xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 04eeddc0aa8e0a417a16eaf9d7d095207f4a8623)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCInstrDesc.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FormattedStream.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <cstring>
76 #include <iterator>
77 #include <utility>
78 
79 using namespace llvm;
80 
81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
82   if (const MachineBasicBlock *MBB = MI.getParent())
83     if (const MachineFunction *MF = MBB->getParent())
84       return MF;
85   return nullptr;
86 }
87 
88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
89 // it.
90 static void tryToGetTargetInfo(const MachineInstr &MI,
91                                const TargetRegisterInfo *&TRI,
92                                const MachineRegisterInfo *&MRI,
93                                const TargetIntrinsicInfo *&IntrinsicInfo,
94                                const TargetInstrInfo *&TII) {
95 
96   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
97     TRI = MF->getSubtarget().getRegisterInfo();
98     MRI = &MF->getRegInfo();
99     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
100     TII = MF->getSubtarget().getInstrInfo();
101   }
102 }
103 
104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
105   if (MCID->ImplicitDefs)
106     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
107            ++ImpDefs)
108       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
109   if (MCID->ImplicitUses)
110     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
111            ++ImpUses)
112       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 }
114 
115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
116 /// implicit operands. It reserves space for the number of operands specified by
117 /// the MCInstrDesc.
118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
119                            DebugLoc DL, bool NoImp)
120     : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
121   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
122 
123   // Reserve space for the expected number of operands.
124   if (unsigned NumOps = MCID->getNumOperands() +
125     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
126     CapOperands = OperandCapacity::get(NumOps);
127     Operands = MF.allocateOperandArray(CapOperands);
128   }
129 
130   if (!NoImp)
131     addImplicitDefUseOperands(MF);
132 }
133 
134 /// MachineInstr ctor - Copies MachineInstr arg exactly.
135 /// Does not copy the number from debug instruction numbering, to preserve
136 /// uniqueness.
137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
138     : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
139       DebugInstrNum(0) {
140   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
141 
142   CapOperands = OperandCapacity::get(MI.getNumOperands());
143   Operands = MF.allocateOperandArray(CapOperands);
144 
145   // Copy operands.
146   for (const MachineOperand &MO : MI.operands())
147     addOperand(MF, MO);
148 
149   // Copy all the sensible flags.
150   setFlags(MI.Flags);
151 }
152 
153 void MachineInstr::moveBefore(MachineInstr *MovePos) {
154   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
155 }
156 
157 /// getRegInfo - If this instruction is embedded into a MachineFunction,
158 /// return the MachineRegisterInfo object for the current function, otherwise
159 /// return null.
160 MachineRegisterInfo *MachineInstr::getRegInfo() {
161   if (MachineBasicBlock *MBB = getParent())
162     return &MBB->getParent()->getRegInfo();
163   return nullptr;
164 }
165 
166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
167 /// this instruction from their respective use lists.  This requires that the
168 /// operands already be on their use lists.
169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
170   for (MachineOperand &MO : operands())
171     if (MO.isReg())
172       MRI.removeRegOperandFromUseList(&MO);
173 }
174 
175 /// AddRegOperandsToUseLists - Add all of the register operands in
176 /// this instruction from their respective use lists.  This requires that the
177 /// operands not be on their use lists yet.
178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
179   for (MachineOperand &MO : operands())
180     if (MO.isReg())
181       MRI.addRegOperandToUseList(&MO);
182 }
183 
184 void MachineInstr::addOperand(const MachineOperand &Op) {
185   MachineBasicBlock *MBB = getParent();
186   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
187   MachineFunction *MF = MBB->getParent();
188   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
189   addOperand(*MF, Op);
190 }
191 
192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
193 /// ranges. If MRI is non-null also update use-def chains.
194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
195                          unsigned NumOps, MachineRegisterInfo *MRI) {
196   if (MRI)
197     return MRI->moveOperands(Dst, Src, NumOps);
198   // MachineOperand is a trivially copyable type so we can just use memmove.
199   assert(Dst && Src && "Unknown operands");
200   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
201 }
202 
203 /// addOperand - Add the specified operand to the instruction.  If it is an
204 /// implicit operand, it is added to the end of the operand list.  If it is
205 /// an explicit operand it is added at the end of the explicit operand list
206 /// (before the first implicit operand).
207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
208   assert(MCID && "Cannot add operands before providing an instr descriptor");
209 
210   // Check if we're adding one of our existing operands.
211   if (&Op >= Operands && &Op < Operands + NumOperands) {
212     // This is unusual: MI->addOperand(MI->getOperand(i)).
213     // If adding Op requires reallocating or moving existing operands around,
214     // the Op reference could go stale. Support it by copying Op.
215     MachineOperand CopyOp(Op);
216     return addOperand(MF, CopyOp);
217   }
218 
219   // Find the insert location for the new operand.  Implicit registers go at
220   // the end, everything else goes before the implicit regs.
221   //
222   // FIXME: Allow mixed explicit and implicit operands on inline asm.
223   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224   // implicit-defs, but they must not be moved around.  See the FIXME in
225   // InstrEmitter.cpp.
226   unsigned OpNo = getNumOperands();
227   bool isImpReg = Op.isReg() && Op.isImplicit();
228   if (!isImpReg && !isInlineAsm()) {
229     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
230       --OpNo;
231       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
232     }
233   }
234 
235 #ifndef NDEBUG
236   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
237                    Op.getType() == MachineOperand::MO_MCSymbol;
238   // OpNo now points as the desired insertion point.  Unless this is a variadic
239   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
240   // RegMask operands go between the explicit and implicit operands.
241   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
242           OpNo < MCID->getNumOperands() || isDebugOp) &&
243          "Trying to add an operand to a machine instr that is already done!");
244 #endif
245 
246   MachineRegisterInfo *MRI = getRegInfo();
247 
248   // Determine if the Operands array needs to be reallocated.
249   // Save the old capacity and operand array.
250   OperandCapacity OldCap = CapOperands;
251   MachineOperand *OldOperands = Operands;
252   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
253     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
254     Operands = MF.allocateOperandArray(CapOperands);
255     // Move the operands before the insertion point.
256     if (OpNo)
257       moveOperands(Operands, OldOperands, OpNo, MRI);
258   }
259 
260   // Move the operands following the insertion point.
261   if (OpNo != NumOperands)
262     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
263                  MRI);
264   ++NumOperands;
265 
266   // Deallocate the old operand array.
267   if (OldOperands != Operands && OldOperands)
268     MF.deallocateOperandArray(OldCap, OldOperands);
269 
270   // Copy Op into place. It still needs to be inserted into the MRI use lists.
271   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
272   NewMO->ParentMI = this;
273 
274   // When adding a register operand, tell MRI about it.
275   if (NewMO->isReg()) {
276     // Ensure isOnRegUseList() returns false, regardless of Op's status.
277     NewMO->Contents.Reg.Prev = nullptr;
278     // Ignore existing ties. This is not a property that can be copied.
279     NewMO->TiedTo = 0;
280     // Add the new operand to MRI, but only for instructions in an MBB.
281     if (MRI)
282       MRI->addRegOperandToUseList(NewMO);
283     // The MCID operand information isn't accurate until we start adding
284     // explicit operands. The implicit operands are added first, then the
285     // explicits are inserted before them.
286     if (!isImpReg) {
287       // Tie uses to defs as indicated in MCInstrDesc.
288       if (NewMO->isUse()) {
289         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
290         if (DefIdx != -1)
291           tieOperands(DefIdx, OpNo);
292       }
293       // If the register operand is flagged as early, mark the operand as such.
294       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
295         NewMO->setIsEarlyClobber(true);
296     }
297     // Ensure debug instructions set debug flag on register uses.
298     if (NewMO->isUse() && isDebugInstr())
299       NewMO->setIsDebug();
300   }
301 }
302 
303 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
304 /// fewer operand than it started with.
305 ///
306 void MachineInstr::RemoveOperand(unsigned OpNo) {
307   assert(OpNo < getNumOperands() && "Invalid operand number");
308   untieRegOperand(OpNo);
309 
310 #ifndef NDEBUG
311   // Moving tied operands would break the ties.
312   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
313     if (Operands[i].isReg())
314       assert(!Operands[i].isTied() && "Cannot move tied operands");
315 #endif
316 
317   MachineRegisterInfo *MRI = getRegInfo();
318   if (MRI && Operands[OpNo].isReg())
319     MRI->removeRegOperandFromUseList(Operands + OpNo);
320 
321   // Don't call the MachineOperand destructor. A lot of this code depends on
322   // MachineOperand having a trivial destructor anyway, and adding a call here
323   // wouldn't make it 'destructor-correct'.
324 
325   if (unsigned N = NumOperands - 1 - OpNo)
326     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
327   --NumOperands;
328 }
329 
330 void MachineInstr::setExtraInfo(MachineFunction &MF,
331                                 ArrayRef<MachineMemOperand *> MMOs,
332                                 MCSymbol *PreInstrSymbol,
333                                 MCSymbol *PostInstrSymbol,
334                                 MDNode *HeapAllocMarker) {
335   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
336   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
337   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
338   int NumPointers =
339       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
340 
341   // Drop all extra info if there is none.
