1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/MC/SectionKind.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/DOTGraphTraits.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 switch(Prop) { 93 case P::FailedISel: return "FailedISel"; 94 case P::IsSSA: return "IsSSA"; 95 case P::Legalized: return "Legalized"; 96 case P::NoPHIs: return "NoPHIs"; 97 case P::NoVRegs: return "NoVRegs"; 98 case P::RegBankSelected: return "RegBankSelected"; 99 case P::Selected: return "Selected"; 100 case P::TracksLiveness: return "TracksLiveness"; 101 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 102 } 103 llvm_unreachable("Invalid machine function property"); 104 } 105 106 // Pin the vtable to this file. 107 void MachineFunction::Delegate::anchor() {} 108 109 void MachineFunctionProperties::print(raw_ostream &OS) const { 110 const char *Separator = ""; 111 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 112 if (!Properties[I]) 113 continue; 114 OS << Separator << getPropertyName(static_cast<Property>(I)); 115 Separator = ", "; 116 } 117 } 118 119 //===----------------------------------------------------------------------===// 120 // MachineFunction implementation 121 //===----------------------------------------------------------------------===// 122 123 // Out-of-line virtual method. 124 MachineFunctionInfo::~MachineFunctionInfo() = default; 125 126 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 127 MBB->getParent()->DeleteMachineBasicBlock(MBB); 128 } 129 130 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 131 const Function &F) { 132 if (F.hasFnAttribute(Attribute::StackAlignment)) 133 return F.getFnStackAlignment(); 134 return STI->getFrameLowering()->getStackAlign().value(); 135 } 136 137 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 138 const TargetSubtargetInfo &STI, 139 unsigned FunctionNum, MachineModuleInfo &mmi) 140 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 141 FunctionNumber = FunctionNum; 142 init(); 143 } 144 145 void MachineFunction::handleInsertion(MachineInstr &MI) { 146 if (TheDelegate) 147 TheDelegate->MF_HandleInsertion(MI); 148 } 149 150 void MachineFunction::handleRemoval(MachineInstr &MI) { 151 if (TheDelegate) 152 TheDelegate->MF_HandleRemoval(MI); 153 } 154 155 void MachineFunction::init() { 156 // Assume the function starts in SSA form with correct liveness. 157 Properties.set(MachineFunctionProperties::Property::IsSSA); 158 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 159 if (STI->getRegisterInfo()) 160 RegInfo = new (Allocator) MachineRegisterInfo(this); 161 else 162 RegInfo = nullptr; 163 164 MFInfo = nullptr; 165 // We can realign the stack if the target supports it and the user hasn't 166 // explicitly asked us not to. 167 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 168 !F.hasFnAttribute("no-realign-stack"); 169 FrameInfo = new (Allocator) MachineFrameInfo( 170 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 171 /*ForcedRealign=*/CanRealignSP && 172 F.hasFnAttribute(Attribute::StackAlignment)); 173 174 if (F.hasFnAttribute(Attribute::StackAlignment)) 175 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 176 177 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 178 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 179 180 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 181 // FIXME: Use Function::hasOptSize(). 182 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 183 Alignment = std::max(Alignment, 184 STI->getTargetLowering()->getPrefFunctionAlignment()); 185 186 if (AlignAllFunctions) 187 Alignment = Align(1ULL << AlignAllFunctions); 188 189 JumpTableInfo = nullptr; 190 191 if (isFuncletEHPersonality(classifyEHPersonality( 192 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 193 WinEHInfo = new (Allocator) WinEHFuncInfo(); 194 } 195 196 if (isScopedEHPersonality(classifyEHPersonality( 197 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 198 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 199 } 200 201 assert(Target.isCompatibleDataLayout(getDataLayout()) && 202 "Can't create a MachineFunction using a Module with a " 203 "Target-incompatible DataLayout attached\n"); 204 205 PSVManager = 206 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 207 getInstrInfo())); 208 } 209 210 MachineFunction::~MachineFunction() { 211 clear(); 212 } 213 214 void MachineFunction::clear() { 215 Properties.reset(); 216 // Don't call destructors on MachineInstr and MachineOperand. All of their 217 // memory comes from the BumpPtrAllocator which is about to be purged. 218 // 219 // Do call MachineBasicBlock destructors, it contains std::vectors. 220 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 221 I->Insts.clearAndLeakNodesUnsafely(); 222 MBBNumbering.clear(); 223 224 InstructionRecycler.clear(Allocator); 225 OperandRecycler.clear(Allocator); 226 BasicBlockRecycler.clear(Allocator); 227 CodeViewAnnotations.clear(); 228 VariableDbgInfos.clear(); 229 if (RegInfo) { 230 RegInfo->~MachineRegisterInfo(); 231 Allocator.Deallocate(RegInfo); 232 } 233 if (MFInfo) { 234 MFInfo->~MachineFunctionInfo(); 235 Allocator.Deallocate(MFInfo); 236 } 237 238 FrameInfo->~MachineFrameInfo(); 239 Allocator.Deallocate(FrameInfo); 240 241 ConstantPool->~MachineConstantPool(); 242 Allocator.Deallocate(ConstantPool); 243 244 if (JumpTableInfo) { 245 JumpTableInfo->~MachineJumpTableInfo(); 246 Allocator.Deallocate(JumpTableInfo); 247 } 248 249 if (WinEHInfo) { 250 WinEHInfo->~WinEHFuncInfo(); 251 Allocator.Deallocate(WinEHInfo); 252 } 253 254 if (WasmEHInfo) { 255 WasmEHInfo->~WasmEHFuncInfo(); 256 Allocator.Deallocate(WasmEHInfo); 257 } 258 } 259 260 const DataLayout &MachineFunction::getDataLayout() const { 261 return F.getParent()->getDataLayout(); 262 } 263 264 /// Get the JumpTableInfo for this function. 