1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCInstrDesc.h" 58 #include "llvm/MC/MCRegisterInfo.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/FormattedStream.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <cstring> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 82 if (const MachineBasicBlock *MBB = MI.getParent()) 83 if (const MachineFunction *MF = MBB->getParent()) 84 return MF; 85 return nullptr; 86 } 87 88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 89 // it. 90 static void tryToGetTargetInfo(const MachineInstr &MI, 91 const TargetRegisterInfo *&TRI, 92 const MachineRegisterInfo *&MRI, 93 const TargetIntrinsicInfo *&IntrinsicInfo, 94 const TargetInstrInfo *&TII) { 95 96 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 97 TRI = MF->getSubtarget().getRegisterInfo(); 98 MRI = &MF->getRegInfo(); 99 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 100 TII = MF->getSubtarget().getInstrInfo(); 101 } 102 } 103 104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 105 if (MCID->ImplicitDefs) 106 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 107 ++ImpDefs) 108 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 109 if (MCID->ImplicitUses) 110 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 111 ++ImpUses) 112 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 113 } 114 115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 116 /// implicit operands. It reserves space for the number of operands specified by 117 /// the MCInstrDesc. 118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 119 DebugLoc dl, bool NoImp) 120 : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) { 121 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 122 123 // Reserve space for the expected number of operands. 124 if (unsigned NumOps = MCID->getNumOperands() + 125 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 126 CapOperands = OperandCapacity::get(NumOps); 127 Operands = MF.allocateOperandArray(CapOperands); 128 } 129 130 if (!NoImp) 131 addImplicitDefUseOperands(MF); 132 } 133 134 /// MachineInstr ctor - Copies MachineInstr arg exactly. 135 /// Does not copy the number from debug instruction numbering, to preserve 136 /// uniqueness. 137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 138 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()), 139 DebugInstrNum(0) { 140 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 141 142 CapOperands = OperandCapacity::get(MI.getNumOperands()); 143 Operands = MF.allocateOperandArray(CapOperands); 144 145 // Copy operands. 146 for (const MachineOperand &MO : MI.operands()) 147 addOperand(MF, MO); 148 149 // Copy all the sensible flags. 150 setFlags(MI.Flags); 151 } 152 153 void MachineInstr::moveBefore(MachineInstr *MovePos) { 154 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 155 } 156 157 /// getRegInfo - If this instruction is embedded into a MachineFunction, 158 /// return the MachineRegisterInfo object for the current function, otherwise 159 /// return null. 160 MachineRegisterInfo *MachineInstr::getRegInfo() { 161 if (MachineBasicBlock *MBB = getParent()) 162 return &MBB->getParent()->getRegInfo(); 163 return nullptr; 164 } 165 166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 167 /// this instruction from their respective use lists. This requires that the 168 /// operands already be on their use lists. 169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.removeRegOperandFromUseList(&MO); 173 } 174 175 /// AddRegOperandsToUseLists - Add all of the register operands in 176 /// this instruction from their respective use lists. This requires that the 177 /// operands not be on their use lists yet. 178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 179 for (MachineOperand &MO : operands()) 180 if (MO.isReg()) 181 MRI.addRegOperandToUseList(&MO); 182 } 183 184 void MachineInstr::addOperand(const MachineOperand &Op) { 185 MachineBasicBlock *MBB = getParent(); 186 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 187 MachineFunction *MF = MBB->getParent(); 188 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 189 addOperand(*MF, Op); 190 } 191 192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 193 /// ranges. If MRI is non-null also update use-def chains. 194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 195 unsigned NumOps, MachineRegisterInfo *MRI) { 196 if (MRI) 197 return MRI->moveOperands(Dst, Src, NumOps); 198 // MachineOperand is a trivially copyable type so we can just use memmove. 199 assert(Dst && Src && "Unknown operands"); 200 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 201 } 202 203 /// addOperand - Add the specified operand to the instruction. If it is an 204 /// implicit operand, it is added to the end of the operand list. If it is 205 /// an explicit operand it is added at the end of the explicit operand list 206 /// (before the first implicit operand). 207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 208 assert(MCID && "Cannot add operands before providing an instr descriptor"); 209 210 // Check if we're adding one of our existing operands. 211 if (&Op >= Operands && &Op < Operands + NumOperands) { 212 // This is unusual: MI->addOperand(MI->getOperand(i)). 213 // If adding Op requires reallocating or moving existing operands around, 214 // the Op reference could go stale. Support it by copying Op. 215 MachineOperand CopyOp(Op); 216 return addOperand(MF, CopyOp); 217 } 218 219 // Find the insert location for the new operand. Implicit registers go at 220 // the end, everything else goes before the implicit regs. 221 // 222 // FIXME: Allow mixed explicit and implicit operands on inline asm. 223 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 224 // implicit-defs, but they must not be moved around. See the FIXME in 225 // InstrEmitter.cpp. 226 unsigned OpNo = getNumOperands(); 227 bool isImpReg = Op.isReg() && Op.isImplicit(); 228 if (!isImpReg && !isInlineAsm()) { 229 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 230 --OpNo; 231 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 232 } 233 } 234 235 #ifndef NDEBUG 236 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 237 Op.getType() == MachineOperand::MO_MCSymbol; 238 // OpNo now points as the desired insertion point. Unless this is a variadic 239 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 240 // RegMask operands go between the explicit and implicit operands. 241 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 242 OpNo < MCID->getNumOperands() || isDebugOp) && 243 "Trying to add an operand to a machine instr that is already done!"); 244 #endif 245 246 MachineRegisterInfo *MRI = getRegInfo(); 247 248 // Determine if the Operands array needs to be reallocated. 249 // Save the old capacity and operand array. 250 OperandCapacity OldCap = CapOperands; 251 MachineOperand *OldOperands = Operands; 252 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 253 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 254 Operands = MF.allocateOperandArray(CapOperands); 255 // Move the operands before the insertion point. 256 if (OpNo) 257 moveOperands(Operands, OldOperands, OpNo, MRI); 258 } 259 260 // Move the operands following the insertion point. 261 if (OpNo != NumOperands) 262 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 263 MRI); 264 ++NumOperands; 265 266 // Deallocate the old operand array. 267 if (OldOperands != Operands && OldOperands) 268 MF.deallocateOperandArray(OldCap, OldOperands); 269 270 // Copy Op into place. It still needs to be inserted into the MRI use lists. 271 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 272 NewMO->ParentMI = this; 273 274 // When adding a register operand, tell MRI about it. 275 if (NewMO->isReg()) { 276 // Ensure isOnRegUseList() returns false, regardless of Op's status. 277 NewMO->Contents.Reg.Prev = nullptr; 278 // Ignore existing ties. This is not a property that can be copied. 279 NewMO->TiedTo = 0; 280 // Add the new operand to MRI, but only for instructions in an MBB. 281 if (MRI) 282 MRI->addRegOperandToUseList(NewMO); 283 // The MCID operand information isn't accurate until we start adding 284 // explicit operands. The implicit operands are added first, then the 285 // explicits are inserted before them. 286 if (!isImpReg) { 287 // Tie uses to defs as indicated in MCInstrDesc. 288 if (NewMO->isUse()) { 289 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 290 if (DefIdx != -1) 291 tieOperands(DefIdx, OpNo); 292 } 293 // If the register operand is flagged as early, mark the operand as such. 294 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 295 NewMO->setIsEarlyClobber(true); 296 } 297 } 298 } 299 300 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 301 /// fewer operand than it started with. 302 /// 303 void MachineInstr::RemoveOperand(unsigned OpNo) { 304 assert(OpNo < getNumOperands() && "Invalid operand number"); 305 untieRegOperand(OpNo); 306 307 #ifndef NDEBUG 308 // Moving tied operands would break the ties. 309 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 310 if (Operands[i].isReg()) 311 assert(!Operands[i].isTied() && "Cannot move tied operands"); 312 #endif 313 314 MachineRegisterInfo *MRI = getRegInfo(); 315 if (MRI && Operands[OpNo].isReg()) 316 MRI->removeRegOperandFromUseList(Operands + OpNo); 317 318 // Don't call the MachineOperand destructor. A lot of this code depends on 319 // MachineOperand having a trivial destructor anyway, and adding a call here 320 // wouldn't make it 'destructor-correct'. 