xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 2dd94b045e8c069c1a748d40d30d979e30e02fc9)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <cstring>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 
79 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
80   if (const MachineBasicBlock *MBB = MI.getParent())
81     if (const MachineFunction *MF = MBB->getParent())
82       return MF;
83   return nullptr;
84 }
85 
86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
87 // it.
88 static void tryToGetTargetInfo(const MachineInstr &MI,
89                                const TargetRegisterInfo *&TRI,
90                                const MachineRegisterInfo *&MRI,
91                                const TargetIntrinsicInfo *&IntrinsicInfo,
92                                const TargetInstrInfo *&TII) {
93 
94   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
95     TRI = MF->getSubtarget().getRegisterInfo();
96     MRI = &MF->getRegInfo();
97     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
98     TII = MF->getSubtarget().getInstrInfo();
99   }
100 }
101 
102 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
103   if (MCID->ImplicitDefs)
104     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
105            ++ImpDefs)
106       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
107   if (MCID->ImplicitUses)
108     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
109            ++ImpUses)
110       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
111 }
112 
113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
114 /// implicit operands. It reserves space for the number of operands specified by
115 /// the MCInstrDesc.
116 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
117                            DebugLoc dl, bool NoImp)
118     : MCID(&tid), debugLoc(std::move(dl)) {
119   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
120 
121   // Reserve space for the expected number of operands.
122   if (unsigned NumOps = MCID->getNumOperands() +
123     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
124     CapOperands = OperandCapacity::get(NumOps);
125     Operands = MF.allocateOperandArray(CapOperands);
126   }
127 
128   if (!NoImp)
129     addImplicitDefUseOperands(MF);
130 }
131 
132 /// MachineInstr ctor - Copies MachineInstr arg exactly
133 ///
134 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
135     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
136   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
137 
138   CapOperands = OperandCapacity::get(MI.getNumOperands());
139   Operands = MF.allocateOperandArray(CapOperands);
140 
141   // Copy operands.
142   for (const MachineOperand &MO : MI.operands())
143     addOperand(MF, MO);
144 
145   // Copy all the sensible flags.
146   setFlags(MI.Flags);
147 }
148 
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
151 /// return null.
152 MachineRegisterInfo *MachineInstr::getRegInfo() {
153   if (MachineBasicBlock *MBB = getParent())
154     return &MBB->getParent()->getRegInfo();
155   return nullptr;
156 }
157 
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists.  This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
162   for (MachineOperand &MO : operands())
163     if (MO.isReg())
164       MRI.removeRegOperandFromUseList(&MO);
165 }
166 
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists.  This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
171   for (MachineOperand &MO : operands())
172     if (MO.isReg())
173       MRI.addRegOperandToUseList(&MO);
174 }
175 
176 void MachineInstr::addOperand(const MachineOperand &Op) {
177   MachineBasicBlock *MBB = getParent();
178   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
179   MachineFunction *MF = MBB->getParent();
180   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
181   addOperand(*MF, Op);
182 }
183 
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
187                          unsigned NumOps, MachineRegisterInfo *MRI) {
188   if (MRI)
189     return MRI->moveOperands(Dst, Src, NumOps);
190 
191   // MachineOperand is a trivially copyable type so we can just use memmove.
192   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
193 }
194 
195 /// addOperand - Add the specified operand to the instruction.  If it is an
196 /// implicit operand, it is added to the end of the operand list.  If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
200   assert(MCID && "Cannot add operands before providing an instr descriptor");
201 
202   // Check if we're adding one of our existing operands.
203   if (&Op >= Operands && &Op < Operands + NumOperands) {
204     // This is unusual: MI->addOperand(MI->getOperand(i)).
205     // If adding Op requires reallocating or moving existing operands around,
206     // the Op reference could go stale. Support it by copying Op.
207     MachineOperand CopyOp(Op);
208     return addOperand(MF, CopyOp);
209   }
210 
211   // Find the insert location for the new operand.  Implicit registers go at
212   // the end, everything else goes before the implicit regs.
213   //
214   // FIXME: Allow mixed explicit and implicit operands on inline asm.
215   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216   // implicit-defs, but they must not be moved around.  See the FIXME in
217   // InstrEmitter.cpp.
218   unsigned OpNo = getNumOperands();
219   bool isImpReg = Op.isReg() && Op.isImplicit();
220   if (!isImpReg && !isInlineAsm()) {
221     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
222       --OpNo;
223       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
224     }
225   }
226 
227 #ifndef NDEBUG
228   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
229                    Op.getType() == MachineOperand::MO_MCSymbol;
230   // OpNo now points as the desired insertion point.  Unless this is a variadic
231   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
232   // RegMask operands go between the explicit and implicit operands.
233   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
234           OpNo < MCID->getNumOperands() || isDebugOp) &&
235          "Trying to add an operand to a machine instr that is already done!");
236 #endif
237 
238   MachineRegisterInfo *MRI = getRegInfo();
239 
240   // Determine if the Operands array needs to be reallocated.
241   // Save the old capacity and operand array.
242   OperandCapacity OldCap = CapOperands;
243   MachineOperand *OldOperands = Operands;
244   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
245     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
246     Operands = MF.allocateOperandArray(CapOperands);
247     // Move the operands before the insertion point.
248     if (OpNo)
249       moveOperands(Operands, OldOperands, OpNo, MRI);
250   }
251 
252   // Move the operands following the insertion point.
253   if (OpNo != NumOperands)
254     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
255                  MRI);
256   ++NumOperands;
257 
258   // Deallocate the old operand array.
259   if (OldOperands != Operands && OldOperands)
260     MF.deallocateOperandArray(OldCap, OldOperands);
261 
262   // Copy Op into place. It still needs to be inserted into the MRI use lists.
263   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
264   NewMO->ParentMI = this;
265 
266   // When adding a register operand, tell MRI about it.
267   if (NewMO->isReg()) {
268     // Ensure isOnRegUseList() returns false, regardless of Op's status.
269     NewMO->Contents.Reg.Prev = nullptr;
270     // Ignore existing ties. This is not a property that can be copied.
271     NewMO->TiedTo = 0;
272     // Add the new operand to MRI, but only for instructions in an MBB.
273     if (MRI)
274       MRI->addRegOperandToUseList(NewMO);
275     // The MCID operand information isn't accurate until we start adding
276     // explicit operands. The implicit operands are added first, then the
277     // explicits are inserted before them.
278     if (!isImpReg) {
279       // Tie uses to defs as indicated in MCInstrDesc.
280       if (NewMO->isUse()) {
281         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
282         if (DefIdx != -1)
283           tieOperands(DefIdx, OpNo);
284       }
285       // If the register operand is flagged as early, mark the operand as such.
286       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
287         NewMO->setIsEarlyClobber(true);
288     }
289   }
290 }
291 
292 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
293 /// fewer operand than it started with.
294 ///
295 void MachineInstr::RemoveOperand(unsigned OpNo) {
296   assert(OpNo < getNumOperands() && "Invalid operand number");
297   untieRegOperand(OpNo);
298 
299 #ifndef NDEBUG
300   // Moving tied operands would break the ties.
301   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
302     if (Operands[i].isReg())
303       assert(!Operands[i].isTied() && "Cannot move tied operands");
304 #endif
305 
306   MachineRegisterInfo *MRI = getRegInfo();
307   if (MRI && Operands[OpNo].isReg())
308     MRI->removeRegOperandFromUseList(Operands + OpNo);
309 
310   // Don't call the MachineOperand destructor. A lot of this code depends on
311   // MachineOperand having a trivial destructor anyway, and adding a call here
312   // wouldn't make it 'destructor-correct'.
313 
314   if (unsigned N = NumOperands - 1 - OpNo)
315     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
316   --NumOperands;
317 }
318 
319 void MachineInstr::setExtraInfo(MachineFunction &MF,
320                                 ArrayRef<MachineMemOperand *> MMOs,
321                                 MCSymbol *PreInstrSymbol,
322                                 MCSymbol *PostInstrSymbol,
323                                 MDNode *HeapAllocMarker) {
324   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
325   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
326   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
327   int NumPointers =
328       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
329 
330   // Drop all extra info if there is none.