342   if (NumPointers <= 0) {
343     Info.clear();
344     return;
345   }
346 
347   // If more than one pointer, then store out of line. Store heap alloc markers
348   // out of line because PointerSumType cannot hold more than 4 tag types with
349   // 32-bit pointers.
350   // FIXME: Maybe we should make the symbols in the extra info mutable?
351   else if (NumPointers > 1 || HasHeapAllocMarker) {
352     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
353         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
354     return;
355   }
356 
357   // Otherwise store the single pointer inline.
358   if (HasPreInstrSymbol)
359     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
360   else if (HasPostInstrSymbol)
361     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
362   else
363     Info.set<EIIK_MMO>(MMOs[0]);
364 }
365 
366 void MachineInstr::dropMemRefs(MachineFunction &MF) {
367   if (memoperands_empty())
368     return;
369 
370   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
371                getHeapAllocMarker());
372 }
373 
374 void MachineInstr::setMemRefs(MachineFunction &MF,
375                               ArrayRef<MachineMemOperand *> MMOs) {
376   if (MMOs.empty()) {
377     dropMemRefs(MF);
378     return;
379   }
380 
381   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
382                getHeapAllocMarker());
383 }
384 
385 void MachineInstr::addMemOperand(MachineFunction &MF,
386                                  MachineMemOperand *MO) {
387   SmallVector<MachineMemOperand *, 2> MMOs;
388   MMOs.append(memoperands_begin(), memoperands_end());
389   MMOs.push_back(MO);
390   setMemRefs(MF, MMOs);
391 }
392 
393 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
394   if (this == &MI)
395     // Nothing to do for a self-clone!
396     return;
397 
398   assert(&MF == MI.getMF() &&
399          "Invalid machine functions when cloning memory refrences!");
400   // See if we can just steal the extra info already allocated for the
401   // instruction. We can do this whenever the pre- and post-instruction symbols
402   // are the same (including null).
403   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
404       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
405       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
406     Info = MI.Info;
407     return;
408   }
409 
410   // Otherwise, fall back on a copy-based clone.
411   setMemRefs(MF, MI.memoperands());
412 }
413 
414 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
415 /// identical.
416 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
417                              ArrayRef<MachineMemOperand *> RHS) {
418   if (LHS.size() != RHS.size())
419     return false;
420 
421   auto LHSPointees = make_pointee_range(LHS);
422   auto RHSPointees = make_pointee_range(RHS);
423   return std::equal(LHSPointees.begin(), LHSPointees.end(),
424                     RHSPointees.begin());
425 }
426 
427 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
428                                       ArrayRef<const MachineInstr *> MIs) {
429   // Try handling easy numbers of MIs with simpler mechanisms.
430   if (MIs.empty()) {
431     dropMemRefs(MF);
432     return;
433   }
434   if (MIs.size() == 1) {
435     cloneMemRefs(MF, *MIs[0]);
436     return;
437   }
438   // Because an empty memoperands list provides *no* information and must be
439   // handled conservatively (assuming the instruction can do anything), the only
440   // way to merge with it is to drop all other memoperands.
441   if (MIs[0]->memoperands_empty()) {
442     dropMemRefs(MF);
443     return;
444   }
445 
446   // Handle the general case.
447   SmallVector<MachineMemOperand *, 2> MergedMMOs;
448   // Start with the first instruction.
449   assert(&MF == MIs[0]->getMF() &&
450          "Invalid machine functions when cloning memory references!");
451   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
452   // Now walk all the other instructions and accumulate any different MMOs.
453   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
454     assert(&MF == MI.getMF() &&
455            "Invalid machine functions when cloning memory references!");
456 
457     // Skip MIs with identical operands to the first. This is a somewhat
458     // arbitrary hack but will catch common cases without being quadratic.
459     // TODO: We could fully implement merge semantics here if needed.
460     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
461       continue;
462 
463     // Because an empty memoperands list provides *no* information and must be
464     // handled conservatively (assuming the instruction can do anything), the
465     // only way to merge with it is to drop all other memoperands.
466     if (MI.memoperands_empty()) {
467       dropMemRefs(MF);
468       return;
469     }
470 
471     // Otherwise accumulate these into our temporary buffer of the merged state.
472     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
473   }
474 
475   setMemRefs(MF, MergedMMOs);
476 }
477 
478 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
479   // Do nothing if old and new symbols are the same.
480   if (Symbol == getPreInstrSymbol())
481     return;
482 
483   // If there was only one symbol and we're removing it, just clear info.
484   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
485     Info.clear();
486     return;
487   }
488 
489   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
490                getHeapAllocMarker());
491 }
492 
493 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
494   // Do nothing if old and new symbols are the same.
495   if (Symbol == getPostInstrSymbol())
496     return;
497 
498   // If there was only one symbol and we're removing it, just clear info.
499   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
500     Info.clear();
501     return;
502   }
503 
504   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
505                getHeapAllocMarker());
506 }
507 
508 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
509   // Do nothing if old and new symbols are the same.
510   if (Marker == getHeapAllocMarker())
511     return;
512 
513   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
514                Marker);
515 }
516 
517 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
518                                      const MachineInstr &MI) {
519   if (this == &MI)
520     // Nothing to do for a self-clone!
521     return;
522 
523   assert(&MF == MI.getMF() &&
524          "Invalid machine functions when cloning instruction symbols!");
525 
526   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
527   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
528   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
529 }
530 
531 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
532   // For now, the just return the union of the flags. If the flags get more
533   // complicated over time, we might need more logic here.
534   return getFlags() | Other.getFlags();
535 }
536 
537 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
538   uint16_t MIFlags = 0;
539   // Copy the wrapping flags.
540   if (const OverflowingBinaryOperator *OB =
541           dyn_cast<OverflowingBinaryOperator>(&I)) {
542     if (OB->hasNoSignedWrap())
543       MIFlags |= MachineInstr::MIFlag::NoSWrap;
544     if (OB->hasNoUnsignedWrap())
545       MIFlags |= MachineInstr::MIFlag::NoUWrap;
546   }
547 
548   // Copy the exact flag.
549   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
550     if (PE->isExact())
551       MIFlags |= MachineInstr::MIFlag::IsExact;
552 
553   // Copy the fast-math flags.
554   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
555     const FastMathFlags Flags = FP->getFastMathFlags();
556     if (Flags.noNaNs())
557       MIFlags |= MachineInstr::MIFlag::FmNoNans;
558     if (Flags.noInfs())
559       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
560     if (Flags.noSignedZeros())
561       MIFlags |= MachineInstr::MIFlag::FmNsz;
562     if (Flags.allowReciprocal())
563       MIFlags |= MachineInstr::MIFlag::FmArcp;
564     if (Flags.allowContract())
565       MIFlags |= MachineInstr::MIFlag::FmContract;
566     if (Flags.approxFunc())
567       MIFlags |= MachineInstr::MIFlag::FmAfn;
568     if (Flags.allowReassoc())
569       MIFlags |= MachineInstr::MIFlag::FmReassoc;
570   }
571 
572   return MIFlags;
573 }
574 
575 void MachineInstr::copyIRFlags(const Instruction &I) {
576   Flags = copyFlagsFromInstruction(I);
577 }
578 
579 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
580   assert(!isBundledWithPred() && "Must be called on bundle header");
581   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
582     if (MII->getDesc().getFlags() & Mask) {
583       if (Type == AnyInBundle)
584         return true;
585     } else {
586       if (Type == AllInBundle && !MII->isBundle())
587         return false;
588     }
589     // This was the last instruction in the bundle.
590     if (!MII->isBundledWithSucc())
591       return Type == AllInBundle;
592   }
593 }
594 
595 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
596                                  MICheckType Check) const {
597   // If opcodes or number of operands are not the same then the two
598   // instructions are obviously not identical.
599   if (Other.getOpcode() != getOpcode() ||
600       Other.getNumOperands() != getNumOperands())
601     return false;
602 
603   if (isBundle()) {
604     // We have passed the test above that both instructions have the same
605     // opcode, so we know that both instructions are bundles here. Let's compare
606     // MIs inside the bundle.
607     assert(Other.isBundle() && "Expected that both instructions are bundles.");
608     MachineBasicBlock::const_instr_iterator I1 = getIterator();
609     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
610     // Loop until we analysed the last intruction inside at least one of the
611     // bundles.
612     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
613       ++I1;
614       ++I2;
615       if (!I1->isIdenticalTo(*I2, Check))
616         return false;
617     }
618     // If we've reached the end of just one of the two bundles, but not both,
619     // the instructions are not identical.
620     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
621       return false;
622   }
623 
624   // Check operands to make sure they match.
625   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
626     const MachineOperand &MO = getOperand(i);
627     const MachineOperand &OMO = Other.getOperand(i);
628     if (!MO.isReg()) {
629       if (!MO.isIdenticalTo(OMO))
630         return false;
631       continue;
632     }
633 
634     // Clients may or may not want to ignore defs when testing for equality.