321 322 if (unsigned N = NumOperands - 1 - OpNo) 323 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 324 --NumOperands; 325 } 326 327 void MachineInstr::setExtraInfo(MachineFunction &MF, 328 ArrayRef<MachineMemOperand *> MMOs, 329 MCSymbol *PreInstrSymbol, 330 MCSymbol *PostInstrSymbol, 331 MDNode *HeapAllocMarker) { 332 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 333 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 334 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 335 int NumPointers = 336 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; 337 338 // Drop all extra info if there is none. 339 if (NumPointers <= 0) { 340 Info.clear(); 341 return; 342 } 343 344 // If more than one pointer, then store out of line. Store heap alloc markers 345 // out of line because PointerSumType cannot hold more than 4 tag types with 346 // 32-bit pointers. 347 // FIXME: Maybe we should make the symbols in the extra info mutable? 348 else if (NumPointers > 1 || HasHeapAllocMarker) { 349 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( 350 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); 351 return; 352 } 353 354 // Otherwise store the single pointer inline. 355 if (HasPreInstrSymbol) 356 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 357 else if (HasPostInstrSymbol) 358 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 359 else 360 Info.set<EIIK_MMO>(MMOs[0]); 361 } 362 363 void MachineInstr::dropMemRefs(MachineFunction &MF) { 364 if (memoperands_empty()) 365 return; 366 367 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 368 getHeapAllocMarker()); 369 } 370 371 void MachineInstr::setMemRefs(MachineFunction &MF, 372 ArrayRef<MachineMemOperand *> MMOs) { 373 if (MMOs.empty()) { 374 dropMemRefs(MF); 375 return; 376 } 377 378 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 379 getHeapAllocMarker()); 380 } 381 382 void MachineInstr::addMemOperand(MachineFunction &MF, 383 MachineMemOperand *MO) { 384 SmallVector<MachineMemOperand *, 2> MMOs; 385 MMOs.append(memoperands_begin(), memoperands_end()); 386 MMOs.push_back(MO); 387 setMemRefs(MF, MMOs); 388 } 389 390 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 391 if (this == &MI) 392 // Nothing to do for a self-clone! 393 return; 394 395 assert(&MF == MI.getMF() && 396 "Invalid machine functions when cloning memory refrences!"); 397 // See if we can just steal the extra info already allocated for the 398 // instruction. We can do this whenever the pre- and post-instruction symbols 399 // are the same (including null). 400 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 401 getPostInstrSymbol() == MI.getPostInstrSymbol() && 402 getHeapAllocMarker() == MI.getHeapAllocMarker()) { 403 Info = MI.Info; 404 return; 405 } 406 407 // Otherwise, fall back on a copy-based clone. 408 setMemRefs(MF, MI.memoperands()); 409 } 410 411 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 412 /// identical. 413 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 414 ArrayRef<MachineMemOperand *> RHS) { 415 if (LHS.size() != RHS.size()) 416 return false; 417 418 auto LHSPointees = make_pointee_range(LHS); 419 auto RHSPointees = make_pointee_range(RHS); 420 return std::equal(LHSPointees.begin(), LHSPointees.end(), 421 RHSPointees.begin()); 422 } 423 424 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 425 ArrayRef<const MachineInstr *> MIs) { 426 // Try handling easy numbers of MIs with simpler mechanisms. 427 if (MIs.empty()) { 428 dropMemRefs(MF); 429 return; 430 } 431 if (MIs.size() == 1) { 432 cloneMemRefs(MF, *MIs[0]); 433 return; 434 } 435 // Because an empty memoperands list provides *no* information and must be 436 // handled conservatively (assuming the instruction can do anything), the only 437 // way to merge with it is to drop all other memoperands. 438 if (MIs[0]->memoperands_empty()) { 439 dropMemRefs(MF); 440 return; 441 } 442 443 // Handle the general case. 444 SmallVector<MachineMemOperand *, 2> MergedMMOs; 445 // Start with the first instruction. 446 assert(&MF == MIs[0]->getMF() && 447 "Invalid machine functions when cloning memory references!"); 448 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 449 // Now walk all the other instructions and accumulate any different MMOs. 450 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 451 assert(&MF == MI.getMF() && 452 "Invalid machine functions when cloning memory references!"); 453 454 // Skip MIs with identical operands to the first. This is a somewhat 455 // arbitrary hack but will catch common cases without being quadratic. 456 // TODO: We could fully implement merge semantics here if needed. 457 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 458 continue; 459 460 // Because an empty memoperands list provides *no* information and must be 461 // handled conservatively (assuming the instruction can do anything), the 462 // only way to merge with it is to drop all other memoperands. 463 if (MI.memoperands_empty()) { 464 dropMemRefs(MF); 465 return; 466 } 467 468 // Otherwise accumulate these into our temporary buffer of the merged state. 469 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 470 } 471 472 setMemRefs(MF, MergedMMOs); 473 } 474 475 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 476 // Do nothing if old and new symbols are the same. 477 if (Symbol == getPreInstrSymbol()) 478 return; 479 480 // If there was only one symbol and we're removing it, just clear info. 481 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 482 Info.clear(); 483 return; 484 } 485 486 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 487 getHeapAllocMarker()); 488 } 489 490 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 491 // Do nothing if old and new symbols are the same. 492 if (Symbol == getPostInstrSymbol()) 493 return; 494 495 // If there was only one symbol and we're removing it, just clear info. 496 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 497 Info.clear(); 498 return; 499 } 500 501 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 502 getHeapAllocMarker()); 503 } 504 505 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 506 // Do nothing if old and new symbols are the same. 507 if (Marker == getHeapAllocMarker()) 508 return; 509 510 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 511 Marker); 512 } 513 514 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 515 const MachineInstr &MI) { 516 if (this == &MI) 517 // Nothing to do for a self-clone! 518 return; 519 520 assert(&MF == MI.getMF() && 521 "Invalid machine functions when cloning instruction symbols!"); 522 523 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 524 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 525 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 526 } 527 528 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 529 // For now, the just return the union of the flags. If the flags get more 530 // complicated over time, we might need more logic here. 531 return getFlags() | Other.getFlags(); 532 } 533 534 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 535 uint16_t MIFlags = 0; 536 // Copy the wrapping flags. 537 if (const OverflowingBinaryOperator *OB = 538 dyn_cast<OverflowingBinaryOperator>(&I)) { 539 if (OB->hasNoSignedWrap()) 540 MIFlags |= MachineInstr::MIFlag::NoSWrap; 541 if (OB->hasNoUnsignedWrap()) 542 MIFlags |= MachineInstr::MIFlag::NoUWrap; 543 } 544 545 // Copy the exact flag. 546 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 547 if (PE->isExact()) 548 MIFlags |= MachineInstr::MIFlag::IsExact; 549 550 // Copy the fast-math flags. 551 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 552 const FastMathFlags Flags = FP->getFastMathFlags(); 553 if (Flags.noNaNs()) 554 MIFlags |= MachineInstr::MIFlag::FmNoNans; 555 if (Flags.noInfs()) 556 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 557 if (Flags.noSignedZeros()) 558 MIFlags |= MachineInstr::MIFlag::FmNsz; 559 if (Flags.allowReciprocal()) 560 MIFlags |= MachineInstr::MIFlag::FmArcp; 561 if (Flags.allowContract()) 562 MIFlags |= MachineInstr::MIFlag::FmContract; 563 if (Flags.approxFunc()) 564 MIFlags |= MachineInstr::MIFlag::FmAfn; 565 if (Flags.allowReassoc()) 566 MIFlags |= MachineInstr::MIFlag::FmReassoc; 567 } 568 569 return MIFlags; 570 } 571 572 void MachineInstr::copyIRFlags(const Instruction &I) { 573 Flags = copyFlagsFromInstruction(I); 574 } 575 576 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 577 assert(!isBundledWithPred() && "Must be called on bundle header"); 578 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 579 if (MII->getDesc().getFlags() & Mask) { 580 if (Type == AnyInBundle) 581 return true; 582 } else { 583 if (Type == AllInBundle && !MII->isBundle()) 584 return false; 585 } 586 // This was the last instruction in the bundle. 587 if (!MII->isBundledWithSucc()) 588 return Type == AllInBundle; 589 } 590 } 591 592 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 593 MICheckType Check) const { 594 // If opcodes or number of operands are not the same then the two 595 // instructions are obviously not identical. 596 if (Other.getOpcode() != getOpcode() || 597 Other.getNumOperands() != getNumOperands()) 598 return false; 599 600 if (isBundle()) { 601 // We have passed the test above that both instructions have the same 602 // opcode, so we know that both instructions are bundles here. Let's compare 603 // MIs inside the bundle. 