265 /// If it does not already exist, allocate one. 266 MachineJumpTableInfo *MachineFunction:: 267 getOrCreateJumpTableInfo(unsigned EntryKind) { 268 if (JumpTableInfo) return JumpTableInfo; 269 270 JumpTableInfo = new (Allocator) 271 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 272 return JumpTableInfo; 273 } 274 275 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 276 return F.getDenormalMode(FPType); 277 } 278 279 /// Should we be emitting segmented stack stuff for the function 280 bool MachineFunction::shouldSplitStack() const { 281 return getFunction().hasFnAttribute("split-stack"); 282 } 283 284 LLVM_NODISCARD unsigned 285 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 286 FrameInstructions.push_back(Inst); 287 return FrameInstructions.size() - 1; 288 } 289 290 /// This discards all of the MachineBasicBlock numbers and recomputes them. 291 /// This guarantees that the MBB numbers are sequential, dense, and match the 292 /// ordering of the blocks within the function. If a specific MachineBasicBlock 293 /// is specified, only that block and those after it are renumbered. 294 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 295 if (empty()) { MBBNumbering.clear(); return; } 296 MachineFunction::iterator MBBI, E = end(); 297 if (MBB == nullptr) 298 MBBI = begin(); 299 else 300 MBBI = MBB->getIterator(); 301 302 // Figure out the block number this should have. 303 unsigned BlockNo = 0; 304 if (MBBI != begin()) 305 BlockNo = std::prev(MBBI)->getNumber() + 1; 306 307 for (; MBBI != E; ++MBBI, ++BlockNo) { 308 if (MBBI->getNumber() != (int)BlockNo) { 309 // Remove use of the old number. 310 if (MBBI->getNumber() != -1) { 311 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 312 "MBB number mismatch!"); 313 MBBNumbering[MBBI->getNumber()] = nullptr; 314 } 315 316 // If BlockNo is already taken, set that block's number to -1. 317 if (MBBNumbering[BlockNo]) 318 MBBNumbering[BlockNo]->setNumber(-1); 319 320 MBBNumbering[BlockNo] = &*MBBI; 321 MBBI->setNumber(BlockNo); 322 } 323 } 324 325 // Okay, all the blocks are renumbered. If we have compactified the block 326 // numbering, shrink MBBNumbering now. 327 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 328 MBBNumbering.resize(BlockNo); 329 } 330 331 /// This method iterates over the basic blocks and assigns their IsBeginSection 332 /// and IsEndSection fields. This must be called after MBB layout is finalized 333 /// and the SectionID's are assigned to MBBs. 334 void MachineFunction::assignBeginEndSections() { 335 front().setIsBeginSection(); 336 auto CurrentSectionID = front().getSectionID(); 337 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 338 if (MBBI->getSectionID() == CurrentSectionID) 339 continue; 340 MBBI->setIsBeginSection(); 341 std::prev(MBBI)->setIsEndSection(); 342 CurrentSectionID = MBBI->getSectionID(); 343 } 344 back().setIsEndSection(); 345 } 346 347 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 348 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 349 const DebugLoc &DL, 350 bool NoImplicit) { 351 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 352 MachineInstr(*this, MCID, DL, NoImplicit); 353 } 354 355 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 356 /// identical in all ways except the instruction has no parent, prev, or next. 357 MachineInstr * 358 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 359 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 360 MachineInstr(*this, *Orig); 361 } 362 363 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 364 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 365 MachineInstr *FirstClone = nullptr; 366 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 367 while (true) { 368 MachineInstr *Cloned = CloneMachineInstr(&*I); 369 MBB.insert(InsertBefore, Cloned); 370 if (FirstClone == nullptr) { 371 FirstClone = Cloned; 372 } else { 373 Cloned->bundleWithPred(); 374 } 375 376 if (!I->isBundledWithSucc()) 377 break; 378 ++I; 379 } 380 // Copy over call site info to the cloned instruction if needed. If Orig is in 381 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 382 // the bundle. 383 if (Orig.shouldUpdateCallSiteInfo()) 384 copyCallSiteInfo(&Orig, FirstClone); 385 return *FirstClone; 386 } 387 388 /// Delete the given MachineInstr. 389 /// 390 /// This function also serves as the MachineInstr destructor - the real 391 /// ~MachineInstr() destructor must be empty. 392 void 393 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 394 // Verify that a call site info is at valid state. This assertion should 395 // be triggered during the implementation of support for the 396 // call site info of a new architecture. If the assertion is triggered, 397 // back trace will tell where to insert a call to updateCallSiteInfo(). 398 assert((!MI->isCandidateForCallSiteEntry() || 399 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 400 "Call site info was not updated!"); 401 // Strip it for parts. The operand array and the MI object itself are 402 // independently recyclable. 403 if (MI->Operands) 404 deallocateOperandArray(MI->CapOperands, MI->Operands); 405 // Don't call ~MachineInstr() which must be trivial anyway because 406 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 407 // destructors. 408 InstructionRecycler.Deallocate(Allocator, MI); 409 } 410 411 /// Allocate a new MachineBasicBlock. Use this instead of 412 /// `new MachineBasicBlock'. 413 MachineBasicBlock * 414 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 415 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 416 MachineBasicBlock(*this, bb); 417 } 418 419 /// Delete the given MachineBasicBlock. 420 void 421 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 422 assert(MBB->getParent() == this && "MBB parent mismatch!"); 423 // Clean up any references to MBB in jump tables before deleting it. 424 if (JumpTableInfo) 425 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 426 MBB->~MachineBasicBlock(); 427 BasicBlockRecycler.Deallocate(Allocator, MBB); 428 } 429 430 MachineMemOperand *MachineFunction::getMachineMemOperand( 431 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 432 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 433 SyncScope::ID SSID, AtomicOrdering Ordering, 434 AtomicOrdering FailureOrdering) { 435 return new (Allocator) 436 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 437 SSID, Ordering, FailureOrdering); 438 } 439 440 MachineMemOperand *MachineFunction::getMachineMemOperand( 441 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 442 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 