xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 179219ea046f46927d6478d43431e8b541703539)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCInstrDesc.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FormattedStream.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <cstring>
76 #include <iterator>
77 #include <utility>
78 
79 using namespace llvm;
80 
81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
82   if (const MachineBasicBlock *MBB = MI.getParent())
83     if (const MachineFunction *MF = MBB->getParent())
84       return MF;
85   return nullptr;
86 }
87 
88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
89 // it.
90 static void tryToGetTargetInfo(const MachineInstr &MI,
91                                const TargetRegisterInfo *&TRI,
92                                const MachineRegisterInfo *&MRI,
93                                const TargetIntrinsicInfo *&IntrinsicInfo,
94                                const TargetInstrInfo *&TII) {
95 
96   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
97     TRI = MF->getSubtarget().getRegisterInfo();
98     MRI = &MF->getRegInfo();
99     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
100     TII = MF->getSubtarget().getInstrInfo();
101   }
102 }
103 
104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
105   if (MCID->ImplicitDefs)
106     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
107            ++ImpDefs)
108       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
109   if (MCID->ImplicitUses)
110     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
111            ++ImpUses)
112       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 }
114 
115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
116 /// implicit operands. It reserves space for the number of operands specified by
117 /// the MCInstrDesc.
118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
119                            DebugLoc dl, bool NoImp)
120     : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) {
121   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
122 
123   // Reserve space for the expected number of operands.
124   if (unsigned NumOps = MCID->getNumOperands() +
125     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
126     CapOperands = OperandCapacity::get(NumOps);
127     Operands = MF.allocateOperandArray(CapOperands);
128   }
129 
130   if (!NoImp)
131     addImplicitDefUseOperands(MF);
132 }
133 
134 /// MachineInstr ctor - Copies MachineInstr arg exactly.
135 /// Does not copy the number from debug instruction numbering, to preserve
136 /// uniqueness.
137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
138     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()),
139       DebugInstrNum(0) {
140   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
141 
142   CapOperands = OperandCapacity::get(MI.getNumOperands());
143   Operands = MF.allocateOperandArray(CapOperands);
144 
145   // Copy operands.
146   for (const MachineOperand &MO : MI.operands())
147     addOperand(MF, MO);
148 
149   // Copy all the sensible flags.
150   setFlags(MI.Flags);
151 }
152 
153 void MachineInstr::moveBefore(MachineInstr *MovePos) {
154   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
155 }
156 
157 /// getRegInfo - If this instruction is embedded into a MachineFunction,
158 /// return the MachineRegisterInfo object for the current function, otherwise
159 /// return null.
160 MachineRegisterInfo *MachineInstr::getRegInfo() {
161   if (MachineBasicBlock *MBB = getParent())
162     return &MBB->getParent()->getRegInfo();
163   return nullptr;
164 }
165 
166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
167 /// this instruction from their respective use lists.  This requires that the
168 /// operands already be on their use lists.
169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
170   for (MachineOperand &MO : operands())
171     if (MO.isReg())
172       MRI.removeRegOperandFromUseList(&MO);
173 }
174 
175 /// AddRegOperandsToUseLists - Add all of the register operands in
176 /// this instruction from their respective use lists.  This requires that the
177 /// operands not be on their use lists yet.
178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
179   for (MachineOperand &MO : operands())
180     if (MO.isReg())
181       MRI.addRegOperandToUseList(&MO);
182 }
183 
184 void MachineInstr::addOperand(const MachineOperand &Op) {
185   MachineBasicBlock *MBB = getParent();
186   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
187   MachineFunction *MF = MBB->getParent();
188   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
189   addOperand(*MF, Op);
190 }
191 
192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
193 /// ranges. If MRI is non-null also update use-def chains.
194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
195                          unsigned NumOps, MachineRegisterInfo *MRI) {
196   if (MRI)
197     return MRI->moveOperands(Dst, Src, NumOps);
198   // MachineOperand is a trivially copyable type so we can just use memmove.
199   assert(Dst && Src && "Unknown operands");
200   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
201 }
202 
203 /// addOperand - Add the specified operand to the instruction.  If it is an
204 /// implicit operand, it is added to the end of the operand list.  If it is
205 /// an explicit operand it is added at the end of the explicit operand list
206 /// (before the first implicit operand).
207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
208   assert(MCID && "Cannot add operands before providing an instr descriptor");
209 
210   // Check if we're adding one of our existing operands.
211   if (&Op >= Operands && &Op < Operands + NumOperands) {
212     // This is unusual: MI->addOperand(MI->getOperand(i)).
213     // If adding Op requires reallocating or moving existing operands around,
214     // the Op reference could go stale. Support it by copying Op.
215     MachineOperand CopyOp(Op);
216     return addOperand(MF, CopyOp);
217   }
218 
219   // Find the insert location for the new operand.  Implicit registers go at
220   // the end, everything else goes before the implicit regs.
221   //
222   // FIXME: Allow mixed explicit and implicit operands on inline asm.
223   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224   // implicit-defs, but they must not be moved around.  See the FIXME in
225   // InstrEmitter.cpp.
226   unsigned OpNo = getNumOperands();
227   bool isImpReg = Op.isReg() && Op.isImplicit();
228   if (!isImpReg && !isInlineAsm()) {
229     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
230       --OpNo;
231       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
232     }
233   }
234 
235 #ifndef NDEBUG
236   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
237                    Op.getType() == MachineOperand::MO_MCSymbol;
238   // OpNo now points as the desired insertion point.  Unless this is a variadic
239   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
240   // RegMask operands go between the explicit and implicit operands.
241   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
242           OpNo < MCID->getNumOperands() || isDebugOp) &&
243          "Trying to add an operand to a machine instr that is already done!");
244 #endif
245 
246   MachineRegisterInfo *MRI = getRegInfo();
247 
248   // Determine if the Operands array needs to be reallocated.
249   // Save the old capacity and operand array.
250   OperandCapacity OldCap = CapOperands;
251   MachineOperand *OldOperands = Operands;
252   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
253     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
254     Operands = MF.allocateOperandArray(CapOperands);
255     // Move the operands before the insertion point.
256     if (OpNo)
257       moveOperands(Operands, OldOperands, OpNo, MRI);
258   }
259 
260   // Move the operands following the insertion point.
261   if (OpNo != NumOperands)
262     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
263                  MRI);
264   ++NumOperands;
265 
266   // Deallocate the old operand array.
267   if (OldOperands != Operands && OldOperands)
268     MF.deallocateOperandArray(OldCap, OldOperands);
269 
270   // Copy Op into place. It still needs to be inserted into the MRI use lists.
271   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
272   NewMO->ParentMI = this;
273 
274   // When adding a register operand, tell MRI about it.
275   if (NewMO->isReg()) {
276     // Ensure isOnRegUseList() returns false, regardless of Op's status.
277     NewMO->Contents.Reg.Prev = nullptr;
278     // Ignore existing ties. This is not a property that can be copied.
279     NewMO->TiedTo = 0;
280     // Add the new operand to MRI, but only for instructions in an MBB.
281     if (MRI)
282       MRI->addRegOperandToUseList(NewMO);
283     // The MCID operand information isn't accurate until we start adding
284     // explicit operands. The implicit operands are added first, then the
285     // explicits are inserted before them.
286     if (!isImpReg) {
287       // Tie uses to defs as indicated in MCInstrDesc.
288       if (NewMO->isUse()) {
289         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
290         if (DefIdx != -1)
291           tieOperands(DefIdx, OpNo);
292       }
293       // If the register operand is flagged as early, mark the operand as such.
294       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
295         NewMO->setIsEarlyClobber(true);
296     }
297   }
298 }
299 
300 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
301 /// fewer operand than it started with.
302 ///
303 void MachineInstr::RemoveOperand(unsigned OpNo) {
304   assert(OpNo < getNumOperands() && "Invalid operand number");
305   untieRegOperand(OpNo);
306 
307 #ifndef NDEBUG
308   // Moving tied operands would break the ties.
309   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
310     if (Operands[i].isReg())
311       assert(!Operands[i].isTied() && "Cannot move tied operands");
312 #endif
313 
314   MachineRegisterInfo *MRI = getRegInfo();
315   if (MRI && Operands[OpNo].isReg())
316     MRI->removeRegOperandFromUseList(Operands + OpNo);
317 
318   // Don't call the MachineOperand destructor. A lot of this code depends on
319   // MachineOperand having a trivial destructor anyway, and adding a call here
320   // wouldn't make it 'destructor-correct'.