604 assert(Other.isBundle() && "Expected that both instructions are bundles."); 605 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 606 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 607 // Loop until we analysed the last intruction inside at least one of the 608 // bundles. 609 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 610 ++I1; 611 ++I2; 612 if (!I1->isIdenticalTo(*I2, Check)) 613 return false; 614 } 615 // If we've reached the end of just one of the two bundles, but not both, 616 // the instructions are not identical. 617 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 618 return false; 619 } 620 621 // Check operands to make sure they match. 622 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 623 const MachineOperand &MO = getOperand(i); 624 const MachineOperand &OMO = Other.getOperand(i); 625 if (!MO.isReg()) { 626 if (!MO.isIdenticalTo(OMO)) 627 return false; 628 continue; 629 } 630 631 // Clients may or may not want to ignore defs when testing for equality. 632 // For example, machine CSE pass only cares about finding common 633 // subexpressions, so it's safe to ignore virtual register defs. 634 if (MO.isDef()) { 635 if (Check == IgnoreDefs) 636 continue; 637 else if (Check == IgnoreVRegDefs) { 638 if (!Register::isVirtualRegister(MO.getReg()) || 639 !Register::isVirtualRegister(OMO.getReg())) 640 if (!MO.isIdenticalTo(OMO)) 641 return false; 642 } else { 643 if (!MO.isIdenticalTo(OMO)) 644 return false; 645 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 646 return false; 647 } 648 } else { 649 if (!MO.isIdenticalTo(OMO)) 650 return false; 651 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 652 return false; 653 } 654 } 655 // If DebugLoc does not match then two debug instructions are not identical. 656 if (isDebugInstr()) 657 if (getDebugLoc() && Other.getDebugLoc() && 658 getDebugLoc() != Other.getDebugLoc()) 659 return false; 660 return true; 661 } 662 663 const MachineFunction *MachineInstr::getMF() const { 664 return getParent()->getParent(); 665 } 666 667 MachineInstr *MachineInstr::removeFromParent() { 668 assert(getParent() && "Not embedded in a basic block!"); 669 return getParent()->remove(this); 670 } 671 672 MachineInstr *MachineInstr::removeFromBundle() { 673 assert(getParent() && "Not embedded in a basic block!"); 674 return getParent()->remove_instr(this); 675 } 676 677 void MachineInstr::eraseFromParent() { 678 assert(getParent() && "Not embedded in a basic block!"); 679 getParent()->erase(this); 680 } 681 682 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 683 assert(getParent() && "Not embedded in a basic block!"); 684 MachineBasicBlock *MBB = getParent(); 685 MachineFunction *MF = MBB->getParent(); 686 assert(MF && "Not embedded in a function!"); 687 688 MachineInstr *MI = (MachineInstr *)this; 689 MachineRegisterInfo &MRI = MF->getRegInfo(); 690 691 for (const MachineOperand &MO : MI->operands()) { 692 if (!MO.isReg() || !MO.isDef()) 693 continue; 694 Register Reg = MO.getReg(); 695 if (!Reg.isVirtual()) 696 continue; 697 MRI.markUsesInDebugValueAsUndef(Reg); 698 } 699 MI->eraseFromParent(); 700 } 701 702 void MachineInstr::eraseFromBundle() { 703 assert(getParent() && "Not embedded in a basic block!"); 704 getParent()->erase_instr(this); 705 } 706 707 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 708 if (!isCall(Type)) 709 return false; 710 switch (getOpcode()) { 711 case TargetOpcode::PATCHPOINT: 712 case TargetOpcode::STACKMAP: 713 case TargetOpcode::STATEPOINT: 714 case TargetOpcode::FENTRY_CALL: 715 return false; 716 } 717 return true; 718 } 719 720 bool MachineInstr::shouldUpdateCallSiteInfo() const { 721 if (isBundle()) 722 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 723 return isCandidateForCallSiteEntry(); 724 } 725 726 unsigned MachineInstr::getNumExplicitOperands() const { 727 unsigned NumOperands = MCID->getNumOperands(); 728 if (!MCID->isVariadic()) 729 return NumOperands; 730 731 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 732 const MachineOperand &MO = getOperand(I); 733 // The operands must always be in the following order: 734 // - explicit reg defs, 735 // - other explicit operands (reg uses, immediates, etc.), 736 // - implicit reg defs 737 // - implicit reg uses 738 if (MO.isReg() && MO.isImplicit()) 739 break; 740 ++NumOperands; 741 } 742 return NumOperands; 743 } 744 745 unsigned MachineInstr::getNumExplicitDefs() const { 746 unsigned NumDefs = MCID->getNumDefs(); 747 if (!MCID->isVariadic()) 748 return NumDefs; 749 750 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 751 const MachineOperand &MO = getOperand(I); 752 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 753 break; 754 ++NumDefs; 755 } 756 return NumDefs; 757 } 758 759 void MachineInstr::bundleWithPred() { 760 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 761 setFlag(BundledPred); 762 MachineBasicBlock::instr_iterator Pred = getIterator(); 763 --Pred; 764 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 765 Pred->setFlag(BundledSucc); 766 } 767 768 void MachineInstr::bundleWithSucc() { 769 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 770 setFlag(BundledSucc); 771 MachineBasicBlock::instr_iterator Succ = getIterator(); 772 ++Succ; 773 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 774 Succ->setFlag(BundledPred); 775 } 776 777 void MachineInstr::unbundleFromPred() { 778 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 779 clearFlag(BundledPred); 780 MachineBasicBlock::instr_iterator Pred = getIterator(); 781 --Pred; 782 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 783 Pred->clearFlag(BundledSucc); 784 } 785 786 void MachineInstr::unbundleFromSucc() { 787 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 788 clearFlag(BundledSucc); 789 MachineBasicBlock::instr_iterator Succ = getIterator(); 790 ++Succ; 791 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 792 Succ->clearFlag(BundledPred); 793 } 794 795 bool MachineInstr::isStackAligningInlineAsm() const { 796 if (isInlineAsm()) { 797 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 798 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 799 return true; 800 } 801 return false; 802 } 803 804 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 805 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 806 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 807 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 808 } 809 810 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 811 unsigned *GroupNo) const { 812 assert(isInlineAsm() && "Expected an inline asm instruction"); 813 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 814 815 // Ignore queries about the initial operands. 816 if (OpIdx < InlineAsm::MIOp_FirstOperand) 817 return -1; 818 819 unsigned Group = 0; 820 unsigned NumOps; 821 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 822 i += NumOps) { 823 const MachineOperand &FlagMO = getOperand(i); 824 // If we reach the implicit register operands, stop looking. 825 if (!FlagMO.isImm()) 826 return -1; 827 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 828 if (i + NumOps > OpIdx) { 829 if (GroupNo) 830 *GroupNo = Group; 831 return i; 832 } 833 ++Group; 834 } 835 return -1; 836 } 837 838 const DILabel *MachineInstr::getDebugLabel() const { 839 assert(isDebugLabel() && "not a DBG_LABEL"); 840 return cast<DILabel>(getOperand(0).getMetadata()); 841 } 842 843 const MachineOperand &MachineInstr::getDebugVariableOp() const { 844 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); 845 return getOperand(2); 846 } 847 848 MachineOperand &MachineInstr::getDebugVariableOp() { 849 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); 850 return getOperand(2); 851 } 852 853 const DILocalVariable *MachineInstr::getDebugVariable() const { 854 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); 855 return cast<DILocalVariable>(getOperand(2).getMetadata()); 856 } 857 858 MachineOperand &MachineInstr::getDebugExpressionOp() { 859 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); 860 return getOperand(3); 861 } 862 863 const DIExpression *MachineInstr::getDebugExpression() const { 864 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); 865 return cast<DIExpression>(getOperand(3).getMetadata()); 866 } 867 868 bool MachineInstr::isDebugEntryValue() const { 869 return isDebugValue() && getDebugExpression()->isEntryValue(); 870 } 871 872 const TargetRegisterClass* 873 MachineInstr::getRegClassConstraint(unsigned OpIdx, 874 const TargetInstrInfo *TII, 875 const TargetRegisterInfo *TRI) const { 876 assert(getParent() && "Can't have an MBB reference here!"); 877 assert(getMF() && "Can't have an MF reference here!"); 878 const MachineFunction &MF = *getMF(); 879 880 // Most opcodes have fixed constraints in their MCInstrDesc. 881 if (!isInlineAsm()) 882 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 883 884 if (!getOperand(OpIdx).isReg()) 885 return nullptr; 886 887 // For tied uses on inline asm, get the constraint from the def. 888 unsigned DefIdx; 889 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 890 OpIdx = DefIdx; 891 892 // Inline asm stores register class constraints in the flag word. 893 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 894 if (FlagIdx < 0) 895 return nullptr; 896 897 unsigned Flag = getOperand(FlagIdx).getImm(); 898 unsigned RCID; 899 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 900 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 901 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 902 InlineAsm::hasRegClassConstraint(Flag, RCID)) 903 return TRI->getRegClass(RCID); 904 905 // Assume that all registers in a memory operand are pointers. 