xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision c8e7f78a3d28ff6e6223ed136ada8e1e2f34965e)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/EHPersonalities.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <type_traits>
75 #include <utility>
76 #include <vector>
77 
78 #include "LiveDebugValues/LiveDebugValues.h"
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "codegen"
83 
84 static cl::opt<unsigned> AlignAllFunctions(
85     "align-all-functions",
86     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
87              "means align on 16B boundaries)."),
88     cl::init(0), cl::Hidden);
89 
90 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
91   using P = MachineFunctionProperties::Property;
92 
93   // clang-format off
94   switch(Prop) {
95   case P::FailedISel: return "FailedISel";
96   case P::IsSSA: return "IsSSA";
97   case P::Legalized: return "Legalized";
98   case P::NoPHIs: return "NoPHIs";
99   case P::NoVRegs: return "NoVRegs";
100   case P::RegBankSelected: return "RegBankSelected";
101   case P::Selected: return "Selected";
102   case P::TracksLiveness: return "TracksLiveness";
103   case P::TiedOpsRewritten: return "TiedOpsRewritten";
104   case P::FailsVerification: return "FailsVerification";
105   case P::TracksDebugUserValues: return "TracksDebugUserValues";
106   }
107   // clang-format on
108   llvm_unreachable("Invalid machine function property");
109 }
110 
111 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
112   if (!F.hasFnAttribute(Attribute::SafeStack))
113     return;
114 
115   auto *Existing =
116       dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
117 
118   if (!Existing || Existing->getNumOperands() != 2)
119     return;
120 
121   auto *MetadataName = "unsafe-stack-size";
122   if (auto &N = Existing->getOperand(0)) {
123     if (N.equalsStr(MetadataName)) {
124       if (auto &Op = Existing->getOperand(1)) {
125         auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
126         FrameInfo.setUnsafeStackSize(Val);
127       }
128     }
129   }
130 }
131 
132 // Pin the vtable to this file.
133 void MachineFunction::Delegate::anchor() {}
134 
135 void MachineFunctionProperties::print(raw_ostream &OS) const {
136   const char *Separator = "";
137   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
138     if (!Properties[I])
139       continue;
140     OS << Separator << getPropertyName(static_cast<Property>(I));
141     Separator = ", ";
142   }
143 }
144 
145 //===----------------------------------------------------------------------===//
146 // MachineFunction implementation
147 //===----------------------------------------------------------------------===//
148 
149 // Out-of-line virtual method.
150 MachineFunctionInfo::~MachineFunctionInfo() = default;
151 
152 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
153   MBB->getParent()->deleteMachineBasicBlock(MBB);
154 }
155 
156 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
157                                            const Function &F) {
158   if (auto MA = F.getFnStackAlign())
159     return *MA;
160   return STI->getFrameLowering()->getStackAlign();
161 }
162 
163 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
164                                  const TargetSubtargetInfo &STI,
165                                  unsigned FunctionNum, MachineModuleInfo &mmi)
166     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
167   FunctionNumber = FunctionNum;
168   init();
169 }
170 
171 void MachineFunction::handleInsertion(MachineInstr &MI) {
172   if (TheDelegate)
173     TheDelegate->MF_HandleInsertion(MI);
174 }
175 
176 void MachineFunction::handleRemoval(MachineInstr &MI) {
177   if (TheDelegate)
178     TheDelegate->MF_HandleRemoval(MI);
179 }
180 
181 void MachineFunction::init() {
182   // Assume the function starts in SSA form with correct liveness.
183   Properties.set(MachineFunctionProperties::Property::IsSSA);
184   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
185   if (STI->getRegisterInfo())
186     RegInfo = new (Allocator) MachineRegisterInfo(this);
187   else
188     RegInfo = nullptr;
189 
190   MFInfo = nullptr;
191 
192   // We can realign the stack if the target supports it and the user hasn't
193   // explicitly asked us not to.
194   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
195                       !F.hasFnAttribute("no-realign-stack");
196   FrameInfo = new (Allocator) MachineFrameInfo(
197       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
198       /*ForcedRealign=*/CanRealignSP &&
199           F.hasFnAttribute(Attribute::StackAlignment));
200 
201   setUnsafeStackSize(F, *FrameInfo);
202 
203   if (F.hasFnAttribute(Attribute::StackAlignment))
204     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
205 
206   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
207   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
208 
209   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
210   // FIXME: Use Function::hasOptSize().
211   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
212     Alignment = std::max(Alignment,
213                          STI->getTargetLowering()->getPrefFunctionAlignment());
214 
215   // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
216   // to load a type hash before the function label. Ensure functions are aligned
217   // by a least 4 to avoid unaligned access, which is especially important for
218   // -mno-unaligned-access.
219   if (F.hasMetadata(LLVMContext::MD_func_sanitize) ||
220       F.getMetadata(LLVMContext::MD_kcfi_type))
221     Alignment = std::max(Alignment, Align(4));
222 
223   if (AlignAllFunctions)
224     Alignment = Align(1ULL << AlignAllFunctions);
225 
226   JumpTableInfo = nullptr;
227 
228   if (isFuncletEHPersonality(classifyEHPersonality(
229           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
230     WinEHInfo = new (Allocator) WinEHFuncInfo();
231   }
232 
233   if (isScopedEHPersonality(classifyEHPersonality(
234           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
235     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
236   }
237 
238   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
239          "Can't create a MachineFunction using a Module with a "
240          "Target-incompatible DataLayout attached\n");
241 
242   PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
243 }
244 
245 void MachineFunction::initTargetMachineFunctionInfo(
246     const TargetSubtargetInfo &STI) {
247   assert(!MFInfo && "MachineFunctionInfo already set");
248   MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
249 }
250 
251 MachineFunction::~MachineFunction() {
252   clear();
253 }
254 
255 void MachineFunction::clear() {
256   Properties.reset();
257   // Don't call destructors on MachineInstr and MachineOperand. All of their
258   // memory comes from the BumpPtrAllocator which is about to be purged.
