xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/GraphWriter.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <iterator>
72 #include <string>
73 #include <type_traits>
74 #include <utility>
75 #include <vector>
76 
77 #include "LiveDebugValues/LiveDebugValues.h"
78 
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "codegen"
82 
83 static cl::opt<unsigned> AlignAllFunctions(
84     "align-all-functions",
85     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86              "means align on 16B boundaries)."),
87     cl::init(0), cl::Hidden);
88 
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90   using P = MachineFunctionProperties::Property;
91 
92   // clang-format off
93   switch(Prop) {
94   case P::FailedISel: return "FailedISel";
95   case P::IsSSA: return "IsSSA";
96   case P::Legalized: return "Legalized";
97   case P::NoPHIs: return "NoPHIs";
98   case P::NoVRegs: return "NoVRegs";
99   case P::RegBankSelected: return "RegBankSelected";
100   case P::Selected: return "Selected";
101   case P::TracksLiveness: return "TracksLiveness";
102   case P::TiedOpsRewritten: return "TiedOpsRewritten";
103   case P::FailsVerification: return "FailsVerification";
104   case P::TracksDebugUserValues: return "TracksDebugUserValues";
105   }
106   // clang-format on
107   llvm_unreachable("Invalid machine function property");
108 }
109 
110 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
111   if (!F.hasFnAttribute(Attribute::SafeStack))
112     return;
113 
114   auto *Existing =
115       dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
116 
117   if (!Existing || Existing->getNumOperands() != 2)
118     return;
119 
120   auto *MetadataName = "unsafe-stack-size";
121   if (auto &N = Existing->getOperand(0)) {
122     if (cast<MDString>(N.get())->getString() == MetadataName) {
123       if (auto &Op = Existing->getOperand(1)) {
124         auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
125         FrameInfo.setUnsafeStackSize(Val);
126       }
127     }
128   }
129 }
130 
131 // Pin the vtable to this file.
132 void MachineFunction::Delegate::anchor() {}
133 
134 void MachineFunctionProperties::print(raw_ostream &OS) const {
135   const char *Separator = "";
136   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
137     if (!Properties[I])
138       continue;
139     OS << Separator << getPropertyName(static_cast<Property>(I));
140     Separator = ", ";
141   }
142 }
143 
144 //===----------------------------------------------------------------------===//
145 // MachineFunction implementation
146 //===----------------------------------------------------------------------===//
147 
148 // Out-of-line virtual method.
149 MachineFunctionInfo::~MachineFunctionInfo() = default;
150 
151 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
152   MBB->getParent()->deleteMachineBasicBlock(MBB);
153 }
154 
155 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
156                                            const Function &F) {
157   if (auto MA = F.getFnStackAlign())
158     return *MA;
159   return STI->getFrameLowering()->getStackAlign();
160 }
161 
162 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
163                                  const TargetSubtargetInfo &STI,
164                                  unsigned FunctionNum, MachineModuleInfo &mmi)
165     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
166   FunctionNumber = FunctionNum;
167   init();
168 }
169 
170 void MachineFunction::handleInsertion(MachineInstr &MI) {
171   if (TheDelegate)
172     TheDelegate->MF_HandleInsertion(MI);
173 }
174 
175 void MachineFunction::handleRemoval(MachineInstr &MI) {
176   if (TheDelegate)
177     TheDelegate->MF_HandleRemoval(MI);
178 }
179 
180 void MachineFunction::init() {
181   // Assume the function starts in SSA form with correct liveness.
182   Properties.set(MachineFunctionProperties::Property::IsSSA);
183   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
184   if (STI->getRegisterInfo())
185     RegInfo = new (Allocator) MachineRegisterInfo(this);
186   else
187     RegInfo = nullptr;
188 
189   MFInfo = nullptr;
190 
191   // We can realign the stack if the target supports it and the user hasn't
192   // explicitly asked us not to.
193   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
194                       !F.hasFnAttribute("no-realign-stack");
195   FrameInfo = new (Allocator) MachineFrameInfo(
196       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
197       /*ForcedRealign=*/CanRealignSP &&
198           F.hasFnAttribute(Attribute::StackAlignment));
199 
200   setUnsafeStackSize(F, *FrameInfo);
201 
202   if (F.hasFnAttribute(Attribute::StackAlignment))
203     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
204 
205   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
206   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
207 
208   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
209   // FIXME: Use Function::hasOptSize().