331   if (NumPointers <= 0) {
332     Info.clear();
333     return;
334   }
335 
336   // If more than one pointer, then store out of line. Store heap alloc markers
337   // out of line because PointerSumType cannot hold more than 4 tag types with
338   // 32-bit pointers.
339   // FIXME: Maybe we should make the symbols in the extra info mutable?
340   else if (NumPointers > 1 || HasHeapAllocMarker) {
341     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfoWithMarker(
342         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
343     return;
344   }
345 
346   // Otherwise store the single pointer inline.
347   if (HasPreInstrSymbol)
348     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
349   else if (HasPostInstrSymbol)
350     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
351   else
352     Info.set<EIIK_MMO>(MMOs[0]);
353 }
354 
355 void MachineInstr::dropMemRefs(MachineFunction &MF) {
356   if (memoperands_empty())
357     return;
358 
359   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
360                getHeapAllocMarker());
361 }
362 
363 void MachineInstr::setMemRefs(MachineFunction &MF,
364                               ArrayRef<MachineMemOperand *> MMOs) {
365   if (MMOs.empty()) {
366     dropMemRefs(MF);
367     return;
368   }
369 
370   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
371                getHeapAllocMarker());
372 }
373 
374 void MachineInstr::addMemOperand(MachineFunction &MF,
375                                  MachineMemOperand *MO) {
376   SmallVector<MachineMemOperand *, 2> MMOs;
377   MMOs.append(memoperands_begin(), memoperands_end());
378   MMOs.push_back(MO);
379   setMemRefs(MF, MMOs);
380 }
381 
382 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
383   if (this == &MI)
384     // Nothing to do for a self-clone!
385     return;
386 
387   assert(&MF == MI.getMF() &&
388          "Invalid machine functions when cloning memory refrences!");
389   // See if we can just steal the extra info already allocated for the
390   // instruction. We can do this whenever the pre- and post-instruction symbols
391   // are the same (including null).
392   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
393       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
394       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
395     Info = MI.Info;
396     return;
397   }
398 
399   // Otherwise, fall back on a copy-based clone.
400   setMemRefs(MF, MI.memoperands());
401 }
402 
403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
404 /// identical.
405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
406                              ArrayRef<MachineMemOperand *> RHS) {
407   if (LHS.size() != RHS.size())
408     return false;
409 
410   auto LHSPointees = make_pointee_range(LHS);
411   auto RHSPointees = make_pointee_range(RHS);
412   return std::equal(LHSPointees.begin(), LHSPointees.end(),
413                     RHSPointees.begin());
414 }
415 
416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
417                                       ArrayRef<const MachineInstr *> MIs) {
418   // Try handling easy numbers of MIs with simpler mechanisms.
419   if (MIs.empty()) {
420     dropMemRefs(MF);
421     return;
422   }
423   if (MIs.size() == 1) {
424     cloneMemRefs(MF, *MIs[0]);
425     return;
426   }
427   // Because an empty memoperands list provides *no* information and must be
428   // handled conservatively (assuming the instruction can do anything), the only
429   // way to merge with it is to drop all other memoperands.
430   if (MIs[0]->memoperands_empty()) {
431     dropMemRefs(MF);
432     return;
433   }
434 
435   // Handle the general case.
436   SmallVector<MachineMemOperand *, 2> MergedMMOs;
437   // Start with the first instruction.
438   assert(&MF == MIs[0]->getMF() &&
439          "Invalid machine functions when cloning memory references!");
440   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
441   // Now walk all the other instructions and accumulate any different MMOs.
442   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
443     assert(&MF == MI.getMF() &&
444            "Invalid machine functions when cloning memory references!");
445 
446     // Skip MIs with identical operands to the first. This is a somewhat
447     // arbitrary hack but will catch common cases without being quadratic.
448     // TODO: We could fully implement merge semantics here if needed.
449     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
450       continue;
451 
452     // Because an empty memoperands list provides *no* information and must be
453     // handled conservatively (assuming the instruction can do anything), the
454     // only way to merge with it is to drop all other memoperands.
455     if (MI.memoperands_empty()) {
456       dropMemRefs(MF);
457       return;
458     }
459 
460     // Otherwise accumulate these into our temporary buffer of the merged state.
461     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
462   }
463 
464   setMemRefs(MF, MergedMMOs);
465 }
466 
467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
468   // Do nothing if old and new symbols are the same.
469   if (Symbol == getPreInstrSymbol())
470     return;
471 
472   // If there was only one symbol and we're removing it, just clear info.
473   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
474     Info.clear();
475     return;
476   }
477 
478   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
479                getHeapAllocMarker());
480 }
481 
482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
483   // Do nothing if old and new symbols are the same.
484   if (Symbol == getPostInstrSymbol())
485     return;
486 
487   // If there was only one symbol and we're removing it, just clear info.
488   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
489     Info.clear();
490     return;
491   }
492 
493   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
494                getHeapAllocMarker());
495 }
496 
497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
498   // Do nothing if old and new symbols are the same.
499   if (Marker == getHeapAllocMarker())
500     return;
501 
502   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
503                Marker);
504 }
505 
506 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
507                                      const MachineInstr &MI) {
508   if (this == &MI)
509     // Nothing to do for a self-clone!
510     return;
511 
512   assert(&MF == MI.getMF() &&
513          "Invalid machine functions when cloning instruction symbols!");
514 
515   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
516   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
517   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
518 }
519 
520 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
521   // For now, the just return the union of the flags. If the flags get more
522   // complicated over time, we might need more logic here.
523   return getFlags() | Other.getFlags();
524 }
525 
526 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
527   uint16_t MIFlags = 0;
528   // Copy the wrapping flags.
529   if (const OverflowingBinaryOperator *OB =
530           dyn_cast<OverflowingBinaryOperator>(&I)) {
531     if (OB->hasNoSignedWrap())
532       MIFlags |= MachineInstr::MIFlag::NoSWrap;
533     if (OB->hasNoUnsignedWrap())
534       MIFlags |= MachineInstr::MIFlag::NoUWrap;
535   }
536 
537   // Copy the exact flag.
538   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
539     if (PE->isExact())
540       MIFlags |= MachineInstr::MIFlag::IsExact;
541 
542   // Copy the fast-math flags.
543   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
544     const FastMathFlags Flags = FP->getFastMathFlags();
545     if (Flags.noNaNs())
546       MIFlags |= MachineInstr::MIFlag::FmNoNans;
547     if (Flags.noInfs())
548       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
549     if (Flags.noSignedZeros())
550       MIFlags |= MachineInstr::MIFlag::FmNsz;
551     if (Flags.allowReciprocal())
552       MIFlags |= MachineInstr::MIFlag::FmArcp;
553     if (Flags.allowContract())
554       MIFlags |= MachineInstr::MIFlag::FmContract;
555     if (Flags.approxFunc())
556       MIFlags |= MachineInstr::MIFlag::FmAfn;
557     if (Flags.allowReassoc())
558       MIFlags |= MachineInstr::MIFlag::FmReassoc;
559   }
560 
561   return MIFlags;
562 }
563 
564 void MachineInstr::copyIRFlags(const Instruction &I) {
565   Flags = copyFlagsFromInstruction(I);
566 }
567 
568 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
569   assert(!isBundledWithPred() && "Must be called on bundle header");
570   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
571     if (MII->getDesc().getFlags() & Mask) {
572       if (Type == AnyInBundle)
573         return true;
574     } else {
575       if (Type == AllInBundle && !MII->isBundle())
576         return false;
577     }
578     // This was the last instruction in the bundle.
579     if (!MII->isBundledWithSucc())
580       return Type == AllInBundle;
581   }
582 }
583 
584 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
585                                  MICheckType Check) const {
586   // If opcodes or number of operands are not the same then the two
587   // instructions are obviously not identical.
588   if (Other.getOpcode() != getOpcode() ||
589       Other.getNumOperands() != getNumOperands())
590     return false;
591 
592   if (isBundle()) {
593     // We have passed the test above that both instructions have the same
594     // opcode, so we know that both instructions are bundles here. Let's compare
595     // MIs inside the bundle.
596     assert(Other.isBundle() && "Expected that both instructions are bundles.");
597     MachineBasicBlock::const_instr_iterator I1 = getIterator();
598     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
599     // Loop until we analysed the last intruction inside at least one of the
600     // bundles.