259   //
260   // Do call MachineBasicBlock destructors, it contains std::vectors.
261   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
262     I->Insts.clearAndLeakNodesUnsafely();
263   MBBNumbering.clear();
264 
265   InstructionRecycler.clear(Allocator);
266   OperandRecycler.clear(Allocator);
267   BasicBlockRecycler.clear(Allocator);
268   CodeViewAnnotations.clear();
269   VariableDbgInfos.clear();
270   if (RegInfo) {
271     RegInfo->~MachineRegisterInfo();
272     Allocator.Deallocate(RegInfo);
273   }
274   if (MFInfo) {
275     MFInfo->~MachineFunctionInfo();
276     Allocator.Deallocate(MFInfo);
277   }
278 
279   FrameInfo->~MachineFrameInfo();
280   Allocator.Deallocate(FrameInfo);
281 
282   ConstantPool->~MachineConstantPool();
283   Allocator.Deallocate(ConstantPool);
284 
285   if (JumpTableInfo) {
286     JumpTableInfo->~MachineJumpTableInfo();
287     Allocator.Deallocate(JumpTableInfo);
288   }
289 
290   if (WinEHInfo) {
291     WinEHInfo->~WinEHFuncInfo();
292     Allocator.Deallocate(WinEHInfo);
293   }
294 
295   if (WasmEHInfo) {
296     WasmEHInfo->~WasmEHFuncInfo();
297     Allocator.Deallocate(WasmEHInfo);
298   }
299 }
300 
301 const DataLayout &MachineFunction::getDataLayout() const {
302   return F.getParent()->getDataLayout();
303 }
304 
305 /// Get the JumpTableInfo for this function.
306 /// If it does not already exist, allocate one.
307 MachineJumpTableInfo *MachineFunction::
308 getOrCreateJumpTableInfo(unsigned EntryKind) {
309   if (JumpTableInfo) return JumpTableInfo;
310 
311   JumpTableInfo = new (Allocator)
312     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
313   return JumpTableInfo;
314 }
315 
316 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
317   return F.getDenormalMode(FPType);
318 }
319 
320 /// Should we be emitting segmented stack stuff for the function
321 bool MachineFunction::shouldSplitStack() const {
322   return getFunction().hasFnAttribute("split-stack");
323 }
324 
325 [[nodiscard]] unsigned
326 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
327   FrameInstructions.push_back(Inst);
328   return FrameInstructions.size() - 1;
329 }
330 
331 /// This discards all of the MachineBasicBlock numbers and recomputes them.
332 /// This guarantees that the MBB numbers are sequential, dense, and match the
333 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
334 /// is specified, only that block and those after it are renumbered.
335 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
336   if (empty()) { MBBNumbering.clear(); return; }
337   MachineFunction::iterator MBBI, E = end();
338   if (MBB == nullptr)
339     MBBI = begin();
340   else
341     MBBI = MBB->getIterator();
342 
343   // Figure out the block number this should have.
344   unsigned BlockNo = 0;
345   if (MBBI != begin())
346     BlockNo = std::prev(MBBI)->getNumber() + 1;
347 
348   for (; MBBI != E; ++MBBI, ++BlockNo) {
349     if (MBBI->getNumber() != (int)BlockNo) {
350       // Remove use of the old number.
351       if (MBBI->getNumber() != -1) {
352         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
353                "MBB number mismatch!");
354         MBBNumbering[MBBI->getNumber()] = nullptr;
355       }
356 
357       // If BlockNo is already taken, set that block's number to -1.
358       if (MBBNumbering[BlockNo])
359         MBBNumbering[BlockNo]->setNumber(-1);
360 
361       MBBNumbering[BlockNo] = &*MBBI;
362       MBBI->setNumber(BlockNo);
363     }
364   }
365 
366   // Okay, all the blocks are renumbered.  If we have compactified the block
367   // numbering, shrink MBBNumbering now.
368   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
369   MBBNumbering.resize(BlockNo);
370 }
371 
372 /// This method iterates over the basic blocks and assigns their IsBeginSection
373 /// and IsEndSection fields. This must be called after MBB layout is finalized
374 /// and the SectionID's are assigned to MBBs.
375 void MachineFunction::assignBeginEndSections() {
376   front().setIsBeginSection();
377   auto CurrentSectionID = front().getSectionID();
378   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
379     if (MBBI->getSectionID() == CurrentSectionID)
380       continue;
381     MBBI->setIsBeginSection();
382     std::prev(MBBI)->setIsEndSection();
383     CurrentSectionID = MBBI->getSectionID();
384   }
385   back().setIsEndSection();
386 }
387 
388 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
389 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
390                                                   DebugLoc DL,
391                                                   bool NoImplicit) {
392   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
393       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
394 }
395 
396 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
397 /// identical in all ways except the instruction has no parent, prev, or next.
398 MachineInstr *
399 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
400   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
401              MachineInstr(*this, *Orig);
402 }
403 
404 MachineInstr &MachineFunction::cloneMachineInstrBundle(
405     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
406     const MachineInstr &Orig) {
407   MachineInstr *FirstClone = nullptr;
408   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
409   while (true) {
410     MachineInstr *Cloned = CloneMachineInstr(&*I);
411     MBB.insert(InsertBefore, Cloned);
412     if (FirstClone == nullptr) {
413       FirstClone = Cloned;
414     } else {
415       Cloned->bundleWithPred();
416     }
417 
418     if (!I->isBundledWithSucc())
419       break;
420     ++I;
421   }
422   // Copy over call site info to the cloned instruction if needed. If Orig is in
423   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
424   // the bundle.
425   if (Orig.shouldUpdateCallSiteInfo())
426     copyCallSiteInfo(&Orig, FirstClone);
427   return *FirstClone;
428 }
429 
430 /// Delete the given MachineInstr.