906 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 907 return TRI->getPointerRegClass(MF); 908 909 return nullptr; 910 } 911 912 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 913 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 914 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 915 // Check every operands inside the bundle if we have 916 // been asked to. 917 if (ExploreBundle) 918 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 919 ++OpndIt) 920 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 921 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 922 else 923 // Otherwise, just check the current operands. 924 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 925 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 926 return CurRC; 927 } 928 929 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 930 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 931 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 932 assert(CurRC && "Invalid initial register class"); 933 // Check if Reg is constrained by some of its use/def from MI. 934 const MachineOperand &MO = getOperand(OpIdx); 935 if (!MO.isReg() || MO.getReg() != Reg) 936 return CurRC; 937 // If yes, accumulate the constraints through the operand. 938 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 939 } 940 941 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 942 unsigned OpIdx, const TargetRegisterClass *CurRC, 943 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 944 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 945 const MachineOperand &MO = getOperand(OpIdx); 946 assert(MO.isReg() && 947 "Cannot get register constraints for non-register operand"); 948 assert(CurRC && "Invalid initial register class"); 949 if (unsigned SubIdx = MO.getSubReg()) { 950 if (OpRC) 951 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 952 else 953 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 954 } else if (OpRC) 955 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 956 return CurRC; 957 } 958 959 /// Return the number of instructions inside the MI bundle, not counting the 960 /// header instruction. 961 unsigned MachineInstr::getBundleSize() const { 962 MachineBasicBlock::const_instr_iterator I = getIterator(); 963 unsigned Size = 0; 964 while (I->isBundledWithSucc()) { 965 ++Size; 966 ++I; 967 } 968 return Size; 969 } 970 971 /// Returns true if the MachineInstr has an implicit-use operand of exactly 972 /// the given register (not considering sub/super-registers). 973 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 974 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 975 const MachineOperand &MO = getOperand(i); 976 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 977 return true; 978 } 979 return false; 980 } 981 982 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 983 /// the specific register or -1 if it is not found. It further tightens 984 /// the search criteria to a use that kills the register if isKill is true. 985 int MachineInstr::findRegisterUseOperandIdx( 986 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 987 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 988 const MachineOperand &MO = getOperand(i); 989 if (!MO.isReg() || !MO.isUse()) 990 continue; 991 Register MOReg = MO.getReg(); 992 if (!MOReg) 993 continue; 994 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 995 if (!isKill || MO.isKill()) 996 return i; 997 } 998 return -1; 999 } 1000 1001 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1002 /// indicating if this instruction reads or writes Reg. This also considers 1003 /// partial defines. 1004 std::pair<bool,bool> 1005 MachineInstr::readsWritesVirtualRegister(Register Reg, 1006 SmallVectorImpl<unsigned> *Ops) const { 1007 bool PartDef = false; // Partial redefine. 1008 bool FullDef = false; // Full define. 1009 bool Use = false; 1010 1011 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1012 const MachineOperand &MO = getOperand(i); 1013 if (!MO.isReg() || MO.getReg() != Reg) 1014 continue; 1015 if (Ops) 1016 Ops->push_back(i); 1017 if (MO.isUse()) 1018 Use |= !MO.isUndef(); 1019 else if (MO.getSubReg() && !MO.isUndef()) 1020 // A partial def undef doesn't count as reading the register. 1021 PartDef = true; 1022 else 1023 FullDef = true; 1024 } 1025 // A partial redefine uses Reg unless there is also a full define. 1026 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1027 } 1028 1029 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1030 /// the specified register or -1 if it is not found. If isDead is true, defs 1031 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1032 /// also checks if there is a def of a super-register. 1033 int 1034 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1035 const TargetRegisterInfo *TRI) const { 1036 bool isPhys = Register::isPhysicalRegister(Reg); 1037 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1038 const MachineOperand &MO = getOperand(i); 1039 // Accept regmask operands when Overlap is set. 1040 // Ignore them when looking for a specific def operand (Overlap == false). 1041 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1042 return i; 1043 if (!MO.isReg() || !MO.isDef()) 1044 continue; 1045 Register MOReg = MO.getReg(); 1046 bool Found = (MOReg == Reg); 1047 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1048 if (Overlap) 1049 Found = TRI->regsOverlap(MOReg, Reg); 1050 else 1051 Found = TRI->isSubRegister(MOReg, Reg); 1052 } 1053 if (Found && (!isDead || MO.isDead())) 1054 return i; 1055 } 1056 return -1; 1057 } 1058 1059 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1060 /// operand list that is used to represent the predicate. It returns -1 if 1061 /// none is found. 1062 int MachineInstr::findFirstPredOperandIdx() const { 1063 // Don't call MCID.findFirstPredOperandIdx() because this variant 1064 // is sometimes called on an instruction that's not yet complete, and 1065 // so the number of operands is less than the MCID indicates. In 1066 // particular, the PTX target does this. 1067 const MCInstrDesc &MCID = getDesc(); 1068 if (MCID.isPredicable()) { 1069 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1070 if (MCID.OpInfo[i].isPredicate()) 1071 return i; 1072 } 1073 1074 return -1; 1075 } 1076 1077 // MachineOperand::TiedTo is 4 bits wide. 1078 const unsigned TiedMax = 15; 1079 1080 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1081 /// 1082 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1083 /// field. TiedTo can have these values: 1084 /// 1085 /// 0: Operand is not tied to anything. 1086 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1087 /// TiedMax: Tied to an operand >= TiedMax-1. 1088 /// 1089 /// The tied def must be one of the first TiedMax operands on a normal 1090 /// instruction. INLINEASM instructions allow more tied defs. 1091 /// 1092 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1093 MachineOperand &DefMO = getOperand(DefIdx); 1094 MachineOperand &UseMO = getOperand(UseIdx); 1095 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1096 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1097 assert(!DefMO.isTied() && "Def is already tied to another use"); 1098 assert(!UseMO.isTied() && "Use is already tied to another def"); 1099 1100 if (DefIdx < TiedMax) 1101 UseMO.TiedTo = DefIdx + 1; 1102 else { 1103 // Inline asm can use the group descriptors to find tied operands, 1104 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1105 // but on normal instruction, the tied def must be within the first TiedMax 1106 // operands. 1107 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1108 "DefIdx out of range"); 1109 UseMO.TiedTo = TiedMax; 1110 } 1111 1112 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1113 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1114 } 1115 1116 /// Given the index of a tied register operand, find the operand it is tied to. 1117 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1118 /// which must exist. 1119 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1120 const MachineOperand &MO = getOperand(OpIdx); 1121 assert(MO.isTied() && "Operand isn't tied"); 1122 1123 // Normally TiedTo is in range. 1124 if (MO.TiedTo < TiedMax) 1125 return MO.TiedTo - 1; 1126 1127 // Uses on normal instructions can be out of range. 1128 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1129 // Normal tied defs must be in the 0..TiedMax-1 range. 1130 if (MO.isUse()) 1131 return TiedMax - 1; 1132 // MO is a def. Search for the tied use. 1133 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1134 const MachineOperand &UseMO = getOperand(i); 1135 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1136 return i; 1137 } 1138 llvm_unreachable("Can't find tied use"); 1139 } 1140 1141 if (getOpcode() == TargetOpcode::STATEPOINT) { 1142 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1143 // on registers. 