601     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
602       ++I1;
603       ++I2;
604       if (!I1->isIdenticalTo(*I2, Check))
605         return false;
606     }
607     // If we've reached the end of just one of the two bundles, but not both,
608     // the instructions are not identical.
609     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
610       return false;
611   }
612 
613   // Check operands to make sure they match.
614   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
615     const MachineOperand &MO = getOperand(i);
616     const MachineOperand &OMO = Other.getOperand(i);
617     if (!MO.isReg()) {
618       if (!MO.isIdenticalTo(OMO))
619         return false;
620       continue;
621     }
622 
623     // Clients may or may not want to ignore defs when testing for equality.
624     // For example, machine CSE pass only cares about finding common
625     // subexpressions, so it's safe to ignore virtual register defs.
626     if (MO.isDef()) {
627       if (Check == IgnoreDefs)
628         continue;
629       else if (Check == IgnoreVRegDefs) {
630         if (!TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
631             !TargetRegisterInfo::isVirtualRegister(OMO.getReg()))
632           if (!MO.isIdenticalTo(OMO))
633             return false;
634       } else {
635         if (!MO.isIdenticalTo(OMO))
636           return false;
637         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
638           return false;
639       }
640     } else {
641       if (!MO.isIdenticalTo(OMO))
642         return false;
643       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
644         return false;
645     }
646   }
647   // If DebugLoc does not match then two debug instructions are not identical.
648   if (isDebugInstr())
649     if (getDebugLoc() && Other.getDebugLoc() &&
650         getDebugLoc() != Other.getDebugLoc())
651       return false;
652   return true;
653 }
654 
655 const MachineFunction *MachineInstr::getMF() const {
656   return getParent()->getParent();
657 }
658 
659 MachineInstr *MachineInstr::removeFromParent() {
660   assert(getParent() && "Not embedded in a basic block!");
661   return getParent()->remove(this);
662 }
663 
664 MachineInstr *MachineInstr::removeFromBundle() {
665   assert(getParent() && "Not embedded in a basic block!");
666   return getParent()->remove_instr(this);
667 }
668 
669 void MachineInstr::eraseFromParent() {
670   assert(getParent() && "Not embedded in a basic block!");
671   getParent()->erase(this);
672 }
673 
674 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
675   assert(getParent() && "Not embedded in a basic block!");
676   MachineBasicBlock *MBB = getParent();
677   MachineFunction *MF = MBB->getParent();
678   assert(MF && "Not embedded in a function!");
679 
680   MachineInstr *MI = (MachineInstr *)this;
681   MachineRegisterInfo &MRI = MF->getRegInfo();
682 
683   for (const MachineOperand &MO : MI->operands()) {
684     if (!MO.isReg() || !MO.isDef())
685       continue;
686     unsigned Reg = MO.getReg();
687     if (!TargetRegisterInfo::isVirtualRegister(Reg))
688       continue;
689     MRI.markUsesInDebugValueAsUndef(Reg);
690   }
691   MI->eraseFromParent();
692 }
693 
694 void MachineInstr::eraseFromBundle() {
695   assert(getParent() && "Not embedded in a basic block!");
696   getParent()->erase_instr(this);
697 }
698 
699 unsigned MachineInstr::getNumExplicitOperands() const {
700   unsigned NumOperands = MCID->getNumOperands();
701   if (!MCID->isVariadic())
702     return NumOperands;
703 
704   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
705     const MachineOperand &MO = getOperand(I);
706     // The operands must always be in the following order:
707     // - explicit reg defs,
708     // - other explicit operands (reg uses, immediates, etc.),
709     // - implicit reg defs
710     // - implicit reg uses
711     if (MO.isReg() && MO.isImplicit())
712       break;
713     ++NumOperands;
714   }
715   return NumOperands;
716 }
717 
718 unsigned MachineInstr::getNumExplicitDefs() const {
719   unsigned NumDefs = MCID->getNumDefs();
720   if (!MCID->isVariadic())
721     return NumDefs;
722 
723   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
724     const MachineOperand &MO = getOperand(I);
725     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
726       break;
727     ++NumDefs;
728   }
729   return NumDefs;
730 }
731 
732 void MachineInstr::bundleWithPred() {
733   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
734   setFlag(BundledPred);
735   MachineBasicBlock::instr_iterator Pred = getIterator();
736   --Pred;
737   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
738   Pred->setFlag(BundledSucc);
739 }
740 
741 void MachineInstr::bundleWithSucc() {
742   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
743   setFlag(BundledSucc);
744   MachineBasicBlock::instr_iterator Succ = getIterator();
745   ++Succ;
746   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
747   Succ->setFlag(BundledPred);
748 }
749 
750 void MachineInstr::unbundleFromPred() {
751   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
752   clearFlag(BundledPred);
753   MachineBasicBlock::instr_iterator Pred = getIterator();
754   --Pred;
755   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
756   Pred->clearFlag(BundledSucc);
757 }
758 
759 void MachineInstr::unbundleFromSucc() {
760   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
761   clearFlag(BundledSucc);
762   MachineBasicBlock::instr_iterator Succ = getIterator();
763   ++Succ;
764   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
765   Succ->clearFlag(BundledPred);
766 }
767 
768 bool MachineInstr::isStackAligningInlineAsm() const {
769   if (isInlineAsm()) {
770     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
771     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
772       return true;
773   }
774   return false;
775 }
776 
777 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
778   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
779   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
780   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
781 }
782 
783 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
784                                        unsigned *GroupNo) const {
785   assert(isInlineAsm() && "Expected an inline asm instruction");
786   assert(OpIdx < getNumOperands() && "OpIdx out of range");
787 
788   // Ignore queries about the initial operands.
789   if (OpIdx < InlineAsm::MIOp_FirstOperand)
790     return -1;
791 
792   unsigned Group = 0;
793   unsigned NumOps;
794   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
795        i += NumOps) {
796     const MachineOperand &FlagMO = getOperand(i);
797     // If we reach the implicit register operands, stop looking.
798     if (!FlagMO.isImm())
799       return -1;
800     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
801     if (i + NumOps > OpIdx) {
802       if (GroupNo)
803         *GroupNo = Group;
804       return i;
805     }
806     ++Group;
807   }
808   return -1;
809 }
810 
811 const DILabel *MachineInstr::getDebugLabel() const {
812   assert(isDebugLabel() && "not a DBG_LABEL");
813   return cast<DILabel>(getOperand(0).getMetadata());
814 }
815 
816 const DILocalVariable *MachineInstr::getDebugVariable() const {
817   assert(isDebugValue() && "not a DBG_VALUE");
818   return cast<DILocalVariable>(getOperand(2).getMetadata());
819 }
820 
821 const DIExpression *MachineInstr::getDebugExpression() const {
822   assert(isDebugValue() && "not a DBG_VALUE");
823   return cast<DIExpression>(getOperand(3).getMetadata());
824 }
825 
826 const TargetRegisterClass*
827 MachineInstr::getRegClassConstraint(unsigned OpIdx,
828                                     const TargetInstrInfo *TII,
829                                     const TargetRegisterInfo *TRI) const {
830   assert(getParent() && "Can't have an MBB reference here!");
831   assert(getMF() && "Can't have an MF reference here!");
832   const MachineFunction &MF = *getMF();
833 
834   // Most opcodes have fixed constraints in their MCInstrDesc.
835   if (!isInlineAsm())
836     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
837 
838   if (!getOperand(OpIdx).isReg())
839     return nullptr;
840 
841   // For tied uses on inline asm, get the constraint from the def.
842   unsigned DefIdx;
843   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
844     OpIdx = DefIdx;
845 
846   // Inline asm stores register class constraints in the flag word.
847   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
848   if (FlagIdx < 0)
849     return nullptr;
850 
851   unsigned Flag = getOperand(FlagIdx).getImm();
852   unsigned RCID;
853   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
854        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
855        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
856       InlineAsm::hasRegClassConstraint(Flag, RCID))
857     return TRI->getRegClass(RCID);
858 
859   // Assume that all registers in a memory operand are pointers.
860   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
861     return TRI->getPointerRegClass(MF);
862 
863   return nullptr;
864 }
865 
866 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
867     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
868     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
869   // Check every operands inside the bundle if we have
870   // been asked to.