210   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
211     Alignment = std::max(Alignment,
212                          STI->getTargetLowering()->getPrefFunctionAlignment());
213 
214   if (AlignAllFunctions)
215     Alignment = Align(1ULL << AlignAllFunctions);
216 
217   JumpTableInfo = nullptr;
218 
219   if (isFuncletEHPersonality(classifyEHPersonality(
220           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
221     WinEHInfo = new (Allocator) WinEHFuncInfo();
222   }
223 
224   if (isScopedEHPersonality(classifyEHPersonality(
225           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
226     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
227   }
228 
229   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
230          "Can't create a MachineFunction using a Module with a "
231          "Target-incompatible DataLayout attached\n");
232 
233   PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
234 }
235 
236 void MachineFunction::initTargetMachineFunctionInfo(
237     const TargetSubtargetInfo &STI) {
238   assert(!MFInfo && "MachineFunctionInfo already set");
239   MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
240 }
241 
242 MachineFunction::~MachineFunction() {
243   clear();
244 }
245 
246 void MachineFunction::clear() {
247   Properties.reset();
248   // Don't call destructors on MachineInstr and MachineOperand. All of their
249   // memory comes from the BumpPtrAllocator which is about to be purged.
250   //
251   // Do call MachineBasicBlock destructors, it contains std::vectors.
252   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
253     I->Insts.clearAndLeakNodesUnsafely();
254   MBBNumbering.clear();
255 
256   InstructionRecycler.clear(Allocator);
257   OperandRecycler.clear(Allocator);
258   BasicBlockRecycler.clear(Allocator);
259   CodeViewAnnotations.clear();
260   VariableDbgInfos.clear();
261   if (RegInfo) {
262     RegInfo->~MachineRegisterInfo();
263     Allocator.Deallocate(RegInfo);
264   }
265   if (MFInfo) {
266     MFInfo->~MachineFunctionInfo();
267     Allocator.Deallocate(MFInfo);
268   }
269 
270   FrameInfo->~MachineFrameInfo();
271   Allocator.Deallocate(FrameInfo);
272 
273   ConstantPool->~MachineConstantPool();
274   Allocator.Deallocate(ConstantPool);
275 
276   if (JumpTableInfo) {
277     JumpTableInfo->~MachineJumpTableInfo();
278     Allocator.Deallocate(JumpTableInfo);
279   }
280 
281   if (WinEHInfo) {
282     WinEHInfo->~WinEHFuncInfo();
283     Allocator.Deallocate(WinEHInfo);
284   }
285 
286   if (WasmEHInfo) {
287     WasmEHInfo->~WasmEHFuncInfo();
288     Allocator.Deallocate(WasmEHInfo);
289   }
290 }
291 
292 const DataLayout &MachineFunction::getDataLayout() const {
293   return F.getParent()->getDataLayout();
294 }
295 
296 /// Get the JumpTableInfo for this function.
297 /// If it does not already exist, allocate one.
298 MachineJumpTableInfo *MachineFunction::
299 getOrCreateJumpTableInfo(unsigned EntryKind) {
300   if (JumpTableInfo) return JumpTableInfo;
301 
302   JumpTableInfo = new (Allocator)
303     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
304   return JumpTableInfo;
305 }
306 
307 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
308   return F.getDenormalMode(FPType);
309 }
310 
311 /// Should we be emitting segmented stack stuff for the function
312 bool MachineFunction::shouldSplitStack() const {
313   return getFunction().hasFnAttribute("split-stack");
314 }
315 
316 [[nodiscard]] unsigned
317 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
318   FrameInstructions.push_back(Inst);
319   return FrameInstructions.size() - 1;
320 }
321 
322 /// This discards all of the MachineBasicBlock numbers and recomputes them.
323 /// This guarantees that the MBB numbers are sequential, dense, and match the
324 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
325 /// is specified, only that block and those after it are renumbered.
326 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
327   if (empty()) { MBBNumbering.clear(); return; }
328   MachineFunction::iterator MBBI, E = end();
329   if (MBB == nullptr)
330     MBBI = begin();
331   else
332     MBBI = MBB->getIterator();
333 
334   // Figure out the block number this should have.
335   unsigned BlockNo = 0;
336   if (MBBI != begin())
337     BlockNo = std::prev(MBBI)->getNumber() + 1;
338 
339   for (; MBBI != E; ++MBBI, ++BlockNo) {
340     if (MBBI->getNumber() != (int)BlockNo) {
341       // Remove use of the old number.
342       if (MBBI->getNumber() != -1) {
343         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
344                "MBB number mismatch!");
345         MBBNumbering[MBBI->getNumber()] = nullptr;
346       }
347 
348       // If BlockNo is already taken, set that block's number to -1.
349       if (MBBNumbering[BlockNo])
350         MBBNumbering[BlockNo]->setNumber(-1);
351 
352       MBBNumbering[BlockNo] = &*MBBI;
353       MBBI->setNumber(BlockNo);
354     }
355   }
356 
357   // Okay, all the blocks are renumbered.  If we have compactified the block
358   // numbering, shrink MBBNumbering now.