321 
322   if (unsigned N = NumOperands - 1 - OpNo)
323     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
324   --NumOperands;
325 }
326 
327 void MachineInstr::setExtraInfo(MachineFunction &MF,
328                                 ArrayRef<MachineMemOperand *> MMOs,
329                                 MCSymbol *PreInstrSymbol,
330                                 MCSymbol *PostInstrSymbol,
331                                 MDNode *HeapAllocMarker) {
332   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
333   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
334   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
335   int NumPointers =
336       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
337 
338   // Drop all extra info if there is none.
339   if (NumPointers <= 0) {
340     Info.clear();
341     return;
342   }
343 
344   // If more than one pointer, then store out of line. Store heap alloc markers
345   // out of line because PointerSumType cannot hold more than 4 tag types with
346   // 32-bit pointers.
347   // FIXME: Maybe we should make the symbols in the extra info mutable?
348   else if (NumPointers > 1 || HasHeapAllocMarker) {
349     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
350         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
351     return;
352   }
353 
354   // Otherwise store the single pointer inline.
355   if (HasPreInstrSymbol)
356     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
357   else if (HasPostInstrSymbol)
358     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
359   else
360     Info.set<EIIK_MMO>(MMOs[0]);
361 }
362 
363 void MachineInstr::dropMemRefs(MachineFunction &MF) {
364   if (memoperands_empty())
365     return;
366 
367   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
368                getHeapAllocMarker());
369 }
370 
371 void MachineInstr::setMemRefs(MachineFunction &MF,
372                               ArrayRef<MachineMemOperand *> MMOs) {
373   if (MMOs.empty()) {
374     dropMemRefs(MF);
375     return;
376   }
377 
378   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
379                getHeapAllocMarker());
380 }
381 
382 void MachineInstr::addMemOperand(MachineFunction &MF,
383                                  MachineMemOperand *MO) {
384   SmallVector<MachineMemOperand *, 2> MMOs;
385   MMOs.append(memoperands_begin(), memoperands_end());
386   MMOs.push_back(MO);
387   setMemRefs(MF, MMOs);
388 }
389 
390 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
391   if (this == &MI)
392     // Nothing to do for a self-clone!
393     return;
394 
395   assert(&MF == MI.getMF() &&
396          "Invalid machine functions when cloning memory refrences!");
397   // See if we can just steal the extra info already allocated for the
398   // instruction. We can do this whenever the pre- and post-instruction symbols
399   // are the same (including null).
400   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
401       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
402       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
403     Info = MI.Info;
404     return;
405   }
406 
407   // Otherwise, fall back on a copy-based clone.
408   setMemRefs(MF, MI.memoperands());
409 }
410 
411 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
412 /// identical.
413 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
414                              ArrayRef<MachineMemOperand *> RHS) {
415   if (LHS.size() != RHS.size())
416     return false;
417 
418   auto LHSPointees = make_pointee_range(LHS);
419   auto RHSPointees = make_pointee_range(RHS);
420   return std::equal(LHSPointees.begin(), LHSPointees.end(),
421                     RHSPointees.begin());
422 }
423 
424 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
425                                       ArrayRef<const MachineInstr *> MIs) {
426   // Try handling easy numbers of MIs with simpler mechanisms.
427   if (MIs.empty()) {
428     dropMemRefs(MF);
429     return;
430   }
431   if (MIs.size() == 1) {
432     cloneMemRefs(MF, *MIs[0]);
433     return;
434   }
435   // Because an empty memoperands list provides *no* information and must be
436   // handled conservatively (assuming the instruction can do anything), the only
437   // way to merge with it is to drop all other memoperands.
438   if (MIs[0]->memoperands_empty()) {
439     dropMemRefs(MF);
440     return;
441   }
442 
443   // Handle the general case.
444   SmallVector<MachineMemOperand *, 2> MergedMMOs;
445   // Start with the first instruction.
446   assert(&MF == MIs[0]->getMF() &&
447          "Invalid machine functions when cloning memory references!");
448   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
449   // Now walk all the other instructions and accumulate any different MMOs.
450   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
451     assert(&MF == MI.getMF() &&
452            "Invalid machine functions when cloning memory references!");
453 
454     // Skip MIs with identical operands to the first. This is a somewhat
455     // arbitrary hack but will catch common cases without being quadratic.
456     // TODO: We could fully implement merge semantics here if needed.
457     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
458       continue;
459 
460     // Because an empty memoperands list provides *no* information and must be
461     // handled conservatively (assuming the instruction can do anything), the
462     // only way to merge with it is to drop all other memoperands.
463     if (MI.memoperands_empty()) {
464       dropMemRefs(MF);
465       return;
466     }
467 
468     // Otherwise accumulate these into our temporary buffer of the merged state.
469     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
470   }
471 
472   setMemRefs(MF, MergedMMOs);
473 }
474 
475 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
476   // Do nothing if old and new symbols are the same.
477   if (Symbol == getPreInstrSymbol())
478     return;
479 
480   // If there was only one symbol and we're removing it, just clear info.
481   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
482     Info.clear();
483     return;
484   }
485 
486   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
487                getHeapAllocMarker());
488 }
489 
490 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
491   // Do nothing if old and new symbols are the same.
492   if (Symbol == getPostInstrSymbol())
493     return;
494 
495   // If there was only one symbol and we're removing it, just clear info.
496   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
497     Info.clear();
498     return;
499   }
500 
501   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
502                getHeapAllocMarker());
503 }
504 
505 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
506   // Do nothing if old and new symbols are the same.
507   if (Marker == getHeapAllocMarker())
508     return;
509 
510   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
511                Marker);
512 }
513 
514 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
515                                      const MachineInstr &MI) {
516   if (this == &MI)
517     // Nothing to do for a self-clone!
518     return;
519 
520   assert(&MF == MI.getMF() &&
521          "Invalid machine functions when cloning instruction symbols!");
522 
523   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
524   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
525   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
526 }
527 
528 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
529   // For now, the just return the union of the flags. If the flags get more
530   // complicated over time, we might need more logic here.
531   return getFlags() | Other.getFlags();
532 }
533 
534 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
535   uint16_t MIFlags = 0;
536   // Copy the wrapping flags.
537   if (const OverflowingBinaryOperator *OB =
538           dyn_cast<OverflowingBinaryOperator>(&I)) {
539     if (OB->hasNoSignedWrap())
540       MIFlags |= MachineInstr::MIFlag::NoSWrap;
541     if (OB->hasNoUnsignedWrap())
542       MIFlags |= MachineInstr::MIFlag::NoUWrap;
543   }
544 
545   // Copy the exact flag.
546   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
547     if (PE->isExact())
548       MIFlags |= MachineInstr::MIFlag::IsExact;
549 
550   // Copy the fast-math flags.
551   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
552     const FastMathFlags Flags = FP->getFastMathFlags();
553     if (Flags.noNaNs())
554       MIFlags |= MachineInstr::MIFlag::FmNoNans;
555     if (Flags.noInfs())
556       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
557     if (Flags.noSignedZeros())
558       MIFlags |= MachineInstr::MIFlag::FmNsz;
559     if (Flags.allowReciprocal())
560       MIFlags |= MachineInstr::MIFlag::FmArcp;
561     if (Flags.allowContract())
562       MIFlags |= MachineInstr::MIFlag::FmContract;
563     if (Flags.approxFunc())
564       MIFlags |= MachineInstr::MIFlag::FmAfn;
565     if (Flags.allowReassoc())
566       MIFlags |= MachineInstr::MIFlag::FmReassoc;
567   }
568 
569   return MIFlags;
570 }
571 
572 void MachineInstr::copyIRFlags(const Instruction &I) {
573   Flags = copyFlagsFromInstruction(I);
574 }
575 
576 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
577   assert(!isBundledWithPred() && "Must be called on bundle header");
578   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
579     if (MII->getDesc().getFlags() & Mask) {
580       if (Type == AnyInBundle)
581         return true;
582     } else {
583       if (Type == AllInBundle && !MII->isBundle())
584         return false;
585     }
586     // This was the last instruction in the bundle.
587     if (!MII->isBundledWithSucc())
588       return Type == AllInBundle;
589   }
590 }
591 
592 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
593                                  MICheckType Check) const {
594   // If opcodes or number of operands are not the same then the two
595   // instructions are obviously not identical.
596   if (Other.getOpcode() != getOpcode() ||
597       Other.getNumOperands() != getNumOperands())
598     return false;
599 
600   if (isBundle()) {
601     // We have passed the test above that both instructions have the same
602     // opcode, so we know that both instructions are bundles here. Let's compare
603     // MIs inside the bundle.
604     assert(Other.isBundle() && "Expected that both instructions are bundles.");
605     MachineBasicBlock::const_instr_iterator I1 = getIterator();
606     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
607     // Loop until we analysed the last intruction inside at least one of the
608     // bundles.