871   if (ExploreBundle)
872     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
873          ++OpndIt)
874       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
875           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
876   else
877     // Otherwise, just check the current operands.
878     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
879       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
880   return CurRC;
881 }
882 
883 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
884     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
885     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
886   assert(CurRC && "Invalid initial register class");
887   // Check if Reg is constrained by some of its use/def from MI.
888   const MachineOperand &MO = getOperand(OpIdx);
889   if (!MO.isReg() || MO.getReg() != Reg)
890     return CurRC;
891   // If yes, accumulate the constraints through the operand.
892   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
893 }
894 
895 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
896     unsigned OpIdx, const TargetRegisterClass *CurRC,
897     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
898   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
899   const MachineOperand &MO = getOperand(OpIdx);
900   assert(MO.isReg() &&
901          "Cannot get register constraints for non-register operand");
902   assert(CurRC && "Invalid initial register class");
903   if (unsigned SubIdx = MO.getSubReg()) {
904     if (OpRC)
905       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
906     else
907       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
908   } else if (OpRC)
909     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
910   return CurRC;
911 }
912 
913 /// Return the number of instructions inside the MI bundle, not counting the
914 /// header instruction.
915 unsigned MachineInstr::getBundleSize() const {
916   MachineBasicBlock::const_instr_iterator I = getIterator();
917   unsigned Size = 0;
918   while (I->isBundledWithSucc()) {
919     ++Size;
920     ++I;
921   }
922   return Size;
923 }
924 
925 /// Returns true if the MachineInstr has an implicit-use operand of exactly
926 /// the given register (not considering sub/super-registers).
927 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
928   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
929     const MachineOperand &MO = getOperand(i);
930     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
931       return true;
932   }
933   return false;
934 }
935 
936 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
937 /// the specific register or -1 if it is not found. It further tightens
938 /// the search criteria to a use that kills the register if isKill is true.
939 int MachineInstr::findRegisterUseOperandIdx(
940     unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
941   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
942     const MachineOperand &MO = getOperand(i);
943     if (!MO.isReg() || !MO.isUse())
944       continue;
945     unsigned MOReg = MO.getReg();
946     if (!MOReg)
947       continue;
948     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
949       if (!isKill || MO.isKill())
950         return i;
951   }
952   return -1;
953 }
954 
955 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
956 /// indicating if this instruction reads or writes Reg. This also considers
957 /// partial defines.
958 std::pair<bool,bool>
959 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
960                                          SmallVectorImpl<unsigned> *Ops) const {
961   bool PartDef = false; // Partial redefine.
962   bool FullDef = false; // Full define.
963   bool Use = false;
964 
965   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
966     const MachineOperand &MO = getOperand(i);
967     if (!MO.isReg() || MO.getReg() != Reg)
968       continue;
969     if (Ops)
970       Ops->push_back(i);
971     if (MO.isUse())
972       Use |= !MO.isUndef();
973     else if (MO.getSubReg() && !MO.isUndef())
974       // A partial def undef doesn't count as reading the register.
975       PartDef = true;
976     else
977       FullDef = true;
978   }
979   // A partial redefine uses Reg unless there is also a full define.
980   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
981 }
982 
983 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
984 /// the specified register or -1 if it is not found. If isDead is true, defs
985 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
986 /// also checks if there is a def of a super-register.
987 int
988 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
989                                         const TargetRegisterInfo *TRI) const {
990   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
991   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
992     const MachineOperand &MO = getOperand(i);
993     // Accept regmask operands when Overlap is set.
994     // Ignore them when looking for a specific def operand (Overlap == false).
995     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
996       return i;
997     if (!MO.isReg() || !MO.isDef())
998       continue;
999     unsigned MOReg = MO.getReg();
1000     bool Found = (MOReg == Reg);
1001     if (!Found && TRI && isPhys &&
1002         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1003       if (Overlap)
1004         Found = TRI->regsOverlap(MOReg, Reg);
1005       else
1006         Found = TRI->isSubRegister(MOReg, Reg);
1007     }
1008     if (Found && (!isDead || MO.isDead()))
1009       return i;
1010   }
1011   return -1;
1012 }
1013 
1014 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1015 /// operand list that is used to represent the predicate. It returns -1 if
1016 /// none is found.
1017 int MachineInstr::findFirstPredOperandIdx() const {
1018   // Don't call MCID.findFirstPredOperandIdx() because this variant
1019   // is sometimes called on an instruction that's not yet complete, and
1020   // so the number of operands is less than the MCID indicates. In
1021   // particular, the PTX target does this.
1022   const MCInstrDesc &MCID = getDesc();
1023   if (MCID.isPredicable()) {
1024     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1025       if (MCID.OpInfo[i].isPredicate())
1026         return i;
1027   }
1028 
1029   return -1;
1030 }
1031 
1032 // MachineOperand::TiedTo is 4 bits wide.
1033 const unsigned TiedMax = 15;
1034 
1035 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1036 ///
1037 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1038 /// field. TiedTo can have these values:
1039 ///
1040 /// 0:              Operand is not tied to anything.
1041 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1042 /// TiedMax:        Tied to an operand >= TiedMax-1.
1043 ///
1044 /// The tied def must be one of the first TiedMax operands on a normal
1045 /// instruction. INLINEASM instructions allow more tied defs.
1046 ///
1047 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1048   MachineOperand &DefMO = getOperand(DefIdx);
1049   MachineOperand &UseMO = getOperand(UseIdx);
1050   assert(DefMO.isDef() && "DefIdx must be a def operand");
1051   assert(UseMO.isUse() && "UseIdx must be a use operand");
1052   assert(!DefMO.isTied() && "Def is already tied to another use");
1053   assert(!UseMO.isTied() && "Use is already tied to another def");
1054 
1055   if (DefIdx < TiedMax)
1056     UseMO.TiedTo = DefIdx + 1;
1057   else {
1058     // Inline asm can use the group descriptors to find tied operands, but on
1059     // normal instruction, the tied def must be within the first TiedMax
1060     // operands.
1061     assert(isInlineAsm() && "DefIdx out of range");
1062     UseMO.TiedTo = TiedMax;
1063   }
1064 
1065   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1066   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1067 }
1068 
1069 /// Given the index of a tied register operand, find the operand it is tied to.
1070 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1071 /// which must exist.
1072 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1073   const MachineOperand &MO = getOperand(OpIdx);
1074   assert(MO.isTied() && "Operand isn't tied");
1075 
1076   // Normally TiedTo is in range.
1077   if (MO.TiedTo < TiedMax)
1078     return MO.TiedTo - 1;
1079 
1080   // Uses on normal instructions can be out of range.
1081   if (!isInlineAsm()) {
1082     // Normal tied defs must be in the 0..TiedMax-1 range.
1083     if (MO.isUse())
1084       return TiedMax - 1;
1085     // MO is a def. Search for the tied use.
1086     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1087       const MachineOperand &UseMO = getOperand(i);
1088       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1089         return i;
1090     }
1091     llvm_unreachable("Can't find tied use");
1092   }
1093 
1094   // Now deal with inline asm by parsing the operand group descriptor flags.
1095   // Find the beginning of each operand group.
1096   SmallVector<unsigned, 8> GroupIdx;
1097   unsigned OpIdxGroup = ~0u;
1098   unsigned NumOps;
1099   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1100        i += NumOps) {
1101     const MachineOperand &FlagMO = getOperand(i);
1102     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1103     unsigned CurGroup = GroupIdx.size();
1104     GroupIdx.push_back(i);
1105     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1106     // OpIdx belongs to this operand group.
1107     if (OpIdx > i && OpIdx < i + NumOps)
1108       OpIdxGroup = CurGroup;
1109     unsigned TiedGroup;
1110     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1111       continue;
1112     // Operands in this group are tied to operands in TiedGroup which must be
1113     // earlier. Find the number of operands between the two groups.
1114     unsigned Delta = i - GroupIdx[TiedGroup];
1115 
1116     // OpIdx is a use tied to TiedGroup.
1117     if (OpIdxGroup == CurGroup)
1118       return OpIdx - Delta;
1119 
1120     // OpIdx is a def tied to this use group.
1121     if (OpIdxGroup == TiedGroup)
1122       return OpIdx + Delta;
1123   }
1124   llvm_unreachable("Invalid tied operand on inline asm");
1125 }
1126 
1127 /// clearKillInfo - Clears kill flags on all operands.