431 ///
432 /// This function also serves as the MachineInstr destructor - the real
433 /// ~MachineInstr() destructor must be empty.
434 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
435   // Verify that a call site info is at valid state. This assertion should
436   // be triggered during the implementation of support for the
437   // call site info of a new architecture. If the assertion is triggered,
438   // back trace will tell where to insert a call to updateCallSiteInfo().
439   assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) &&
440          "Call site info was not updated!");
441   // Strip it for parts. The operand array and the MI object itself are
442   // independently recyclable.
443   if (MI->Operands)
444     deallocateOperandArray(MI->CapOperands, MI->Operands);
445   // Don't call ~MachineInstr() which must be trivial anyway because
446   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
447   // destructors.
448   InstructionRecycler.Deallocate(Allocator, MI);
449 }
450 
451 /// Allocate a new MachineBasicBlock. Use this instead of
452 /// `new MachineBasicBlock'.
453 MachineBasicBlock *
454 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
455   MachineBasicBlock *MBB =
456       new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
457           MachineBasicBlock(*this, bb);
458   // Set BBID for `-basic-block=sections=labels` and
459   // `-basic-block-sections=list` to allow robust mapping of profiles to basic
460   // blocks.
461   if (Target.getBBSectionsType() == BasicBlockSection::Labels ||
462       Target.getBBSectionsType() == BasicBlockSection::List)
463     MBB->setBBID(NextBBID++);
464   return MBB;
465 }
466 
467 /// Delete the given MachineBasicBlock.
468 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
469   assert(MBB->getParent() == this && "MBB parent mismatch!");
470   // Clean up any references to MBB in jump tables before deleting it.
471   if (JumpTableInfo)
472     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
473   MBB->~MachineBasicBlock();
474   BasicBlockRecycler.Deallocate(Allocator, MBB);
475 }
476 
477 MachineMemOperand *MachineFunction::getMachineMemOperand(
478     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
479     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
480     SyncScope::ID SSID, AtomicOrdering Ordering,
481     AtomicOrdering FailureOrdering) {
482   return new (Allocator)
483       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
484                         SSID, Ordering, FailureOrdering);
485 }
486 
487 MachineMemOperand *MachineFunction::getMachineMemOperand(
488     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
489     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
490     SyncScope::ID SSID, AtomicOrdering Ordering,
491     AtomicOrdering FailureOrdering) {
492   return new (Allocator)
493       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
494                         Ordering, FailureOrdering);
495 }
496 
497 MachineMemOperand *MachineFunction::getMachineMemOperand(
498     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
499   return new (Allocator)
500       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
501                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
502                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
503 }
504 
505 MachineMemOperand *MachineFunction::getMachineMemOperand(
506     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
507   return new (Allocator)
508       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
509                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
510                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
511 }
512 
513 MachineMemOperand *
514 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
515                                       int64_t Offset, LLT Ty) {
516   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
517 
518   // If there is no pointer value, the offset isn't tracked so we need to adjust
519   // the base alignment.
520   Align Alignment = PtrInfo.V.isNull()
521                         ? commonAlignment(MMO->getBaseAlign(), Offset)
522                         : MMO->getBaseAlign();
523 
524   // Do not preserve ranges, since we don't necessarily know what the high bits
525   // are anymore.
526   return new (Allocator) MachineMemOperand(
527       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
528       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
529       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
530 }
531 
532 MachineMemOperand *
533 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
534                                       const AAMDNodes &AAInfo) {
535   MachinePointerInfo MPI = MMO->getValue() ?
536              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
537              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
538 
539   return new (Allocator) MachineMemOperand(
540       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
541       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
542       MMO->getFailureOrdering());
543 }
544 
545 MachineMemOperand *
546 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
547                                       MachineMemOperand::Flags Flags) {
548   return new (Allocator) MachineMemOperand(
549       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
550       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
551       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
552 }
553 
554 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
555     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
556     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
557     uint32_t CFIType) {
558   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
559                                          PostInstrSymbol, HeapAllocMarker,
560                                          PCSections, CFIType);
561 }
562 
563 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
564   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
565   llvm::copy(Name, Dest);
566   Dest[Name.size()] = 0;
567   return Dest;
568 }
569 
570 uint32_t *MachineFunction::allocateRegMask() {
571   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
572   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
573   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
574   memset(Mask, 0, Size * sizeof(Mask[0]));
575   return Mask;
576 }
577 
578 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
579   int* AllocMask = Allocator.Allocate<int>(Mask.size());
580   copy(Mask, AllocMask);
581   return {AllocMask, Mask.size()};
582 }
583 
584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
585 LLVM_DUMP_METHOD void MachineFunction::dump() const {
586   print(dbgs());
587 }
588 #endif
589 
590 StringRef MachineFunction::getName() const {
591   return getFunction().getName();
592 }
593 
594 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
595   OS << "# Machine code for function " << getName() << ": ";
596   getProperties().print(OS);
597   OS << '\n';
598 
599   // Print Frame Information
600   FrameInfo->print(*this, OS);
601 
602   // Print JumpTable Information
603   if (JumpTableInfo)
604     JumpTableInfo->print(OS);
605 
606   // Print Constant Pool
607   ConstantPool->print(OS);
608 
609   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
610 
611   if (RegInfo && !RegInfo->livein_empty()) {
612     OS << "Function Live Ins: ";
613     for (MachineRegisterInfo::livein_iterator
614          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
615       OS << printReg(I->first, TRI);
616       if (I->second)
617         OS << " in " << printReg(I->second, TRI);
618       if (std::next(I) != E)
619         OS << ", ";
620     }
621     OS << '\n';
622   }
623 
624   ModuleSlotTracker MST(getFunction().getParent());
625   MST.incorporateFunction(getFunction());
626   for (const auto &BB : *this) {
627     OS << '\n';
628     // If we print the whole function, print it at its most verbose level.