635     // For example, machine CSE pass only cares about finding common
636     // subexpressions, so it's safe to ignore virtual register defs.
637     if (MO.isDef()) {
638       if (Check == IgnoreDefs)
639         continue;
640       else if (Check == IgnoreVRegDefs) {
641         if (!Register::isVirtualRegister(MO.getReg()) ||
642             !Register::isVirtualRegister(OMO.getReg()))
643           if (!MO.isIdenticalTo(OMO))
644             return false;
645       } else {
646         if (!MO.isIdenticalTo(OMO))
647           return false;
648         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
649           return false;
650       }
651     } else {
652       if (!MO.isIdenticalTo(OMO))
653         return false;
654       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
655         return false;
656     }
657   }
658   // If DebugLoc does not match then two debug instructions are not identical.
659   if (isDebugInstr())
660     if (getDebugLoc() && Other.getDebugLoc() &&
661         getDebugLoc() != Other.getDebugLoc())
662       return false;
663   return true;
664 }
665 
666 const MachineFunction *MachineInstr::getMF() const {
667   return getParent()->getParent();
668 }
669 
670 MachineInstr *MachineInstr::removeFromParent() {
671   assert(getParent() && "Not embedded in a basic block!");
672   return getParent()->remove(this);
673 }
674 
675 MachineInstr *MachineInstr::removeFromBundle() {
676   assert(getParent() && "Not embedded in a basic block!");
677   return getParent()->remove_instr(this);
678 }
679 
680 void MachineInstr::eraseFromParent() {
681   assert(getParent() && "Not embedded in a basic block!");
682   getParent()->erase(this);
683 }
684 
685 void MachineInstr::eraseFromBundle() {
686   assert(getParent() && "Not embedded in a basic block!");
687   getParent()->erase_instr(this);
688 }
689 
690 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
691   if (!isCall(Type))
692     return false;
693   switch (getOpcode()) {
694   case TargetOpcode::PATCHPOINT:
695   case TargetOpcode::STACKMAP:
696   case TargetOpcode::STATEPOINT:
697   case TargetOpcode::FENTRY_CALL:
698     return false;
699   }
700   return true;
701 }
702 
703 bool MachineInstr::shouldUpdateCallSiteInfo() const {
704   if (isBundle())
705     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
706   return isCandidateForCallSiteEntry();
707 }
708 
709 unsigned MachineInstr::getNumExplicitOperands() const {
710   unsigned NumOperands = MCID->getNumOperands();
711   if (!MCID->isVariadic())
712     return NumOperands;
713 
714   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
715     const MachineOperand &MO = getOperand(I);
716     // The operands must always be in the following order:
717     // - explicit reg defs,
718     // - other explicit operands (reg uses, immediates, etc.),
719     // - implicit reg defs
720     // - implicit reg uses
721     if (MO.isReg() && MO.isImplicit())
722       break;
723     ++NumOperands;
724   }
725   return NumOperands;
726 }
727 
728 unsigned MachineInstr::getNumExplicitDefs() const {
729   unsigned NumDefs = MCID->getNumDefs();
730   if (!MCID->isVariadic())
731     return NumDefs;
732 
733   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
734     const MachineOperand &MO = getOperand(I);
735     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
736       break;
737     ++NumDefs;
738   }
739   return NumDefs;
740 }
741 
742 void MachineInstr::bundleWithPred() {
743   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
744   setFlag(BundledPred);
745   MachineBasicBlock::instr_iterator Pred = getIterator();
746   --Pred;
747   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
748   Pred->setFlag(BundledSucc);
749 }
750 
751 void MachineInstr::bundleWithSucc() {
752   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
753   setFlag(BundledSucc);
754   MachineBasicBlock::instr_iterator Succ = getIterator();
755   ++Succ;
756   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
757   Succ->setFlag(BundledPred);
758 }
759 
760 void MachineInstr::unbundleFromPred() {
761   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
762   clearFlag(BundledPred);
763   MachineBasicBlock::instr_iterator Pred = getIterator();
764   --Pred;
765   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
766   Pred->clearFlag(BundledSucc);
767 }
768 
769 void MachineInstr::unbundleFromSucc() {
770   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
771   clearFlag(BundledSucc);
772   MachineBasicBlock::instr_iterator Succ = getIterator();
773   ++Succ;
774   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
775   Succ->clearFlag(BundledPred);
776 }
777 
778 bool MachineInstr::isStackAligningInlineAsm() const {
779   if (isInlineAsm()) {
780     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
781     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
782       return true;
783   }
784   return false;
785 }
786 
787 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
788   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
789   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
790   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
791 }
792 
793 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
794                                        unsigned *GroupNo) const {
795   assert(isInlineAsm() && "Expected an inline asm instruction");
796   assert(OpIdx < getNumOperands() && "OpIdx out of range");
797 
798   // Ignore queries about the initial operands.
799   if (OpIdx < InlineAsm::MIOp_FirstOperand)
800     return -1;
801 
802   unsigned Group = 0;
803   unsigned NumOps;
804   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
805        i += NumOps) {
806     const MachineOperand &FlagMO = getOperand(i);
807     // If we reach the implicit register operands, stop looking.
808     if (!FlagMO.isImm())
809       return -1;
810     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
811     if (i + NumOps > OpIdx) {
812       if (GroupNo)
813         *GroupNo = Group;
814       return i;
815     }
816     ++Group;
817   }
818   return -1;
819 }
820 
821 const DILabel *MachineInstr::getDebugLabel() const {
822   assert(isDebugLabel() && "not a DBG_LABEL");
823   return cast<DILabel>(getOperand(0).getMetadata());
824 }
825 
826 const MachineOperand &MachineInstr::getDebugVariableOp() const {
827   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
828   unsigned VariableOp = isDebugValueList() ? 0 : 2;
829   return getOperand(VariableOp);
830 }
831 
832 MachineOperand &MachineInstr::getDebugVariableOp() {
833   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
834   unsigned VariableOp = isDebugValueList() ? 0 : 2;
835   return getOperand(VariableOp);
836 }
837 
838 const DILocalVariable *MachineInstr::getDebugVariable() const {
839   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
840 }
841 
842 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
843   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
844   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
845   return getOperand(ExpressionOp);
846 }
847 
848 MachineOperand &MachineInstr::getDebugExpressionOp() {
849   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
850   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
851   return getOperand(ExpressionOp);
852 }
853 
854 const DIExpression *MachineInstr::getDebugExpression() const {
855   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
856 }
857 
858 bool MachineInstr::isDebugEntryValue() const {
859   return isDebugValue() && getDebugExpression()->isEntryValue();
860 }
861 
862 const TargetRegisterClass*
863 MachineInstr::getRegClassConstraint(unsigned OpIdx,
864                                     const TargetInstrInfo *TII,
865                                     const TargetRegisterInfo *TRI) const {
866   assert(getParent() && "Can't have an MBB reference here!");
867   assert(getMF() && "Can't have an MF reference here!");
868   const MachineFunction &MF = *getMF();
869 
870   // Most opcodes have fixed constraints in their MCInstrDesc.
871   if (!isInlineAsm())
872     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
873 
874   if (!getOperand(OpIdx).isReg())
875     return nullptr;
876 
877   // For tied uses on inline asm, get the constraint from the def.
878   unsigned DefIdx;
879   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
880     OpIdx = DefIdx;
881 
882   // Inline asm stores register class constraints in the flag word.
883   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
884   if (FlagIdx < 0)
885     return nullptr;
886 
887   unsigned Flag = getOperand(FlagIdx).getImm();
888   unsigned RCID;
889   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
890        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
891        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
892       InlineAsm::hasRegClassConstraint(Flag, RCID))
893     return TRI->getRegClass(RCID);
894 
895   // Assume that all registers in a memory operand are pointers.
896   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
897     return TRI->getPointerRegClass(MF);
898 
899   return nullptr;
900 }
901 
902 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
903     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
904     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
905   // Check every operands inside the bundle if we have
906   // been asked to.
907   if (ExploreBundle)
908     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
909          ++OpndIt)
910       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
911           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
912   else
913     // Otherwise, just check the current operands.
914     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
915       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
916   return CurRC;
917 }
918 
919 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
920     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
921     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
922   assert(CurRC && "Invalid initial register class");
923   // Check if Reg is constrained by some of its use/def from MI.
924   const MachineOperand &MO = getOperand(OpIdx);
925   if (!MO.isReg() || MO.getReg() != Reg)
926     return CurRC;
927   // If yes, accumulate the constraints through the operand.
928   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
929 }
930 
931 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
932     unsigned OpIdx, const TargetRegisterClass *CurRC,
933     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
934   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
935   const MachineOperand &MO = getOperand(OpIdx);
936   assert(MO.isReg() &&
937          "Cannot get register constraints for non-register operand");
938   assert(CurRC && "Invalid initial register class");
939   if (unsigned SubIdx = MO.getSubReg()) {
940     if (OpRC)
941       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
942     else
943       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
944   } else if (OpRC)
945     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
946   return CurRC;
947 }
948 
949 /// Return the number of instructions inside the MI bundle, not counting the
950 /// header instruction.