1128 ///
1129 void MachineInstr::clearKillInfo() {
1130   for (MachineOperand &MO : operands()) {
1131     if (MO.isReg() && MO.isUse())
1132       MO.setIsKill(false);
1133   }
1134 }
1135 
1136 void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg,
1137                                       unsigned SubIdx,
1138                                       const TargetRegisterInfo &RegInfo) {
1139   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1140     if (SubIdx)
1141       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1142     for (MachineOperand &MO : operands()) {
1143       if (!MO.isReg() || MO.getReg() != FromReg)
1144         continue;
1145       MO.substPhysReg(ToReg, RegInfo);
1146     }
1147   } else {
1148     for (MachineOperand &MO : operands()) {
1149       if (!MO.isReg() || MO.getReg() != FromReg)
1150         continue;
1151       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1152     }
1153   }
1154 }
1155 
1156 /// isSafeToMove - Return true if it is safe to move this instruction. If
1157 /// SawStore is set to true, it means that there is a store (or call) between
1158 /// the instruction's location and its intended destination.
1159 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1160   // Ignore stuff that we obviously can't move.
1161   //
1162   // Treat volatile loads as stores. This is not strictly necessary for
1163   // volatiles, but it is required for atomic loads. It is not allowed to move
1164   // a load across an atomic load with Ordering > Monotonic.
1165   if (mayStore() || isCall() || isPHI() ||
1166       (mayLoad() && hasOrderedMemoryRef())) {
1167     SawStore = true;
1168     return false;
1169   }
1170 
1171   if (isPosition() || isDebugInstr() || isTerminator() ||
1172       mayRaiseFPException() || hasUnmodeledSideEffects())
1173     return false;
1174 
1175   // See if this instruction does a load.  If so, we have to guarantee that the
1176   // loaded value doesn't change between the load and the its intended
1177   // destination. The check for isInvariantLoad gives the targe the chance to
1178   // classify the load as always returning a constant, e.g. a constant pool
1179   // load.
1180   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1181     // Otherwise, this is a real load.  If there is a store between the load and
1182     // end of block, we can't move it.
1183     return !SawStore;
1184 
1185   return true;
1186 }
1187 
1188 bool MachineInstr::mayAlias(AliasAnalysis *AA, const MachineInstr &Other,
1189                             bool UseTBAA) const {
1190   const MachineFunction *MF = getMF();
1191   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1192   const MachineFrameInfo &MFI = MF->getFrameInfo();
1193 
1194   // If neither instruction stores to memory, they can't alias in any
1195   // meaningful way, even if they read from the same address.
1196   if (!mayStore() && !Other.mayStore())
1197     return false;
1198 
1199   // Let the target decide if memory accesses cannot possibly overlap.
1200   if (TII->areMemAccessesTriviallyDisjoint(*this, Other, AA))
1201     return false;
1202 
1203   // FIXME: Need to handle multiple memory operands to support all targets.
1204   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1205     return true;
1206 
1207   MachineMemOperand *MMOa = *memoperands_begin();
1208   MachineMemOperand *MMOb = *Other.memoperands_begin();
1209 
1210   // The following interface to AA is fashioned after DAGCombiner::isAlias
1211   // and operates with MachineMemOperand offset with some important
1212   // assumptions:
1213   //   - LLVM fundamentally assumes flat address spaces.
1214   //   - MachineOperand offset can *only* result from legalization and
1215   //     cannot affect queries other than the trivial case of overlap
1216   //     checking.
1217   //   - These offsets never wrap and never step outside
1218   //     of allocated objects.
1219   //   - There should never be any negative offsets here.
1220   //
1221   // FIXME: Modify API to hide this math from "user"
1222   // Even before we go to AA we can reason locally about some
1223   // memory objects. It can save compile time, and possibly catch some
1224   // corner cases not currently covered.
1225 
1226   int64_t OffsetA = MMOa->getOffset();
1227   int64_t OffsetB = MMOb->getOffset();
1228   int64_t MinOffset = std::min(OffsetA, OffsetB);
1229 
1230   uint64_t WidthA = MMOa->getSize();
1231   uint64_t WidthB = MMOb->getSize();
1232   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1233   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1234 
1235   const Value *ValA = MMOa->getValue();
1236   const Value *ValB = MMOb->getValue();
1237   bool SameVal = (ValA && ValB && (ValA == ValB));
1238   if (!SameVal) {
1239     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1240     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1241     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1242       return false;
1243     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1244       return false;
1245     if (PSVa && PSVb && (PSVa == PSVb))
1246       SameVal = true;
1247   }
1248 
1249   if (SameVal) {
1250     if (!KnownWidthA || !KnownWidthB)
1251       return true;
1252     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1253     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1254     return (MinOffset + LowWidth > MaxOffset);
1255   }
1256 
1257   if (!AA)
1258     return true;
1259 
1260   if (!ValA || !ValB)
1261     return true;
1262 
1263   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1264   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1265 
1266   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1267                                  : MemoryLocation::UnknownSize;
1268   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1269                                  : MemoryLocation::UnknownSize;
1270 
1271   AliasResult AAResult = AA->alias(
1272       MemoryLocation(ValA, OverlapA,
1273                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1274       MemoryLocation(ValB, OverlapB,
1275                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1276 
1277   return (AAResult != NoAlias);
1278 }
1279 
1280 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1281 /// or volatile memory reference, or if the information describing the memory
1282 /// reference is not available. Return false if it is known to have no ordered
1283 /// memory references.
1284 bool MachineInstr::hasOrderedMemoryRef() const {
1285   // An instruction known never to access memory won't have a volatile access.
1286   if (!mayStore() &&
1287       !mayLoad() &&
1288       !isCall() &&
1289       !hasUnmodeledSideEffects())
1290     return false;
1291 
1292   // Otherwise, if the instruction has no memory reference information,
1293   // conservatively assume it wasn't preserved.
1294   if (memoperands_empty())
1295     return true;
1296 
1297   // Check if any of our memory operands are ordered.
1298   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1299     return !MMO->isUnordered();
1300   });
1301 }
1302 
1303 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1304 /// trap and is loading from a location whose value is invariant across a run of
1305 /// this function.
1306 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
1307   // If the instruction doesn't load at all, it isn't an invariant load.
1308   if (!mayLoad())
1309     return false;
1310 
1311   // If the instruction has lost its memoperands, conservatively assume that
1312   // it may not be an invariant load.
1313   if (memoperands_empty())
1314     return false;
1315 
1316   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1317 
1318   for (MachineMemOperand *MMO : memoperands()) {
1319     if (!MMO->isUnordered())
1320       // If the memory operand has ordering side effects, we can't move the
1321       // instruction.  Such an instruction is technically an invariant load,
1322       // but the caller code would need updated to expect that.
1323       return false;
1324     if (MMO->isStore()) return false;
1325     if (MMO->isInvariant() && MMO->isDereferenceable())
1326       continue;
1327 
1328     // A load from a constant PseudoSourceValue is invariant.
1329     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1330       if (PSV->isConstant(&MFI))
1331         continue;
1332 
1333     if (const Value *V = MMO->getValue()) {
1334       // If we have an AliasAnalysis, ask it whether the memory is constant.
1335       if (AA &&
1336           AA->pointsToConstantMemory(
1337               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1338         continue;
1339     }
1340 
1341     // Otherwise assume conservatively.
1342     return false;
1343   }
1344 
1345   // Everything checks out.
1346   return true;
1347 }
1348 
1349 /// isConstantValuePHI - If the specified instruction is a PHI that always
1350 /// merges together the same virtual register, return the register, otherwise
1351 /// return 0.