629     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
630   }
631 
632   OS << "\n# End machine code for function " << getName() << ".\n\n";
633 }
634 
635 /// True if this function needs frame moves for debug or exceptions.
636 bool MachineFunction::needsFrameMoves() const {
637   return getMMI().hasDebugInfo() ||
638          getTarget().Options.ForceDwarfFrameSection ||
639          F.needsUnwindTableEntry();
640 }
641 
642 namespace llvm {
643 
644   template<>
645   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
646     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
647 
648     static std::string getGraphName(const MachineFunction *F) {
649       return ("CFG for '" + F->getName() + "' function").str();
650     }
651 
652     std::string getNodeLabel(const MachineBasicBlock *Node,
653                              const MachineFunction *Graph) {
654       std::string OutStr;
655       {
656         raw_string_ostream OSS(OutStr);
657 
658         if (isSimple()) {
659           OSS << printMBBReference(*Node);
660           if (const BasicBlock *BB = Node->getBasicBlock())
661             OSS << ": " << BB->getName();
662         } else
663           Node->print(OSS);
664       }
665 
666       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
667 
668       // Process string output to make it nicer...
669       for (unsigned i = 0; i != OutStr.length(); ++i)
670         if (OutStr[i] == '\n') {                            // Left justify
671           OutStr[i] = '\\';
672           OutStr.insert(OutStr.begin()+i+1, 'l');
673         }
674       return OutStr;
675     }
676   };
677 
678 } // end namespace llvm
679 
680 void MachineFunction::viewCFG() const
681 {
682 #ifndef NDEBUG
683   ViewGraph(this, "mf" + getName());
684 #else
685   errs() << "MachineFunction::viewCFG is only available in debug builds on "
686          << "systems with Graphviz or gv!\n";
687 #endif // NDEBUG
688 }
689 
690 void MachineFunction::viewCFGOnly() const
691 {
692 #ifndef NDEBUG
693   ViewGraph(this, "mf" + getName(), true);
694 #else
695   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
696          << "systems with Graphviz or gv!\n";
697 #endif // NDEBUG
698 }
699 
700 /// Add the specified physical register as a live-in value and
701 /// create a corresponding virtual register for it.
702 Register MachineFunction::addLiveIn(MCRegister PReg,
703                                     const TargetRegisterClass *RC) {
704   MachineRegisterInfo &MRI = getRegInfo();
705   Register VReg = MRI.getLiveInVirtReg(PReg);
706   if (VReg) {
707     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
708     (void)VRegRC;
709     // A physical register can be added several times.
710     // Between two calls, the register class of the related virtual register
711     // may have been constrained to match some operation constraints.
712     // In that case, check that the current register class includes the
713     // physical register and is a sub class of the specified RC.
714     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
715                              RC->hasSubClassEq(VRegRC))) &&
716             "Register class mismatch!");
717     return VReg;
718   }
719   VReg = MRI.createVirtualRegister(RC);
720   MRI.addLiveIn(PReg, VReg);
721   return VReg;
722 }
723 
724 /// Return the MCSymbol for the specified non-empty jump table.
725 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
726 /// normal 'L' label is returned.
727 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
728                                         bool isLinkerPrivate) const {
729   const DataLayout &DL = getDataLayout();
730   assert(JumpTableInfo && "No jump tables");
731   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
732 
733   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
734                                      : DL.getPrivateGlobalPrefix();
735   SmallString<60> Name;
736   raw_svector_ostream(Name)
737     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
738   return Ctx.getOrCreateSymbol(Name);
739 }
740 
741 /// Return a function-local symbol to represent the PIC base.
742 MCSymbol *MachineFunction::getPICBaseSymbol() const {
743   const DataLayout &DL = getDataLayout();
744   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
745                                Twine(getFunctionNumber()) + "$pb");
746 }
747 
748 /// \name Exception Handling
749 /// \{
750 
751 LandingPadInfo &
752 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
753   unsigned N = LandingPads.size();
754   for (unsigned i = 0; i < N; ++i) {
755     LandingPadInfo &LP = LandingPads[i];
756     if (LP.LandingPadBlock == LandingPad)
757       return LP;
758   }
759 
760   LandingPads.push_back(LandingPadInfo(LandingPad));
761   return LandingPads[N];
762 }
763 
764 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
765                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
766   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
767   LP.BeginLabels.push_back(BeginLabel);
768   LP.EndLabels.push_back(EndLabel);
769 }
770 
771 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
772   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
773   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
774   LP.LandingPadLabel = LandingPadLabel;
775 
776   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
777   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
778     // If there's no typeid list specified, then "cleanup" is implicit.
779     // Otherwise, id 0 is reserved for the cleanup action.
780     if (LPI->isCleanup() && LPI->getNumClauses() != 0)
781       LP.TypeIds.push_back(0);
782 
783     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
784     //        correct, but we need to do it this way because of how the DWARF EH
785     //        emitter processes the clauses.
786     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
787       Value *Val = LPI->getClause(I - 1);
788       if (LPI->isCatch(I - 1)) {
789         LP.TypeIds.push_back(
790             getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
791       } else {
792         // Add filters in a list.
793         auto *CVal = cast<Constant>(Val);
794         SmallVector<unsigned, 4> FilterList;
795         for (const Use &U : CVal->operands())
796           FilterList.push_back(
797               getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
798 
799         LP.TypeIds.push_back(getFilterIDFor(FilterList));
800       }
801     }
802 
803   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
804     for (unsigned I = CPI->arg_size(); I != 0; --I) {
805       auto *TypeInfo =
806           dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
807       LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
808     }
809 
810   } else {
811     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
812   }
813 
814   return LandingPadLabel;
815 }
816 
817 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
818                                             ArrayRef<unsigned> Sites) {
819   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
820 }
821 
822 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
823   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
824     if (TypeInfos[i] == TI) return i + 1;
825 
826   TypeInfos.push_back(TI);
827   return TypeInfos.size();
828 }
829 
830 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
831   // If the new filter coincides with the tail of an existing filter, then
832   // re-use the existing filter.  Folding filters more than this requires
833   // re-ordering filters and/or their elements - probably not worth it.