951 unsigned MachineInstr::getBundleSize() const {
952   MachineBasicBlock::const_instr_iterator I = getIterator();
953   unsigned Size = 0;
954   while (I->isBundledWithSucc()) {
955     ++Size;
956     ++I;
957   }
958   return Size;
959 }
960 
961 /// Returns true if the MachineInstr has an implicit-use operand of exactly
962 /// the given register (not considering sub/super-registers).
963 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
964   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
965     const MachineOperand &MO = getOperand(i);
966     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
967       return true;
968   }
969   return false;
970 }
971 
972 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
973 /// the specific register or -1 if it is not found. It further tightens
974 /// the search criteria to a use that kills the register if isKill is true.
975 int MachineInstr::findRegisterUseOperandIdx(
976     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
977   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
978     const MachineOperand &MO = getOperand(i);
979     if (!MO.isReg() || !MO.isUse())
980       continue;
981     Register MOReg = MO.getReg();
982     if (!MOReg)
983       continue;
984     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
985       if (!isKill || MO.isKill())
986         return i;
987   }
988   return -1;
989 }
990 
991 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
992 /// indicating if this instruction reads or writes Reg. This also considers
993 /// partial defines.
994 std::pair<bool,bool>
995 MachineInstr::readsWritesVirtualRegister(Register Reg,
996                                          SmallVectorImpl<unsigned> *Ops) const {
997   bool PartDef = false; // Partial redefine.
998   bool FullDef = false; // Full define.
999   bool Use = false;
1000 
1001   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1002     const MachineOperand &MO = getOperand(i);
1003     if (!MO.isReg() || MO.getReg() != Reg)
1004       continue;
1005     if (Ops)
1006       Ops->push_back(i);
1007     if (MO.isUse())
1008       Use |= !MO.isUndef();
1009     else if (MO.getSubReg() && !MO.isUndef())
1010       // A partial def undef doesn't count as reading the register.
1011       PartDef = true;
1012     else
1013       FullDef = true;
1014   }
1015   // A partial redefine uses Reg unless there is also a full define.
1016   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1017 }
1018 
1019 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1020 /// the specified register or -1 if it is not found. If isDead is true, defs
1021 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1022 /// also checks if there is a def of a super-register.
1023 int
1024 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1025                                         const TargetRegisterInfo *TRI) const {
1026   bool isPhys = Register::isPhysicalRegister(Reg);
1027   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1028     const MachineOperand &MO = getOperand(i);
1029     // Accept regmask operands when Overlap is set.
1030     // Ignore them when looking for a specific def operand (Overlap == false).
1031     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1032       return i;
1033     if (!MO.isReg() || !MO.isDef())
1034       continue;
1035     Register MOReg = MO.getReg();
1036     bool Found = (MOReg == Reg);
1037     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1038       if (Overlap)
1039         Found = TRI->regsOverlap(MOReg, Reg);
1040       else
1041         Found = TRI->isSubRegister(MOReg, Reg);
1042     }
1043     if (Found && (!isDead || MO.isDead()))
1044       return i;
1045   }
1046   return -1;
1047 }
1048 
1049 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1050 /// operand list that is used to represent the predicate. It returns -1 if
1051 /// none is found.
1052 int MachineInstr::findFirstPredOperandIdx() const {
1053   // Don't call MCID.findFirstPredOperandIdx() because this variant
1054   // is sometimes called on an instruction that's not yet complete, and
1055   // so the number of operands is less than the MCID indicates. In
1056   // particular, the PTX target does this.
1057   const MCInstrDesc &MCID = getDesc();
1058   if (MCID.isPredicable()) {
1059     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1060       if (MCID.OpInfo[i].isPredicate())
1061         return i;
1062   }
1063 
1064   return -1;
1065 }
1066 
1067 // MachineOperand::TiedTo is 4 bits wide.
1068 const unsigned TiedMax = 15;
1069 
1070 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1071 ///
1072 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1073 /// field. TiedTo can have these values:
1074 ///
1075 /// 0:              Operand is not tied to anything.
1076 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1077 /// TiedMax:        Tied to an operand >= TiedMax-1.
1078 ///
1079 /// The tied def must be one of the first TiedMax operands on a normal
1080 /// instruction. INLINEASM instructions allow more tied defs.
1081 ///
1082 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1083   MachineOperand &DefMO = getOperand(DefIdx);
1084   MachineOperand &UseMO = getOperand(UseIdx);
1085   assert(DefMO.isDef() && "DefIdx must be a def operand");
1086   assert(UseMO.isUse() && "UseIdx must be a use operand");
1087   assert(!DefMO.isTied() && "Def is already tied to another use");
1088   assert(!UseMO.isTied() && "Use is already tied to another def");
1089 
1090   if (DefIdx < TiedMax)
1091     UseMO.TiedTo = DefIdx + 1;
1092   else {
1093     // Inline asm can use the group descriptors to find tied operands,
1094     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1095     // but on normal instruction, the tied def must be within the first TiedMax
1096     // operands.
1097     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1098            "DefIdx out of range");
1099     UseMO.TiedTo = TiedMax;
1100   }
1101 
1102   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1103   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1104 }
1105 
1106 /// Given the index of a tied register operand, find the operand it is tied to.
1107 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1108 /// which must exist.
1109 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1110   const MachineOperand &MO = getOperand(OpIdx);
1111   assert(MO.isTied() && "Operand isn't tied");
1112 
1113   // Normally TiedTo is in range.
1114   if (MO.TiedTo < TiedMax)
1115     return MO.TiedTo - 1;
1116 
1117   // Uses on normal instructions can be out of range.
1118   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1119     // Normal tied defs must be in the 0..TiedMax-1 range.
1120     if (MO.isUse())
1121       return TiedMax - 1;
1122     // MO is a def. Search for the tied use.
1123     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1124       const MachineOperand &UseMO = getOperand(i);
1125       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1126         return i;
1127     }
1128     llvm_unreachable("Can't find tied use");
1129   }
1130 
1131   if (getOpcode() == TargetOpcode::STATEPOINT) {
1132     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1133     // on registers.
1134     StatepointOpers SO(this);
1135     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1136     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1137     unsigned NumDefs = getNumDefs();
1138     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1139       while (!getOperand(CurUseIdx).isReg())
1140         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1141       if (OpIdx == CurDefIdx)
1142         return CurUseIdx;
1143       if (OpIdx == CurUseIdx)
1144         return CurDefIdx;
1145       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1146     }
1147     llvm_unreachable("Can't find tied use");
1148   }
1149 
1150   // Now deal with inline asm by parsing the operand group descriptor flags.
1151   // Find the beginning of each operand group.
1152   SmallVector<unsigned, 8> GroupIdx;
1153   unsigned OpIdxGroup = ~0u;
1154   unsigned NumOps;
1155   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1156        i += NumOps) {
1157     const MachineOperand &FlagMO = getOperand(i);
1158     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1159     unsigned CurGroup = GroupIdx.size();
1160     GroupIdx.push_back(i);
1161     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1162     // OpIdx belongs to this operand group.
1163     if (OpIdx > i && OpIdx < i + NumOps)
1164       OpIdxGroup = CurGroup;
1165     unsigned TiedGroup;
1166     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1167       continue;
1168     // Operands in this group are tied to operands in TiedGroup which must be
1169     // earlier. Find the number of operands between the two groups.
1170     unsigned Delta = i - GroupIdx[TiedGroup];
1171 
1172     // OpIdx is a use tied to TiedGroup.
1173     if (OpIdxGroup == CurGroup)
1174       return OpIdx - Delta;
1175 
1176     // OpIdx is a def tied to this use group.
1177     if (OpIdxGroup == TiedGroup)
1178       return OpIdx + Delta;
1179   }
1180   llvm_unreachable("Invalid tied operand on inline asm");
1181 }
1182 
1183 /// clearKillInfo - Clears kill flags on all operands.
1184 ///
1185 void MachineInstr::clearKillInfo() {
1186   for (MachineOperand &MO : operands()) {
1187     if (MO.isReg() && MO.isUse())
1188       MO.setIsKill(false);
1189   }
1190 }
1191 
1192 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1193                                       unsigned SubIdx,
1194                                       const TargetRegisterInfo &RegInfo) {
1195   if (Register::isPhysicalRegister(ToReg)) {
1196     if (SubIdx)
1197       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1198     for (MachineOperand &MO : operands()) {
1199       if (!MO.isReg() || MO.getReg() != FromReg)
1200         continue;
1201       MO.substPhysReg(ToReg, RegInfo);
1202     }
1203   } else {
1204     for (MachineOperand &MO : operands()) {
1205       if (!MO.isReg() || MO.getReg() != FromReg)
1206         continue;
1207       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1208     }
1209   }
1210 }
1211 
1212 /// isSafeToMove - Return true if it is safe to move this instruction. If
1213 /// SawStore is set to true, it means that there is a store (or call) between
1214 /// the instruction's location and its intended destination.