443 SyncScope::ID SSID, AtomicOrdering Ordering, 444 AtomicOrdering FailureOrdering) { 445 return new (Allocator) 446 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 447 Ordering, FailureOrdering); 448 } 449 450 MachineMemOperand *MachineFunction::getMachineMemOperand( 451 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { 452 return new (Allocator) 453 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 454 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 455 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 456 } 457 458 MachineMemOperand *MachineFunction::getMachineMemOperand( 459 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 460 return new (Allocator) 461 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 462 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 463 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 464 } 465 466 MachineMemOperand * 467 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 468 int64_t Offset, LLT Ty) { 469 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 470 471 // If there is no pointer value, the offset isn't tracked so we need to adjust 472 // the base alignment. 473 Align Alignment = PtrInfo.V.isNull() 474 ? commonAlignment(MMO->getBaseAlign(), Offset) 475 : MMO->getBaseAlign(); 476 477 // Do not preserve ranges, since we don't necessarily know what the high bits 478 // are anymore. 479 return new (Allocator) MachineMemOperand( 480 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 481 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 482 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 483 } 484 485 MachineMemOperand * 486 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 487 const AAMDNodes &AAInfo) { 488 MachinePointerInfo MPI = MMO->getValue() ? 489 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 490 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 491 492 return new (Allocator) MachineMemOperand( 493 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 494 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 495 MMO->getFailureOrdering()); 496 } 497 498 MachineMemOperand * 499 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 500 MachineMemOperand::Flags Flags) { 501 return new (Allocator) MachineMemOperand( 502 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 503 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 504 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 505 } 506 507 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 508 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 509 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 510 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 511 PostInstrSymbol, HeapAllocMarker); 512 } 513 514 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 515 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 516 llvm::copy(Name, Dest); 517 Dest[Name.size()] = 0; 518 return Dest; 519 } 520 521 uint32_t *MachineFunction::allocateRegMask() { 522 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 523 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 524 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 525 memset(Mask, 0, Size * sizeof(Mask[0])); 526 return Mask; 527 } 528 529 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 530 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 531 copy(Mask, AllocMask); 532 return {AllocMask, Mask.size()}; 533 } 534 535 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 536 LLVM_DUMP_METHOD void MachineFunction::dump() const { 537 print(dbgs()); 538 } 539 #endif 540 541 StringRef MachineFunction::getName() const { 542 return getFunction().getName(); 543 } 544 545 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 546 OS << "# Machine code for function " << getName() << ": "; 547 getProperties().print(OS); 548 OS << '\n'; 549 550 // Print Frame Information 551 FrameInfo->print(*this, OS); 552 553 // Print JumpTable Information 554 if (JumpTableInfo) 555 JumpTableInfo->print(OS); 556 557 // Print Constant Pool 558 ConstantPool->print(OS); 559 560 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 561 562 if (RegInfo && !RegInfo->livein_empty()) { 563 OS << "Function Live Ins: "; 564 for (MachineRegisterInfo::livein_iterator 565 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 566 OS << printReg(I->first, TRI); 567 if (I->second) 568 OS << " in " << printReg(I->second, TRI); 569 if (std::next(I) != E) 570 OS << ", "; 571 } 572 OS << '\n'; 573 } 574 575 ModuleSlotTracker MST(getFunction().getParent()); 576 MST.incorporateFunction(getFunction()); 577 for (const auto &BB : *this) { 578 OS << '\n'; 579 // If we print the whole function, print it at its most verbose level. 580 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 581 } 582 583 OS << "\n# End machine code for function " << getName() << ".\n\n"; 584 } 585 586 /// True if this function needs frame moves for debug or exceptions. 587 bool MachineFunction::needsFrameMoves() const { 588 return getMMI().hasDebugInfo() || 589 getTarget().Options.ForceDwarfFrameSection || 590 F.needsUnwindTableEntry(); 591 } 592 593 namespace llvm { 594 595 template<> 596 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 597 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 598 599 static std::string getGraphName(const MachineFunction *F) { 600 return ("CFG for '" + F->getName() + "' function").str(); 601 } 602 603 std::string getNodeLabel(const MachineBasicBlock *Node, 604 const MachineFunction *Graph) { 605 std::string OutStr; 606 { 607 raw_string_ostream OSS(OutStr); 608 609 if (isSimple()) { 610 OSS << printMBBReference(*Node); 611 if (const BasicBlock *BB = Node->getBasicBlock()) 612 OSS << ": " << BB->getName(); 613 } else 614 Node->print(OSS); 615 } 616 617 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 618 619 // Process string output to make it nicer... 620 for (unsigned i = 0; i != OutStr.length(); ++i) 621 if (OutStr[i] == '\n') { // Left justify 622 OutStr[i] = '\\'; 623 OutStr.insert(OutStr.begin()+i+1, 'l'); 624 } 625 return OutStr; 626 } 627 }; 628 629 } // end namespace llvm 630 631 void MachineFunction::viewCFG() const 632 { 633 #ifndef NDEBUG 634 ViewGraph(this, "mf" + getName()); 635 #else 636 errs() << "MachineFunction::viewCFG is only available in debug builds on " 637 << "systems with Graphviz or gv!