834   for (unsigned i : FilterEnds) {
835     unsigned j = TyIds.size();
836 
837     while (i && j)
838       if (FilterIds[--i] != TyIds[--j])
839         goto try_next;
840 
841     if (!j)
842       // The new filter coincides with range [i, end) of the existing filter.
843       return -(1 + i);
844 
845 try_next:;
846   }
847 
848   // Add the new filter.
849   int FilterID = -(1 + FilterIds.size());
850   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
851   llvm::append_range(FilterIds, TyIds);
852   FilterEnds.push_back(FilterIds.size());
853   FilterIds.push_back(0); // terminator
854   return FilterID;
855 }
856 
857 MachineFunction::CallSiteInfoMap::iterator
858 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
859   assert(MI->isCandidateForCallSiteEntry() &&
860          "Call site info refers only to call (MI) candidates");
861 
862   if (!Target.Options.EmitCallSiteInfo)
863     return CallSitesInfo.end();
864   return CallSitesInfo.find(MI);
865 }
866 
867 /// Return the call machine instruction or find a call within bundle.
868 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
869   if (!MI->isBundle())
870     return MI;
871 
872   for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
873                                     getBundleEnd(MI->getIterator())))
874     if (BMI.isCandidateForCallSiteEntry())
875       return &BMI;
876 
877   llvm_unreachable("Unexpected bundle without a call site candidate");
878 }
879 
880 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
881   assert(MI->shouldUpdateCallSiteInfo() &&
882          "Call site info refers only to call (MI) candidates or "
883          "candidates inside bundles");
884 
885   const MachineInstr *CallMI = getCallInstr(MI);
886   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
887   if (CSIt == CallSitesInfo.end())
888     return;
889   CallSitesInfo.erase(CSIt);
890 }
891 
892 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
893                                        const MachineInstr *New) {
894   assert(Old->shouldUpdateCallSiteInfo() &&
895          "Call site info refers only to call (MI) candidates or "
896          "candidates inside bundles");
897 
898   if (!New->isCandidateForCallSiteEntry())
899     return eraseCallSiteInfo(Old);
900 
901   const MachineInstr *OldCallMI = getCallInstr(Old);
902   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
903   if (CSIt == CallSitesInfo.end())
904     return;
905 
906   CallSiteInfo CSInfo = CSIt->second;
907   CallSitesInfo[New] = CSInfo;
908 }
909 
910 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
911                                        const MachineInstr *New) {
912   assert(Old->shouldUpdateCallSiteInfo() &&
913          "Call site info refers only to call (MI) candidates or "
914          "candidates inside bundles");
915 
916   if (!New->isCandidateForCallSiteEntry())
917     return eraseCallSiteInfo(Old);
918 
919   const MachineInstr *OldCallMI = getCallInstr(Old);
920   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
921   if (CSIt == CallSitesInfo.end())
922     return;
923 
924   CallSiteInfo CSInfo = std::move(CSIt->second);
925   CallSitesInfo.erase(CSIt);
926   CallSitesInfo[New] = CSInfo;
927 }
928 
929 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
930   DebugInstrNumberingCount = Num;
931 }
932 
933 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
934                                                  DebugInstrOperandPair B,
935                                                  unsigned Subreg) {
936   // Catch any accidental self-loops.
937   assert(A.first != B.first);
938   // Don't allow any substitutions _from_ the memory operand number.
939   assert(A.second != DebugOperandMemNumber);
940 
941   DebugValueSubstitutions.push_back({A, B, Subreg});
942 }
943 
944 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
945                                                    MachineInstr &New,
946                                                    unsigned MaxOperand) {
947   // If the Old instruction wasn't tracked at all, there is no work to do.
948   unsigned OldInstrNum = Old.peekDebugInstrNum();
949   if (!OldInstrNum)
950     return;
951 
952   // Iterate over all operands looking for defs to create substitutions for.
953   // Avoid creating new instr numbers unless we create a new substitution.
954   // While this has no functional effect, it risks confusing someone reading
955   // MIR output.
956   // Examine all the operands, or the first N specified by the caller.
957   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
958   for (unsigned int I = 0; I < MaxOperand; ++I) {
959     const auto &OldMO = Old.getOperand(I);
960     auto &NewMO = New.getOperand(I);
961     (void)NewMO;
962 
963     if (!OldMO.isReg() || !OldMO.isDef())
964       continue;
965     assert(NewMO.isDef());
966 
967     unsigned NewInstrNum = New.getDebugInstrNum();
968     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
969                                std::make_pair(NewInstrNum, I));
970   }
971 }
972 
973 auto MachineFunction::salvageCopySSA(
974     MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
975     -> DebugInstrOperandPair {
976   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
977 
978   // Check whether this copy-like instruction has already been salvaged into
979   // an operand pair.
980   Register Dest;
981   if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
982     Dest = CopyDstSrc->Destination->getReg();
983   } else {
984     assert(MI.isSubregToReg());
985     Dest = MI.getOperand(0).getReg();
986   }
987 
988   auto CacheIt = DbgPHICache.find(Dest);
989   if (CacheIt != DbgPHICache.end())
990     return CacheIt->second;
991 
992   // Calculate the instruction number to use, or install a DBG_PHI.
993   auto OperandPair = salvageCopySSAImpl(MI);
994   DbgPHICache.insert({Dest, OperandPair});
995   return OperandPair;
996 }
997 
998 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
999     -> DebugInstrOperandPair {
1000   MachineRegisterInfo &MRI = getRegInfo();
1001   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1002   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1003 
1004   // Chase the value read by a copy-like instruction back to the instruction
1005   // that ultimately _defines_ that value. This may pass:
1006   //  * Through multiple intermediate copies, including subregister moves /
1007   //    copies,
1008   //  * Copies from physical registers that must then be traced back to the
1009   //    defining instruction,
1010   //  * Or, physical registers may be live-in to (only) the entry block, which
1011   //    requires a DBG_PHI to be created.