1144 StatepointOpers SO(this); 1145 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1146 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1147 unsigned NumDefs = getNumDefs(); 1148 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1149 while (!getOperand(CurUseIdx).isReg()) 1150 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1151 if (OpIdx == CurDefIdx) 1152 return CurUseIdx; 1153 if (OpIdx == CurUseIdx) 1154 return CurDefIdx; 1155 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1156 } 1157 llvm_unreachable("Can't find tied use"); 1158 } 1159 1160 // Now deal with inline asm by parsing the operand group descriptor flags. 1161 // Find the beginning of each operand group. 1162 SmallVector<unsigned, 8> GroupIdx; 1163 unsigned OpIdxGroup = ~0u; 1164 unsigned NumOps; 1165 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1166 i += NumOps) { 1167 const MachineOperand &FlagMO = getOperand(i); 1168 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1169 unsigned CurGroup = GroupIdx.size(); 1170 GroupIdx.push_back(i); 1171 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1172 // OpIdx belongs to this operand group. 1173 if (OpIdx > i && OpIdx < i + NumOps) 1174 OpIdxGroup = CurGroup; 1175 unsigned TiedGroup; 1176 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1177 continue; 1178 // Operands in this group are tied to operands in TiedGroup which must be 1179 // earlier. Find the number of operands between the two groups. 1180 unsigned Delta = i - GroupIdx[TiedGroup]; 1181 1182 // OpIdx is a use tied to TiedGroup. 1183 if (OpIdxGroup == CurGroup) 1184 return OpIdx - Delta; 1185 1186 // OpIdx is a def tied to this use group. 1187 if (OpIdxGroup == TiedGroup) 1188 return OpIdx + Delta; 1189 } 1190 llvm_unreachable("Invalid tied operand on inline asm"); 1191 } 1192 1193 /// clearKillInfo - Clears kill flags on all operands. 1194 /// 1195 void MachineInstr::clearKillInfo() { 1196 for (MachineOperand &MO : operands()) { 1197 if (MO.isReg() && MO.isUse()) 1198 MO.setIsKill(false); 1199 } 1200 } 1201 1202 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1203 unsigned SubIdx, 1204 const TargetRegisterInfo &RegInfo) { 1205 if (Register::isPhysicalRegister(ToReg)) { 1206 if (SubIdx) 1207 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1208 for (MachineOperand &MO : operands()) { 1209 if (!MO.isReg() || MO.getReg() != FromReg) 1210 continue; 1211 MO.substPhysReg(ToReg, RegInfo); 1212 } 1213 } else { 1214 for (MachineOperand &MO : operands()) { 1215 if (!MO.isReg() || MO.getReg() != FromReg) 1216 continue; 1217 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1218 } 1219 } 1220 } 1221 1222 /// isSafeToMove - Return true if it is safe to move this instruction. If 1223 /// SawStore is set to true, it means that there is a store (or call) between 1224 /// the instruction's location and its intended destination. 1225 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1226 // Ignore stuff that we obviously can't move. 1227 // 1228 // Treat volatile loads as stores. This is not strictly necessary for 1229 // volatiles, but it is required for atomic loads. It is not allowed to move 1230 // a load across an atomic load with Ordering > Monotonic. 1231 if (mayStore() || isCall() || isPHI() || 1232 (mayLoad() && hasOrderedMemoryRef())) { 1233 SawStore = true; 1234 return false; 1235 } 1236 1237 if (isPosition() || isDebugInstr() || isTerminator() || 1238 mayRaiseFPException() || hasUnmodeledSideEffects()) 1239 return false; 1240 1241 // See if this instruction does a load. If so, we have to guarantee that the 1242 // loaded value doesn't change between the load and the its intended 1243 // destination. The check for isInvariantLoad gives the target the chance to 1244 // classify the load as always returning a constant, e.g. a constant pool 1245 // load. 1246 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1247 // Otherwise, this is a real load. If there is a store between the load and 1248 // end of block, we can't move it. 1249 return !SawStore; 1250 1251 return true; 1252 } 1253 1254 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1255 bool UseTBAA, const MachineMemOperand *MMOa, 1256 const MachineMemOperand *MMOb) { 1257 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1258 // operates with MachineMemOperand offset with some important assumptions: 1259 // - LLVM fundamentally assumes flat address spaces. 1260 // - MachineOperand offset can *only* result from legalization and cannot 1261 // affect queries other than the trivial case of overlap checking. 1262 // - These offsets never wrap and never step outside of allocated objects. 1263 // - There should never be any negative offsets here. 1264 // 1265 // FIXME: Modify API to hide this math from "user" 1266 // Even before we go to AA we can reason locally about some memory objects. It 1267 // can save compile time, and possibly catch some corner cases not currently 1268 // covered. 1269 1270 int64_t OffsetA = MMOa->getOffset(); 1271 int64_t OffsetB = MMOb->getOffset(); 1272 int64_t MinOffset = std::min(OffsetA, OffsetB); 1273 1274 uint64_t WidthA = MMOa->getSize(); 1275 uint64_t WidthB = MMOb->getSize(); 1276 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1277 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1278 1279 const Value *ValA = MMOa->getValue(); 1280 const Value *ValB = MMOb->getValue(); 1281 bool SameVal = (ValA && ValB && (ValA == ValB)); 1282 if (!SameVal) { 1283 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1284 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1285 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1286 return false; 1287 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1288 return false; 1289 if (PSVa && PSVb && (PSVa == PSVb)) 1290 SameVal = true; 1291 } 1292 1293 if (SameVal) { 1294 if (!KnownWidthA || !KnownWidthB) 1295 return true; 1296 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1297 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1298 return (MinOffset + LowWidth > MaxOffset); 1299 } 1300 1301 if (!AA) 1302 return true; 1303 1304 if (!ValA || !ValB) 1305 return true; 1306 1307 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1308 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1309 1310 int64_t OverlapA = 1311 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1312 int64_t OverlapB = 1313 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1314 1315 AliasResult AAResult = AA->alias( 1316 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1317 MemoryLocation(ValB, OverlapB, 1318 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1319 1320 return (AAResult != NoAlias); 1321 } 1322 1323 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1324 bool UseTBAA) const { 1325 const MachineFunction *MF = getMF(); 1326 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1327 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1328 1329 // Exclude call instruction which may alter the memory but can not be handled 1330 // by this function. 1331 if (isCall() || Other.isCall()) 1332 return true; 1333 1334 // If neither instruction stores to memory, they can't alias in any 1335 // meaningful way, even if they read from the same address. 1336 if (!mayStore() && !Other.mayStore()) 1337 return false; 1338 1339 // Both instructions must be memory operations to be able to alias. 1340 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1341 return false; 1342 1343 // Let the target decide if memory accesses cannot possibly overlap. 1344 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1345 return false; 1346 1347 // Memory operations without memory operands may access anything. Be 1348 // conservative and assume `MayAlias`. 1349 if (memoperands_empty() || Other.memoperands_empty()) 1350 return true; 1351 1352 // Skip if there are too many memory operands. 1353 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1354 if (NumChecks > TII->getMemOperandAACheckLimit()) 1355 return true; 1356 1357 // Check each pair of memory operands from both instructions, which can't 1358 // alias only if all pairs won't alias. 1359 for (auto *MMOa : memoperands()) 1360 for (auto *MMOb : Other.memoperands()) 1361 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1362 return true; 1363 1364 return false; 1365 } 1366 1367 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1368 /// or volatile memory reference, or if the information describing the memory 1369 /// reference is not available. Return false if it is known to have no ordered 1370 /// memory references. 1371 bool MachineInstr::hasOrderedMemoryRef() const { 1372 // An instruction known never to access memory won't have a volatile access. 1373 if (!mayStore() && 1374 !mayLoad() && 1375 !isCall() && 1376 !hasUnmodeledSideEffects()) 1377 return false; 1378 1379 // Otherwise, if the instruction has no memory reference information, 1380 // conservatively assume it wasn't preserved. 1381 if (memoperands_empty()) 1382 return true; 1383 1384 // Check if any of our memory operands are ordered. 1385 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1386 return !MMO->isUnordered(); 1387 }); 1388 } 1389 1390 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1391 /// trap and is loading from a location whose value is invariant across a run of 1392 /// this function. 