609     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
610       ++I1;
611       ++I2;
612       if (!I1->isIdenticalTo(*I2, Check))
613         return false;
614     }
615     // If we've reached the end of just one of the two bundles, but not both,
616     // the instructions are not identical.
617     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
618       return false;
619   }
620 
621   // Check operands to make sure they match.
622   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
623     const MachineOperand &MO = getOperand(i);
624     const MachineOperand &OMO = Other.getOperand(i);
625     if (!MO.isReg()) {
626       if (!MO.isIdenticalTo(OMO))
627         return false;
628       continue;
629     }
630 
631     // Clients may or may not want to ignore defs when testing for equality.
632     // For example, machine CSE pass only cares about finding common
633     // subexpressions, so it's safe to ignore virtual register defs.
634     if (MO.isDef()) {
635       if (Check == IgnoreDefs)
636         continue;
637       else if (Check == IgnoreVRegDefs) {
638         if (!Register::isVirtualRegister(MO.getReg()) ||
639             !Register::isVirtualRegister(OMO.getReg()))
640           if (!MO.isIdenticalTo(OMO))
641             return false;
642       } else {
643         if (!MO.isIdenticalTo(OMO))
644           return false;
645         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
646           return false;
647       }
648     } else {
649       if (!MO.isIdenticalTo(OMO))
650         return false;
651       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
652         return false;
653     }
654   }
655   // If DebugLoc does not match then two debug instructions are not identical.
656   if (isDebugInstr())
657     if (getDebugLoc() && Other.getDebugLoc() &&
658         getDebugLoc() != Other.getDebugLoc())
659       return false;
660   return true;
661 }
662 
663 const MachineFunction *MachineInstr::getMF() const {
664   return getParent()->getParent();
665 }
666 
667 MachineInstr *MachineInstr::removeFromParent() {
668   assert(getParent() && "Not embedded in a basic block!");
669   return getParent()->remove(this);
670 }
671 
672 MachineInstr *MachineInstr::removeFromBundle() {
673   assert(getParent() && "Not embedded in a basic block!");
674   return getParent()->remove_instr(this);
675 }
676 
677 void MachineInstr::eraseFromParent() {
678   assert(getParent() && "Not embedded in a basic block!");
679   getParent()->erase(this);
680 }
681 
682 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
683   assert(getParent() && "Not embedded in a basic block!");
684   MachineBasicBlock *MBB = getParent();
685   MachineFunction *MF = MBB->getParent();
686   assert(MF && "Not embedded in a function!");
687 
688   MachineInstr *MI = (MachineInstr *)this;
689   MachineRegisterInfo &MRI = MF->getRegInfo();
690 
691   for (const MachineOperand &MO : MI->operands()) {
692     if (!MO.isReg() || !MO.isDef())
693       continue;
694     Register Reg = MO.getReg();
695     if (!Reg.isVirtual())
696       continue;
697     MRI.markUsesInDebugValueAsUndef(Reg);
698   }
699   MI->eraseFromParent();
700 }
701 
702 void MachineInstr::eraseFromBundle() {
703   assert(getParent() && "Not embedded in a basic block!");
704   getParent()->erase_instr(this);
705 }
706 
707 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
708   if (!isCall(Type))
709     return false;
710   switch (getOpcode()) {
711   case TargetOpcode::PATCHPOINT:
712   case TargetOpcode::STACKMAP:
713   case TargetOpcode::STATEPOINT:
714   case TargetOpcode::FENTRY_CALL:
715     return false;
716   }
717   return true;
718 }
719 
720 bool MachineInstr::shouldUpdateCallSiteInfo() const {
721   if (isBundle())
722     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
723   return isCandidateForCallSiteEntry();
724 }
725 
726 unsigned MachineInstr::getNumExplicitOperands() const {
727   unsigned NumOperands = MCID->getNumOperands();
728   if (!MCID->isVariadic())
729     return NumOperands;
730 
731   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
732     const MachineOperand &MO = getOperand(I);
733     // The operands must always be in the following order:
734     // - explicit reg defs,
735     // - other explicit operands (reg uses, immediates, etc.),
736     // - implicit reg defs
737     // - implicit reg uses
738     if (MO.isReg() && MO.isImplicit())
739       break;
740     ++NumOperands;
741   }
742   return NumOperands;
743 }
744 
745 unsigned MachineInstr::getNumExplicitDefs() const {
746   unsigned NumDefs = MCID->getNumDefs();
747   if (!MCID->isVariadic())
748     return NumDefs;
749 
750   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
751     const MachineOperand &MO = getOperand(I);
752     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
753       break;
754     ++NumDefs;
755   }
756   return NumDefs;
757 }
758 
759 void MachineInstr::bundleWithPred() {
760   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
761   setFlag(BundledPred);
762   MachineBasicBlock::instr_iterator Pred = getIterator();
763   --Pred;
764   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
765   Pred->setFlag(BundledSucc);
766 }
767 
768 void MachineInstr::bundleWithSucc() {
769   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
770   setFlag(BundledSucc);
771   MachineBasicBlock::instr_iterator Succ = getIterator();
772   ++Succ;
773   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
774   Succ->setFlag(BundledPred);
775 }
776 
777 void MachineInstr::unbundleFromPred() {
778   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
779   clearFlag(BundledPred);
780   MachineBasicBlock::instr_iterator Pred = getIterator();
781   --Pred;
782   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
783   Pred->clearFlag(BundledSucc);
784 }
785 
786 void MachineInstr::unbundleFromSucc() {
787   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
788   clearFlag(BundledSucc);
789   MachineBasicBlock::instr_iterator Succ = getIterator();
790   ++Succ;
791   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
792   Succ->clearFlag(BundledPred);
793 }
794 
795 bool MachineInstr::isStackAligningInlineAsm() const {
796   if (isInlineAsm()) {
797     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
798     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
799       return true;
800   }
801   return false;
802 }
803 
804 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
805   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
806   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
807   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
808 }
809 
810 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
811                                        unsigned *GroupNo) const {
812   assert(isInlineAsm() && "Expected an inline asm instruction");
813   assert(OpIdx < getNumOperands() && "OpIdx out of range");
814 
815   // Ignore queries about the initial operands.
816   if (OpIdx < InlineAsm::MIOp_FirstOperand)
817     return -1;
818 
819   unsigned Group = 0;
820   unsigned NumOps;
821   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
822        i += NumOps) {
823     const MachineOperand &FlagMO = getOperand(i);
824     // If we reach the implicit register operands, stop looking.
825     if (!FlagMO.isImm())
826       return -1;
827     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
828     if (i + NumOps > OpIdx) {
829       if (GroupNo)
830         *GroupNo = Group;
831       return i;
832     }
833     ++Group;
834   }
835   return -1;
836 }
837 
838 const DILabel *MachineInstr::getDebugLabel() const {
839   assert(isDebugLabel() && "not a DBG_LABEL");
840   return cast<DILabel>(getOperand(0).getMetadata());
841 }
842 
843 const MachineOperand &MachineInstr::getDebugVariableOp() const {
844   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
845   return getOperand(2);
846 }
847 
848 MachineOperand &MachineInstr::getDebugVariableOp() {
849   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
850   return getOperand(2);
851 }
852 
853 const DILocalVariable *MachineInstr::getDebugVariable() const {
854   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
855   return cast<DILocalVariable>(getOperand(2).getMetadata());
856 }
857 
858 MachineOperand &MachineInstr::getDebugExpressionOp() {
859   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
860   return getOperand(3);
861 }
862 
863 const DIExpression *MachineInstr::getDebugExpression() const {
864   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE");
865   return cast<DIExpression>(getOperand(3).getMetadata());
866 }
867 
868 bool MachineInstr::isDebugEntryValue() const {
869   return isDebugValue() && getDebugExpression()->isEntryValue();
870 }
871 
872 const TargetRegisterClass*
873 MachineInstr::getRegClassConstraint(unsigned OpIdx,
874                                     const TargetInstrInfo *TII,
875                                     const TargetRegisterInfo *TRI) const {
876   assert(getParent() && "Can't have an MBB reference here!");
877   assert(getMF() && "Can't have an MF reference here!");
878   const MachineFunction &MF = *getMF();
879 
880   // Most opcodes have fixed constraints in their MCInstrDesc.
881   if (!isInlineAsm())
882     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
883 
884   if (!getOperand(OpIdx).isReg())
885     return nullptr;
886 
887   // For tied uses on inline asm, get the constraint from the def.
888   unsigned DefIdx;
889   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
890     OpIdx = DefIdx;
891 
892   // Inline asm stores register class constraints in the flag word.