1012   // We can pursue this problem in that order: trace back through copies,
1013   // optionally through a physical register, to a defining instruction. We
1014   // should never move from physreg to vreg. As we're still in SSA form, no need
1015   // to worry about partial definitions of registers.
1016 
1017   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1018   // returns the register read and any subregister identifying which part is
1019   // read.
1020   auto GetRegAndSubreg =
1021       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1022     Register NewReg, OldReg;
1023     unsigned SubReg;
1024     if (Cpy.isCopy()) {
1025       OldReg = Cpy.getOperand(0).getReg();
1026       NewReg = Cpy.getOperand(1).getReg();
1027       SubReg = Cpy.getOperand(1).getSubReg();
1028     } else if (Cpy.isSubregToReg()) {
1029       OldReg = Cpy.getOperand(0).getReg();
1030       NewReg = Cpy.getOperand(2).getReg();
1031       SubReg = Cpy.getOperand(3).getImm();
1032     } else {
1033       auto CopyDetails = *TII.isCopyInstr(Cpy);
1034       const MachineOperand &Src = *CopyDetails.Source;
1035       const MachineOperand &Dest = *CopyDetails.Destination;
1036       OldReg = Dest.getReg();
1037       NewReg = Src.getReg();
1038       SubReg = Src.getSubReg();
1039     }
1040 
1041     return {NewReg, SubReg};
1042   };
1043 
1044   // First seek either the defining instruction, or a copy from a physreg.
1045   // During search, the current state is the current copy instruction, and which
1046   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1047   // deal with those later.
1048   auto State = GetRegAndSubreg(MI);
1049   auto CurInst = MI.getIterator();
1050   SmallVector<unsigned, 4> SubregsSeen;
1051   while (true) {
1052     // If we've found a copy from a physreg, first portion of search is over.
1053     if (!State.first.isVirtual())
1054       break;
1055 
1056     // Record any subregister qualifier.
1057     if (State.second)
1058       SubregsSeen.push_back(State.second);
1059 
1060     assert(MRI.hasOneDef(State.first));
1061     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1062     CurInst = Inst.getIterator();
1063 
1064     // Any non-copy instruction is the defining instruction we're seeking.
1065     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1066       break;
1067     State = GetRegAndSubreg(Inst);
1068   };
1069 
1070   // Helper lambda to apply additional subregister substitutions to a known
1071   // instruction/operand pair. Adds new (fake) substitutions so that we can
1072   // record the subregister. FIXME: this isn't very space efficient if multiple
1073   // values are tracked back through the same copies; cache something later.
1074   auto ApplySubregisters =
1075       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1076     for (unsigned Subreg : reverse(SubregsSeen)) {
1077       // Fetch a new instruction number, not attached to an actual instruction.
1078       unsigned NewInstrNumber = getNewDebugInstrNum();
1079       // Add a substitution from the "new" number to the known one, with a
1080       // qualifying subreg.
1081       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1082       // Return the new number; to find the underlying value, consumers need to
1083       // deal with the qualifying subreg.
1084       P = {NewInstrNumber, 0};
1085     }
1086     return P;
1087   };
1088 
1089   // If we managed to find the defining instruction after COPYs, return an
1090   // instruction / operand pair after adding subregister qualifiers.
1091   if (State.first.isVirtual()) {
1092     // Virtual register def -- we can just look up where this happens.
1093     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1094     for (auto &MO : Inst->all_defs()) {
1095       if (MO.getReg() != State.first)
1096         continue;
1097       return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1098     }
1099 
1100     llvm_unreachable("Vreg def with no corresponding operand?");
1101   }
1102 
1103   // Our search ended in a copy from a physreg: walk back up the function
1104   // looking for whatever defines the physreg.
1105   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1106   State = GetRegAndSubreg(*CurInst);
1107   Register RegToSeek = State.first;
1108 
1109   auto RMII = CurInst->getReverseIterator();
1110   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1111   for (auto &ToExamine : PrevInstrs) {
1112     for (auto &MO : ToExamine.all_defs()) {
1113       // Test for operand that defines something aliasing RegToSeek.
1114       if (!TRI.regsOverlap(RegToSeek, MO.getReg()))
1115         continue;
1116 
1117       return ApplySubregisters(
1118           {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1119     }
1120   }
1121 
1122   MachineBasicBlock &InsertBB = *CurInst->getParent();
1123 
1124   // We reached the start of the block before finding a defining instruction.
1125   // There are numerous scenarios where this can happen:
1126   // * Constant physical registers,
1127   // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1128   // * Arguments in the entry block,
1129   // * Exception handling landing pads.
1130   // Validating all of them is too difficult, so just insert a DBG_PHI reading
1131   // the variable value at this position, rather than checking it makes sense.
1132 
1133   // Create DBG_PHI for specified physreg.
1134   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1135                          TII.get(TargetOpcode::DBG_PHI));
1136   Builder.addReg(State.first);
1137   unsigned NewNum = getNewDebugInstrNum();
1138   Builder.addImm(NewNum);
1139   return ApplySubregisters({NewNum, 0u});
1140 }
1141 
1142 void MachineFunction::finalizeDebugInstrRefs() {
1143   auto *TII = getSubtarget().getInstrInfo();
1144 
1145   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1146     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1147     MI.setDesc(RefII);
1148     MI.setDebugValueUndef();
1149   };
1150 
1151   DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1152   for (auto &MBB : *this) {
1153     for (auto &MI : MBB) {
1154       if (!MI.isDebugRef())
1155         continue;
1156 
1157       bool IsValidRef = true;
1158 
1159       for (MachineOperand &MO : MI.debug_operands()) {
1160         if (!MO.isReg())
1161           continue;
1162 
1163         Register Reg = MO.getReg();
1164 
1165         // Some vregs can be deleted as redundant in the meantime. Mark those
1166         // as DBG_VALUE $noreg. Additionally, some normal instructions are
1167         // quickly deleted, leaving dangling references to vregs with no def.