1393 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { 1394 // If the instruction doesn't load at all, it isn't an invariant load. 1395 if (!mayLoad()) 1396 return false; 1397 1398 // If the instruction has lost its memoperands, conservatively assume that 1399 // it may not be an invariant load. 1400 if (memoperands_empty()) 1401 return false; 1402 1403 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1404 1405 for (MachineMemOperand *MMO : memoperands()) { 1406 if (!MMO->isUnordered()) 1407 // If the memory operand has ordering side effects, we can't move the 1408 // instruction. Such an instruction is technically an invariant load, 1409 // but the caller code would need updated to expect that. 1410 return false; 1411 if (MMO->isStore()) return false; 1412 if (MMO->isInvariant() && MMO->isDereferenceable()) 1413 continue; 1414 1415 // A load from a constant PseudoSourceValue is invariant. 1416 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1417 if (PSV->isConstant(&MFI)) 1418 continue; 1419 1420 if (const Value *V = MMO->getValue()) { 1421 // If we have an AliasAnalysis, ask it whether the memory is constant. 1422 if (AA && 1423 AA->pointsToConstantMemory( 1424 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1425 continue; 1426 } 1427 1428 // Otherwise assume conservatively. 1429 return false; 1430 } 1431 1432 // Everything checks out. 1433 return true; 1434 } 1435 1436 /// isConstantValuePHI - If the specified instruction is a PHI that always 1437 /// merges together the same virtual register, return the register, otherwise 1438 /// return 0. 1439 unsigned MachineInstr::isConstantValuePHI() const { 1440 if (!isPHI()) 1441 return 0; 1442 assert(getNumOperands() >= 3 && 1443 "It's illegal to have a PHI without source operands"); 1444 1445 Register Reg = getOperand(1).getReg(); 1446 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1447 if (getOperand(i).getReg() != Reg) 1448 return 0; 1449 return Reg; 1450 } 1451 1452 bool MachineInstr::hasUnmodeledSideEffects() const { 1453 if (hasProperty(MCID::UnmodeledSideEffects)) 1454 return true; 1455 if (isInlineAsm()) { 1456 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1457 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1458 return true; 1459 } 1460 1461 return false; 1462 } 1463 1464 bool MachineInstr::isLoadFoldBarrier() const { 1465 return mayStore() || isCall() || 1466 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1467 } 1468 1469 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1470 /// 1471 bool MachineInstr::allDefsAreDead() const { 1472 for (const MachineOperand &MO : operands()) { 1473 if (!MO.isReg() || MO.isUse()) 1474 continue; 1475 if (!MO.isDead()) 1476 return false; 1477 } 1478 return true; 1479 } 1480 1481 /// copyImplicitOps - Copy implicit register operands from specified 1482 /// instruction to this instruction. 1483 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1484 const MachineInstr &MI) { 1485 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); 1486 i != e; ++i) { 1487 const MachineOperand &MO = MI.getOperand(i); 1488 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1489 addOperand(MF, MO); 1490 } 1491 } 1492 1493 bool MachineInstr::hasComplexRegisterTies() const { 1494 const MCInstrDesc &MCID = getDesc(); 1495 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1496 return true; 1497 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1498 const auto &Operand = getOperand(I); 1499 if (!Operand.isReg() || Operand.isDef()) 1500 // Ignore the defined registers as MCID marks only the uses as tied. 1501 continue; 1502 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1503 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1504 if (ExpectedTiedIdx != TiedIdx) 1505 return true; 1506 } 1507 return false; 1508 } 1509 1510 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1511 const MachineRegisterInfo &MRI) const { 1512 const MachineOperand &Op = getOperand(OpIdx); 1513 if (!Op.isReg()) 1514 return LLT{}; 1515 1516 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1517 return MRI.getType(Op.getReg()); 1518 1519 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1520 if (!OpInfo.isGenericType()) 1521 return MRI.getType(Op.getReg()); 1522 1523 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1524 return LLT{}; 1525 1526 LLT TypeToPrint = MRI.getType(Op.getReg()); 1527 // Don't mark the type index printed if it wasn't actually printed: maybe 1528 // another operand with the same type index has an actual type attached: 1529 if (TypeToPrint.isValid()) 1530 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1531 return TypeToPrint; 1532 } 1533 1534 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1535 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1536 dbgs() << " "; 1537 print(dbgs()); 1538 } 1539 1540 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1541 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1542 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1543 if (Depth >= MaxDepth) 1544 return; 1545 if (!AlreadySeenInstrs.insert(this).second) 1546 return; 1547 // PadToColumn always inserts at least one space. 1548 // Don't mess up the alignment if we don't want any space. 1549 if (Depth) 1550 fdbgs().PadToColumn(Depth * 2); 1551 print(fdbgs()); 1552 for (const MachineOperand &MO : operands()) { 1553 if (!MO.isReg() || MO.isDef()) 1554 continue; 1555 Register Reg = MO.getReg(); 1556 if (Reg.isPhysical()) 1557 continue; 1558 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1559 if (NewMI == nullptr) 1560 continue; 1561 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1562 } 1563 } 1564 1565 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1566 unsigned MaxDepth) const { 1567 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1568 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1569 } 1570 #endif 1571 1572 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1573 bool SkipDebugLoc, bool AddNewLine, 1574 const TargetInstrInfo *TII) const { 1575 const Module *M = nullptr; 1576 const Function *F = nullptr; 1577 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1578 F = &MF->getFunction(); 1579 M = F->getParent(); 1580 if (!TII) 1581 TII = MF->getSubtarget().getInstrInfo(); 1582 } 1583 1584 ModuleSlotTracker MST(M); 1585 if (F) 1586 MST.incorporateFunction(*F); 1587 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1588 } 1589 1590 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1591 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1592 bool AddNewLine, const TargetInstrInfo *TII) const { 1593 // We can be a bit tidier if we know the MachineFunction. 1594 const TargetRegisterInfo *TRI = nullptr; 1595 const MachineRegisterInfo *MRI = nullptr; 1596 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1597 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1598 1599 if (isCFIInstruction()) 1600 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1601 1602 SmallBitVector PrintedTypes(8); 1603 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1604 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1605 if (!ShouldPrintRegisterTies) 1606 return 0U; 1607 const MachineOperand &MO = getOperand(OpIdx); 1608 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1609 return findTiedOperandIdx(OpIdx); 1610 return 0U; 1611 }; 1612 unsigned StartOp = 0; 1613 unsigned e = getNumOperands(); 1614 1615 // Print explicitly defined operands on the left of an assignment syntax. 1616 while (StartOp < e) { 1617 const MachineOperand &MO = getOperand(StartOp); 1618 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1619 break; 1620 1621 if (StartOp != 0) 1622 OS << ", "; 1623 1624 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1625 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1626 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1627 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1628 ++StartOp; 1629 } 1630 1631 if (StartOp != 0) 1632 OS << " = "; 1633 1634 if (getFlag(MachineInstr::FrameSetup)) 1635 OS << "frame-setup "; 1636 if (getFlag(MachineInstr::FrameDestroy)) 1637 OS << "frame-destroy "; 1638 if (getFlag(MachineInstr::FmNoNans)) 1639 OS << "nnan "; 1640 if (getFlag(MachineInstr::FmNoInfs)) 1641 OS << "ninf "; 1642 if (getFlag(MachineInstr::FmNsz)) 1643 OS << "nsz "; 1644 if (getFlag(MachineInstr::FmArcp)) 1645 OS << "arcp "; 1646 if (getFlag(MachineInstr::FmContract)) 1647 OS << "contract "; 1648 if (getFlag(MachineInstr::FmAfn)) 1649 OS << "afn "; 1650 if (getFlag(MachineInstr::FmReassoc)) 1651 OS << "reassoc "; 1652 if (getFlag(MachineInstr::NoUWrap)) 1653 OS << "nuw "; 1654 if (getFlag(MachineInstr::NoSWrap)) 1655 OS << "nsw "; 1656 if (getFlag(MachineInstr::IsExact)) 1657 OS << "exact "; 1658 if (getFlag(MachineInstr::NoFPExcept)) 1659 OS << "nofpexcept "; 1660 if (getFlag(MachineInstr::NoMerge)) 1661 OS << "nomerge "; 1662 1663 // Print the opcode name. 1664 if (TII) 1665 OS << TII->getName(getOpcode()); 1666 else 1667 OS << "UNKNOWN"; 1668 1669 if (SkipOpers) 1670 return; 1671 1672 // Print the rest of the operands. 1673 bool FirstOp = true; 1674 unsigned AsmDescOp = ~0u; 1675 unsigned AsmOpCount = 0; 1676 1677 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1678 // Print asm string. 