893   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
894   if (FlagIdx < 0)
895     return nullptr;
896 
897   unsigned Flag = getOperand(FlagIdx).getImm();
898   unsigned RCID;
899   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
900        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
901        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
902       InlineAsm::hasRegClassConstraint(Flag, RCID))
903     return TRI->getRegClass(RCID);
904 
905   // Assume that all registers in a memory operand are pointers.
906   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
907     return TRI->getPointerRegClass(MF);
908 
909   return nullptr;
910 }
911 
912 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
913     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
914     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
915   // Check every operands inside the bundle if we have
916   // been asked to.
917   if (ExploreBundle)
918     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
919          ++OpndIt)
920       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
921           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
922   else
923     // Otherwise, just check the current operands.
924     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
925       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
926   return CurRC;
927 }
928 
929 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
930     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
931     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
932   assert(CurRC && "Invalid initial register class");
933   // Check if Reg is constrained by some of its use/def from MI.
934   const MachineOperand &MO = getOperand(OpIdx);
935   if (!MO.isReg() || MO.getReg() != Reg)
936     return CurRC;
937   // If yes, accumulate the constraints through the operand.
938   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
939 }
940 
941 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
942     unsigned OpIdx, const TargetRegisterClass *CurRC,
943     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
944   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
945   const MachineOperand &MO = getOperand(OpIdx);
946   assert(MO.isReg() &&
947          "Cannot get register constraints for non-register operand");
948   assert(CurRC && "Invalid initial register class");
949   if (unsigned SubIdx = MO.getSubReg()) {
950     if (OpRC)
951       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
952     else
953       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
954   } else if (OpRC)
955     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
956   return CurRC;
957 }
958 
959 /// Return the number of instructions inside the MI bundle, not counting the
960 /// header instruction.
961 unsigned MachineInstr::getBundleSize() const {
962   MachineBasicBlock::const_instr_iterator I = getIterator();
963   unsigned Size = 0;
964   while (I->isBundledWithSucc()) {
965     ++Size;
966     ++I;
967   }
968   return Size;
969 }
970 
971 /// Returns true if the MachineInstr has an implicit-use operand of exactly
972 /// the given register (not considering sub/super-registers).
973 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
974   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
975     const MachineOperand &MO = getOperand(i);
976     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
977       return true;
978   }
979   return false;
980 }
981 
982 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
983 /// the specific register or -1 if it is not found. It further tightens
984 /// the search criteria to a use that kills the register if isKill is true.
985 int MachineInstr::findRegisterUseOperandIdx(
986     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
987   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
988     const MachineOperand &MO = getOperand(i);
989     if (!MO.isReg() || !MO.isUse())
990       continue;
991     Register MOReg = MO.getReg();
992     if (!MOReg)
993       continue;
994     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
995       if (!isKill || MO.isKill())
996         return i;
997   }
998   return -1;
999 }
1000 
1001 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1002 /// indicating if this instruction reads or writes Reg. This also considers
1003 /// partial defines.
1004 std::pair<bool,bool>
1005 MachineInstr::readsWritesVirtualRegister(Register Reg,
1006                                          SmallVectorImpl<unsigned> *Ops) const {
1007   bool PartDef = false; // Partial redefine.
1008   bool FullDef = false; // Full define.
1009   bool Use = false;
1010 
1011   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1012     const MachineOperand &MO = getOperand(i);
1013     if (!MO.isReg() || MO.getReg() != Reg)
1014       continue;
1015     if (Ops)
1016       Ops->push_back(i);
1017     if (MO.isUse())
1018       Use |= !MO.isUndef();
1019     else if (MO.getSubReg() && !MO.isUndef())
1020       // A partial def undef doesn't count as reading the register.
1021       PartDef = true;
1022     else
1023       FullDef = true;
1024   }
1025   // A partial redefine uses Reg unless there is also a full define.
1026   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1027 }
1028 
1029 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1030 /// the specified register or -1 if it is not found. If isDead is true, defs
1031 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1032 /// also checks if there is a def of a super-register.
1033 int
1034 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1035                                         const TargetRegisterInfo *TRI) const {
1036   bool isPhys = Register::isPhysicalRegister(Reg);
1037   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1038     const MachineOperand &MO = getOperand(i);
1039     // Accept regmask operands when Overlap is set.
1040     // Ignore them when looking for a specific def operand (Overlap == false).
1041     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1042       return i;
1043     if (!MO.isReg() || !MO.isDef())
1044       continue;
1045     Register MOReg = MO.getReg();
1046     bool Found = (MOReg == Reg);
1047     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1048       if (Overlap)
1049         Found = TRI->regsOverlap(MOReg, Reg);
1050       else
1051         Found = TRI->isSubRegister(MOReg, Reg);
1052     }
1053     if (Found && (!isDead || MO.isDead()))
1054       return i;
1055   }
1056   return -1;
1057 }
1058 
1059 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1060 /// operand list that is used to represent the predicate. It returns -1 if
1061 /// none is found.
1062 int MachineInstr::findFirstPredOperandIdx() const {
1063   // Don't call MCID.findFirstPredOperandIdx() because this variant
1064   // is sometimes called on an instruction that's not yet complete, and
1065   // so the number of operands is less than the MCID indicates. In
1066   // particular, the PTX target does this.
1067   const MCInstrDesc &MCID = getDesc();
1068   if (MCID.isPredicable()) {
1069     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1070       if (MCID.OpInfo[i].isPredicate())
1071         return i;
1072   }
1073 
1074   return -1;
1075 }
1076 
1077 // MachineOperand::TiedTo is 4 bits wide.
1078 const unsigned TiedMax = 15;
1079 
1080 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1081 ///
1082 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1083 /// field. TiedTo can have these values:
1084 ///
1085 /// 0:              Operand is not tied to anything.
1086 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1087 /// TiedMax:        Tied to an operand >= TiedMax-1.
1088 ///
1089 /// The tied def must be one of the first TiedMax operands on a normal
1090 /// instruction. INLINEASM instructions allow more tied defs.
1091 ///
1092 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1093   MachineOperand &DefMO = getOperand(DefIdx);
1094   MachineOperand &UseMO = getOperand(UseIdx);
1095   assert(DefMO.isDef() && "DefIdx must be a def operand");
1096   assert(UseMO.isUse() && "UseIdx must be a use operand");
1097   assert(!DefMO.isTied() && "Def is already tied to another use");
1098   assert(!UseMO.isTied() && "Use is already tied to another def");
1099 
1100   if (DefIdx < TiedMax)
1101     UseMO.TiedTo = DefIdx + 1;
1102   else {
1103     // Inline asm can use the group descriptors to find tied operands,
1104     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1105     // but on normal instruction, the tied def must be within the first TiedMax
1106     // operands.
1107     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1108            "DefIdx out of range");
1109     UseMO.TiedTo = TiedMax;
1110   }
1111 
1112   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1113   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1114 }
1115 
1116 /// Given the index of a tied register operand, find the operand it is tied to.
1117 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1118 /// which must exist.
1119 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1120   const MachineOperand &MO = getOperand(OpIdx);
1121   assert(MO.isTied() && "Operand isn't tied");
1122 
1123   // Normally TiedTo is in range.
1124   if (MO.TiedTo < TiedMax)
1125     return MO.TiedTo - 1;
1126 
1127   // Uses on normal instructions can be out of range.
1128   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1129     // Normal tied defs must be in the 0..TiedMax-1 range.
1130     if (MO.isUse())
1131       return TiedMax - 1;
1132     // MO is a def. Search for the tied use.
1133     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1134       const MachineOperand &UseMO = getOperand(i);
1135       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1136         return i;
1137     }
1138     llvm_unreachable("Can't find tied use");
1139   }
1140 
1141   if (getOpcode() == TargetOpcode::STATEPOINT) {
1142     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1143     // on registers.
1144     StatepointOpers SO(this);
1145     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1146     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1147     unsigned NumDefs = getNumDefs();
1148     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1149       while (!getOperand(CurUseIdx).isReg())
1150         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1151       if (OpIdx == CurDefIdx)
1152         return CurUseIdx;
1153       if (OpIdx == CurUseIdx)
1154         return CurDefIdx;
1155       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1156     }
1157     llvm_unreachable("Can't find tied use");
1158   }
1159 
1160   // Now deal with inline asm by parsing the operand group descriptor flags.
1161   // Find the beginning of each operand group.
1162   SmallVector<unsigned, 8> GroupIdx;
1163   unsigned OpIdxGroup = ~0u;
1164   unsigned NumOps;
1165   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1166        i += NumOps) {
1167     const MachineOperand &FlagMO = getOperand(i);
1168     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1169     unsigned CurGroup = GroupIdx.size();
1170     GroupIdx.push_back(i);
1171     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1172     // OpIdx belongs to this operand group.