359   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
360   MBBNumbering.resize(BlockNo);
361 }
362 
363 /// This method iterates over the basic blocks and assigns their IsBeginSection
364 /// and IsEndSection fields. This must be called after MBB layout is finalized
365 /// and the SectionID's are assigned to MBBs.
366 void MachineFunction::assignBeginEndSections() {
367   front().setIsBeginSection();
368   auto CurrentSectionID = front().getSectionID();
369   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
370     if (MBBI->getSectionID() == CurrentSectionID)
371       continue;
372     MBBI->setIsBeginSection();
373     std::prev(MBBI)->setIsEndSection();
374     CurrentSectionID = MBBI->getSectionID();
375   }
376   back().setIsEndSection();
377 }
378 
379 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
380 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
381                                                   DebugLoc DL,
382                                                   bool NoImplicit) {
383   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
384       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
385 }
386 
387 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
388 /// identical in all ways except the instruction has no parent, prev, or next.
389 MachineInstr *
390 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
391   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
392              MachineInstr(*this, *Orig);
393 }
394 
395 MachineInstr &MachineFunction::cloneMachineInstrBundle(
396     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
397     const MachineInstr &Orig) {
398   MachineInstr *FirstClone = nullptr;
399   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
400   while (true) {
401     MachineInstr *Cloned = CloneMachineInstr(&*I);
402     MBB.insert(InsertBefore, Cloned);
403     if (FirstClone == nullptr) {
404       FirstClone = Cloned;
405     } else {
406       Cloned->bundleWithPred();
407     }
408 
409     if (!I->isBundledWithSucc())
410       break;
411     ++I;
412   }
413   // Copy over call site info to the cloned instruction if needed. If Orig is in
414   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
415   // the bundle.
416   if (Orig.shouldUpdateCallSiteInfo())
417     copyCallSiteInfo(&Orig, FirstClone);
418   return *FirstClone;
419 }
420 
421 /// Delete the given MachineInstr.
422 ///
423 /// This function also serves as the MachineInstr destructor - the real
424 /// ~MachineInstr() destructor must be empty.
425 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
426   // Verify that a call site info is at valid state. This assertion should
427   // be triggered during the implementation of support for the
428   // call site info of a new architecture. If the assertion is triggered,
429   // back trace will tell where to insert a call to updateCallSiteInfo().
430   assert((!MI->isCandidateForCallSiteEntry() ||
431           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
432          "Call site info was not updated!");
433   // Strip it for parts. The operand array and the MI object itself are
434   // independently recyclable.
435   if (MI->Operands)
436     deallocateOperandArray(MI->CapOperands, MI->Operands);
437   // Don't call ~MachineInstr() which must be trivial anyway because
438   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
439   // destructors.
440   InstructionRecycler.Deallocate(Allocator, MI);
441 }
442 
443 /// Allocate a new MachineBasicBlock. Use this instead of
444 /// `new MachineBasicBlock'.
445 MachineBasicBlock *
446 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
447   MachineBasicBlock *MBB =
448       new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
449           MachineBasicBlock(*this, bb);
450   // Set BBID for `-basic-block=sections=labels` and
451   // `-basic-block-sections=list` to allow robust mapping of profiles to basic
452   // blocks.
453   if (Target.getBBSectionsType() == BasicBlockSection::Labels ||
454       Target.getBBSectionsType() == BasicBlockSection::List)
455     MBB->setBBID(NextBBID++);
456   return MBB;
457 }
458 
459 /// Delete the given MachineBasicBlock.
460 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
461   assert(MBB->getParent() == this && "MBB parent mismatch!");
462   // Clean up any references to MBB in jump tables before deleting it.
463   if (JumpTableInfo)
464     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
465   MBB->~MachineBasicBlock();
466   BasicBlockRecycler.Deallocate(Allocator, MBB);
467 }
468 
469 MachineMemOperand *MachineFunction::getMachineMemOperand(
470     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
471     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
472     SyncScope::ID SSID, AtomicOrdering Ordering,
473     AtomicOrdering FailureOrdering) {
474   return new (Allocator)
475       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
476                         SSID, Ordering, FailureOrdering);
477 }
478 
479 MachineMemOperand *MachineFunction::getMachineMemOperand(
480     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
481     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
482     SyncScope::ID SSID, AtomicOrdering Ordering,
483     AtomicOrdering FailureOrdering) {
484   return new (Allocator)
485       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
486                         Ordering, FailureOrdering);
487 }
488 
489 MachineMemOperand *MachineFunction::getMachineMemOperand(
490     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
491   return new (Allocator)
492       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
493                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
494                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
495 }
496 
497 MachineMemOperand *MachineFunction::getMachineMemOperand(
498     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
499   return new (Allocator)
500       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
501                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
502                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
503 }
504 
505 MachineMemOperand *
506 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
507                                       int64_t Offset, LLT Ty) {
508   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
509 
510   // If there is no pointer value, the offset isn't tracked so we need to adjust
511   // the base alignment.