1352 unsigned MachineInstr::isConstantValuePHI() const {
1353   if (!isPHI())
1354     return 0;
1355   assert(getNumOperands() >= 3 &&
1356          "It's illegal to have a PHI without source operands");
1357 
1358   unsigned Reg = getOperand(1).getReg();
1359   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1360     if (getOperand(i).getReg() != Reg)
1361       return 0;
1362   return Reg;
1363 }
1364 
1365 bool MachineInstr::hasUnmodeledSideEffects() const {
1366   if (hasProperty(MCID::UnmodeledSideEffects))
1367     return true;
1368   if (isInlineAsm()) {
1369     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1370     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1371       return true;
1372   }
1373 
1374   return false;
1375 }
1376 
1377 bool MachineInstr::isLoadFoldBarrier() const {
1378   return mayStore() || isCall() || hasUnmodeledSideEffects();
1379 }
1380 
1381 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1382 ///
1383 bool MachineInstr::allDefsAreDead() const {
1384   for (const MachineOperand &MO : operands()) {
1385     if (!MO.isReg() || MO.isUse())
1386       continue;
1387     if (!MO.isDead())
1388       return false;
1389   }
1390   return true;
1391 }
1392 
1393 /// copyImplicitOps - Copy implicit register operands from specified
1394 /// instruction to this instruction.
1395 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1396                                    const MachineInstr &MI) {
1397   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1398        i != e; ++i) {
1399     const MachineOperand &MO = MI.getOperand(i);
1400     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1401       addOperand(MF, MO);
1402   }
1403 }
1404 
1405 bool MachineInstr::hasComplexRegisterTies() const {
1406   const MCInstrDesc &MCID = getDesc();
1407   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1408     const auto &Operand = getOperand(I);
1409     if (!Operand.isReg() || Operand.isDef())
1410       // Ignore the defined registers as MCID marks only the uses as tied.
1411       continue;
1412     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1413     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1414     if (ExpectedTiedIdx != TiedIdx)
1415       return true;
1416   }
1417   return false;
1418 }
1419 
1420 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1421                                  const MachineRegisterInfo &MRI) const {
1422   const MachineOperand &Op = getOperand(OpIdx);
1423   if (!Op.isReg())
1424     return LLT{};
1425 
1426   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1427     return MRI.getType(Op.getReg());
1428 
1429   auto &OpInfo = getDesc().OpInfo[OpIdx];
1430   if (!OpInfo.isGenericType())
1431     return MRI.getType(Op.getReg());
1432 
1433   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1434     return LLT{};
1435 
1436   LLT TypeToPrint = MRI.getType(Op.getReg());
1437   // Don't mark the type index printed if it wasn't actually printed: maybe
1438   // another operand with the same type index has an actual type attached:
1439   if (TypeToPrint.isValid())
1440     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1441   return TypeToPrint;
1442 }
1443 
1444 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1445 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1446   dbgs() << "  ";
1447   print(dbgs());
1448 }
1449 #endif
1450 
1451 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1452                          bool SkipDebugLoc, bool AddNewLine,
1453                          const TargetInstrInfo *TII) const {
1454   const Module *M = nullptr;
1455   const Function *F = nullptr;
1456   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1457     F = &MF->getFunction();
1458     M = F->getParent();
1459     if (!TII)
1460       TII = MF->getSubtarget().getInstrInfo();
1461   }
1462 
1463   ModuleSlotTracker MST(M);
1464   if (F)
1465     MST.incorporateFunction(*F);
1466   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1467 }
1468 
1469 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1470                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1471                          bool AddNewLine, const TargetInstrInfo *TII) const {
1472   // We can be a bit tidier if we know the MachineFunction.
1473   const MachineFunction *MF = nullptr;
1474   const TargetRegisterInfo *TRI = nullptr;
1475   const MachineRegisterInfo *MRI = nullptr;
1476   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1477   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1478 
1479   if (isCFIInstruction())
1480     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1481 
1482   SmallBitVector PrintedTypes(8);
1483   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1484   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1485     if (!ShouldPrintRegisterTies)
1486       return 0U;
1487     const MachineOperand &MO = getOperand(OpIdx);
1488     if (MO.isReg() && MO.isTied() && !MO.isDef())
1489       return findTiedOperandIdx(OpIdx);
1490     return 0U;
1491   };
1492   unsigned StartOp = 0;
1493   unsigned e = getNumOperands();
1494 
1495   // Print explicitly defined operands on the left of an assignment syntax.
1496   while (StartOp < e) {
1497     const MachineOperand &MO = getOperand(StartOp);
1498     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1499       break;
1500 
1501     if (StartOp != 0)
1502       OS << ", ";
1503 
1504     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1505     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1506     MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone,
1507              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1508     ++StartOp;
1509   }
1510 
1511   if (StartOp != 0)
1512     OS << " = ";
1513 
1514   if (getFlag(MachineInstr::FrameSetup))
1515     OS << "frame-setup ";
1516   if (getFlag(MachineInstr::FrameDestroy))
1517     OS << "frame-destroy ";
1518   if (getFlag(MachineInstr::FmNoNans))
1519     OS << "nnan ";
1520   if (getFlag(MachineInstr::FmNoInfs))
1521     OS << "ninf ";
1522   if (getFlag(MachineInstr::FmNsz))
1523     OS << "nsz ";
1524   if (getFlag(MachineInstr::FmArcp))
1525     OS << "arcp ";
1526   if (getFlag(MachineInstr::FmContract))
1527     OS << "contract ";
1528   if (getFlag(MachineInstr::FmAfn))
1529     OS << "afn ";
1530   if (getFlag(MachineInstr::FmReassoc))
1531     OS << "reassoc ";
1532   if (getFlag(MachineInstr::NoUWrap))
1533     OS << "nuw ";
1534   if (getFlag(MachineInstr::NoSWrap))
1535     OS << "nsw ";
1536   if (getFlag(MachineInstr::IsExact))
1537     OS << "exact ";
1538   if (getFlag(MachineInstr::FPExcept))
1539     OS << "fpexcept ";
1540 
1541   // Print the opcode name.
1542   if (TII)
1543     OS << TII->getName(getOpcode());
1544   else
1545     OS << "UNKNOWN";
1546 
1547   if (SkipOpers)
1548     return;
1549 
1550   // Print the rest of the operands.
1551   bool FirstOp = true;
1552   unsigned AsmDescOp = ~0u;
1553   unsigned AsmOpCount = 0;
1554 
1555   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1556     // Print asm string.
1557     OS << " ";
1558     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1559     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1560     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1561     getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1562                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1563                             IntrinsicInfo);
1564 
1565     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1566     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1567     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1568       OS << " [sideeffect]";
1569     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1570       OS << " [mayload]";
1571     if (ExtraInfo & InlineAsm::Extra_MayStore)
1572       OS << " [maystore]";
1573     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1574       OS << " [isconvergent]";
1575     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1576       OS << " [alignstack]";
1577     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1578       OS << " [attdialect]";
1579     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1580       OS << " [inteldialect]";
1581 
1582     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1583     FirstOp = false;
1584   }
1585 
1586   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1587     const MachineOperand &MO = getOperand(i);
1588 
1589     if (FirstOp) FirstOp = false; else OS << ",";
1590     OS << " ";
1591 
1592     if (isDebugValue() && MO.isMetadata()) {
1593       // Pretty print DBG_VALUE instructions.
1594       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1595       if (DIV && !DIV->getName().empty())
1596         OS << "!\"" << DIV->getName() << '\"';
1597       else {
1598         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1599         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1600         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1601                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1602       }
1603     } else if (isDebugLabel() && MO.isMetadata()) {
1604       // Pretty print DBG_LABEL instructions.
1605       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1606       if (DIL && !DIL->getName().empty())
1607         OS << "\"" << DIL->getName() << '\"';
1608       else {
1609         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1610         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1611         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1612                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1613       }
1614     } else if (i == AsmDescOp && MO.isImm()) {
1615       // Pretty print the inline asm operand descriptor.