1173     if (OpIdx > i && OpIdx < i + NumOps)
1174       OpIdxGroup = CurGroup;
1175     unsigned TiedGroup;
1176     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1177       continue;
1178     // Operands in this group are tied to operands in TiedGroup which must be
1179     // earlier. Find the number of operands between the two groups.
1180     unsigned Delta = i - GroupIdx[TiedGroup];
1181 
1182     // OpIdx is a use tied to TiedGroup.
1183     if (OpIdxGroup == CurGroup)
1184       return OpIdx - Delta;
1185 
1186     // OpIdx is a def tied to this use group.
1187     if (OpIdxGroup == TiedGroup)
1188       return OpIdx + Delta;
1189   }
1190   llvm_unreachable("Invalid tied operand on inline asm");
1191 }
1192 
1193 /// clearKillInfo - Clears kill flags on all operands.
1194 ///
1195 void MachineInstr::clearKillInfo() {
1196   for (MachineOperand &MO : operands()) {
1197     if (MO.isReg() && MO.isUse())
1198       MO.setIsKill(false);
1199   }
1200 }
1201 
1202 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1203                                       unsigned SubIdx,
1204                                       const TargetRegisterInfo &RegInfo) {
1205   if (Register::isPhysicalRegister(ToReg)) {
1206     if (SubIdx)
1207       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1208     for (MachineOperand &MO : operands()) {
1209       if (!MO.isReg() || MO.getReg() != FromReg)
1210         continue;
1211       MO.substPhysReg(ToReg, RegInfo);
1212     }
1213   } else {
1214     for (MachineOperand &MO : operands()) {
1215       if (!MO.isReg() || MO.getReg() != FromReg)
1216         continue;
1217       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1218     }
1219   }
1220 }
1221 
1222 /// isSafeToMove - Return true if it is safe to move this instruction. If
1223 /// SawStore is set to true, it means that there is a store (or call) between
1224 /// the instruction's location and its intended destination.
1225 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1226   // Ignore stuff that we obviously can't move.
1227   //
1228   // Treat volatile loads as stores. This is not strictly necessary for
1229   // volatiles, but it is required for atomic loads. It is not allowed to move
1230   // a load across an atomic load with Ordering > Monotonic.
1231   if (mayStore() || isCall() || isPHI() ||
1232       (mayLoad() && hasOrderedMemoryRef())) {
1233     SawStore = true;
1234     return false;
1235   }
1236 
1237   if (isPosition() || isDebugInstr() || isTerminator() ||
1238       mayRaiseFPException() || hasUnmodeledSideEffects())
1239     return false;
1240 
1241   // See if this instruction does a load.  If so, we have to guarantee that the
1242   // loaded value doesn't change between the load and the its intended
1243   // destination. The check for isInvariantLoad gives the target the chance to
1244   // classify the load as always returning a constant, e.g. a constant pool
1245   // load.
1246   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1247     // Otherwise, this is a real load.  If there is a store between the load and
1248     // end of block, we can't move it.
1249     return !SawStore;
1250 
1251   return true;
1252 }
1253 
1254 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1255                                  bool UseTBAA, const MachineMemOperand *MMOa,
1256                                  const MachineMemOperand *MMOb) {
1257   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1258   // operates with MachineMemOperand offset with some important assumptions:
1259   //   - LLVM fundamentally assumes flat address spaces.
1260   //   - MachineOperand offset can *only* result from legalization and cannot
1261   //     affect queries other than the trivial case of overlap checking.
1262   //   - These offsets never wrap and never step outside of allocated objects.
1263   //   - There should never be any negative offsets here.
1264   //
1265   // FIXME: Modify API to hide this math from "user"
1266   // Even before we go to AA we can reason locally about some memory objects. It
1267   // can save compile time, and possibly catch some corner cases not currently
1268   // covered.
1269 
1270   int64_t OffsetA = MMOa->getOffset();
1271   int64_t OffsetB = MMOb->getOffset();
1272   int64_t MinOffset = std::min(OffsetA, OffsetB);
1273 
1274   uint64_t WidthA = MMOa->getSize();
1275   uint64_t WidthB = MMOb->getSize();
1276   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1277   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1278 
1279   const Value *ValA = MMOa->getValue();
1280   const Value *ValB = MMOb->getValue();
1281   bool SameVal = (ValA && ValB && (ValA == ValB));
1282   if (!SameVal) {
1283     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1284     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1285     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1286       return false;
1287     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1288       return false;
1289     if (PSVa && PSVb && (PSVa == PSVb))
1290       SameVal = true;
1291   }
1292 
1293   if (SameVal) {
1294     if (!KnownWidthA || !KnownWidthB)
1295       return true;
1296     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1297     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1298     return (MinOffset + LowWidth > MaxOffset);
1299   }
1300 
1301   if (!AA)
1302     return true;
1303 
1304   if (!ValA || !ValB)
1305     return true;
1306 
1307   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1308   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1309 
1310   int64_t OverlapA =
1311       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1312   int64_t OverlapB =
1313       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1314 
1315   AliasResult AAResult = AA->alias(
1316       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1317       MemoryLocation(ValB, OverlapB,
1318                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1319 
1320   return (AAResult != NoAlias);
1321 }
1322 
1323 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1324                             bool UseTBAA) const {
1325   const MachineFunction *MF = getMF();
1326   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1327   const MachineFrameInfo &MFI = MF->getFrameInfo();
1328 
1329   // Exclude call instruction which may alter the memory but can not be handled
1330   // by this function.
1331   if (isCall() || Other.isCall())
1332     return true;
1333 
1334   // If neither instruction stores to memory, they can't alias in any
1335   // meaningful way, even if they read from the same address.
1336   if (!mayStore() && !Other.mayStore())
1337     return false;
1338 
1339   // Both instructions must be memory operations to be able to alias.
1340   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1341     return false;
1342 
1343   // Let the target decide if memory accesses cannot possibly overlap.
1344   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1345     return false;
1346 
1347   // Memory operations without memory operands may access anything. Be
1348   // conservative and assume `MayAlias`.
1349   if (memoperands_empty() || Other.memoperands_empty())
1350     return true;
1351 
1352   // Skip if there are too many memory operands.
1353   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1354   if (NumChecks > TII->getMemOperandAACheckLimit())
1355     return true;
1356 
1357   // Check each pair of memory operands from both instructions, which can't
1358   // alias only if all pairs won't alias.
1359   for (auto *MMOa : memoperands())
1360     for (auto *MMOb : Other.memoperands())
1361       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1362         return true;
1363 
1364   return false;
1365 }
1366 
1367 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1368 /// or volatile memory reference, or if the information describing the memory
1369 /// reference is not available. Return false if it is known to have no ordered
1370 /// memory references.
1371 bool MachineInstr::hasOrderedMemoryRef() const {
1372   // An instruction known never to access memory won't have a volatile access.
1373   if (!mayStore() &&
1374       !mayLoad() &&
1375       !isCall() &&
1376       !hasUnmodeledSideEffects())
1377     return false;
1378 
1379   // Otherwise, if the instruction has no memory reference information,
1380   // conservatively assume it wasn't preserved.
1381   if (memoperands_empty())
1382     return true;
1383 
1384   // Check if any of our memory operands are ordered.
1385   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1386     return !MMO->isUnordered();
1387   });
1388 }
1389 
1390 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1391 /// trap and is loading from a location whose value is invariant across a run of
1392 /// this function.
1393 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1394   // If the instruction doesn't load at all, it isn't an invariant load.
1395   if (!mayLoad())
1396     return false;
1397 
1398   // If the instruction has lost its memoperands, conservatively assume that
1399   // it may not be an invariant load.
1400   if (memoperands_empty())
1401     return false;
1402 
1403   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1404 
1405   for (MachineMemOperand *MMO : memoperands()) {
1406     if (!MMO->isUnordered())
1407       // If the memory operand has ordering side effects, we can't move the
1408       // instruction.  Such an instruction is technically an invariant load,
1409       // but the caller code would need updated to expect that.
1410       return false;
1411     if (MMO->isStore()) return false;
1412     if (MMO->isInvariant() && MMO->isDereferenceable())
1413       continue;
1414 
1415     // A load from a constant PseudoSourceValue is invariant.
1416     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1417       if (PSV->isConstant(&MFI))
1418         continue;
1419 
1420     if (const Value *V = MMO->getValue()) {
1421       // If we have an AliasAnalysis, ask it whether the memory is constant.
1422       if (AA &&
1423           AA->pointsToConstantMemory(
1424               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1425         continue;
1426     }
1427 
1428     // Otherwise assume conservatively.
1429     return false;
1430   }
1431 
1432   // Everything checks out.
1433   return true;
1434 }
1435 
1436 /// isConstantValuePHI - If the specified instruction is a PHI that always
1437 /// merges together the same virtual register, return the register, otherwise
1438 /// return 0.