512   Align Alignment = PtrInfo.V.isNull()
513                         ? commonAlignment(MMO->getBaseAlign(), Offset)
514                         : MMO->getBaseAlign();
515 
516   // Do not preserve ranges, since we don't necessarily know what the high bits
517   // are anymore.
518   return new (Allocator) MachineMemOperand(
519       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
520       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
521       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
522 }
523 
524 MachineMemOperand *
525 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
526                                       const AAMDNodes &AAInfo) {
527   MachinePointerInfo MPI = MMO->getValue() ?
528              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
529              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
530 
531   return new (Allocator) MachineMemOperand(
532       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
533       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
534       MMO->getFailureOrdering());
535 }
536 
537 MachineMemOperand *
538 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
539                                       MachineMemOperand::Flags Flags) {
540   return new (Allocator) MachineMemOperand(
541       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
542       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
543       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
544 }
545 
546 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
547     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
548     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
549     uint32_t CFIType) {
550   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
551                                          PostInstrSymbol, HeapAllocMarker,
552                                          PCSections, CFIType);
553 }
554 
555 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
556   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
557   llvm::copy(Name, Dest);
558   Dest[Name.size()] = 0;
559   return Dest;
560 }
561 
562 uint32_t *MachineFunction::allocateRegMask() {
563   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
564   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
565   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
566   memset(Mask, 0, Size * sizeof(Mask[0]));
567   return Mask;
568 }
569 
570 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
571   int* AllocMask = Allocator.Allocate<int>(Mask.size());
572   copy(Mask, AllocMask);
573   return {AllocMask, Mask.size()};
574 }
575 
576 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
577 LLVM_DUMP_METHOD void MachineFunction::dump() const {
578   print(dbgs());
579 }
580 #endif
581 
582 StringRef MachineFunction::getName() const {
583   return getFunction().getName();
584 }
585 
586 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
587   OS << "# Machine code for function " << getName() << ": ";
588   getProperties().print(OS);
589   OS << '\n';
590 
591   // Print Frame Information
592   FrameInfo->print(*this, OS);
593 
594   // Print JumpTable Information
595   if (JumpTableInfo)
596     JumpTableInfo->print(OS);
597 
598   // Print Constant Pool
599   ConstantPool->print(OS);
600 
601   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
602 
603   if (RegInfo && !RegInfo->livein_empty()) {
604     OS << "Function Live Ins: ";
605     for (MachineRegisterInfo::livein_iterator
606          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
607       OS << printReg(I->first, TRI);
608       if (I->second)
609         OS << " in " << printReg(I->second, TRI);
610       if (std::next(I) != E)
611         OS << ", ";
612     }
613     OS << '\n';
614   }
615 
616   ModuleSlotTracker MST(getFunction().getParent());
617   MST.incorporateFunction(getFunction());
618   for (const auto &BB : *this) {
619     OS << '\n';
620     // If we print the whole function, print it at its most verbose level.
621     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
622   }
623 
624   OS << "\n# End machine code for function " << getName() << ".\n\n";
625 }
626 
627 /// True if this function needs frame moves for debug or exceptions.
628 bool MachineFunction::needsFrameMoves() const {
629   return getMMI().hasDebugInfo() ||
630          getTarget().Options.ForceDwarfFrameSection ||
631          F.needsUnwindTableEntry();
632 }
633 
634 namespace llvm {
635 
636   template<>
637   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
638     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
639 
640     static std::string getGraphName(const MachineFunction *F) {
641       return ("CFG for '" + F->getName() + "' function").str();
642     }
643 
644     std::string getNodeLabel(const MachineBasicBlock *Node,
645                              const MachineFunction *Graph) {
646       std::string OutStr;
647       {
648         raw_string_ostream OSS(OutStr);
649 
650         if (isSimple()) {
651           OSS << printMBBReference(*Node);
652           if (const BasicBlock *BB = Node->getBasicBlock())
653             OSS << ": " << BB->getName();
654         } else
655           Node->print(OSS);
656       }
657 
658       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
659 
660       // Process string output to make it nicer...
