands() + 1); 2085 HashComponents.push_back(MI->getOpcode()); 2086 for (const MachineOperand &MO : MI->operands()) { 2087 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) 2088 continue; // Skip virtual register defs. 2089 2090 HashComponents.push_back(hash_value(MO)); 2091 } 2092 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2093 } 2094 2095 void MachineInstr::emitError(StringRef Msg) const { 2096 // Find the source location cookie. 2097 uint64_t LocCookie = 0; 2098 const MDNode *LocMD = nullptr; 2099 for (unsigned i = getNumOperands(); i != 0; --i) { 2100 if (getOperand(i-1).isMetadata() && 2101 (LocMD = getOperand(i-1).getMetadata()) && 2102 LocMD->getNumOperands() != 0) { 2103 if (const ConstantInt *CI = 2104 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2105 LocCookie = CI->getZExtValue(); 2106 break; 2107 } 2108 } 2109 } 2110 2111 if (const MachineBasicBlock *MBB = getParent()) 2112 if (const MachineFunction *MF = MBB->getParent()) 2113 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2114 report_fatal_error(Msg); 2115 } 2116 2117 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2118 const MCInstrDesc &MCID, bool IsIndirect, 2119 Register Reg, const MDNode *Variable, 2120 const MDNode *Expr) { 2121 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2122 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2123 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2124 "Expected inlined-at fields to agree"); 2125 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2126 if (IsIndirect) 2127 MIB.addImm(0U); 2128 else 2129 MIB.addReg(0U); 2130 return MIB.addMetadata(Variable).addMetadata(Expr); 2131 } 2132 2133 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2134 const MCInstrDesc &MCID, bool IsIndirect, 2135 ArrayRef<MachineOperand> DebugOps, 2136 const MDNode *Variable, const MDNode *Expr) { 2137 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2138 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2139 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2140 "Expected inlined-at fields to agree"); 2141 if (MCID.Opcode == TargetOpcode::DBG_VALUE) { 2142 assert(DebugOps.size() == 1 && 2143 "DBG_VALUE must contain exactly one debug operand"); 2144 MachineOperand DebugOp = DebugOps[0]; 2145 if (DebugOp.isReg()) 2146 return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, 2147 Expr); 2148 2149 auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); 2150 if (IsIndirect) 2151 MIB.addImm(0U); 2152 else 2153 MIB.addReg(0U); 2154 return MIB.addMetadata(Variable).addMetadata(Expr); 2155 } 2156 2157 auto MIB = BuildMI(MF, DL, MCID); 2158 MIB.addMetadata(Variable).addMetadata(Expr); 2159 for (const MachineOperand &DebugOp : DebugOps) 2160 if (DebugOp.isReg()) 2161 MIB.addReg(DebugOp.getReg()); 2162 else 2163 MIB.add(DebugOp); 2164 return MIB; 2165 } 2166 2167 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2168 MachineBasicBlock::iterator I, 2169 const DebugLoc &DL, const MCInstrDesc &MCID, 2170 bool IsIndirect, Register Reg, 2171 const MDNode *Variable, const MDNode *Expr) { 2172 MachineFunction &MF = *BB.getParent(); 2173 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2174 BB.insert(I, MI); 2175 return MachineInstrBuilder(MF, MI); 2176 } 2177 2178 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2179 MachineBasicBlock::iterator I, 2180 const DebugLoc &DL, const MCInstrDesc &MCID, 2181 bool IsIndirect, 2182 ArrayRef<MachineOperand> DebugOps, 2183 const MDNode *Variable, const MDNode *Expr) { 2184 MachineFunction &MF = *BB.getParent(); 2185 MachineInstr *MI = 2186 BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); 2187 BB.insert(I, MI); 2188 return MachineInstrBuilder(MF, *MI); 2189 } 2190 2191 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2192 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2193 static const DIExpression * 2194 computeExprForSpill(const MachineInstr &MI, 2195 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2196 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2197 "Expected inlined-at fields to agree"); 2198 2199 const DIExpression *Expr = MI.getDebugExpression(); 2200 if (MI.isIndirectDebugValue()) { 2201 assert(MI.getDebugOffset().getImm() == 0 && 2202 "DBG_VALUE with nonzero offset"); 2203 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2204 } else if (MI.isDebugValueList()) { 2205 // We will replace the spilled register with a frame index, so 2206 // immediately deref all references to the spilled register. 2207 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2208 for (const MachineOperand *Op : SpilledOperands) { 2209 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2210 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2211 } 2212 } 2213 return Expr; 2214 } 2215 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2216 Register SpillReg) { 2217 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2218 SmallVector<const MachineOperand *> SpillOperands; 2219 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2220 SpillOperands.push_back(&Op); 2221 return computeExprForSpill(MI, SpillOperands); 2222 } 2223 2224 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2225 MachineBasicBlock::iterator I, 2226 const MachineInstr &Orig, 2227 int FrameIndex, Register SpillReg) { 2228 assert(!Orig.isDebugRef() && 2229 "DBG_INSTR_REF should not reference a virtual register."); 2230 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2231 MachineInstrBuilder NewMI = 2232 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2233 // Non-Variadic Operands: Location, Offset, Variable, Expression 2234 // Variadic Operands: Variable, Expression, Locations... 