1439 unsigned MachineInstr::isConstantValuePHI() const {
1440   if (!isPHI())
1441     return 0;
1442   assert(getNumOperands() >= 3 &&
1443          "It's illegal to have a PHI without source operands");
1444 
1445   Register Reg = getOperand(1).getReg();
1446   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1447     if (getOperand(i).getReg() != Reg)
1448       return 0;
1449   return Reg;
1450 }
1451 
1452 bool MachineInstr::hasUnmodeledSideEffects() const {
1453   if (hasProperty(MCID::UnmodeledSideEffects))
1454     return true;
1455   if (isInlineAsm()) {
1456     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1457     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1458       return true;
1459   }
1460 
1461   return false;
1462 }
1463 
1464 bool MachineInstr::isLoadFoldBarrier() const {
1465   return mayStore() || isCall() ||
1466          (hasUnmodeledSideEffects() && !isPseudoProbe());
1467 }
1468 
1469 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1470 ///
1471 bool MachineInstr::allDefsAreDead() const {
1472   for (const MachineOperand &MO : operands()) {
1473     if (!MO.isReg() || MO.isUse())
1474       continue;
1475     if (!MO.isDead())
1476       return false;
1477   }
1478   return true;
1479 }
1480 
1481 /// copyImplicitOps - Copy implicit register operands from specified
1482 /// instruction to this instruction.
1483 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1484                                    const MachineInstr &MI) {
1485   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1486        i != e; ++i) {
1487     const MachineOperand &MO = MI.getOperand(i);
1488     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1489       addOperand(MF, MO);
1490   }
1491 }
1492 
1493 bool MachineInstr::hasComplexRegisterTies() const {
1494   const MCInstrDesc &MCID = getDesc();
1495   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1496     return true;
1497   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1498     const auto &Operand = getOperand(I);
1499     if (!Operand.isReg() || Operand.isDef())
1500       // Ignore the defined registers as MCID marks only the uses as tied.
1501       continue;
1502     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1503     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1504     if (ExpectedTiedIdx != TiedIdx)
1505       return true;
1506   }
1507   return false;
1508 }
1509 
1510 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1511                                  const MachineRegisterInfo &MRI) const {
1512   const MachineOperand &Op = getOperand(OpIdx);
1513   if (!Op.isReg())
1514     return LLT{};
1515 
1516   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1517     return MRI.getType(Op.getReg());
1518 
1519   auto &OpInfo = getDesc().OpInfo[OpIdx];
1520   if (!OpInfo.isGenericType())
1521     return MRI.getType(Op.getReg());
1522 
1523   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1524     return LLT{};
1525 
1526   LLT TypeToPrint = MRI.getType(Op.getReg());
1527   // Don't mark the type index printed if it wasn't actually printed: maybe
1528   // another operand with the same type index has an actual type attached:
1529   if (TypeToPrint.isValid())
1530     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1531   return TypeToPrint;
1532 }
1533 
1534 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1535 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1536   dbgs() << "  ";
1537   print(dbgs());
1538 }
1539 
1540 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1541     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1542     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1543   if (Depth >= MaxDepth)
1544     return;
1545   if (!AlreadySeenInstrs.insert(this).second)
1546     return;
1547   // PadToColumn always inserts at least one space.
1548   // Don't mess up the alignment if we don't want any space.
1549   if (Depth)
1550     fdbgs().PadToColumn(Depth * 2);
1551   print(fdbgs());
1552   for (const MachineOperand &MO : operands()) {
1553     if (!MO.isReg() || MO.isDef())
1554       continue;
1555     Register Reg = MO.getReg();
1556     if (Reg.isPhysical())
1557       continue;
1558     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1559     if (NewMI == nullptr)
1560       continue;
1561     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1562   }
1563 }
1564 
1565 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1566                                           unsigned MaxDepth) const {
1567   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1568   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1569 }
1570 #endif
1571 
1572 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1573                          bool SkipDebugLoc, bool AddNewLine,
1574                          const TargetInstrInfo *TII) const {
1575   const Module *M = nullptr;
1576   const Function *F = nullptr;
1577   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1578     F = &MF->getFunction();
1579     M = F->getParent();
1580     if (!TII)
1581       TII = MF->getSubtarget().getInstrInfo();
1582   }
1583 
1584   ModuleSlotTracker MST(M);
1585   if (F)
1586     MST.incorporateFunction(*F);
1587   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1588 }
1589 
1590 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1591                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1592                          bool AddNewLine, const TargetInstrInfo *TII) const {
1593   // We can be a bit tidier if we know the MachineFunction.
1594   const TargetRegisterInfo *TRI = nullptr;
1595   const MachineRegisterInfo *MRI = nullptr;
1596   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1597   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1598 
1599   if (isCFIInstruction())
1600     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1601 
1602   SmallBitVector PrintedTypes(8);
1603   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1604   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1605     if (!ShouldPrintRegisterTies)
1606       return 0U;
1607     const MachineOperand &MO = getOperand(OpIdx);
1608     if (MO.isReg() && MO.isTied() && !MO.isDef())
1609       return findTiedOperandIdx(OpIdx);
1610     return 0U;
1611   };
1612   unsigned StartOp = 0;
1613   unsigned e = getNumOperands();
1614 
1615   // Print explicitly defined operands on the left of an assignment syntax.
1616   while (StartOp < e) {
1617     const MachineOperand &MO = getOperand(StartOp);
1618     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1619       break;
1620 
1621     if (StartOp != 0)
1622       OS << ", ";
1623 
1624     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1625     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1626     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1627              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1628     ++StartOp;
1629   }
1630 
1631   if (StartOp != 0)
1632     OS << " = ";
1633 
1634   if (getFlag(MachineInstr::FrameSetup))
1635     OS << "frame-setup ";
1636   if (getFlag(MachineInstr::FrameDestroy))
1637     OS << "frame-destroy ";
1638   if (getFlag(MachineInstr::FmNoNans))
1639     OS << "nnan ";
1640   if (getFlag(MachineInstr::FmNoInfs))
1641     OS << "ninf ";
1642   if (getFlag(MachineInstr::FmNsz))
1643     OS << "nsz ";
1644   if (getFlag(MachineInstr::FmArcp))
1645     OS << "arcp ";
1646   if (getFlag(MachineInstr::FmContract))
1647     OS << "contract ";
1648   if (getFlag(MachineInstr::FmAfn))
1649     OS << "afn ";
1650   if (getFlag(MachineInstr::FmReassoc))
1651     OS << "reassoc ";
1652   if (getFlag(MachineInstr::NoUWrap))
1653     OS << "nuw ";
1654   if (getFlag(MachineInstr::NoSWrap))
1655     OS << "nsw ";
1656   if (getFlag(MachineInstr::IsExact))
1657     OS << "exact ";
1658   if (getFlag(MachineInstr::NoFPExcept))
1659     OS << "nofpexcept ";
1660   if (getFlag(MachineInstr::NoMerge))
1661     OS << "nomerge ";
1662 
1663   // Print the opcode name.
1664   if (TII)
1665     OS << TII->getName(getOpcode());
1666   else
1667     OS << "UNKNOWN";
1668 
1669   if (SkipOpers)
1670     return;
1671 
1672   // Print the rest of the operands.
1673   bool FirstOp = true;
1674   unsigned AsmDescOp = ~0u;
1675   unsigned AsmOpCount = 0;
1676 
1677   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1678     // Print asm string.
1679     OS << " ";
1680     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1681     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1682     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1683     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1684                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1685                             IntrinsicInfo);
1686 
1687     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1688     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1689     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1690       OS << " [sideeffect]";
1691     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1692       OS << " [mayload]";
1693     if (ExtraInfo & InlineAsm::Extra_MayStore)
1694       OS << " [maystore]";
1695     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1696       OS << " [isconvergent]";
1697     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1698       OS << " [alignstack]";
1699     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1700       OS << " [attdialect]";
1701     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1702       OS << " [inteldialect]";
1703 
1704     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1705     FirstOp = false;
1706   }
1707 
1708   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1709     const MachineOperand &MO = getOperand(i);
1710 
1711     if (FirstOp) FirstOp = false; else OS << ",";
1712     OS << " ";
1713 
1714     if (isDebugValue() && MO.isMetadata()) {
1715       // Pretty print DBG_VALUE instructions.
1716       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1717       if (DIV && !DIV->getName().empty())
1718         OS << "!\"" << DIV->getName() << '\"';
1719       else {
1720         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1721         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1722         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1723                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1724       }
1725     } else if (isDebugLabel() && MO.isMetadata()) {
1726       // Pretty print DBG_LABEL instructions.