1679 OS << " "; 1680 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1681 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1682 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1683 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1684 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1685 IntrinsicInfo); 1686 1687 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1688 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1689 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1690 OS << " [sideeffect]"; 1691 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1692 OS << " [mayload]"; 1693 if (ExtraInfo & InlineAsm::Extra_MayStore) 1694 OS << " [maystore]"; 1695 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1696 OS << " [isconvergent]"; 1697 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1698 OS << " [alignstack]"; 1699 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1700 OS << " [attdialect]"; 1701 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1702 OS << " [inteldialect]"; 1703 1704 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1705 FirstOp = false; 1706 } 1707 1708 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1709 const MachineOperand &MO = getOperand(i); 1710 1711 if (FirstOp) FirstOp = false; else OS << ","; 1712 OS << " "; 1713 1714 if (isDebugValue() && MO.isMetadata()) { 1715 // Pretty print DBG_VALUE instructions. 1716 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1717 if (DIV && !DIV->getName().empty()) 1718 OS << "!\"" << DIV->getName() << '\"'; 1719 else { 1720 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1721 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1722 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1723 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1724 } 1725 } else if (isDebugLabel() && MO.isMetadata()) { 1726 // Pretty print DBG_LABEL instructions. 1727 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1728 if (DIL && !DIL->getName().empty()) 1729 OS << "\"" << DIL->getName() << '\"'; 1730 else { 1731 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1732 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1733 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1734 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1735 } 1736 } else if (i == AsmDescOp && MO.isImm()) { 1737 // Pretty print the inline asm operand descriptor. 1738 OS << '$' << AsmOpCount++; 1739 unsigned Flag = MO.getImm(); 1740 OS << ":["; 1741 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); 1742 1743 unsigned RCID = 0; 1744 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1745 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1746 if (TRI) { 1747 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1748 } else 1749 OS << ":RC" << RCID; 1750 } 1751 1752 if (InlineAsm::isMemKind(Flag)) { 1753 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1754 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1755 } 1756 1757 unsigned TiedTo = 0; 1758 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1759 OS << " tiedto:$" << TiedTo; 1760 1761 OS << ']'; 1762 1763 // Compute the index of the next operand descriptor. 1764 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1765 } else { 1766 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1767 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1768 if (MO.isImm() && isOperandSubregIdx(i)) 1769 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1770 else 1771 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1772 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1773 } 1774 } 1775 1776 // Print any optional symbols attached to this instruction as-if they were 1777 // operands. 1778 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1779 if (!FirstOp) { 1780 FirstOp = false; 1781 OS << ','; 1782 } 1783 OS << " pre-instr-symbol "; 1784 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1785 } 1786 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1787 if (!FirstOp) { 1788 FirstOp = false; 1789 OS << ','; 1790 } 1791 OS << " post-instr-symbol "; 1792 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1793 } 1794 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1795 if (!FirstOp) { 1796 FirstOp = false; 1797 OS << ','; 1798 } 1799 OS << " heap-alloc-marker "; 1800 HeapAllocMarker->printAsOperand(OS, MST); 1801 } 1802 1803 if (DebugInstrNum) { 1804 if (!FirstOp) 1805 OS << ","; 1806 OS << " debug-instr-number " << DebugInstrNum; 1807 } 1808 1809 if (!SkipDebugLoc) { 1810 if (const DebugLoc &DL = getDebugLoc()) { 1811 if (!FirstOp) 1812 OS << ','; 1813 OS << " debug-location "; 1814 DL->printAsOperand(OS, MST); 1815 } 1816 } 1817 1818 if (!memoperands_empty()) { 1819 SmallVector<StringRef, 0> SSNs; 1820 const LLVMContext *Context = nullptr; 1821 std::unique_ptr<LLVMContext> CtxPtr; 1822 const MachineFrameInfo *MFI = nullptr; 1823 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1824 MFI = &MF->getFrameInfo(); 1825 Context = &MF->getFunction().getContext(); 1826 } else { 1827 CtxPtr = std::make_unique<LLVMContext>(); 1828 Context = CtxPtr.get(); 1829 } 1830 1831 OS << " :: "; 1832 bool NeedComma = false; 1833 for (const MachineMemOperand *Op : memoperands()) { 1834 if (NeedComma) 1835 OS << ", "; 1836 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1837 NeedComma = true; 1838 } 1839 } 1840 1841 if (SkipDebugLoc) 1842 return; 1843 1844 bool HaveSemi = false; 1845 1846 // Print debug location information. 1847 if (const DebugLoc &DL = getDebugLoc()) { 1848 if (!HaveSemi) { 1849 OS << ';'; 1850 HaveSemi = true; 1851 } 1852 OS << ' '; 1853 DL.print(OS); 1854 } 1855 1856 // Print extra comments for DEBUG_VALUE. 1857 if (isDebugValue() && getDebugVariableOp().isMetadata()) { 1858 if (!HaveSemi) { 1859 OS << ";"; 1860 HaveSemi = true; 1861 } 1862 auto *DV = getDebugVariable(); 1863 OS << " line no:" << DV->getLine(); 1864 if (isIndirectDebugValue()) 1865 OS << " indirect"; 1866 } 1867 // TODO: DBG_LABEL 1868 1869 if (AddNewLine) 1870 OS << '\n'; 1871 } 1872 1873 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1874 const TargetRegisterInfo *RegInfo, 1875 bool AddIfNotFound) { 1876 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1877 bool hasAliases = isPhysReg && 1878 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1879 bool Found = false; 1880 SmallVector<unsigned,4> DeadOps; 1881 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1882 MachineOperand &MO = getOperand(i); 1883 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1884 continue; 1885 1886 // DEBUG_VALUE nodes do not contribute to code generation and should 1887 // always be ignored. Failure to do so may result in trying to modify 1888 // KILL flags on DEBUG_VALUE nodes. 1889 if (MO.isDebug()) 1890 continue; 1891 1892 Register Reg = MO.getReg(); 1893 if (!Reg) 1894 continue; 1895 1896 if (Reg == IncomingReg) { 1897 if (!Found) { 1898 if (MO.isKill()) 1899 // The register is already marked kill. 1900 return true; 1901 if (isPhysReg && isRegTiedToDefOperand(i)) 1902 // Two-address uses of physregs must not be marked kill. 1903 return true; 1904 MO.setIsKill(); 1905 Found = true; 1906 } 1907 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1908 // A super-register kill already exists. 1909 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1910 return true; 1911 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1912 DeadOps.push_back(i); 1913 } 1914 } 1915 1916 // Trim unneeded kill operands. 1917 while (!DeadOps.empty()) { 1918 unsigned OpIdx = DeadOps.back(); 1919 if (getOperand(OpIdx).isImplicit() && 1920 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1921 RemoveOperand(OpIdx); 1922 else 1923 getOperand(OpIdx).setIsKill(false); 1924 DeadOps.pop_back(); 1925 } 1926 1927 // If not found, this means an alias of one of the operands is killed. Add a 1928 // new implicit operand if required. 1929 if (!Found && AddIfNotFound) { 1930 addOperand(MachineOperand::CreateReg(IncomingReg, 1931 false /*IsDef*/, 1932 true /*IsImp*/, 1933 true /*IsKill*/)); 1934 return true; 1935 } 1936 return Found; 1937 } 1938 1939 void MachineInstr::clearRegisterKills(Register Reg, 1940 const TargetRegisterInfo *RegInfo) { 1941 if (!Register::isPhysicalRegister(Reg)) 1942 RegInfo = nullptr; 1943 for (MachineOperand &MO : operands()) { 1944 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1945 continue; 1946 Register OpReg = MO.getReg(); 1947 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1948 MO.setIsKill(false); 1949 } 1950 } 1951 1952 bool MachineInstr::addRegisterDead(Register Reg, 1953 const TargetRegisterInfo *RegInfo, 1954 bool AddIfNotFound) { 1955 bool isPhysReg = Register::isPhysicalRegister(Reg); 1956 bool hasAliases = isPhysReg && 1957 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1958 bool Found = false; 1959 SmallVector<unsigned,4> DeadOps; 1960 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1961 MachineOperand &MO = getOperand(i); 1962 if (!MO.isReg() || !MO.isDef()) 1963 continue; 1964 Register MOReg = MO.getReg(); 1965 if (!MOReg) 1966 continue; 1967 1968 if (MOReg == Reg) { 1969 MO.setIsDead(); 1970 Found = true; 1971 } else if (hasAliases && MO.isDead() && 1972 Register::isPhysicalRegister(MOReg)) { 1973 // There exists a super-register that's marked dead. 1974 if (RegInfo->isSuperRegister(Reg, MOReg)) 1975 return true; 1976 if (RegInfo->isSubRegister(Reg, MOReg)) 1977 DeadOps.push_back(i); 1978 } 1979 } 1980 1981 // Trim unneeded dead operands. 1982 while (!DeadOps.empty()) { 1983 unsigned OpIdx = DeadOps.back(); 1984 if (getOperand(OpIdx).isImplicit() && 1985 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1986 RemoveOperand(OpIdx); 1987 else 1988 getOperand(OpIdx).setIsDead(false); 1989 DeadOps.pop_back(); 1990 } 1991 1992 // If not found, this means an alias of one of the operands is dead. Add a 1993 // new implicit operand if required. 