1616       OS << '$' << AsmOpCount++;
1617       unsigned Flag = MO.getImm();
1618       switch (InlineAsm::getKind(Flag)) {
1619       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1620       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1621       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1622       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1623       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1624       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1625       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1626       }
1627 
1628       unsigned RCID = 0;
1629       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1630           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1631         if (TRI) {
1632           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1633         } else
1634           OS << ":RC" << RCID;
1635       }
1636 
1637       if (InlineAsm::isMemKind(Flag)) {
1638         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1639         switch (MCID) {
1640         case InlineAsm::Constraint_es: OS << ":es"; break;
1641         case InlineAsm::Constraint_i:  OS << ":i"; break;
1642         case InlineAsm::Constraint_m:  OS << ":m"; break;
1643         case InlineAsm::Constraint_o:  OS << ":o"; break;
1644         case InlineAsm::Constraint_v:  OS << ":v"; break;
1645         case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1646         case InlineAsm::Constraint_R:  OS << ":R"; break;
1647         case InlineAsm::Constraint_S:  OS << ":S"; break;
1648         case InlineAsm::Constraint_T:  OS << ":T"; break;
1649         case InlineAsm::Constraint_Um: OS << ":Um"; break;
1650         case InlineAsm::Constraint_Un: OS << ":Un"; break;
1651         case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1652         case InlineAsm::Constraint_Us: OS << ":Us"; break;
1653         case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1654         case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1655         case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1656         case InlineAsm::Constraint_X:  OS << ":X"; break;
1657         case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1658         case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1659         case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1660         default: OS << ":?"; break;
1661         }
1662       }
1663 
1664       unsigned TiedTo = 0;
1665       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1666         OS << " tiedto:$" << TiedTo;
1667 
1668       OS << ']';
1669 
1670       // Compute the index of the next operand descriptor.
1671       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1672     } else {
1673       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1674       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1675       if (MO.isImm() && isOperandSubregIdx(i))
1676         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1677       else
1678         MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone,
1679                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1680     }
1681   }
1682 
1683   // Print any optional symbols attached to this instruction as-if they were
1684   // operands.
1685   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1686     if (!FirstOp) {
1687       FirstOp = false;
1688       OS << ',';
1689     }
1690     OS << " pre-instr-symbol ";
1691     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1692   }
1693   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1694     if (!FirstOp) {
1695       FirstOp = false;
1696       OS << ',';
1697     }
1698     OS << " post-instr-symbol ";
1699     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1700   }
1701   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1702     if (!FirstOp) {
1703       FirstOp = false;
1704       OS << ',';
1705     }
1706     OS << " heap-alloc-marker";
1707   }
1708 
1709   if (!SkipDebugLoc) {
1710     if (const DebugLoc &DL = getDebugLoc()) {
1711       if (!FirstOp)
1712         OS << ',';
1713       OS << " debug-location ";
1714       DL->printAsOperand(OS, MST);
1715     }
1716   }
1717 
1718   if (!memoperands_empty()) {
1719     SmallVector<StringRef, 0> SSNs;
1720     const LLVMContext *Context = nullptr;
1721     std::unique_ptr<LLVMContext> CtxPtr;
1722     const MachineFrameInfo *MFI = nullptr;
1723     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1724       MFI = &MF->getFrameInfo();
1725       Context = &MF->getFunction().getContext();
1726     } else {
1727       CtxPtr = llvm::make_unique<LLVMContext>();
1728       Context = CtxPtr.get();
1729     }
1730 
1731     OS << " :: ";
1732     bool NeedComma = false;
1733     for (const MachineMemOperand *Op : memoperands()) {
1734       if (NeedComma)
1735         OS << ", ";
1736       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1737       NeedComma = true;
1738     }
1739   }
1740 
1741   if (SkipDebugLoc)
1742     return;
1743 
1744   bool HaveSemi = false;
1745 
1746   // Print debug location information.
1747   if (const DebugLoc &DL = getDebugLoc()) {
1748     if (!HaveSemi) {
1749       OS << ';';
1750       HaveSemi = true;
1751     }
1752     OS << ' ';
1753     DL.print(OS);
1754   }
1755 
1756   // Print extra comments for DEBUG_VALUE.
1757   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1758     if (!HaveSemi) {
1759       OS << ";";
1760       HaveSemi = true;
1761     }
1762     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1763     OS << " line no:" <<  DV->getLine();
1764     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1765       DebugLoc InlinedAtDL(InlinedAt);
1766       if (InlinedAtDL && MF) {
1767         OS << " inlined @[ ";
1768         InlinedAtDL.print(OS);
1769         OS << " ]";
1770       }
1771     }
1772     if (isIndirectDebugValue())
1773       OS << " indirect";
1774   }
1775   // TODO: DBG_LABEL
1776 
1777   if (AddNewLine)
1778     OS << '\n';
1779 }
1780 
1781 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1782                                      const TargetRegisterInfo *RegInfo,
1783                                      bool AddIfNotFound) {
1784   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1785   bool hasAliases = isPhysReg &&
1786     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1787   bool Found = false;
1788   SmallVector<unsigned,4> DeadOps;
1789   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1790     MachineOperand &MO = getOperand(i);
1791     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1792       continue;
1793 
1794     // DEBUG_VALUE nodes do not contribute to code generation and should
1795     // always be ignored. Failure to do so may result in trying to modify
1796     // KILL flags on DEBUG_VALUE nodes.
1797     if (MO.isDebug())
1798       continue;
1799 
1800     unsigned Reg = MO.getReg();
1801     if (!Reg)
1802       continue;
1803 
1804     if (Reg == IncomingReg) {
1805       if (!Found) {
1806         if (MO.isKill())
1807           // The register is already marked kill.
1808           return true;
1809         if (isPhysReg && isRegTiedToDefOperand(i))
1810           // Two-address uses of physregs must not be marked kill.
1811           return true;
1812         MO.setIsKill();
1813         Found = true;
1814       }
1815     } else if (hasAliases && MO.isKill() &&
1816                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1817       // A super-register kill already exists.
1818       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1819         return true;
1820       if (RegInfo->isSubRegister(IncomingReg, Reg))
1821         DeadOps.push_back(i);
1822     }
1823   }
1824 
1825   // Trim unneeded kill operands.
1826   while (!DeadOps.empty()) {
1827     unsigned OpIdx = DeadOps.back();
1828     if (getOperand(OpIdx).isImplicit() &&
1829         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1830       RemoveOperand(OpIdx);
1831     else
1832       getOperand(OpIdx).setIsKill(false);
1833     DeadOps.pop_back();
1834   }
1835 
1836   // If not found, this means an alias of one of the operands is killed. Add a
1837   // new implicit operand if required.
1838   if (!Found && AddIfNotFound) {
1839     addOperand(MachineOperand::CreateReg(IncomingReg,
1840                                          false /*IsDef*/,
1841                                          true  /*IsImp*/,
1842                                          true  /*IsKill*/));
1843     return true;
1844   }
1845   return Found;
1846 }
1847 
1848 void MachineInstr::clearRegisterKills(unsigned Reg,
1849                                       const TargetRegisterInfo *RegInfo) {
1850   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1851     RegInfo = nullptr;
1852   for (MachineOperand &MO : operands()) {
1853     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1854       continue;
1855     unsigned OpReg = MO.getReg();
1856     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1857       MO.setIsKill(false);
1858   }
1859 }
1860 
1861 bool MachineInstr::addRegisterDead(unsigned Reg,
1862                                    const TargetRegisterInfo *RegInfo,
1863                                    bool AddIfNotFound) {
1864   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1865   bool hasAliases = isPhysReg &&
1866     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1867   bool Found = false;
1868   SmallVector<unsigned,4> DeadOps;
1869   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1870     MachineOperand &MO = getOperand(i);
1871     if (!MO.isReg() || !MO.isDef())
1872       continue;
1873     unsigned MOReg = MO.getReg();
1874     if (!MOReg)
1875       continue;
1876 
1877     if (MOReg == Reg) {
1878       MO.setIsDead();
1879       Found = true;
1880     } else if (hasAliases && MO.isDead() &&
1881                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1882       // There exists a super-register that's marked dead.
1883       if (RegInfo->isSuperRegister(Reg, MOReg))
1884         return true;
1885       if (RegInfo->isSubRegister(Reg, MOReg))
1886         DeadOps.push_back(i);
1887     }
1888   }
1889 
1890   // Trim unneeded dead operands.
1891   while (!DeadOps.empty()) {
1892     unsigned OpIdx = DeadOps.back();
1893     if (getOperand(OpIdx).isImplicit() &&
1894         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1895       RemoveOperand(OpIdx);
1896     else
1897       getOperand(OpIdx).setIsDead(false);
1898     DeadOps.pop_back();
1899   }
1900 
1901   // If not found, this means an alias of one of the operands is dead. Add a
1902   // new implicit operand if required.