2235 if (Orig.isNonListDebugValue()) 2236 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2237 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2238 if (Orig.isDebugValueList()) { 2239 for (const MachineOperand &Op : Orig.debug_operands()) 2240 if (Op.isReg() && Op.getReg() == SpillReg) 2241 NewMI.addFrameIndex(FrameIndex); 2242 else 2243 NewMI.add(MachineOperand(Op)); 2244 } 2245 return NewMI; 2246 } 2247 MachineInstr *llvm::buildDbgValueForSpill( 2248 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2249 const MachineInstr &Orig, int FrameIndex, 2250 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2251 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2252 MachineInstrBuilder NewMI = 2253 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2254 // Non-Variadic Operands: Location, Offset, Variable, Expression 2255 // Variadic Operands: Variable, Expression, Locations... 2256 if (Orig.isNonListDebugValue()) 2257 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2258 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2259 if (Orig.isDebugValueList()) { 2260 for (const MachineOperand &Op : Orig.debug_operands()) 2261 if (is_contained(SpilledOperands, &Op)) 2262 NewMI.addFrameIndex(FrameIndex); 2263 else 2264 NewMI.add(MachineOperand(Op)); 2265 } 2266 return NewMI; 2267 } 2268 2269 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2270 Register Reg) { 2271 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2272 if (Orig.isNonListDebugValue()) 2273 Orig.getDebugOffset().ChangeToImmediate(0U); 2274 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2275 Op.ChangeToFrameIndex(FrameIndex); 2276 Orig.getDebugExpressionOp().setMetadata(Expr); 2277 } 2278 2279 void MachineInstr::collectDebugValues( 2280 SmallVectorImpl<MachineInstr *> &DbgValues) { 2281 MachineInstr &MI = *this; 2282 if (!MI.getOperand(0).isReg()) 2283 return; 2284 2285 MachineBasicBlock::iterator DI = MI; ++DI; 2286 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2287 DI != DE; ++DI) { 2288 if (!DI->isDebugValue()) 2289 return; 2290 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2291 DbgValues.push_back(&*DI); 2292 } 2293 } 2294 2295 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2296 // Collect matching debug values. 2297 SmallVector<MachineInstr *, 2> DbgValues; 2298 2299 if (!getOperand(0).isReg()) 2300 return; 2301 2302 Register DefReg = getOperand(0).getReg(); 2303 auto *MRI = getRegInfo(); 2304 for (auto &MO : MRI->use_operands(DefReg)) { 2305 auto *DI = MO.getParent(); 2306 if (!DI->isDebugValue()) 2307 continue; 2308 if (DI->hasDebugOperandForReg(DefReg)) { 2309 DbgValues.push_back(DI); 2310 } 2311 } 2312 2313 // Propagate Reg to debug value instructions. 2314 for (auto *DBI : DbgValues) 2315 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2316 Op.setReg(Reg); 2317 } 2318 2319 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2320 2321 static unsigned getSpillSlotSize(const MMOList &Accesses, 2322 const MachineFrameInfo &MFI) { 2323 unsigned Size = 0; 2324 for (const auto *A : Accesses) 2325 if (MFI.isSpillSlotObjectIndex( 2326 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2327 ->getFrameIndex())) 2328 Size += A->getSize(); 2329 return Size; 2330 } 2331 2332 std::optional<unsigned> 2333 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2334 int FI; 2335 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2336 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2337 if (MFI.isSpillSlotObjectIndex(FI)) 2338 return (*memoperands_begin())->getSize(); 2339 } 2340 return std::nullopt; 2341 } 2342 2343 std::optional<unsigned> 2344 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2345 MMOList Accesses; 2346 if (TII->hasStoreToStackSlot(*this, Accesses)) 2347 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2348 return std::nullopt; 2349 } 2350 2351 std::optional<unsigned> 2352 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2353 int FI; 2354 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2355 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2356 if (MFI.isSpillSlotObjectIndex(FI)) 2357 return (*memoperands_begin())->getSize(); 2358 } 2359 return std::nullopt; 2360 } 2361 2362 std::optional<unsigned> 2363 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2364 MMOList Accesses; 2365 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2366 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2367 return std::nullopt; 2368 } 2369 2370 unsigned MachineInstr::getDebugInstrNum() { 2371 if (DebugInstrNum == 0) 2372 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2373 return DebugInstrNum; 2374 } 2375 2376 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2377 if (DebugInstrNum == 0) 2378 DebugInstrNum = MF.getNewDebugInstrNum(); 2379 return DebugInstrNum; 2380 } 2381