1168         if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1169           IsValidRef = false;
1170           break;
1171         }
1172 
1173         assert(Reg.isVirtual());
1174         MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1175 
1176         // If we've found a copy-like instruction, follow it back to the
1177         // instruction that defines the source value, see salvageCopySSA docs
1178         // for why this is important.
1179         if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1180           auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1181           MO.ChangeToDbgInstrRef(Result.first, Result.second);
1182         } else {
1183           // Otherwise, identify the operand number that the VReg refers to.
1184           unsigned OperandIdx = 0;
1185           for (const auto &DefMO : DefMI.operands()) {
1186             if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1187               break;
1188             ++OperandIdx;
1189           }
1190           assert(OperandIdx < DefMI.getNumOperands());
1191 
1192           // Morph this instr ref to point at the given instruction and operand.
1193           unsigned ID = DefMI.getDebugInstrNum();
1194           MO.ChangeToDbgInstrRef(ID, OperandIdx);
1195         }
1196       }
1197 
1198       if (!IsValidRef)
1199         MakeUndefDbgValue(MI);
1200     }
1201   }
1202 }
1203 
1204 bool MachineFunction::shouldUseDebugInstrRef() const {
1205   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1206   // have optimized code inlined into this unoptimized code, however with
1207   // fewer and less aggressive optimizations happening, coverage and accuracy
1208   // should not suffer.
1209   if (getTarget().getOptLevel() == CodeGenOpt::None)
1210     return false;
1211 
1212   // Don't use instr-ref if this function is marked optnone.
1213   if (F.hasFnAttribute(Attribute::OptimizeNone))
1214     return false;
1215 
1216   if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1217     return true;
1218 
1219   return false;
1220 }
1221 
1222 bool MachineFunction::useDebugInstrRef() const {
1223   return UseDebugInstrRef;
1224 }
1225 
1226 void MachineFunction::setUseDebugInstrRef(bool Use) {
1227   UseDebugInstrRef = Use;
1228 }
1229 
1230 // Use one million as a high / reserved number.
1231 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1232 
1233 /// \}
1234 
1235 //===----------------------------------------------------------------------===//
1236 //  MachineJumpTableInfo implementation
1237 //===----------------------------------------------------------------------===//
1238 
1239 /// Return the size of each entry in the jump table.
1240 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1241   // The size of a jump table entry is 4 bytes unless the entry is just the
1242   // address of a block, in which case it is the pointer size.
1243   switch (getEntryKind()) {
1244   case MachineJumpTableInfo::EK_BlockAddress:
1245     return TD.getPointerSize();
1246   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1247     return 8;
1248   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1249   case MachineJumpTableInfo::EK_LabelDifference32:
1250   case MachineJumpTableInfo::EK_Custom32:
1251     return 4;
1252   case MachineJumpTableInfo::EK_Inline:
1253     return 0;
1254   }
1255   llvm_unreachable("Unknown jump table encoding!");
1256 }
1257 
1258 /// Return the alignment of each entry in the jump table.
1259 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1260   // The alignment of a jump table entry is the alignment of int32 unless the
1261   // entry is just the address of a block, in which case it is the pointer
1262   // alignment.
1263   switch (getEntryKind()) {
1264   case MachineJumpTableInfo::EK_BlockAddress:
1265     return TD.getPointerABIAlignment(0).value();
1266   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1267     return TD.getABIIntegerTypeAlignment(64).value();
1268   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1269   case MachineJumpTableInfo::EK_LabelDifference32:
1270   case MachineJumpTableInfo::EK_Custom32:
1271     return TD.getABIIntegerTypeAlignment(32).value();
1272   case MachineJumpTableInfo::EK_Inline:
1273     return 1;
1274   }
1275   llvm_unreachable("Unknown jump table encoding!");
1276 }
1277 
1278 /// Create a new jump table entry in the jump table info.
1279 unsigned MachineJumpTableInfo::createJumpTableIndex(
1280                                const std::vector<MachineBasicBlock*> &DestBBs) {
1281   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1282   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1283   return JumpTables.size()-1;
1284 }
1285 
1286 /// If Old is the target of any jump tables, update the jump tables to branch
1287 /// to New instead.
1288 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1289                                                   MachineBasicBlock *New) {
1290   assert(Old != New && "Not making a change?");
1291   bool MadeChange = false;
1292   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1293     ReplaceMBBInJumpTable(i, Old, New);
1294   return MadeChange;
1295 }
1296 
1297 /// If MBB is present in any jump tables, remove it.
1298 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1299   bool MadeChange = false;
1300   for (MachineJumpTableEntry &JTE : JumpTables) {
1301     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1302     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1303     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1304   }
1305   return MadeChange;
1306 }
1307 
1308 /// If Old is a target of the jump tables, update the jump table to branch to
1309 /// New instead.