1215 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1216   // Ignore stuff that we obviously can't move.
1217   //
1218   // Treat volatile loads as stores. This is not strictly necessary for
1219   // volatiles, but it is required for atomic loads. It is not allowed to move
1220   // a load across an atomic load with Ordering > Monotonic.
1221   if (mayStore() || isCall() || isPHI() ||
1222       (mayLoad() && hasOrderedMemoryRef())) {
1223     SawStore = true;
1224     return false;
1225   }
1226 
1227   if (isPosition() || isDebugInstr() || isTerminator() ||
1228       mayRaiseFPException() || hasUnmodeledSideEffects())
1229     return false;
1230 
1231   // See if this instruction does a load.  If so, we have to guarantee that the
1232   // loaded value doesn't change between the load and the its intended
1233   // destination. The check for isInvariantLoad gives the target the chance to
1234   // classify the load as always returning a constant, e.g. a constant pool
1235   // load.
1236   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1237     // Otherwise, this is a real load.  If there is a store between the load and
1238     // end of block, we can't move it.
1239     return !SawStore;
1240 
1241   return true;
1242 }
1243 
1244 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1245                                  bool UseTBAA, const MachineMemOperand *MMOa,
1246                                  const MachineMemOperand *MMOb) {
1247   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1248   // operates with MachineMemOperand offset with some important assumptions:
1249   //   - LLVM fundamentally assumes flat address spaces.
1250   //   - MachineOperand offset can *only* result from legalization and cannot
1251   //     affect queries other than the trivial case of overlap checking.
1252   //   - These offsets never wrap and never step outside of allocated objects.
1253   //   - There should never be any negative offsets here.
1254   //
1255   // FIXME: Modify API to hide this math from "user"
1256   // Even before we go to AA we can reason locally about some memory objects. It
1257   // can save compile time, and possibly catch some corner cases not currently
1258   // covered.
1259 
1260   int64_t OffsetA = MMOa->getOffset();
1261   int64_t OffsetB = MMOb->getOffset();
1262   int64_t MinOffset = std::min(OffsetA, OffsetB);
1263 
1264   uint64_t WidthA = MMOa->getSize();
1265   uint64_t WidthB = MMOb->getSize();
1266   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1267   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1268 
1269   const Value *ValA = MMOa->getValue();
1270   const Value *ValB = MMOb->getValue();
1271   bool SameVal = (ValA && ValB && (ValA == ValB));
1272   if (!SameVal) {
1273     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1274     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1275     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1276       return false;
1277     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1278       return false;
1279     if (PSVa && PSVb && (PSVa == PSVb))
1280       SameVal = true;
1281   }
1282 
1283   if (SameVal) {
1284     if (!KnownWidthA || !KnownWidthB)
1285       return true;
1286     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1287     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1288     return (MinOffset + LowWidth > MaxOffset);
1289   }
1290 
1291   if (!AA)
1292     return true;
1293 
1294   if (!ValA || !ValB)
1295     return true;
1296 
1297   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1298   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1299 
1300   int64_t OverlapA =
1301       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1302   int64_t OverlapB =
1303       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1304 
1305   return !AA->isNoAlias(
1306       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1307       MemoryLocation(ValB, OverlapB,
1308                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1309 }
1310 
1311 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1312                             bool UseTBAA) const {
1313   const MachineFunction *MF = getMF();
1314   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1315   const MachineFrameInfo &MFI = MF->getFrameInfo();
1316 
1317   // Exclude call instruction which may alter the memory but can not be handled
1318   // by this function.
1319   if (isCall() || Other.isCall())
1320     return true;
1321 
1322   // If neither instruction stores to memory, they can't alias in any
1323   // meaningful way, even if they read from the same address.
1324   if (!mayStore() && !Other.mayStore())
1325     return false;
1326 
1327   // Both instructions must be memory operations to be able to alias.
1328   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1329     return false;
1330 
1331   // Let the target decide if memory accesses cannot possibly overlap.
1332   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1333     return false;
1334 
1335   // Memory operations without memory operands may access anything. Be
1336   // conservative and assume `MayAlias`.
1337   if (memoperands_empty() || Other.memoperands_empty())
1338     return true;
1339 
1340   // Skip if there are too many memory operands.
1341   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1342   if (NumChecks > TII->getMemOperandAACheckLimit())
1343     return true;
1344 
1345   // Check each pair of memory operands from both instructions, which can't
1346   // alias only if all pairs won't alias.
1347   for (auto *MMOa : memoperands())
1348     for (auto *MMOb : Other.memoperands())
1349       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1350         return true;
1351 
1352   return false;
1353 }
1354 
1355 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1356 /// or volatile memory reference, or if the information describing the memory
1357 /// reference is not available. Return false if it is known to have no ordered
1358 /// memory references.
1359 bool MachineInstr::hasOrderedMemoryRef() const {
1360   // An instruction known never to access memory won't have a volatile access.
1361   if (!mayStore() &&
1362       !mayLoad() &&
1363       !isCall() &&
1364       !hasUnmodeledSideEffects())
1365     return false;
1366 
1367   // Otherwise, if the instruction has no memory reference information,
1368   // conservatively assume it wasn't preserved.
1369   if (memoperands_empty())
1370     return true;
1371 
1372   // Check if any of our memory operands are ordered.
1373   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1374     return !MMO->isUnordered();
1375   });
1376 }
1377 
1378 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1379 /// trap and is loading from a location whose value is invariant across a run of
1380 /// this function.
1381 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1382   // If the instruction doesn't load at all, it isn't an invariant load.
1383   if (!mayLoad())
1384     return false;
1385 
1386   // If the instruction has lost its memoperands, conservatively assume that
1387   // it may not be an invariant load.
1388   if (memoperands_empty())
1389     return false;
1390 
1391   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1392 
1393   for (MachineMemOperand *MMO : memoperands()) {
1394     if (!MMO->isUnordered())
1395       // If the memory operand has ordering side effects, we can't move the
1396       // instruction.  Such an instruction is technically an invariant load,
1397       // but the caller code would need updated to expect that.
1398       return false;
1399     if (MMO->isStore()) return false;
1400     if (MMO->isInvariant() && MMO->isDereferenceable())
1401       continue;
1402 
1403     // A load from a constant PseudoSourceValue is invariant.
1404     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1405       if (PSV->isConstant(&MFI))
1406         continue;
1407 
1408     if (const Value *V = MMO->getValue()) {
1409       // If we have an AliasAnalysis, ask it whether the memory is constant.
1410       if (AA &&
1411           AA->pointsToConstantMemory(
1412               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1413         continue;
1414     }
1415 
1416     // Otherwise assume conservatively.
1417     return false;
1418   }
1419 
1420   // Everything checks out.
1421   return true;
1422 }
1423 
1424 /// isConstantValuePHI - If the specified instruction is a PHI that always
1425 /// merges together the same virtual register, return the register, otherwise
1426 /// return 0.
1427 unsigned MachineInstr::isConstantValuePHI() const {
1428   if (!isPHI())
1429     return 0;
1430   assert(getNumOperands() >= 3 &&
1431          "It's illegal to have a PHI without source operands");
1432 
1433   Register Reg = getOperand(1).getReg();
1434   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1435     if (getOperand(i).getReg() != Reg)
1436       return 0;
1437   return Reg;
1438 }
1439 
1440 bool MachineInstr::hasUnmodeledSideEffects() const {
1441   if (hasProperty(MCID::UnmodeledSideEffects))
1442     return true;
1443   if (isInlineAsm()) {
1444     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1445     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1446       return true;
1447   }
1448 
1449   return false;
1450 }
1451 
1452 bool MachineInstr::isLoadFoldBarrier() const {
1453   return mayStore() || isCall() ||
1454          (hasUnmodeledSideEffects() && !isPseudoProbe());
1455 }
1456 
1457 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1458 ///
1459 bool MachineInstr::allDefsAreDead() const {
1460   for (const MachineOperand &MO : operands()) {
1461     if (!MO.isReg() || MO.isUse())
1462       continue;
1463     if (!MO.isDead())
1464       return false;
1465   }
1466   return true;
1467 }
1468 
1469 /// copyImplicitOps - Copy implicit register operands from specified
1470 /// instruction to this instruction.
1471 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1472                                    const MachineInstr &MI) {
1473   for (const MachineOperand &MO :
1474        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1475     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1476       addOperand(MF, MO);
1477 }
1478 
1479 bool MachineInstr::hasComplexRegisterTies() const {
1480   const MCInstrDesc &MCID = getDesc();
1481   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1482     return true;
1483   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1484     const auto &Operand = getOperand(I);
1485     if (!Operand.isReg() || Operand.isDef())
1486       // Ignore the defined registers as MCID marks only the uses as tied.