661       for (unsigned i = 0; i != OutStr.length(); ++i)
662         if (OutStr[i] == '\n') {                            // Left justify
663           OutStr[i] = '\\';
664           OutStr.insert(OutStr.begin()+i+1, 'l');
665         }
666       return OutStr;
667     }
668   };
669 
670 } // end namespace llvm
671 
672 void MachineFunction::viewCFG() const
673 {
674 #ifndef NDEBUG
675   ViewGraph(this, "mf" + getName());
676 #else
677   errs() << "MachineFunction::viewCFG is only available in debug builds on "
678          << "systems with Graphviz or gv!\n";
679 #endif // NDEBUG
680 }
681 
682 void MachineFunction::viewCFGOnly() const
683 {
684 #ifndef NDEBUG
685   ViewGraph(this, "mf" + getName(), true);
686 #else
687   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
688          << "systems with Graphviz or gv!\n";
689 #endif // NDEBUG
690 }
691 
692 /// Add the specified physical register as a live-in value and
693 /// create a corresponding virtual register for it.
694 Register MachineFunction::addLiveIn(MCRegister PReg,
695                                     const TargetRegisterClass *RC) {
696   MachineRegisterInfo &MRI = getRegInfo();
697   Register VReg = MRI.getLiveInVirtReg(PReg);
698   if (VReg) {
699     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
700     (void)VRegRC;
701     // A physical register can be added several times.
702     // Between two calls, the register class of the related virtual register
703     // may have been constrained to match some operation constraints.
704     // In that case, check that the current register class includes the
705     // physical register and is a sub class of the specified RC.
706     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
707                              RC->hasSubClassEq(VRegRC))) &&
708             "Register class mismatch!");
709     return VReg;
710   }
711   VReg = MRI.createVirtualRegister(RC);
712   MRI.addLiveIn(PReg, VReg);
713   return VReg;
714 }
715 
716 /// Return the MCSymbol for the specified non-empty jump table.
717 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
718 /// normal 'L' label is returned.
719 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
720                                         bool isLinkerPrivate) const {
721   const DataLayout &DL = getDataLayout();
722   assert(JumpTableInfo && "No jump tables");
723   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
724 
725   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
726                                      : DL.getPrivateGlobalPrefix();
727   SmallString<60> Name;
728   raw_svector_ostream(Name)
729     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
730   return Ctx.getOrCreateSymbol(Name);
731 }
732 
733 /// Return a function-local symbol to represent the PIC base.
734 MCSymbol *MachineFunction::getPICBaseSymbol() const {
735   const DataLayout &DL = getDataLayout();
736   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
737                                Twine(getFunctionNumber()) + "$pb");
738 }
739 
740 /// \name Exception Handling
741 /// \{
742 
743 LandingPadInfo &
744 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
745   unsigned N = LandingPads.size();
746   for (unsigned i = 0; i < N; ++i) {
747     LandingPadInfo &LP = LandingPads[i];
748     if (LP.LandingPadBlock == LandingPad)
749       return LP;
750   }
751 
752   LandingPads.push_back(LandingPadInfo(LandingPad));
753   return LandingPads[N];
754 }
755 
756 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
757                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
758   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
759   LP.BeginLabels.push_back(BeginLabel);
760   LP.EndLabels.push_back(EndLabel);
761 }
762 
763 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
764   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
765   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
766   LP.LandingPadLabel = LandingPadLabel;
767 
768   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
769   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
770     // If there's no typeid list specified, then "cleanup" is implicit.
771     // Otherwise, id 0 is reserved for the cleanup action.
772     if (LPI->isCleanup() && LPI->getNumClauses() != 0)
773       LP.TypeIds.push_back(0);
774 
775     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
776     //        correct, but we need to do it this way because of how the DWARF EH
777     //        emitter processes the clauses.
778     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
779       Value *Val = LPI->getClause(I - 1);
780       if (LPI->isCatch(I - 1)) {
781         LP.TypeIds.push_back(
782             getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
783       } else {
784         // Add filters in a list.
785         auto *CVal = cast<Constant>(Val);
786         SmallVector<unsigned, 4> FilterList;
787         for (const Use &U : CVal->operands())
788           FilterList.push_back(
789               getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
790 
791         LP.TypeIds.push_back(getFilterIDFor(FilterList));
792       }
793     }
794 
795   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
796     for (unsigned I = CPI->arg_size(); I != 0; --I) {
797       auto *TypeInfo =
798           dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
799       LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
800     }
801 
802   } else {
803     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
804   }
805 
806   return LandingPadLabel;
807 }
808 
809 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
810                                             ArrayRef<unsigned> Sites) {
811   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
812 }
813 
814 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
815   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
816     if (TypeInfos[i] == TI) return i + 1;
817 
818   TypeInfos.push_back(TI);
819   return TypeInfos.size();
820 }
821 
822 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
823   // If the new filter coincides with the tail of an existing filter, then
824   // re-use the existing filter.  Folding filters more than this requires
825   // re-ordering filters and/or their elements - probably not worth it.
826   for (unsigned i : FilterEnds) {
827     unsigned j = TyIds.size();
828 
829     while (i && j)
830       if (FilterIds[--i] != TyIds[--j])
831         goto try_next;
832 
833     if (!j)
834       // The new filter coincides with range [i, end) of the existing filter.