1727       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1728       if (DIL && !DIL->getName().empty())
1729         OS << "\"" << DIL->getName() << '\"';
1730       else {
1731         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1732         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1733         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1734                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1735       }
1736     } else if (i == AsmDescOp && MO.isImm()) {
1737       // Pretty print the inline asm operand descriptor.
1738       OS << '$' << AsmOpCount++;
1739       unsigned Flag = MO.getImm();
1740       OS << ":[";
1741       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1742 
1743       unsigned RCID = 0;
1744       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1745           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1746         if (TRI) {
1747           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1748         } else
1749           OS << ":RC" << RCID;
1750       }
1751 
1752       if (InlineAsm::isMemKind(Flag)) {
1753         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1754         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1755       }
1756 
1757       unsigned TiedTo = 0;
1758       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1759         OS << " tiedto:$" << TiedTo;
1760 
1761       OS << ']';
1762 
1763       // Compute the index of the next operand descriptor.
1764       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1765     } else {
1766       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1767       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1768       if (MO.isImm() && isOperandSubregIdx(i))
1769         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1770       else
1771         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1772                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1773     }
1774   }
1775 
1776   // Print any optional symbols attached to this instruction as-if they were
1777   // operands.
1778   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1779     if (!FirstOp) {
1780       FirstOp = false;
1781       OS << ',';
1782     }
1783     OS << " pre-instr-symbol ";
1784     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1785   }
1786   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1787     if (!FirstOp) {
1788       FirstOp = false;
1789       OS << ',';
1790     }
1791     OS << " post-instr-symbol ";
1792     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1793   }
1794   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1795     if (!FirstOp) {
1796       FirstOp = false;
1797       OS << ',';
1798     }
1799     OS << " heap-alloc-marker ";
1800     HeapAllocMarker->printAsOperand(OS, MST);
1801   }
1802 
1803   if (DebugInstrNum) {
1804     if (!FirstOp)
1805       OS << ",";
1806     OS << " debug-instr-number " << DebugInstrNum;
1807   }
1808 
1809   if (!SkipDebugLoc) {
1810     if (const DebugLoc &DL = getDebugLoc()) {
1811       if (!FirstOp)
1812         OS << ',';
1813       OS << " debug-location ";
1814       DL->printAsOperand(OS, MST);
1815     }
1816   }
1817 
1818   if (!memoperands_empty()) {
1819     SmallVector<StringRef, 0> SSNs;
1820     const LLVMContext *Context = nullptr;
1821     std::unique_ptr<LLVMContext> CtxPtr;
1822     const MachineFrameInfo *MFI = nullptr;
1823     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1824       MFI = &MF->getFrameInfo();
1825       Context = &MF->getFunction().getContext();
1826     } else {
1827       CtxPtr = std::make_unique<LLVMContext>();
1828       Context = CtxPtr.get();
1829     }
1830 
1831     OS << " :: ";
1832     bool NeedComma = false;
1833     for (const MachineMemOperand *Op : memoperands()) {
1834       if (NeedComma)
1835         OS << ", ";
1836       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1837       NeedComma = true;
1838     }
1839   }
1840 
1841   if (SkipDebugLoc)
1842     return;
1843 
1844   bool HaveSemi = false;
1845 
1846   // Print debug location information.
1847   if (const DebugLoc &DL = getDebugLoc()) {
1848     if (!HaveSemi) {
1849       OS << ';';
1850       HaveSemi = true;
1851     }
1852     OS << ' ';
1853     DL.print(OS);
1854   }
1855 
1856   // Print extra comments for DEBUG_VALUE.
1857   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1858     if (!HaveSemi) {
1859       OS << ";";
1860       HaveSemi = true;
1861     }
1862     auto *DV = getDebugVariable();
1863     OS << " line no:" <<  DV->getLine();
1864     if (isIndirectDebugValue())
1865       OS << " indirect";
1866   }
1867   // TODO: DBG_LABEL
1868 
1869   if (AddNewLine)
1870     OS << '\n';
1871 }
1872 
1873 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1874                                      const TargetRegisterInfo *RegInfo,
1875                                      bool AddIfNotFound) {
1876   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1877   bool hasAliases = isPhysReg &&
1878     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1879   bool Found = false;
1880   SmallVector<unsigned,4> DeadOps;
1881   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1882     MachineOperand &MO = getOperand(i);
1883     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1884       continue;
1885 
1886     // DEBUG_VALUE nodes do not contribute to code generation and should
1887     // always be ignored. Failure to do so may result in trying to modify
1888     // KILL flags on DEBUG_VALUE nodes.
1889     if (MO.isDebug())
1890       continue;
1891 
1892     Register Reg = MO.getReg();
1893     if (!Reg)
1894       continue;
1895 
1896     if (Reg == IncomingReg) {
1897       if (!Found) {
1898         if (MO.isKill())
1899           // The register is already marked kill.
1900           return true;
1901         if (isPhysReg && isRegTiedToDefOperand(i))
1902           // Two-address uses of physregs must not be marked kill.
1903           return true;
1904         MO.setIsKill();
1905         Found = true;
1906       }
1907     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1908       // A super-register kill already exists.
1909       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1910         return true;
1911       if (RegInfo->isSubRegister(IncomingReg, Reg))
1912         DeadOps.push_back(i);
1913     }
1914   }
1915 
1916   // Trim unneeded kill operands.
1917   while (!DeadOps.empty()) {
1918     unsigned OpIdx = DeadOps.back();
1919     if (getOperand(OpIdx).isImplicit() &&
1920         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1921       RemoveOperand(OpIdx);
1922     else
1923       getOperand(OpIdx).setIsKill(false);
1924     DeadOps.pop_back();
1925   }
1926 
1927   // If not found, this means an alias of one of the operands is killed. Add a
1928   // new implicit operand if required.
1929   if (!Found && AddIfNotFound) {
1930     addOperand(MachineOperand::CreateReg(IncomingReg,
1931                                          false /*IsDef*/,
1932                                          true  /*IsImp*/,
1933                                          true  /*IsKill*/));
1934     return true;
1935   }
1936   return Found;
1937 }
1938 
1939 void MachineInstr::clearRegisterKills(Register Reg,
1940                                       const TargetRegisterInfo *RegInfo) {
1941   if (!Register::isPhysicalRegister(Reg))
1942     RegInfo = nullptr;
1943   for (MachineOperand &MO : operands()) {
1944     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1945       continue;
1946     Register OpReg = MO.getReg();
1947     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1948       MO.setIsKill(false);
1949   }
1950 }
1951 
1952 bool MachineInstr::addRegisterDead(Register Reg,
1953                                    const TargetRegisterInfo *RegInfo,
1954                                    bool AddIfNotFound) {
1955   bool isPhysReg = Register::isPhysicalRegister(Reg);
1956   bool hasAliases = isPhysReg &&
1957     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1958   bool Found = false;
1959   SmallVector<unsigned,4> DeadOps;
1960   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1961     MachineOperand &MO = getOperand(i);
1962     if (!MO.isReg() || !MO.isDef())
1963       continue;
1964     Register MOReg = MO.getReg();
1965     if (!MOReg)
1966       continue;
1967 
1968     if (MOReg == Reg) {
1969       MO.setIsDead();
1970       Found = true;
1971     } else if (hasAliases && MO.isDead() &&
1972                Register::isPhysicalRegister(MOReg)) {
1973       // There exists a super-register that's marked dead.
1974       if (RegInfo->isSuperRegister(Reg, MOReg))
1975         return true;
1976       if (RegInfo->isSubRegister(Reg, MOReg))
1977         DeadOps.push_back(i);
1978     }
1979   }
1980 
1981   // Trim unneeded dead operands.
1982   while (!DeadOps.empty()) {
1983     unsigned OpIdx = DeadOps.back();
1984     if (getOperand(OpIdx).isImplicit() &&
1985         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1986       RemoveOperand(OpIdx);
1987     else
1988       getOperand(OpIdx).setIsDead(false);
1989     DeadOps.pop_back();
1990   }
1991 
1992   // If not found, this means an alias of one of the operands is dead. Add a
1993   // new implicit operand if required.