1310 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1311                                                  MachineBasicBlock *Old,
1312                                                  MachineBasicBlock *New) {
1313   assert(Old != New && "Not making a change?");
1314   bool MadeChange = false;
1315   MachineJumpTableEntry &JTE = JumpTables[Idx];
1316   for (MachineBasicBlock *&MBB : JTE.MBBs)
1317     if (MBB == Old) {
1318       MBB = New;
1319       MadeChange = true;
1320     }
1321   return MadeChange;
1322 }
1323 
1324 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1325   if (JumpTables.empty()) return;
1326 
1327   OS << "Jump Tables:\n";
1328 
1329   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1330     OS << printJumpTableEntryReference(i) << ':';
1331     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1332       OS << ' ' << printMBBReference(*MBB);
1333     if (i != e)
1334       OS << '\n';
1335   }
1336 
1337   OS << '\n';
1338 }
1339 
1340 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1341 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1342 #endif
1343 
1344 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1345   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1346 }
1347 
1348 //===----------------------------------------------------------------------===//
1349 //  MachineConstantPool implementation
1350 //===----------------------------------------------------------------------===//
1351 
1352 void MachineConstantPoolValue::anchor() {}
1353 
1354 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1355   return DL.getTypeAllocSize(Ty);
1356 }
1357 
1358 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1359   if (isMachineConstantPoolEntry())
1360     return Val.MachineCPVal->getSizeInBytes(DL);
1361   return DL.getTypeAllocSize(Val.ConstVal->getType());
1362 }
1363 
1364 bool MachineConstantPoolEntry::needsRelocation() const {
1365   if (isMachineConstantPoolEntry())
1366     return true;
1367   return Val.ConstVal->needsDynamicRelocation();
1368 }
1369 
1370 SectionKind
1371 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1372   if (needsRelocation())
1373     return SectionKind::getReadOnlyWithRel();
1374   switch (getSizeInBytes(*DL)) {
1375   case 4:
1376     return SectionKind::getMergeableConst4();
1377   case 8:
1378     return SectionKind::getMergeableConst8();
1379   case 16:
1380     return SectionKind::getMergeableConst16();
1381   case 32:
1382     return SectionKind::getMergeableConst32();
1383   default:
1384     return SectionKind::getReadOnly();
1385   }
1386 }
1387 
1388 MachineConstantPool::~MachineConstantPool() {
1389   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1390   // so keep track of which we've deleted to avoid double deletions.
1391   DenseSet<MachineConstantPoolValue*> Deleted;
1392   for (const MachineConstantPoolEntry &C : Constants)
1393     if (C.isMachineConstantPoolEntry()) {
1394       Deleted.insert(C.Val.MachineCPVal);
1395       delete C.Val.MachineCPVal;
1396     }
1397   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1398     if (Deleted.count(CPV) == 0)
1399       delete CPV;
1400   }
1401 }
1402 
1403 /// Test whether the given two constants can be allocated the same constant pool
1404 /// entry referenced by \param A.
1405 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1406                                       const DataLayout &DL) {
1407   // Handle the trivial case quickly.
1408   if (A == B) return true;
1409 
1410   // If they have the same type but weren't the same constant, quickly
1411   // reject them.
1412   if (A->getType() == B->getType()) return false;
1413 
1414   // We can't handle structs or arrays.
1415   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1416       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1417     return false;
1418 
1419   // For now, only support constants with the same size.
1420   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1421   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1422     return false;
1423 
1424   bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1425 
1426   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1427 
1428   // Try constant folding a bitcast of both instructions to an integer.  If we
1429   // get two identical ConstantInt's, then we are good to share them.  We use
1430   // the constant folding APIs to do this so that we get the benefit of
1431   // DataLayout.
1432   if (isa<PointerType>(A->getType()))
1433     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1434                                 const_cast<Constant *>(A), IntTy, DL);
1435   else if (A->getType() != IntTy)
1436     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1437                                 IntTy, DL);
1438   if (isa<PointerType>(B->getType()))
1439     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1440                                 const_cast<Constant *>(B), IntTy, DL);
1441   else if (B->getType() != IntTy)
1442     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1443                                 IntTy, DL);
1444 
1445   if (A != B)
1446     return false;
1447 
1448   // Constants only safely match if A doesn't contain undef/poison.
1449   // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1450   // TODO: Handle cases where A and B have the same undef/poison elements.
1451   // TODO: Merge A and B with mismatching undef/poison elements.
1452   return !ContainsUndefOrPoisonA;
1453 }
1454 
1455 /// Create a new entry in the constant pool or return an existing one.
1456 /// User must specify the log2 of the minimum required alignment for the object.
1457 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1458                                                    Align Alignment) {
1459   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1460 
1461   // Check to see if we already have this constant.
1462   //
1463   // FIXME, this could be made much more efficient for large constant pools.
1464   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1465     if (!Constants[i].isMachineConstantPoolEntry() &&
1466         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1467       if (Constants[i].getAlign() < Alignment)
1468         Constants[i].Alignment = Alignment;
1469       return i;
1470     }
1471 
1472   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1473   return Constants.size()-1;
1474 }
1475 
1476 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1477                                                    Align Alignment) {
1478   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1479 
1480   // Check to see if we already have this constant.
1481   //
1482   // FIXME, this could be made much more efficient for large constant pools.
1483   int Idx = V->getExistingMachineCPValue(this, Alignment);
1484   if (Idx != -1) {
1485     MachineCPVsSharingEntries.insert(V);
1486     return (unsigned)Idx;
1487   }
1488 
1489   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1490   return Constants.size()-1;
1491 }
1492 
1493 void MachineConstantPool::print(raw_ostream &OS) const {
1494   if (Constants.empty()) return;
1495 
1496   OS << "Constant Pool:\n";
1497   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1498     OS << "  cp#" << i << ": ";
1499     if (Constants[i].isMachineConstantPoolEntry())
1500       Constants[i].Val.MachineCPVal->print(OS);
1501     else
1502       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1503     OS << ", align=" << Constants[i].getAlign().value();
1504     OS << "\n";
1505   }
1506 }
1507 
1508 //===----------------------------------------------------------------------===//
1509 // Template specialization for MachineFunction implementation of
1510 // ProfileSummaryInfo::getEntryCount().
1511 //===----------------------------------------------------------------------===//
1512 template <>
1513 std::optional<Function::ProfileCount>
1514 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1515     const llvm::MachineFunction *F) const {
1516   return F->getFunction().getEntryCount();
1517 }
1518 
1519 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1520 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1521 #endif
1522