\n"; 638 #endif // NDEBUG 639 } 640 641 void MachineFunction::viewCFGOnly() const 642 { 643 #ifndef NDEBUG 644 ViewGraph(this, "mf" + getName(), true); 645 #else 646 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 647 << "systems with Graphviz or gv!\n"; 648 #endif // NDEBUG 649 } 650 651 /// Add the specified physical register as a live-in value and 652 /// create a corresponding virtual register for it. 653 Register MachineFunction::addLiveIn(MCRegister PReg, 654 const TargetRegisterClass *RC) { 655 MachineRegisterInfo &MRI = getRegInfo(); 656 Register VReg = MRI.getLiveInVirtReg(PReg); 657 if (VReg) { 658 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 659 (void)VRegRC; 660 // A physical register can be added several times. 661 // Between two calls, the register class of the related virtual register 662 // may have been constrained to match some operation constraints. 663 // In that case, check that the current register class includes the 664 // physical register and is a sub class of the specified RC. 665 assert((VRegRC == RC || (VRegRC->contains(PReg) && 666 RC->hasSubClassEq(VRegRC))) && 667 "Register class mismatch!"); 668 return VReg; 669 } 670 VReg = MRI.createVirtualRegister(RC); 671 MRI.addLiveIn(PReg, VReg); 672 return VReg; 673 } 674 675 /// Return the MCSymbol for the specified non-empty jump table. 676 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 677 /// normal 'L' label is returned. 678 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 679 bool isLinkerPrivate) const { 680 const DataLayout &DL = getDataLayout(); 681 assert(JumpTableInfo && "No jump tables"); 682 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 683 684 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 685 : DL.getPrivateGlobalPrefix(); 686 SmallString<60> Name; 687 raw_svector_ostream(Name) 688 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 689 return Ctx.getOrCreateSymbol(Name); 690 } 691 692 /// Return a function-local symbol to represent the PIC base. 693 MCSymbol *MachineFunction::getPICBaseSymbol() const { 694 const DataLayout &DL = getDataLayout(); 695 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 696 Twine(getFunctionNumber()) + "$pb"); 697 } 698 699 /// \name Exception Handling 700 /// \{ 701 702 LandingPadInfo & 703 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 704 unsigned N = LandingPads.size(); 705 for (unsigned i = 0; i < N; ++i) { 706 LandingPadInfo &LP = LandingPads[i]; 707 if (LP.LandingPadBlock == LandingPad) 708 return LP; 709 } 710 711 LandingPads.push_back(LandingPadInfo(LandingPad)); 712 return LandingPads[N]; 713 } 714 715 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 716 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 717 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 718 LP.BeginLabels.push_back(BeginLabel); 719 LP.EndLabels.push_back(EndLabel); 720 } 721 722 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 723 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 724 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 725 LP.LandingPadLabel = LandingPadLabel; 726 727 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 728 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 729 if (const auto *PF = 730 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 731 getMMI().addPersonality(PF); 732 733 if (LPI->isCleanup()) 734 addCleanup(LandingPad); 735 736 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 737 // correct, but we need to do it this way because of how the DWARF EH 738 // emitter processes the clauses. 739 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 740 Value *Val = LPI->getClause(I - 1); 741 if (LPI->isCatch(I - 1)) { 742 addCatchTypeInfo(LandingPad, 743 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 744 } else { 745 // Add filters in a list. 746 auto *CVal = cast<Constant>(Val); 747 SmallVector<const GlobalValue *, 4> FilterList; 748 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 749 II != IE; ++II) 750 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 751 752 addFilterTypeInfo(LandingPad, FilterList); 753 } 754 } 755 756 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 757 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 758 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 759 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 760 } 761 762 } else { 763 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 764 } 765 766 return LandingPadLabel; 767 } 768 769 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 770 ArrayRef<const GlobalValue *> TyInfo) { 771 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 772 for (unsigned N = TyInfo.size(); N; --N) 773 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 774 } 775 776 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 777 ArrayRef<const GlobalValue *> TyInfo) { 778 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 779 std::vector<unsigned> IdsInFilter(TyInfo.size()); 780 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 781 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 782 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 783 } 784 785 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 786 bool TidyIfNoBeginLabels) { 787 for (unsigned i = 0; i != LandingPads.size(); ) { 788 LandingPadInfo &LandingPad = LandingPads[i]; 789 if (LandingPad.LandingPadLabel && 790 !LandingPad.LandingPadLabel->isDefined() && 791 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 792 LandingPad.LandingPadLabel = nullptr; 793 794 // Special case: we *should* emit LPs with null LP MBB. This indicates 795 // "nounwind" case. 796 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 797 LandingPads.erase(LandingPads.begin() + i); 798 continue; 799 } 800 801 if (TidyIfNoBeginLabels) { 802 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 803 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 804 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 805 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 806 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 807 continue; 808 809 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 810 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 811 --j; 812 --e; 813 } 814 815 // Remove landing pads with no try-ranges. 