1903   if (Found || !AddIfNotFound)
1904     return Found;
1905 
1906   addOperand(MachineOperand::CreateReg(Reg,
1907                                        true  /*IsDef*/,
1908                                        true  /*IsImp*/,
1909                                        false /*IsKill*/,
1910                                        true  /*IsDead*/));
1911   return true;
1912 }
1913 
1914 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1915   for (MachineOperand &MO : operands()) {
1916     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1917       continue;
1918     MO.setIsDead(false);
1919   }
1920 }
1921 
1922 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1923   for (MachineOperand &MO : operands()) {
1924     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1925       continue;
1926     MO.setIsUndef(IsUndef);
1927   }
1928 }
1929 
1930 void MachineInstr::addRegisterDefined(unsigned Reg,
1931                                       const TargetRegisterInfo *RegInfo) {
1932   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1933     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1934     if (MO)
1935       return;
1936   } else {
1937     for (const MachineOperand &MO : operands()) {
1938       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1939           MO.getSubReg() == 0)
1940         return;
1941     }
1942   }
1943   addOperand(MachineOperand::CreateReg(Reg,
1944                                        true  /*IsDef*/,
1945                                        true  /*IsImp*/));
1946 }
1947 
1948 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1949                                          const TargetRegisterInfo &TRI) {
1950   bool HasRegMask = false;
1951   for (MachineOperand &MO : operands()) {
1952     if (MO.isRegMask()) {
1953       HasRegMask = true;
1954       continue;
1955     }
1956     if (!MO.isReg() || !MO.isDef()) continue;
1957     unsigned Reg = MO.getReg();
1958     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1959     // If there are no uses, including partial uses, the def is dead.
1960     if (llvm::none_of(UsedRegs,
1961                       [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1962       MO.setIsDead();
1963   }
1964 
1965   // This is a call with a register mask operand.
1966   // Mask clobbers are always dead, so add defs for the non-dead defines.
1967   if (HasRegMask)
1968     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1969          I != E; ++I)
1970       addRegisterDefined(*I, &TRI);
1971 }
1972 
1973 unsigned
1974 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1975   // Build up a buffer of hash code components.
1976   SmallVector<size_t, 8> HashComponents;
1977   HashComponents.reserve(MI->getNumOperands() + 1);
1978   HashComponents.push_back(MI->getOpcode());
1979   for (const MachineOperand &MO : MI->operands()) {
1980     if (MO.isReg() && MO.isDef() &&
1981         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1982       continue;  // Skip virtual register defs.
1983 
1984     HashComponents.push_back(hash_value(MO));
1985   }
1986   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1987 }
1988 
1989 void MachineInstr::emitError(StringRef Msg) const {
1990   // Find the source location cookie.
1991   unsigned LocCookie = 0;
1992   const MDNode *LocMD = nullptr;
1993   for (unsigned i = getNumOperands(); i != 0; --i) {
1994     if (getOperand(i-1).isMetadata() &&
1995         (LocMD = getOperand(i-1).getMetadata()) &&
1996         LocMD->getNumOperands() != 0) {
1997       if (const ConstantInt *CI =
1998               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1999         LocCookie = CI->getZExtValue();
2000         break;
2001       }
2002     }
2003   }
2004 
2005   if (const MachineBasicBlock *MBB = getParent())
2006     if (const MachineFunction *MF = MBB->getParent())
2007       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2008   report_fatal_error(Msg);
2009 }
2010 
2011 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2012                                   const MCInstrDesc &MCID, bool IsIndirect,
2013                                   unsigned Reg, const MDNode *Variable,
2014                                   const MDNode *Expr) {
2015   assert(isa<DILocalVariable>(Variable) && "not a variable");
2016   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2017   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2018          "Expected inlined-at fields to agree");
2019   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2020   if (IsIndirect)
2021     MIB.addImm(0U);
2022   else
2023     MIB.addReg(0U, RegState::Debug);
2024   return MIB.addMetadata(Variable).addMetadata(Expr);
2025 }
2026 
2027 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2028                                   const MCInstrDesc &MCID, bool IsIndirect,
2029                                   MachineOperand &MO, const MDNode *Variable,
2030                                   const MDNode *Expr) {
2031   assert(isa<DILocalVariable>(Variable) && "not a variable");
2032   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2033   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2034          "Expected inlined-at fields to agree");
2035   if (MO.isReg())
2036     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2037 
2038   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2039   if (IsIndirect)
2040     MIB.addImm(0U);
2041   else
2042     MIB.addReg(0U, RegState::Debug);
2043   return MIB.addMetadata(Variable).addMetadata(Expr);
2044  }
2045 
2046 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2047                                   MachineBasicBlock::iterator I,
2048                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2049                                   bool IsIndirect, unsigned Reg,
2050                                   const MDNode *Variable, const MDNode *Expr) {
2051   MachineFunction &MF = *BB.getParent();
2052   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2053   BB.insert(I, MI);
2054   return MachineInstrBuilder(MF, MI);
2055 }
2056 
2057 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2058                                   MachineBasicBlock::iterator I,
2059                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2060                                   bool IsIndirect, MachineOperand &MO,
2061                                   const MDNode *Variable, const MDNode *Expr) {
2062   MachineFunction &MF = *BB.getParent();
2063   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2064   BB.insert(I, MI);
2065   return MachineInstrBuilder(MF, *MI);
2066 }
2067 
2068 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2069 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2070 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2071   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2072   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2073          "Expected inlined-at fields to agree");
2074 
2075   const DIExpression *Expr = MI.getDebugExpression();
2076   if (MI.isIndirectDebugValue()) {
2077     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2078     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2079   }
2080   return Expr;
2081 }
2082 
2083 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2084                                           MachineBasicBlock::iterator I,
2085                                           const MachineInstr &Orig,
2086                                           int FrameIndex) {
2087   const DIExpression *Expr = computeExprForSpill(Orig);
2088   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2089       .addFrameIndex(FrameIndex)
2090       .addImm(0U)
2091       .addMetadata(Orig.getDebugVariable())
2092       .addMetadata(Expr);
2093 }
2094 
2095 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2096   const DIExpression *Expr = computeExprForSpill(Orig);
2097   Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2098   Orig.getOperand(1).ChangeToImmediate(0U);
2099   Orig.getOperand(3).setMetadata(Expr);
2100 }
2101 
2102 void MachineInstr::collectDebugValues(
2103                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2104   MachineInstr &MI = *this;
2105   if (!MI.getOperand(0).isReg())
2106     return;
2107 
2108   MachineBasicBlock::iterator DI = MI; ++DI;
2109   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2110        DI != DE; ++DI) {
2111     if (!DI->isDebugValue())
2112       return;
2113     if (DI->getOperand(0).isReg() &&
2114         DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2115       DbgValues.push_back(&*DI);
2116   }
2117 }
2118 
2119 void MachineInstr::changeDebugValuesDefReg(unsigned Reg) {
2120   // Collect matching debug values.
2121   SmallVector<MachineInstr *, 2> DbgValues;
2122   collectDebugValues(DbgValues);
2123 
2124   // Propagate Reg to debug value instructions.
2125   for (auto *DBI : DbgValues)
2126     DBI->getOperand(0).setReg(Reg);
2127 }
2128 
2129 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2130 
2131 static unsigned getSpillSlotSize(MMOList &Accesses,
2132                                  const MachineFrameInfo &MFI) {
2133   unsigned Size = 0;
2134   for (auto A : Accesses)
2135     if (MFI.isSpillSlotObjectIndex(
2136             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2137                 ->getFrameIndex()))
2138       Size += A->getSize();
2139   return Size;
2140 }
2141 
2142 Optional<unsigned>
2143 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2144   int FI;
2145   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2146     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2147     if (MFI.isSpillSlotObjectIndex(FI))
2148       return (*memoperands_begin())->getSize();
2149   }
2150   return None;
2151 }
2152 
2153 Optional<unsigned>
2154 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2155   MMOList Accesses;
2156   if (TII->hasStoreToStackSlot(*this, Accesses))
2157     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2158   return None;
2159 }
2160 
2161 Optional<unsigned>
2162 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2163   int FI;
2164   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2165     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2166     if (MFI.isSpillSlotObjectIndex(FI))
2167       return (*memoperands_begin())->getSize();
2168   }
2169   return None;
2170 }
2171 
2172 Optional<unsigned>
2173 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2174   MMOList Accesses;
2175   if (TII->hasLoadFromStackSlot(*this, Accesses))
2176     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2177   return None;
2178 }
2179