1487       continue;
1488     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1489     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1490     if (ExpectedTiedIdx != TiedIdx)
1491       return true;
1492   }
1493   return false;
1494 }
1495 
1496 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1497                                  const MachineRegisterInfo &MRI) const {
1498   const MachineOperand &Op = getOperand(OpIdx);
1499   if (!Op.isReg())
1500     return LLT{};
1501 
1502   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1503     return MRI.getType(Op.getReg());
1504 
1505   auto &OpInfo = getDesc().OpInfo[OpIdx];
1506   if (!OpInfo.isGenericType())
1507     return MRI.getType(Op.getReg());
1508 
1509   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1510     return LLT{};
1511 
1512   LLT TypeToPrint = MRI.getType(Op.getReg());
1513   // Don't mark the type index printed if it wasn't actually printed: maybe
1514   // another operand with the same type index has an actual type attached:
1515   if (TypeToPrint.isValid())
1516     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1517   return TypeToPrint;
1518 }
1519 
1520 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1521 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1522   dbgs() << "  ";
1523   print(dbgs());
1524 }
1525 
1526 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1527     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1528     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1529   if (Depth >= MaxDepth)
1530     return;
1531   if (!AlreadySeenInstrs.insert(this).second)
1532     return;
1533   // PadToColumn always inserts at least one space.
1534   // Don't mess up the alignment if we don't want any space.
1535   if (Depth)
1536     fdbgs().PadToColumn(Depth * 2);
1537   print(fdbgs());
1538   for (const MachineOperand &MO : operands()) {
1539     if (!MO.isReg() || MO.isDef())
1540       continue;
1541     Register Reg = MO.getReg();
1542     if (Reg.isPhysical())
1543       continue;
1544     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1545     if (NewMI == nullptr)
1546       continue;
1547     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1548   }
1549 }
1550 
1551 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1552                                           unsigned MaxDepth) const {
1553   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1554   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1555 }
1556 #endif
1557 
1558 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1559                          bool SkipDebugLoc, bool AddNewLine,
1560                          const TargetInstrInfo *TII) const {
1561   const Module *M = nullptr;
1562   const Function *F = nullptr;
1563   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1564     F = &MF->getFunction();
1565     M = F->getParent();
1566     if (!TII)
1567       TII = MF->getSubtarget().getInstrInfo();
1568   }
1569 
1570   ModuleSlotTracker MST(M);
1571   if (F)
1572     MST.incorporateFunction(*F);
1573   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1574 }
1575 
1576 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1577                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1578                          bool AddNewLine, const TargetInstrInfo *TII) const {
1579   // We can be a bit tidier if we know the MachineFunction.
1580   const TargetRegisterInfo *TRI = nullptr;
1581   const MachineRegisterInfo *MRI = nullptr;
1582   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1583   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1584 
1585   if (isCFIInstruction())
1586     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1587 
1588   SmallBitVector PrintedTypes(8);
1589   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1590   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1591     if (!ShouldPrintRegisterTies)
1592       return 0U;
1593     const MachineOperand &MO = getOperand(OpIdx);
1594     if (MO.isReg() && MO.isTied() && !MO.isDef())
1595       return findTiedOperandIdx(OpIdx);
1596     return 0U;
1597   };
1598   unsigned StartOp = 0;
1599   unsigned e = getNumOperands();
1600 
1601   // Print explicitly defined operands on the left of an assignment syntax.
1602   while (StartOp < e) {
1603     const MachineOperand &MO = getOperand(StartOp);
1604     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1605       break;
1606 
1607     if (StartOp != 0)
1608       OS << ", ";
1609 
1610     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1611     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1612     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1613              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1614     ++StartOp;
1615   }
1616 
1617   if (StartOp != 0)
1618     OS << " = ";
1619 
1620   if (getFlag(MachineInstr::FrameSetup))
1621     OS << "frame-setup ";
1622   if (getFlag(MachineInstr::FrameDestroy))
1623     OS << "frame-destroy ";
1624   if (getFlag(MachineInstr::FmNoNans))
1625     OS << "nnan ";
1626   if (getFlag(MachineInstr::FmNoInfs))
1627     OS << "ninf ";
1628   if (getFlag(MachineInstr::FmNsz))
1629     OS << "nsz ";
1630   if (getFlag(MachineInstr::FmArcp))
1631     OS << "arcp ";
1632   if (getFlag(MachineInstr::FmContract))
1633     OS << "contract ";
1634   if (getFlag(MachineInstr::FmAfn))
1635     OS << "afn ";
1636   if (getFlag(MachineInstr::FmReassoc))
1637     OS << "reassoc ";
1638   if (getFlag(MachineInstr::NoUWrap))
1639     OS << "nuw ";
1640   if (getFlag(MachineInstr::NoSWrap))
1641     OS << "nsw ";
1642   if (getFlag(MachineInstr::IsExact))
1643     OS << "exact ";
1644   if (getFlag(MachineInstr::NoFPExcept))
1645     OS << "nofpexcept ";
1646   if (getFlag(MachineInstr::NoMerge))
1647     OS << "nomerge ";
1648 
1649   // Print the opcode name.
1650   if (TII)
1651     OS << TII->getName(getOpcode());
1652   else
1653     OS << "UNKNOWN";
1654 
1655   if (SkipOpers)
1656     return;
1657 
1658   // Print the rest of the operands.
1659   bool FirstOp = true;
1660   unsigned AsmDescOp = ~0u;
1661   unsigned AsmOpCount = 0;
1662 
1663   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1664     // Print asm string.
1665     OS << " ";
1666     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1667     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1668     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1669     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1670                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1671                             IntrinsicInfo);
1672 
1673     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1674     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1675     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1676       OS << " [sideeffect]";
1677     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1678       OS << " [mayload]";
1679     if (ExtraInfo & InlineAsm::Extra_MayStore)
1680       OS << " [maystore]";
1681     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1682       OS << " [isconvergent]";
1683     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1684       OS << " [alignstack]";
1685     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1686       OS << " [attdialect]";
1687     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1688       OS << " [inteldialect]";
1689 
1690     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1691     FirstOp = false;
1692   }
1693 
1694   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1695     const MachineOperand &MO = getOperand(i);
1696 
1697     if (FirstOp) FirstOp = false; else OS << ",";
1698     OS << " ";
1699 
1700     if (isDebugValue() && MO.isMetadata()) {
1701       // Pretty print DBG_VALUE* instructions.
1702       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1703       if (DIV && !DIV->getName().empty())
1704         OS << "!\"" << DIV->getName() << '\"';
1705       else {
1706         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1707         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1708         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1709                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1710       }
1711     } else if (isDebugLabel() && MO.isMetadata()) {
1712       // Pretty print DBG_LABEL instructions.
1713       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1714       if (DIL && !DIL->getName().empty())
1715         OS << "\"" << DIL->getName() << '\"';
1716       else {
1717         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1718         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1719         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1720                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1721       }
1722     } else if (i == AsmDescOp && MO.isImm()) {
1723       // Pretty print the inline asm operand descriptor.
1724       OS << '$' << AsmOpCount++;
1725       unsigned Flag = MO.getImm();
1726       OS << ":[";
1727       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1728 
1729       unsigned RCID = 0;
1730       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1731           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1732         if (TRI) {
1733           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1734         } else
1735           OS << ":RC" << RCID;
1736       }
1737 
1738       if (InlineAsm::isMemKind(Flag)) {
1739         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1740         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1741       }
1742 
1743       unsigned TiedTo = 0;
1744       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1745         OS << " tiedto:$" << TiedTo;
1746 
1747       OS << ']';
1748 
1749       // Compute the index of the next operand descriptor.
1750       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1751     } else {
1752       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1753       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1754       if (MO.isImm() && isOperandSubregIdx(i))
1755         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1756       else
1757         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1758                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1759     }
1760   }
1761 
1762   // Print any optional symbols attached to this instruction as-if they were
1763   // operands.
1764   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1765     if (!FirstOp) {
1766       FirstOp = false;
1767       OS << ',';
1768     }
1769     OS << " pre-instr-symbol ";
1770     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1771   }
1772   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1773     if (!FirstOp) {
1774       FirstOp = false;
1775       OS << ',';
1776     }
1777     OS << " post-instr-symbol ";
1778     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1779   }
1780   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1781     if (!FirstOp) {
1782       FirstOp = false;
1783       OS << ',';
1784     }
1785     OS << " heap-alloc-marker ";
1786     HeapAllocMarker->printAsOperand(OS, MST);
1787   }
1788 
1789   if (DebugInstrNum) {
1790     if (!FirstOp)
1791       OS << ",";
1792     OS << " debug-instr-number " << DebugInstrNum;
1793   }
1794 
1795   if (!SkipDebugLoc) {
1796     if (const DebugLoc &DL = getDebugLoc()) {
1797       if (!FirstOp)
1798         OS << ',';
1799       OS << " debug-location ";
1800       DL->printAsOperand(OS, MST);
1801     }
1802   }
1803 
1804   if (!memoperands_empty()) {
1805     SmallVector<StringRef, 0> SSNs;
1806     const LLVMContext *Context = nullptr;
1807     std::unique_ptr<LLVMContext> CtxPtr;
1808     const MachineFrameInfo *MFI = nullptr;
1809     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1810       MFI = &MF->getFrameInfo();
1811       Context = &MF->getFunction().getContext();
1812     } else {
1813       CtxPtr = std::make_unique<LLVMContext>();
1814       Context = CtxPtr.get();
1815     }
1816 
1817     OS << " :: ";
1818     bool NeedComma = false;
1819     for (const MachineMemOperand *Op : memoperands()) {
1820       if (NeedComma)
1821         OS << ", ";
1822       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1823       NeedComma = true;
1824     }
1825   }
1826 
1827   if (SkipDebugLoc)
1828     return;
1829 
1830   bool HaveSemi = false;
1831 
1832   // Print debug location information.