835       return -(1 + i);
836 
837 try_next:;
838   }
839 
840   // Add the new filter.
841   int FilterID = -(1 + FilterIds.size());
842   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
843   llvm::append_range(FilterIds, TyIds);
844   FilterEnds.push_back(FilterIds.size());
845   FilterIds.push_back(0); // terminator
846   return FilterID;
847 }
848 
849 MachineFunction::CallSiteInfoMap::iterator
850 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
851   assert(MI->isCandidateForCallSiteEntry() &&
852          "Call site info refers only to call (MI) candidates");
853 
854   if (!Target.Options.EmitCallSiteInfo)
855     return CallSitesInfo.end();
856   return CallSitesInfo.find(MI);
857 }
858 
859 /// Return the call machine instruction or find a call within bundle.
860 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
861   if (!MI->isBundle())
862     return MI;
863 
864   for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
865                                     getBundleEnd(MI->getIterator())))
866     if (BMI.isCandidateForCallSiteEntry())
867       return &BMI;
868 
869   llvm_unreachable("Unexpected bundle without a call site candidate");
870 }
871 
872 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
873   assert(MI->shouldUpdateCallSiteInfo() &&
874          "Call site info refers only to call (MI) candidates or "
875          "candidates inside bundles");
876 
877   const MachineInstr *CallMI = getCallInstr(MI);
878   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
879   if (CSIt == CallSitesInfo.end())
880     return;
881   CallSitesInfo.erase(CSIt);
882 }
883 
884 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
885                                        const MachineInstr *New) {
886   assert(Old->shouldUpdateCallSiteInfo() &&
887          "Call site info refers only to call (MI) candidates or "
888          "candidates inside bundles");
889 
890   if (!New->isCandidateForCallSiteEntry())
891     return eraseCallSiteInfo(Old);
892 
893   const MachineInstr *OldCallMI = getCallInstr(Old);
894   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
895   if (CSIt == CallSitesInfo.end())
896     return;
897 
898   CallSiteInfo CSInfo = CSIt->second;
899   CallSitesInfo[New] = CSInfo;
900 }
901 
902 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
903                                        const MachineInstr *New) {
904   assert(Old->shouldUpdateCallSiteInfo() &&
905          "Call site info refers only to call (MI) candidates or "
906          "candidates inside bundles");
907 
908   if (!New->isCandidateForCallSiteEntry())
909     return eraseCallSiteInfo(Old);
910 
911   const MachineInstr *OldCallMI = getCallInstr(Old);
912   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
913   if (CSIt == CallSitesInfo.end())
914     return;
915 
916   CallSiteInfo CSInfo = std::move(CSIt->second);
917   CallSitesInfo.erase(CSIt);
918   CallSitesInfo[New] = CSInfo;
919 }
920 
921 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
922   DebugInstrNumberingCount = Num;
923 }
924 
925 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
926                                                  DebugInstrOperandPair B,
927                                                  unsigned Subreg) {
928   // Catch any accidental self-loops.
929   assert(A.first != B.first);
930   // Don't allow any substitutions _from_ the memory operand number.
931   assert(A.second != DebugOperandMemNumber);
932 
933   DebugValueSubstitutions.push_back({A, B, Subreg});
934 }
935 
936 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
937                                                    MachineInstr &New,
938                                                    unsigned MaxOperand) {
939   // If the Old instruction wasn't tracked at all, there is no work to do.
940   unsigned OldInstrNum = Old.peekDebugInstrNum();
941   if (!OldInstrNum)
942     return;
943 
944   // Iterate over all operands looking for defs to create substitutions for.
945   // Avoid creating new instr numbers unless we create a new substitution.
946   // While this has no functional effect, it risks confusing someone reading
947   // MIR output.
948   // Examine all the operands, or the first N specified by the caller.
949   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
950   for (unsigned int I = 0; I < MaxOperand; ++I) {
951     const auto &OldMO = Old.getOperand(I);
952     auto &NewMO = New.getOperand(I);
953     (void)NewMO;
954 
955     if (!OldMO.isReg() || !OldMO.isDef())
956       continue;
957     assert(NewMO.isDef());
958 
959     unsigned NewInstrNum = New.getDebugInstrNum();
960     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
961                                std::make_pair(NewInstrNum, I));
962   }
963 }
964 
965 auto MachineFunction::salvageCopySSA(
966     MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
967     -> DebugInstrOperandPair {
968   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
969 
970   // Check whether this copy-like instruction has already been salvaged into
971   // an operand pair.