816 if (LandingPads[i].BeginLabels.empty()) { 817 LandingPads.erase(LandingPads.begin() + i); 818 continue; 819 } 820 } 821 822 // If there is no landing pad, ensure that the list of typeids is empty. 823 // If the only typeid is a cleanup, this is the same as having no typeids. 824 if (!LandingPad.LandingPadBlock || 825 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 826 LandingPad.TypeIds.clear(); 827 ++i; 828 } 829 } 830 831 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 832 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 833 LP.TypeIds.push_back(0); 834 } 835 836 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 837 const Function *Filter, 838 const BlockAddress *RecoverBA) { 839 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 840 SEHHandler Handler; 841 Handler.FilterOrFinally = Filter; 842 Handler.RecoverBA = RecoverBA; 843 LP.SEHHandlers.push_back(Handler); 844 } 845 846 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 847 const Function *Cleanup) { 848 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 849 SEHHandler Handler; 850 Handler.FilterOrFinally = Cleanup; 851 Handler.RecoverBA = nullptr; 852 LP.SEHHandlers.push_back(Handler); 853 } 854 855 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 856 ArrayRef<unsigned> Sites) { 857 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 858 } 859 860 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 861 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 862 if (TypeInfos[i] == TI) return i + 1; 863 864 TypeInfos.push_back(TI); 865 return TypeInfos.size(); 866 } 867 868 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 869 // If the new filter coincides with the tail of an existing filter, then 870 // re-use the existing filter. Folding filters more than this requires 871 // re-ordering filters and/or their elements - probably not worth it. 872 for (unsigned i : FilterEnds) { 873 unsigned j = TyIds.size(); 874 875 while (i && j) 876 if (FilterIds[--i] != TyIds[--j]) 877 goto try_next; 878 879 if (!j) 880 // The new filter coincides with range [i, end) of the existing filter. 881 return -(1 + i); 882 883 try_next:; 884 } 885 886 // Add the new filter. 887 int FilterID = -(1 + FilterIds.size()); 888 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 889 llvm::append_range(FilterIds, TyIds); 890 FilterEnds.push_back(FilterIds.size()); 891 FilterIds.push_back(0); // terminator 892 return FilterID; 893 } 894 895 MachineFunction::CallSiteInfoMap::iterator 896 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 897 assert(MI->isCandidateForCallSiteEntry() && 898 "Call site info refers only to call (MI) candidates"); 899 900 if (!Target.Options.EmitCallSiteInfo) 901 return CallSitesInfo.end(); 902 return CallSitesInfo.find(MI); 903 } 904 905 /// Return the call machine instruction or find a call within bundle. 906 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 907 if (!MI->isBundle()) 908 return MI; 909 910 for (auto &BMI : make_range(getBundleStart(MI->getIterator()), 911 getBundleEnd(MI->getIterator()))) 912 if (BMI.isCandidateForCallSiteEntry()) 913 return &BMI; 914 915 llvm_unreachable("Unexpected bundle without a call site candidate"); 916 } 917 918 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 919 assert(MI->shouldUpdateCallSiteInfo() && 920 "Call site info refers only to call (MI) candidates or " 921 "candidates inside bundles"); 922 923 const MachineInstr *CallMI = getCallInstr(MI); 924 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 925 if (CSIt == CallSitesInfo.end()) 926 return; 927 CallSitesInfo.erase(CSIt); 928 } 929 930 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 931 const MachineInstr *New) { 932 assert(Old->shouldUpdateCallSiteInfo() && 933 "Call site info refers only to call (MI) candidates or " 934 "candidates inside bundles"); 935 936 if (!New->isCandidateForCallSiteEntry()) 937 return eraseCallSiteInfo(Old); 938 939 const MachineInstr *OldCallMI = getCallInstr(Old); 940 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 941 if (CSIt == CallSitesInfo.end()) 942 return; 943 944 CallSiteInfo CSInfo = CSIt->second; 945 CallSitesInfo[New] = CSInfo; 946 } 947 948 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 949 const MachineInstr *New) { 950 assert(Old->shouldUpdateCallSiteInfo() && 951 "Call site info refers only to call (MI) candidates or " 952 "candidates inside bundles"); 953 954 if (!New->isCandidateForCallSiteEntry()) 955 return eraseCallSiteInfo(Old); 956 957 const MachineInstr *OldCallMI = getCallInstr(Old); 958 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 959 if (CSIt == CallSitesInfo.end()) 960 return; 961 962 CallSiteInfo CSInfo = std::move(CSIt->second); 963 CallSitesInfo.erase(CSIt); 964 CallSitesInfo[New] = CSInfo; 965 } 966 967 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 968 DebugInstrNumberingCount = Num; 969 } 970 971 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 972 DebugInstrOperandPair B, 973 unsigned Subreg) { 974 // Catch any accidental self-loops. 975 assert(A.first != B.first); 976 DebugValueSubstitutions.push_back({A, B, Subreg}); 977 } 978 979 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 980 MachineInstr &New, 981 unsigned MaxOperand) { 982 // If the Old instruction wasn't tracked at all, there is no work to do. 983 unsigned OldInstrNum = Old.peekDebugInstrNum(); 984 if (!OldInstrNum) 985 return; 986 987 // Iterate over all operands looking for defs to create substitutions for. 988 // Avoid creating new instr numbers unless we create a new substitution. 989 // While this has no functional effect, it risks confusing someone reading 990 // MIR output. 991 // Examine all the operands, or the first N specified by the caller. 