1994 if (Found || !AddIfNotFound) 1995 return Found; 1996 1997 addOperand(MachineOperand::CreateReg(Reg, 1998 true /*IsDef*/, 1999 true /*IsImp*/, 2000 false /*IsKill*/, 2001 true /*IsDead*/)); 2002 return true; 2003 } 2004 2005 void MachineInstr::clearRegisterDeads(Register Reg) { 2006 for (MachineOperand &MO : operands()) { 2007 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2008 continue; 2009 MO.setIsDead(false); 2010 } 2011 } 2012 2013 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2014 for (MachineOperand &MO : operands()) { 2015 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2016 continue; 2017 MO.setIsUndef(IsUndef); 2018 } 2019 } 2020 2021 void MachineInstr::addRegisterDefined(Register Reg, 2022 const TargetRegisterInfo *RegInfo) { 2023 if (Register::isPhysicalRegister(Reg)) { 2024 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2025 if (MO) 2026 return; 2027 } else { 2028 for (const MachineOperand &MO : operands()) { 2029 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2030 MO.getSubReg() == 0) 2031 return; 2032 } 2033 } 2034 addOperand(MachineOperand::CreateReg(Reg, 2035 true /*IsDef*/, 2036 true /*IsImp*/)); 2037 } 2038 2039 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2040 const TargetRegisterInfo &TRI) { 2041 bool HasRegMask = false; 2042 for (MachineOperand &MO : operands()) { 2043 if (MO.isRegMask()) { 2044 HasRegMask = true; 2045 continue; 2046 } 2047 if (!MO.isReg() || !MO.isDef()) continue; 2048 Register Reg = MO.getReg(); 2049 if (!Reg.isPhysical()) 2050 continue; 2051 // If there are no uses, including partial uses, the def is dead. 2052 if (llvm::none_of(UsedRegs, 2053 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2054 MO.setIsDead(); 2055 } 2056 2057 // This is a call with a register mask operand. 2058 // Mask clobbers are always dead, so add defs for the non-dead defines. 2059 if (HasRegMask) 2060 for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 2061 I != E; ++I) 2062 addRegisterDefined(*I, &TRI); 2063 } 2064 2065 unsigned 2066 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2067 // Build up a buffer of hash code components. 2068 SmallVector<size_t, 16> HashComponents; 2069 HashComponents.reserve(MI->getNumOperands() + 1); 2070 HashComponents.push_back(MI->getOpcode()); 2071 for (const MachineOperand &MO : MI->operands()) { 2072 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 2073 continue; // Skip virtual register defs. 2074 2075 HashComponents.push_back(hash_value(MO)); 2076 } 2077 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2078 } 2079 2080 void MachineInstr::emitError(StringRef Msg) const { 2081 // Find the source location cookie. 2082 unsigned LocCookie = 0; 2083 const MDNode *LocMD = nullptr; 2084 for (unsigned i = getNumOperands(); i != 0; --i) { 2085 if (getOperand(i-1).isMetadata() && 2086 (LocMD = getOperand(i-1).getMetadata()) && 2087 LocMD->getNumOperands() != 0) { 2088 if (const ConstantInt *CI = 2089 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2090 LocCookie = CI->getZExtValue(); 2091 break; 2092 } 2093 } 2094 } 2095 2096 if (const MachineBasicBlock *MBB = getParent()) 2097 if (const MachineFunction *MF = MBB->getParent()) 2098 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2099 report_fatal_error(Msg); 2100 } 2101 2102 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2103 const MCInstrDesc &MCID, bool IsIndirect, 2104 Register Reg, const MDNode *Variable, 2105 const MDNode *Expr) { 2106 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2107 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2108 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2109 "Expected inlined-at fields to agree"); 2110 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); 2111 if (IsIndirect) 2112 MIB.addImm(0U); 2113 else 2114 MIB.addReg(0U, RegState::Debug); 2115 return MIB.addMetadata(Variable).addMetadata(Expr); 2116 } 2117 2118 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2119 const MCInstrDesc &MCID, bool IsIndirect, 2120 MachineOperand &MO, const MDNode *Variable, 2121 const MDNode *Expr) { 2122 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2123 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2124 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2125 "Expected inlined-at fields to agree"); 2126 if (MO.isReg()) 2127 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2128 2129 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2130 if (IsIndirect) 2131 MIB.addImm(0U); 2132 else 2133 MIB.addReg(0U, RegState::Debug); 2134 return MIB.addMetadata(Variable).addMetadata(Expr); 2135 } 2136 2137 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2138 MachineBasicBlock::iterator I, 2139 const DebugLoc &DL, const MCInstrDesc &MCID, 2140 bool IsIndirect, Register Reg, 2141 const MDNode *Variable, const MDNode *Expr) { 2142 MachineFunction &MF = *BB.getParent(); 2143 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2144 BB.insert(I, MI); 2145 return MachineInstrBuilder(MF, MI); 2146 } 2147 2148 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2149 MachineBasicBlock::iterator I, 2150 const DebugLoc &DL, const MCInstrDesc &MCID, 2151 bool IsIndirect, MachineOperand &MO, 2152 const MDNode *Variable, const MDNode *Expr) { 2153 MachineFunction &MF = *BB.getParent(); 2154 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2155 BB.insert(I, MI); 2156 return MachineInstrBuilder(MF, *MI); 2157 } 2158 2159 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2160 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2161 static const DIExpression *computeExprForSpill(const MachineInstr &MI) { 2162 assert(MI.getOperand(0).isReg() && "can't spill non-register"); 2163 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2164 "Expected inlined-at fields to agree"); 2165 2166 const DIExpression *Expr = MI.getDebugExpression(); 2167 if (MI.isIndirectDebugValue()) { 2168 assert(MI.getDebugOffset().getImm() == 0 && 2169 "DBG_VALUE with nonzero offset"); 2170 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2171 } 2172 return Expr; 2173 } 2174 2175 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2176 MachineBasicBlock::iterator I, 2177 const MachineInstr &Orig, 2178 int FrameIndex) { 2179 const DIExpression *Expr = computeExprForSpill(Orig); 2180 return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) 2181 .addFrameIndex(FrameIndex) 2182 .addImm(0U) 2183 .addMetadata(Orig.getDebugVariable()) 2184 .addMetadata(Expr); 2185 } 2186 2187 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { 2188 const DIExpression *Expr = computeExprForSpill(Orig); 2189 Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex); 2190 Orig.getDebugOffset().ChangeToImmediate(0U); 2191 Orig.getDebugExpressionOp().setMetadata(Expr); 2192 } 2193 2194 void MachineInstr::collectDebugValues( 2195 SmallVectorImpl<MachineInstr *> &DbgValues) { 2196 MachineInstr &MI = *this; 2197 if (!MI.getOperand(0).isReg()) 2198 return; 2199 2200 MachineBasicBlock::iterator DI = MI; ++DI; 2201 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2202 DI != DE; ++DI) { 2203 if (!DI->isDebugValue()) 2204 return; 2205 if (DI->getDebugOperandForReg(MI.getOperand(0).getReg())) 2206 DbgValues.push_back(&*DI); 2207 } 2208 } 2209 2210 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2211 // Collect matching debug values. 2212 SmallVector<MachineInstr *, 2> DbgValues; 2213 2214 if (!getOperand(0).isReg()) 2215 return; 2216 2217 Register DefReg = getOperand(0).getReg(); 2218 auto *MRI = getRegInfo(); 2219 for (auto &MO : MRI->use_operands(DefReg)) { 2220 auto *DI = MO.getParent(); 2221 if (!DI->isDebugValue()) 2222 continue; 2223 if (DI->getDebugOperandForReg(DefReg)) { 2224 DbgValues.push_back(DI); 2225 } 2226 } 2227 2228 // Propagate Reg to debug value instructions. 2229 for (auto *DBI : DbgValues) 2230 DBI->getDebugOperandForReg(DefReg)->setReg(Reg); 2231 } 2232 2233 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2234 2235 static unsigned getSpillSlotSize(const MMOList &Accesses, 2236 const MachineFrameInfo &MFI) { 2237 unsigned Size = 0; 2238 for (auto A : Accesses) 2239 if (MFI.isSpillSlotObjectIndex( 2240 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2241 ->getFrameIndex())) 2242 Size += A->getSize(); 2243 return Size; 2244 } 2245 2246 Optional<unsigned> 2247 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2248 int FI; 2249 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2250 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2251 if (MFI.isSpillSlotObjectIndex(FI)) 2252 return (*memoperands_begin())->getSize(); 2253 } 2254 return None; 2255 } 2256 2257 Optional<unsigned> 2258 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2259 MMOList Accesses; 2260 if (TII->hasStoreToStackSlot(*this, Accesses)) 2261 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2262 return None; 2263 } 2264 2265 Optional<unsigned> 2266 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2267 int FI; 2268 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2269 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2270 if (MFI.isSpillSlotObjectIndex(FI)) 2271 return (*memoperands_begin())->getSize(); 2272 } 2273 return None; 2274 } 2275 2276 Optional<unsigned> 2277 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2278 MMOList Accesses; 2279 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2280 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2281 return None; 2282 } 2283 2284 unsigned MachineInstr::getDebugInstrNum() { 2285 if (DebugInstrNum == 0) 2286 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2287 return DebugInstrNum; 2288 } 2289