972   Register Dest;
973   if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
974     Dest = CopyDstSrc->Destination->getReg();
975   } else {
976     assert(MI.isSubregToReg());
977     Dest = MI.getOperand(0).getReg();
978   }
979 
980   auto CacheIt = DbgPHICache.find(Dest);
981   if (CacheIt != DbgPHICache.end())
982     return CacheIt->second;
983 
984   // Calculate the instruction number to use, or install a DBG_PHI.
985   auto OperandPair = salvageCopySSAImpl(MI);
986   DbgPHICache.insert({Dest, OperandPair});
987   return OperandPair;
988 }
989 
990 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
991     -> DebugInstrOperandPair {
992   MachineRegisterInfo &MRI = getRegInfo();
993   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
994   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
995 
996   // Chase the value read by a copy-like instruction back to the instruction
997   // that ultimately _defines_ that value. This may pass:
998   //  * Through multiple intermediate copies, including subregister moves /
999   //    copies,
1000   //  * Copies from physical registers that must then be traced back to the
1001   //    defining instruction,
1002   //  * Or, physical registers may be live-in to (only) the entry block, which
1003   //    requires a DBG_PHI to be created.
1004   // We can pursue this problem in that order: trace back through copies,
1005   // optionally through a physical register, to a defining instruction. We
1006   // should never move from physreg to vreg. As we're still in SSA form, no need
1007   // to worry about partial definitions of registers.
1008 
1009   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1010   // returns the register read and any subregister identifying which part is
1011   // read.
1012   auto GetRegAndSubreg =
1013       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1014     Register NewReg, OldReg;
1015     unsigned SubReg;
1016     if (Cpy.isCopy()) {
1017       OldReg = Cpy.getOperand(0).getReg();
1018       NewReg = Cpy.getOperand(1).getReg();
1019       SubReg = Cpy.getOperand(1).getSubReg();
1020     } else if (Cpy.isSubregToReg()) {
1021       OldReg = Cpy.getOperand(0).getReg();
1022       NewReg = Cpy.getOperand(2).getReg();
1023       SubReg = Cpy.getOperand(3).getImm();
1024     } else {
1025       auto CopyDetails = *TII.isCopyInstr(Cpy);
1026       const MachineOperand &Src = *CopyDetails.Source;
1027       const MachineOperand &Dest = *CopyDetails.Destination;
1028       OldReg = Dest.getReg();
1029       NewReg = Src.getReg();
1030       SubReg = Src.getSubReg();
1031     }
1032 
1033     return {NewReg, SubReg};
1034   };
1035 
1036   // First seek either the defining instruction, or a copy from a physreg.
1037   // During search, the current state is the current copy instruction, and which
1038   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1039   // deal with those later.
1040   auto State = GetRegAndSubreg(MI);
1041   auto CurInst = MI.getIterator();
1042   SmallVector<unsigned, 4> SubregsSeen;
1043   while (true) {
1044     // If we've found a copy from a physreg, first portion of search is over.
1045     if (!State.first.isVirtual())
1046       break;
1047 
1048     // Record any subregister qualifier.
1049     if (State.second)
1050       SubregsSeen.push_back(State.second);
1051 
1052     assert(MRI.hasOneDef(State.first));
1053     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1054     CurInst = Inst.getIterator();
1055 
1056     // Any non-copy instruction is the defining instruction we're seeking.
1057     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1058       break;
1059     State = GetRegAndSubreg(Inst);
1060   };
1061 
1062   // Helper lambda to apply additional subregister substitutions to a known
1063   // instruction/operand pair. Adds new (fake) substitutions so that we can
1064   // record the subregister. FIXME: this isn't very space efficient if multiple
1065   // values are tracked back through the same copies; cache something later.
1066   auto ApplySubregisters =
1067       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1068     for (unsigned Subreg : reverse(SubregsSeen)) {
1069       // Fetch a new instruction number, not attached to an actual instruction.
1070       unsigned NewInstrNumber = getNewDebugInstrNum();
1071       // Add a substitution from the "new" number to the known one, with a
1072       // qualifying subreg.
1073       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1074       // Return the new number; to find the underlying value, consumers need to
1075       // deal with the qualifying subreg.
1076       P = {NewInstrNumber, 0};
1077     }
1078     return P;
1079   };
1080 
1081   // If we managed to find the defining instruction after COPYs, return an
1082   // instruction / operand pair after adding subregister qualifiers.
1083   if (State.first.isVirtual()) {
1084     // Virtual register def -- we can just look up where this happens.
1085     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1086     for (auto &MO : Inst->operands()) {
1087       if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
1088         continue;
1089       return ApplySubregisters(
1090           {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)});
1091     }
1092 
1093     llvm_unreachable("Vreg def with no corresponding operand?");
1094   }
1095 
1096   // Our search ended in a copy from a physreg: walk back up the function
1097   // looking for whatever defines the physreg.