992 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 993 for (unsigned int I = 0; I < MaxOperand; ++I) { 994 const auto &OldMO = Old.getOperand(I); 995 auto &NewMO = New.getOperand(I); 996 (void)NewMO; 997 998 if (!OldMO.isReg() || !OldMO.isDef()) 999 continue; 1000 assert(NewMO.isDef()); 1001 1002 unsigned NewInstrNum = New.getDebugInstrNum(); 1003 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 1004 std::make_pair(NewInstrNum, I)); 1005 } 1006 } 1007 1008 auto MachineFunction::salvageCopySSA(MachineInstr &MI) 1009 -> DebugInstrOperandPair { 1010 MachineRegisterInfo &MRI = getRegInfo(); 1011 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1012 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1013 1014 // Chase the value read by a copy-like instruction back to the instruction 1015 // that ultimately _defines_ that value. This may pass: 1016 // * Through multiple intermediate copies, including subregister moves / 1017 // copies, 1018 // * Copies from physical registers that must then be traced back to the 1019 // defining instruction, 1020 // * Or, physical registers may be live-in to (only) the entry block, which 1021 // requires a DBG_PHI to be created. 1022 // We can pursue this problem in that order: trace back through copies, 1023 // optionally through a physical register, to a defining instruction. We 1024 // should never move from physreg to vreg. As we're still in SSA form, no need 1025 // to worry about partial definitions of registers. 1026 1027 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1028 // returns the register read and any subregister identifying which part is 1029 // read. 1030 auto GetRegAndSubreg = 1031 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1032 Register NewReg, OldReg; 1033 unsigned SubReg; 1034 if (Cpy.isCopy()) { 1035 OldReg = Cpy.getOperand(0).getReg(); 1036 NewReg = Cpy.getOperand(1).getReg(); 1037 SubReg = Cpy.getOperand(1).getSubReg(); 1038 } else if (Cpy.isSubregToReg()) { 1039 OldReg = Cpy.getOperand(0).getReg(); 1040 NewReg = Cpy.getOperand(2).getReg(); 1041 SubReg = Cpy.getOperand(3).getImm(); 1042 } else { 1043 auto CopyDetails = *TII.isCopyInstr(Cpy); 1044 const MachineOperand &Src = *CopyDetails.Source; 1045 const MachineOperand &Dest = *CopyDetails.Destination; 1046 OldReg = Dest.getReg(); 1047 NewReg = Src.getReg(); 1048 SubReg = Src.getSubReg(); 1049 } 1050 1051 return {NewReg, SubReg}; 1052 }; 1053 1054 // First seek either the defining instruction, or a copy from a physreg. 1055 // During search, the current state is the current copy instruction, and which 1056 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1057 // deal with those later. 1058 auto State = GetRegAndSubreg(MI); 1059 auto CurInst = MI.getIterator(); 1060 SmallVector<unsigned, 4> SubregsSeen; 1061 while (true) { 1062 // If we've found a copy from a physreg, first portion of search is over. 1063 if (!State.first.isVirtual()) 1064 break; 1065 1066 // Record any subregister qualifier. 1067 if (State.second) 1068 SubregsSeen.push_back(State.second); 1069 1070 assert(MRI.hasOneDef(State.first)); 1071 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1072 CurInst = Inst.getIterator(); 1073 1074 // Any non-copy instruction is the defining instruction we're seeking. 1075 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1076 break; 1077 State = GetRegAndSubreg(Inst); 1078 }; 1079 1080 // Helper lambda to apply additional subregister substitutions to a known 1081 // instruction/operand pair. Adds new (fake) substitutions so that we can 1082 // record the subregister. FIXME: this isn't very space efficient if multiple 1083 // values are tracked back through the same copies; cache something later. 1084 auto ApplySubregisters = 1085 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1086 for (unsigned Subreg : reverse(SubregsSeen)) { 1087 // Fetch a new instruction number, not attached to an actual instruction. 1088 unsigned NewInstrNumber = getNewDebugInstrNum(); 1089 // Add a substitution from the "new" number to the known one, with a 1090 // qualifying subreg. 1091 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1092 // Return the new number; to find the underlying value, consumers need to 1093 // deal with the qualifying subreg. 1094 P = {NewInstrNumber, 0}; 1095 } 1096 return P; 1097 }; 1098 1099 // If we managed to find the defining instruction after COPYs, return an 1100 // instruction / operand pair after adding subregister qualifiers. 1101 if (State.first.isVirtual()) { 1102 // Virtual register def -- we can just look up where this happens. 1103 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1104 for (auto &MO : Inst->operands()) { 1105 if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) 1106 continue; 1107 return ApplySubregisters( 1108 {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); 1109 } 1110 1111 llvm_unreachable("Vreg def with no corresponding operand?"); 1112 } 1113 1114 // Our search ended in a copy from a physreg: walk back up the function 1115 // looking for whatever defines the physreg. 1116 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1117 State = GetRegAndSubreg(*CurInst); 1118 Register RegToSeek = State.first; 1119 1120 auto RMII = CurInst->getReverseIterator(); 1121 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1122 for (auto &ToExamine : PrevInstrs) { 1123 for (auto &MO : ToExamine.operands()) { 1124 // Test for operand that defines something aliasing RegToSeek. 1125 if (!MO.isReg() || !MO.isDef() || 1126 !TRI.regsOverlap(RegToSeek, MO.getReg())) 1127 continue; 1128 1129 return ApplySubregisters( 1130 {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); 1131 } 1132 } 1133 1134 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1135 1136 // We reached the start of the block before finding a defining instruction. 1137 // It could be from a constant register, otherwise it must be an argument. 1138 if (TRI.isConstantPhysReg(State.first)) { 1139 // We can produce a DBG_PHI that identifies the constant physreg. Doesn't 1140 // matter where we put it, as it's constant valued. 1141 assert(CurInst->isCopy()); 1142 } else if (State.first == TRI.getFrameRegister(*this)) { 1143 // LLVM IR is allowed to read the framepointer by calling a 1144 // llvm.frameaddress.* intrinsic. We can support this by emitting a 1145 // DBG_PHI $fp. This isn't ideal, because it extends the behaviours / 1146 // position that DBG_PHIs appear at, limiting what can be done later. 