1833   if (const DebugLoc &DL = getDebugLoc()) {
1834     if (!HaveSemi) {
1835       OS << ';';
1836       HaveSemi = true;
1837     }
1838     OS << ' ';
1839     DL.print(OS);
1840   }
1841 
1842   // Print extra comments for DEBUG_VALUE.
1843   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1844     if (!HaveSemi) {
1845       OS << ";";
1846       HaveSemi = true;
1847     }
1848     auto *DV = getDebugVariable();
1849     OS << " line no:" <<  DV->getLine();
1850     if (isIndirectDebugValue())
1851       OS << " indirect";
1852   }
1853   // TODO: DBG_LABEL
1854 
1855   if (AddNewLine)
1856     OS << '\n';
1857 }
1858 
1859 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1860                                      const TargetRegisterInfo *RegInfo,
1861                                      bool AddIfNotFound) {
1862   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1863   bool hasAliases = isPhysReg &&
1864     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1865   bool Found = false;
1866   SmallVector<unsigned,4> DeadOps;
1867   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1868     MachineOperand &MO = getOperand(i);
1869     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1870       continue;
1871 
1872     // DEBUG_VALUE nodes do not contribute to code generation and should
1873     // always be ignored. Failure to do so may result in trying to modify
1874     // KILL flags on DEBUG_VALUE nodes.
1875     if (MO.isDebug())
1876       continue;
1877 
1878     Register Reg = MO.getReg();
1879     if (!Reg)
1880       continue;
1881 
1882     if (Reg == IncomingReg) {
1883       if (!Found) {
1884         if (MO.isKill())
1885           // The register is already marked kill.
1886           return true;
1887         if (isPhysReg && isRegTiedToDefOperand(i))
1888           // Two-address uses of physregs must not be marked kill.
1889           return true;
1890         MO.setIsKill();
1891         Found = true;
1892       }
1893     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1894       // A super-register kill already exists.
1895       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1896         return true;
1897       if (RegInfo->isSubRegister(IncomingReg, Reg))
1898         DeadOps.push_back(i);
1899     }
1900   }
1901 
1902   // Trim unneeded kill operands.
1903   while (!DeadOps.empty()) {
1904     unsigned OpIdx = DeadOps.back();
1905     if (getOperand(OpIdx).isImplicit() &&
1906         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1907       RemoveOperand(OpIdx);
1908     else
1909       getOperand(OpIdx).setIsKill(false);
1910     DeadOps.pop_back();
1911   }
1912 
1913   // If not found, this means an alias of one of the operands is killed. Add a
1914   // new implicit operand if required.
1915   if (!Found && AddIfNotFound) {
1916     addOperand(MachineOperand::CreateReg(IncomingReg,
1917                                          false /*IsDef*/,
1918                                          true  /*IsImp*/,
1919                                          true  /*IsKill*/));
1920     return true;
1921   }
1922   return Found;
1923 }
1924 
1925 void MachineInstr::clearRegisterKills(Register Reg,
1926                                       const TargetRegisterInfo *RegInfo) {
1927   if (!Register::isPhysicalRegister(Reg))
1928     RegInfo = nullptr;
1929   for (MachineOperand &MO : operands()) {
1930     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1931       continue;
1932     Register OpReg = MO.getReg();
1933     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1934       MO.setIsKill(false);
1935   }
1936 }
1937 
1938 bool MachineInstr::addRegisterDead(Register Reg,
1939                                    const TargetRegisterInfo *RegInfo,
1940                                    bool AddIfNotFound) {
1941   bool isPhysReg = Register::isPhysicalRegister(Reg);
1942   bool hasAliases = isPhysReg &&
1943     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1944   bool Found = false;
1945   SmallVector<unsigned,4> DeadOps;
1946   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1947     MachineOperand &MO = getOperand(i);
1948     if (!MO.isReg() || !MO.isDef())
1949       continue;
1950     Register MOReg = MO.getReg();
1951     if (!MOReg)
1952       continue;
1953 
1954     if (MOReg == Reg) {
1955       MO.setIsDead();
1956       Found = true;
1957     } else if (hasAliases && MO.isDead() &&
1958                Register::isPhysicalRegister(MOReg)) {
1959       // There exists a super-register that's marked dead.
1960       if (RegInfo->isSuperRegister(Reg, MOReg))
1961         return true;
1962       if (RegInfo->isSubRegister(Reg, MOReg))
1963         DeadOps.push_back(i);
1964     }
1965   }
1966 
1967   // Trim unneeded dead operands.
1968   while (!DeadOps.empty()) {
1969     unsigned OpIdx = DeadOps.back();
1970     if (getOperand(OpIdx).isImplicit() &&
1971         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1972       RemoveOperand(OpIdx);
1973     else
1974       getOperand(OpIdx).setIsDead(false);
1975     DeadOps.pop_back();
1976   }
1977 
1978   // If not found, this means an alias of one of the operands is dead. Add a
1979   // new implicit operand if required.
1980   if (Found || !AddIfNotFound)
1981     return Found;
1982 
1983   addOperand(MachineOperand::CreateReg(Reg,
1984                                        true  /*IsDef*/,
1985                                        true  /*IsImp*/,
1986                                        false /*IsKill*/,
1987                                        true  /*IsDead*/));
1988   return true;
1989 }
1990 
1991 void MachineInstr::clearRegisterDeads(Register Reg) {
1992   for (MachineOperand &MO : operands()) {
1993     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1994       continue;
1995     MO.setIsDead(false);
1996   }
1997 }
1998 
1999 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2000   for (MachineOperand &MO : operands()) {
2001     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2002       continue;
2003     MO.setIsUndef(IsUndef);
2004   }
2005 }
2006 
2007 void MachineInstr::addRegisterDefined(Register Reg,
2008                                       const TargetRegisterInfo *RegInfo) {
2009   if (Register::isPhysicalRegister(Reg)) {
2010     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2011     if (MO)
2012       return;
2013   } else {
2014     for (const MachineOperand &MO : operands()) {
2015       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2016           MO.getSubReg() == 0)
2017         return;
2018     }
2019   }
2020   addOperand(MachineOperand::CreateReg(Reg,
2021                                        true  /*IsDef*/,
2022                                        true  /*IsImp*/));
2023 }
2024 
2025 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2026                                          const TargetRegisterInfo &TRI) {
2027   bool HasRegMask = false;
2028   for (MachineOperand &MO : operands()) {
2029     if (MO.isRegMask()) {
2030       HasRegMask = true;
2031       continue;
2032     }
2033     if (!MO.isReg() || !MO.isDef()) continue;
2034     Register Reg = MO.getReg();
2035     if (!Reg.isPhysical())
2036       continue;
2037     // If there are no uses, including partial uses, the def is dead.
2038     if (llvm::none_of(UsedRegs,
2039                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2040       MO.setIsDead();
2041   }
2042 
2043   // This is a call with a register mask operand.
2044   // Mask clobbers are always dead, so add defs for the non-dead defines.
2045   if (HasRegMask)
2046     for (const Register &UsedReg : UsedRegs)
2047       addRegisterDefined(UsedReg, &TRI);
2048 }
2049 
2050 unsigned
2051 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2052   // Build up a buffer of hash code components.
2053   SmallVector<size_t, 16> HashComponents;
2054   HashComponents.reserve(MI->getNumOperands() + 1);
2055   HashComponents.push_back(MI->getOpcode());
2056   for (const MachineOperand &MO : MI->operands()) {
2057     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2058       continue;  // Skip virtual register defs.
2059 
2060     HashComponents.push_back(hash_value(MO));
2061   }
2062   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2063 }
2064 
2065 void MachineInstr::emitError(StringRef Msg) const {
2066   // Find the source location cookie.