1994   if (Found || !AddIfNotFound)
1995     return Found;
1996 
1997   addOperand(MachineOperand::CreateReg(Reg,
1998                                        true  /*IsDef*/,
1999                                        true  /*IsImp*/,
2000                                        false /*IsKill*/,
2001                                        true  /*IsDead*/));
2002   return true;
2003 }
2004 
2005 void MachineInstr::clearRegisterDeads(Register Reg) {
2006   for (MachineOperand &MO : operands()) {
2007     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2008       continue;
2009     MO.setIsDead(false);
2010   }
2011 }
2012 
2013 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2014   for (MachineOperand &MO : operands()) {
2015     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2016       continue;
2017     MO.setIsUndef(IsUndef);
2018   }
2019 }
2020 
2021 void MachineInstr::addRegisterDefined(Register Reg,
2022                                       const TargetRegisterInfo *RegInfo) {
2023   if (Register::isPhysicalRegister(Reg)) {
2024     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2025     if (MO)
2026       return;
2027   } else {
2028     for (const MachineOperand &MO : operands()) {
2029       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2030           MO.getSubReg() == 0)
2031         return;
2032     }
2033   }
2034   addOperand(MachineOperand::CreateReg(Reg,
2035                                        true  /*IsDef*/,
2036                                        true  /*IsImp*/));
2037 }
2038 
2039 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2040                                          const TargetRegisterInfo &TRI) {
2041   bool HasRegMask = false;
2042   for (MachineOperand &MO : operands()) {
2043     if (MO.isRegMask()) {
2044       HasRegMask = true;
2045       continue;
2046     }
2047     if (!MO.isReg() || !MO.isDef()) continue;
2048     Register Reg = MO.getReg();
2049     if (!Reg.isPhysical())
2050       continue;
2051     // If there are no uses, including partial uses, the def is dead.
2052     if (llvm::none_of(UsedRegs,
2053                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2054       MO.setIsDead();
2055   }
2056 
2057   // This is a call with a register mask operand.
2058   // Mask clobbers are always dead, so add defs for the non-dead defines.
2059   if (HasRegMask)
2060     for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2061          I != E; ++I)
2062       addRegisterDefined(*I, &TRI);
2063 }
2064 
2065 unsigned
2066 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2067   // Build up a buffer of hash code components.
2068   SmallVector<size_t, 16> HashComponents;
2069   HashComponents.reserve(MI->getNumOperands() + 1);
2070   HashComponents.push_back(MI->getOpcode());
2071   for (const MachineOperand &MO : MI->operands()) {
2072     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2073       continue;  // Skip virtual register defs.
2074 
2075     HashComponents.push_back(hash_value(MO));
2076   }
2077   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2078 }
2079 
2080 void MachineInstr::emitError(StringRef Msg) const {
2081   // Find the source location cookie.
2082   unsigned LocCookie = 0;
2083   const MDNode *LocMD = nullptr;
2084   for (unsigned i = getNumOperands(); i != 0; --i) {
2085     if (getOperand(i-1).isMetadata() &&
2086         (LocMD = getOperand(i-1).getMetadata()) &&
2087         LocMD->getNumOperands() != 0) {
2088       if (const ConstantInt *CI =
2089               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2090         LocCookie = CI->getZExtValue();
2091         break;
2092       }
2093     }
2094   }
2095 
2096   if (const MachineBasicBlock *MBB = getParent())
2097     if (const MachineFunction *MF = MBB->getParent())
2098       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2099   report_fatal_error(Msg);
2100 }
2101 
2102 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2103                                   const MCInstrDesc &MCID, bool IsIndirect,
2104                                   Register Reg, const MDNode *Variable,
2105                                   const MDNode *Expr) {
2106   assert(isa<DILocalVariable>(Variable) && "not a variable");
2107   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2108   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2109          "Expected inlined-at fields to agree");
2110   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2111   if (IsIndirect)
2112     MIB.addImm(0U);
2113   else
2114     MIB.addReg(0U, RegState::Debug);
2115   return MIB.addMetadata(Variable).addMetadata(Expr);
2116 }
2117 
2118 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2119                                   const MCInstrDesc &MCID, bool IsIndirect,
2120                                   MachineOperand &MO, const MDNode *Variable,
2121                                   const MDNode *Expr) {
2122   assert(isa<DILocalVariable>(Variable) && "not a variable");
2123   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2124   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2125          "Expected inlined-at fields to agree");
2126   if (MO.isReg())
2127     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2128 
2129   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2130   if (IsIndirect)
2131     MIB.addImm(0U);
2132   else
2133     MIB.addReg(0U, RegState::Debug);
2134   return MIB.addMetadata(Variable).addMetadata(Expr);
2135  }
2136 
2137 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2138                                   MachineBasicBlock::iterator I,
2139                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2140                                   bool IsIndirect, Register Reg,
2141                                   const MDNode *Variable, const MDNode *Expr) {
2142   MachineFunction &MF = *BB.getParent();
2143   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2144   BB.insert(I, MI);
2145   return MachineInstrBuilder(MF, MI);
2146 }
2147 
2148 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2149                                   MachineBasicBlock::iterator I,
2150                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2151                                   bool IsIndirect, MachineOperand &MO,
2152                                   const MDNode *Variable, const MDNode *Expr) {
2153   MachineFunction &MF = *BB.getParent();
2154   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2155   BB.insert(I, MI);
2156   return MachineInstrBuilder(MF, *MI);
2157 }
2158 
2159 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2160 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2161 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2162   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2163   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2164          "Expected inlined-at fields to agree");
2165 
2166   const DIExpression *Expr = MI.getDebugExpression();
2167   if (MI.isIndirectDebugValue()) {
2168     assert(MI.getDebugOffset().getImm() == 0 &&
2169            "DBG_VALUE with nonzero offset");
2170     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2171   }
2172   return Expr;
2173 }
2174 
2175 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2176                                           MachineBasicBlock::iterator I,
2177                                           const MachineInstr &Orig,
2178                                           int FrameIndex) {
2179   const DIExpression *Expr = computeExprForSpill(Orig);
2180   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2181       .addFrameIndex(FrameIndex)
2182       .addImm(0U)
2183       .addMetadata(Orig.getDebugVariable())
2184       .addMetadata(Expr);
2185 }
2186 
2187 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2188   const DIExpression *Expr = computeExprForSpill(Orig);
2189   Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex);
2190   Orig.getDebugOffset().ChangeToImmediate(0U);
2191   Orig.getDebugExpressionOp().setMetadata(Expr);
2192 }
2193 
2194 void MachineInstr::collectDebugValues(
2195                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2196   MachineInstr &MI = *this;
2197   if (!MI.getOperand(0).isReg())
2198     return;
2199 
2200   MachineBasicBlock::iterator DI = MI; ++DI;
2201   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2202        DI != DE; ++DI) {
2203     if (!DI->isDebugValue())
2204       return;
2205     if (DI->getDebugOperandForReg(MI.getOperand(0).getReg()))
2206       DbgValues.push_back(&*DI);
2207   }
2208 }
2209 
2210 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2211   // Collect matching debug values.
2212   SmallVector<MachineInstr *, 2> DbgValues;
2213 
2214   if (!getOperand(0).isReg())
2215     return;
2216 
2217   Register DefReg = getOperand(0).getReg();
2218   auto *MRI = getRegInfo();
2219   for (auto &MO : MRI->use_operands(DefReg)) {
2220     auto *DI = MO.getParent();
2221     if (!DI->isDebugValue())
2222       continue;
2223     if (DI->getDebugOperandForReg(DefReg)) {
2224       DbgValues.push_back(DI);
2225     }
2226   }
2227 
2228   // Propagate Reg to debug value instructions.
2229   for (auto *DBI : DbgValues)
2230     DBI->getDebugOperandForReg(DefReg)->setReg(Reg);
2231 }
2232 
2233 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2234 
2235 static unsigned getSpillSlotSize(const MMOList &Accesses,
2236                                  const MachineFrameInfo &MFI) {
2237   unsigned Size = 0;
2238   for (auto A : Accesses)
2239     if (MFI.isSpillSlotObjectIndex(
2240             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2241                 ->getFrameIndex()))
2242       Size += A->getSize();
2243   return Size;
2244 }
2245 
2246 Optional<unsigned>
2247 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2248   int FI;
2249   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2250     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2251     if (MFI.isSpillSlotObjectIndex(FI))
2252       return (*memoperands_begin())->getSize();
2253   }
2254   return None;
2255 }
2256 
2257 Optional<unsigned>
2258 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2259   MMOList Accesses;
2260   if (TII->hasStoreToStackSlot(*this, Accesses))
2261     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2262   return None;
2263 }
2264 
2265 Optional<unsigned>
2266 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2267   int FI;
2268   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2269     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2270     if (MFI.isSpillSlotObjectIndex(FI))
2271       return (*memoperands_begin())->getSize();
2272   }
2273   return None;
2274 }
2275 
2276 Optional<unsigned>
2277 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2278   MMOList Accesses;
2279   if (TII->hasLoadFromStackSlot(*this, Accesses))
2280     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2281   return None;
2282 }
2283 
2284 unsigned MachineInstr::getDebugInstrNum() {
2285   if (DebugInstrNum == 0)
2286     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2287   return DebugInstrNum;
2288 }
2289