1147 // TODO: see if there's a better way of expressing these variable 1148 // locations. 1149 ; 1150 } else { 1151 // Assert that this is the entry block. If it isn't, then there is some 1152 // code construct we don't recognise that deals with physregs across 1153 // blocks. 1154 assert(!State.first.isVirtual()); 1155 assert(&*InsertBB.getParent()->begin() == &InsertBB); 1156 } 1157 1158 // Create DBG_PHI for specified physreg. 1159 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1160 TII.get(TargetOpcode::DBG_PHI)); 1161 Builder.addReg(State.first, RegState::Debug); 1162 unsigned NewNum = getNewDebugInstrNum(); 1163 Builder.addImm(NewNum); 1164 return ApplySubregisters({NewNum, 0u}); 1165 } 1166 1167 void MachineFunction::finalizeDebugInstrRefs() { 1168 auto *TII = getSubtarget().getInstrInfo(); 1169 1170 auto MakeDbgValue = [&](MachineInstr &MI) { 1171 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE); 1172 MI.setDesc(RefII); 1173 MI.getOperand(1).ChangeToRegister(0, false); 1174 MI.getOperand(0).setIsDebug(); 1175 }; 1176 1177 if (!getTarget().Options.ValueTrackingVariableLocations) 1178 return; 1179 1180 for (auto &MBB : *this) { 1181 for (auto &MI : MBB) { 1182 if (!MI.isDebugRef() || !MI.getOperand(0).isReg()) 1183 continue; 1184 1185 Register Reg = MI.getOperand(0).getReg(); 1186 1187 // Some vregs can be deleted as redundant in the meantime. Mark those 1188 // as DBG_VALUE $noreg. 1189 if (Reg == 0) { 1190 MakeDbgValue(MI); 1191 continue; 1192 } 1193 1194 assert(Reg.isVirtual()); 1195 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1196 assert(RegInfo->hasOneDef(Reg)); 1197 1198 // If we've found a copy-like instruction, follow it back to the 1199 // instruction that defines the source value, see salvageCopySSA docs 1200 // for why this is important. 1201 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1202 auto Result = salvageCopySSA(DefMI); 1203 MI.getOperand(0).ChangeToImmediate(Result.first); 1204 MI.getOperand(1).setImm(Result.second); 1205 } else { 1206 // Otherwise, identify the operand number that the VReg refers to. 1207 unsigned OperandIdx = 0; 1208 for (const auto &MO : DefMI.operands()) { 1209 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 1210 break; 1211 ++OperandIdx; 1212 } 1213 assert(OperandIdx < DefMI.getNumOperands()); 1214 1215 // Morph this instr ref to point at the given instruction and operand. 1216 unsigned ID = DefMI.getDebugInstrNum(); 1217 MI.getOperand(0).ChangeToImmediate(ID); 1218 MI.getOperand(1).setImm(OperandIdx); 1219 } 1220 } 1221 } 1222 } 1223 1224 /// \} 1225 1226 //===----------------------------------------------------------------------===// 1227 // MachineJumpTableInfo implementation 1228 //===----------------------------------------------------------------------===// 1229 1230 /// Return the size of each entry in the jump table. 1231 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1232 // The size of a jump table entry is 4 bytes unless the entry is just the 1233 // address of a block, in which case it is the pointer size. 1234 switch (getEntryKind()) { 1235 case MachineJumpTableInfo::EK_BlockAddress: 1236 return TD.getPointerSize(); 1237 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1238 return 8; 1239 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1240 case MachineJumpTableInfo::EK_LabelDifference32: 1241 case MachineJumpTableInfo::EK_Custom32: 1242 return 4; 1243 case MachineJumpTableInfo::EK_Inline: 1244 return 0; 1245 } 1246 llvm_unreachable("Unknown jump table encoding!"); 1247 } 1248 1249 /// Return the alignment of each entry in the jump table. 1250 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1251 // The alignment of a jump table entry is the alignment of int32 unless the 1252 // entry is just the address of a block, in which case it is the pointer 1253 // alignment. 1254 switch (getEntryKind()) { 1255 case MachineJumpTableInfo::EK_BlockAddress: 1256 return TD.getPointerABIAlignment(0).value(); 1257 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1258 return TD.getABIIntegerTypeAlignment(64).value(); 1259 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1260 case MachineJumpTableInfo::EK_LabelDifference32: 1261 case MachineJumpTableInfo::EK_Custom32: 1262 return TD.getABIIntegerTypeAlignment(32).value(); 1263 case MachineJumpTableInfo::EK_Inline: 1264 return 1; 1265 } 1266 llvm_unreachable("Unknown jump table encoding!"); 1267 } 1268 1269 /// Create a new jump table entry in the jump table info. 1270 unsigned MachineJumpTableInfo::createJumpTableIndex( 1271 const std::vector<MachineBasicBlock*> &DestBBs) { 1272 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1273 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1274 return JumpTables.size()-1; 1275 } 1276 1277 /// If Old is the target of any jump tables, update the jump tables to branch 1278 /// to New instead. 1279 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1280 MachineBasicBlock *New) { 1281 assert(Old != New && "Not making a change?"); 1282 bool MadeChange = false; 1283 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1284 ReplaceMBBInJumpTable(i, Old, New); 1285 return MadeChange; 1286 } 1287 1288 /// If MBB is present in any jump tables, remove it. 1289 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1290 bool MadeChange = false; 1291 for (MachineJumpTableEntry &JTE : JumpTables) { 1292 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1293 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1294 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1295 } 1296 return MadeChange; 1297 } 1298 1299 /// If Old is a target of the jump tables, update the jump table to branch to 1300 /// New instead. 