2067   uint64_t LocCookie = 0;
2068   const MDNode *LocMD = nullptr;
2069   for (unsigned i = getNumOperands(); i != 0; --i) {
2070     if (getOperand(i-1).isMetadata() &&
2071         (LocMD = getOperand(i-1).getMetadata()) &&
2072         LocMD->getNumOperands() != 0) {
2073       if (const ConstantInt *CI =
2074               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2075         LocCookie = CI->getZExtValue();
2076         break;
2077       }
2078     }
2079   }
2080 
2081   if (const MachineBasicBlock *MBB = getParent())
2082     if (const MachineFunction *MF = MBB->getParent())
2083       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2084   report_fatal_error(Msg);
2085 }
2086 
2087 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2088                                   const MCInstrDesc &MCID, bool IsIndirect,
2089                                   Register Reg, const MDNode *Variable,
2090                                   const MDNode *Expr) {
2091   assert(isa<DILocalVariable>(Variable) && "not a variable");
2092   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2093   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2094          "Expected inlined-at fields to agree");
2095   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2096   if (IsIndirect)
2097     MIB.addImm(0U);
2098   else
2099     MIB.addReg(0U);
2100   return MIB.addMetadata(Variable).addMetadata(Expr);
2101 }
2102 
2103 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2104                                   const MCInstrDesc &MCID, bool IsIndirect,
2105                                   const MachineOperand &MO,
2106                                   const MDNode *Variable, const MDNode *Expr) {
2107   assert(isa<DILocalVariable>(Variable) && "not a variable");
2108   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2109   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2110          "Expected inlined-at fields to agree");
2111   if (MO.isReg())
2112     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2113 
2114   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2115   if (IsIndirect)
2116     MIB.addImm(0U);
2117   else
2118     MIB.addReg(0U);
2119   return MIB.addMetadata(Variable).addMetadata(Expr);
2120 }
2121 
2122 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2123                                   const MCInstrDesc &MCID, bool IsIndirect,
2124                                   ArrayRef<MachineOperand> MOs,
2125                                   const MDNode *Variable, const MDNode *Expr) {
2126   assert(isa<DILocalVariable>(Variable) && "not a variable");
2127   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2128   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2129          "Expected inlined-at fields to agree");
2130   if (MCID.Opcode == TargetOpcode::DBG_VALUE)
2131     return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
2132 
2133   auto MIB = BuildMI(MF, DL, MCID);
2134   MIB.addMetadata(Variable).addMetadata(Expr);
2135   for (const MachineOperand &MO : MOs)
2136     if (MO.isReg())
2137       MIB.addReg(MO.getReg());
2138     else
2139       MIB.add(MO);
2140   return MIB;
2141 }
2142 
2143 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2144                                   MachineBasicBlock::iterator I,
2145                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2146                                   bool IsIndirect, Register Reg,
2147                                   const MDNode *Variable, const MDNode *Expr) {
2148   MachineFunction &MF = *BB.getParent();
2149   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2150   BB.insert(I, MI);
2151   return MachineInstrBuilder(MF, MI);
2152 }
2153 
2154 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2155                                   MachineBasicBlock::iterator I,
2156                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2157                                   bool IsIndirect, MachineOperand &MO,
2158                                   const MDNode *Variable, const MDNode *Expr) {
2159   MachineFunction &MF = *BB.getParent();
2160   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2161   BB.insert(I, MI);
2162   return MachineInstrBuilder(MF, *MI);
2163 }
2164 
2165 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2166                                   MachineBasicBlock::iterator I,
2167                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2168                                   bool IsIndirect, ArrayRef<MachineOperand> MOs,
2169                                   const MDNode *Variable, const MDNode *Expr) {
2170   MachineFunction &MF = *BB.getParent();
2171   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
2172   BB.insert(I, MI);
2173   return MachineInstrBuilder(MF, *MI);
2174 }
2175 
2176 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2177 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2178 static const DIExpression *
2179 computeExprForSpill(const MachineInstr &MI,
2180                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2181   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2182          "Expected inlined-at fields to agree");
2183 
2184   const DIExpression *Expr = MI.getDebugExpression();
2185   if (MI.isIndirectDebugValue()) {
2186     assert(MI.getDebugOffset().getImm() == 0 &&
2187            "DBG_VALUE with nonzero offset");
2188     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2189   } else if (MI.isDebugValueList()) {
2190     // We will replace the spilled register with a frame index, so
2191     // immediately deref all references to the spilled register.
2192     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2193     for (const MachineOperand *Op : SpilledOperands) {
2194       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2195       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2196     }
2197   }
2198   return Expr;
2199 }
2200 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2201                                                Register SpillReg) {
2202   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2203   SmallVector<const MachineOperand *> SpillOperands;
2204   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2205     SpillOperands.push_back(&Op);
2206   return computeExprForSpill(MI, SpillOperands);
2207 }
2208 
2209 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2210                                           MachineBasicBlock::iterator I,
2211                                           const MachineInstr &Orig,
2212                                           int FrameIndex, Register SpillReg) {
2213   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2214   MachineInstrBuilder NewMI =
2215       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2216   // Non-Variadic Operands: Location, Offset, Variable, Expression
2217   // Variadic Operands:     Variable, Expression, Locations...
2218   if (Orig.isNonListDebugValue())
2219     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2220   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2221   if (Orig.isDebugValueList()) {
2222     for (const MachineOperand &Op : Orig.debug_operands())
2223       if (Op.isReg() && Op.getReg() == SpillReg)
2224         NewMI.addFrameIndex(FrameIndex);
2225       else
2226         NewMI.add(MachineOperand(Op));
2227   }
2228   return NewMI;
2229 }
2230 MachineInstr *llvm::buildDbgValueForSpill(
2231     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2232     const MachineInstr &Orig, int FrameIndex,
2233     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2234   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2235   MachineInstrBuilder NewMI =
2236       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2237   // Non-Variadic Operands: Location, Offset, Variable, Expression
2238   // Variadic Operands:     Variable, Expression, Locations...
2239   if (Orig.isNonListDebugValue())
2240     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2241   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2242   if (Orig.isDebugValueList()) {
2243     for (const MachineOperand &Op : Orig.debug_operands())
2244       if (is_contained(SpilledOperands, &Op))
2245         NewMI.addFrameIndex(FrameIndex);
2246       else
2247         NewMI.add(MachineOperand(Op));
2248   }
2249   return NewMI;
2250 }
2251 
2252 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2253                                   Register Reg) {
2254   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2255   if (Orig.isNonListDebugValue())
2256     Orig.getDebugOffset().ChangeToImmediate(0U);
2257   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2258     Op.ChangeToFrameIndex(FrameIndex);
2259   Orig.getDebugExpressionOp().setMetadata(Expr);
2260 }
2261 
2262 void MachineInstr::collectDebugValues(
2263                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2264   MachineInstr &MI = *this;
2265   if (!MI.getOperand(0).isReg())
2266     return;
2267 
2268   MachineBasicBlock::iterator DI = MI; ++DI;
2269   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2270        DI != DE; ++DI) {
2271     if (!DI->isDebugValue())
2272       return;
2273     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2274       DbgValues.push_back(&*DI);
2275   }
2276 }
2277 
2278 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2279   // Collect matching debug values.
2280   SmallVector<MachineInstr *, 2> DbgValues;
2281 
2282   if (!getOperand(0).isReg())
2283     return;
2284 
2285   Register DefReg = getOperand(0).getReg();
2286   auto *MRI = getRegInfo();
2287   for (auto &MO : MRI->use_operands(DefReg)) {
2288     auto *DI = MO.getParent();
2289     if (!DI->isDebugValue())
2290       continue;
2291     if (DI->hasDebugOperandForReg(DefReg)) {
2292       DbgValues.push_back(DI);
2293     }
2294   }
2295 
2296   // Propagate Reg to debug value instructions.
2297   for (auto *DBI : DbgValues)
2298     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2299       Op.setReg(Reg);
2300 }
2301 
2302 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2303 
2304 static unsigned getSpillSlotSize(const MMOList &Accesses,
2305                                  const MachineFrameInfo &MFI) {
2306   unsigned Size = 0;
2307   for (auto A : Accesses)
2308     if (MFI.isSpillSlotObjectIndex(
2309             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2310                 ->getFrameIndex()))
2311       Size += A->getSize();
2312   return Size;
2313 }
2314 
2315 Optional<unsigned>
2316 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2317   int FI;
2318   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2319     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2320     if (MFI.isSpillSlotObjectIndex(FI))
2321       return (*memoperands_begin())->getSize();
2322   }
2323   return None;
2324 }
2325 
2326 Optional<unsigned>
2327 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2328   MMOList Accesses;
2329   if (TII->hasStoreToStackSlot(*this, Accesses))
2330     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2331   return None;
2332 }
2333 
2334 Optional<unsigned>
2335 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2336   int FI;
2337   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2338     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2339     if (MFI.isSpillSlotObjectIndex(FI))
2340       return (*memoperands_begin())->getSize();
2341   }
2342   return None;
2343 }
2344 
2345 Optional<unsigned>
2346 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2347   MMOList Accesses;
2348   if (TII->hasLoadFromStackSlot(*this, Accesses))
2349     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2350   return None;
2351 }
2352 
2353 unsigned MachineInstr::getDebugInstrNum() {
2354   if (DebugInstrNum == 0)
2355     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2356   return DebugInstrNum;
2357 }
2358 
2359 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2360   if (DebugInstrNum == 0)
2361     DebugInstrNum = MF.getNewDebugInstrNum();
2362   return DebugInstrNum;
2363 }
2364