1301 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1302 MachineBasicBlock *Old, 1303 MachineBasicBlock *New) { 1304 assert(Old != New && "Not making a change?"); 1305 bool MadeChange = false; 1306 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1307 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 1308 if (JTE.MBBs[j] == Old) { 1309 JTE.MBBs[j] = New; 1310 MadeChange = true; 1311 } 1312 return MadeChange; 1313 } 1314 1315 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1316 if (JumpTables.empty()) return; 1317 1318 OS << "Jump Tables:\n"; 1319 1320 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1321 OS << printJumpTableEntryReference(i) << ':'; 1322 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 1323 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 1324 if (i != e) 1325 OS << '\n'; 1326 } 1327 1328 OS << '\n'; 1329 } 1330 1331 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1332 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1333 #endif 1334 1335 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1336 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1337 } 1338 1339 //===----------------------------------------------------------------------===// 1340 // MachineConstantPool implementation 1341 //===----------------------------------------------------------------------===// 1342 1343 void MachineConstantPoolValue::anchor() {} 1344 1345 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1346 return DL.getTypeAllocSize(Ty); 1347 } 1348 1349 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1350 if (isMachineConstantPoolEntry()) 1351 return Val.MachineCPVal->getSizeInBytes(DL); 1352 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1353 } 1354 1355 bool MachineConstantPoolEntry::needsRelocation() const { 1356 if (isMachineConstantPoolEntry()) 1357 return true; 1358 return Val.ConstVal->needsDynamicRelocation(); 1359 } 1360 1361 SectionKind 1362 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1363 if (needsRelocation()) 1364 return SectionKind::getReadOnlyWithRel(); 1365 switch (getSizeInBytes(*DL)) { 1366 case 4: 1367 return SectionKind::getMergeableConst4(); 1368 case 8: 1369 return SectionKind::getMergeableConst8(); 1370 case 16: 1371 return SectionKind::getMergeableConst16(); 1372 case 32: 1373 return SectionKind::getMergeableConst32(); 1374 default: 1375 return SectionKind::getReadOnly(); 1376 } 1377 } 1378 1379 MachineConstantPool::~MachineConstantPool() { 1380 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1381 // so keep track of which we've deleted to avoid double deletions. 1382 DenseSet<MachineConstantPoolValue*> Deleted; 1383 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1384 if (Constants[i].isMachineConstantPoolEntry()) { 1385 Deleted.insert(Constants[i].Val.MachineCPVal); 1386 delete Constants[i].Val.MachineCPVal; 1387 } 1388 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1389 if (Deleted.count(CPV) == 0) 1390 delete CPV; 1391 } 1392 } 1393 1394 /// Test whether the given two constants can be allocated the same constant pool 1395 /// entry. 1396 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1397 const DataLayout &DL) { 1398 // Handle the trivial case quickly. 1399 if (A == B) return true; 1400 1401 // If they have the same type but weren't the same constant, quickly 1402 // reject them. 1403 if (A->getType() == B->getType()) return false; 1404 1405 // We can't handle structs or arrays. 1406 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1407 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1408 return false; 1409 1410 // For now, only support constants with the same size. 1411 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1412 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1413 return false; 1414 1415 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1416 1417 // Try constant folding a bitcast of both instructions to an integer. If we 1418 // get two identical ConstantInt's, then we are good to share them. We use 1419 // the constant folding APIs to do this so that we get the benefit of 1420 // DataLayout. 1421 if (isa<PointerType>(A->getType())) 1422 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1423 const_cast<Constant *>(A), IntTy, DL); 1424 else if (A->getType() != IntTy) 1425 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1426 IntTy, DL); 1427 if (isa<PointerType>(B->getType())) 1428 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1429 const_cast<Constant *>(B), IntTy, DL); 1430 else if (B->getType() != IntTy) 1431 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1432 IntTy, DL); 1433 1434 return A == B; 1435 } 1436 1437 /// Create a new entry in the constant pool or return an existing one. 1438 /// User must specify the log2 of the minimum required alignment for the object. 1439 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1440 Align Alignment) { 1441 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1442 1443 // Check to see if we already have this constant. 1444 // 1445 // FIXME, this could be made much more efficient for large constant pools. 1446 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1447 if (!Constants[i].isMachineConstantPoolEntry() && 1448 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1449 if (Constants[i].getAlign() < Alignment) 1450 Constants[i].Alignment = Alignment; 1451 return i; 1452 } 1453 1454 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1455 return Constants.size()-1; 1456 } 1457 1458 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1459 Align Alignment) { 1460 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1461 1462 // Check to see if we already have this constant. 1463 // 1464 // FIXME, this could be made much more efficient for large constant pools. 1465 int Idx = V->getExistingMachineCPValue(this, Alignment); 1466 if (Idx != -1) { 1467 MachineCPVsSharingEntries.insert(V); 1468 return (unsigned)Idx; 1469 } 1470 1471 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1472 return Constants.size()-1; 1473 } 1474 1475 void MachineConstantPool::print(raw_ostream &OS) const { 1476 if (Constants.empty()) return; 1477 1478 OS << "Constant Pool:\n"; 1479 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1480 OS << " cp#" << i << ": "; 1481 if (Constants[i].isMachineConstantPoolEntry()) 1482 Constants[i].Val.MachineCPVal->print(OS); 1483 else 1484 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1485 OS << ", align=" << Constants[i].getAlign().value(); 1486 OS << "\n"; 1487 } 1488 } 1489 1490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1491 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1492 #endif 1493