1098   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1099   State = GetRegAndSubreg(*CurInst);
1100   Register RegToSeek = State.first;
1101 
1102   auto RMII = CurInst->getReverseIterator();
1103   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1104   for (auto &ToExamine : PrevInstrs) {
1105     for (auto &MO : ToExamine.operands()) {
1106       // Test for operand that defines something aliasing RegToSeek.
1107       if (!MO.isReg() || !MO.isDef() ||
1108           !TRI.regsOverlap(RegToSeek, MO.getReg()))
1109         continue;
1110 
1111       return ApplySubregisters(
1112           {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)});
1113     }
1114   }
1115 
1116   MachineBasicBlock &InsertBB = *CurInst->getParent();
1117 
1118   // We reached the start of the block before finding a defining instruction.
1119   // There are numerous scenarios where this can happen:
1120   // * Constant physical registers,
1121   // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1122   // * Arguments in the entry block,
1123   // * Exception handling landing pads.
1124   // Validating all of them is too difficult, so just insert a DBG_PHI reading
1125   // the variable value at this position, rather than checking it makes sense.
1126 
1127   // Create DBG_PHI for specified physreg.
1128   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1129                          TII.get(TargetOpcode::DBG_PHI));
1130   Builder.addReg(State.first);
1131   unsigned NewNum = getNewDebugInstrNum();
1132   Builder.addImm(NewNum);
1133   return ApplySubregisters({NewNum, 0u});
1134 }
1135 
1136 void MachineFunction::finalizeDebugInstrRefs() {
1137   auto *TII = getSubtarget().getInstrInfo();
1138 
1139   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1140     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1141     MI.setDesc(RefII);
1142     MI.setDebugValueUndef();
1143   };
1144 
1145   DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1146   for (auto &MBB : *this) {
1147     for (auto &MI : MBB) {
1148       if (!MI.isDebugRef())
1149         continue;
1150 
1151       bool IsValidRef = true;
1152 
1153       for (MachineOperand &MO : MI.debug_operands()) {
1154         if (!MO.isReg())
1155           continue;
1156 
1157         Register Reg = MO.getReg();
1158 
1159         // Some vregs can be deleted as redundant in the meantime. Mark those
1160         // as DBG_VALUE $noreg. Additionally, some normal instructions are
1161         // quickly deleted, leaving dangling references to vregs with no def.
1162         if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1163           IsValidRef = false;
1164           break;
1165         }
1166 
1167         assert(Reg.isVirtual());
1168         MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1169 
1170         // If we've found a copy-like instruction, follow it back to the
1171         // instruction that defines the source value, see salvageCopySSA docs
1172         // for why this is important.
1173         if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1174           auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1175           MO.ChangeToDbgInstrRef(Result.first, Result.second);
1176         } else {
1177           // Otherwise, identify the operand number that the VReg refers to.
1178           unsigned OperandIdx = 0;
1179           for (const auto &DefMO : DefMI.operands()) {
1180             if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1181               break;
1182             ++OperandIdx;
1183           }
1184           assert(OperandIdx < DefMI.getNumOperands());
1185 
1186           // Morph this instr ref to point at the given instruction and operand.
1187           unsigned ID = DefMI.getDebugInstrNum();
1188           MO.ChangeToDbgInstrRef(ID, OperandIdx);
1189         }
1190       }
1191 
1192       if (!IsValidRef)
1193         MakeUndefDbgValue(MI);
1194     }
1195   }
1196 }
1197 
1198 bool MachineFunction::shouldUseDebugInstrRef() const {
1199   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1200   // have optimized code inlined into this unoptimized code, however with
1201   // fewer and less aggressive optimizations happening, coverage and accuracy
1202   // should not suffer.
1203   if (getTarget().getOptLevel() == CodeGenOpt::None)
1204     return false;
1205 
1206   // Don't use instr-ref if this function is marked optnone.
1207   if (F.hasFnAttribute(Attribute::OptimizeNone))
1208     return false;
1209 
1210   if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1211     return true;
1212 
1213   return false;
1214 }
1215 
1216 bool MachineFunction::useDebugInstrRef() const {
1217   return UseDebugInstrRef;
1218 }
1219 
1220 void MachineFunction::setUseDebugInstrRef(bool Use) {
1221   UseDebugInstrRef = Use;
1222 }
1223 
1224 // Use one million as a high / reserved number.
1225 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1226 
1227 /// \}
1228 
1229 //===----------------------------------------------------------------------===//
1230 //  MachineJumpTableInfo implementation
1231 //===----------------------------------------------------------------------===//
1232 
1233 /// Return the size of each entry in the jump table.
1234 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1235   // The size of a jump table entry is 4 bytes unless the entry is just the
1236   // address of a block, in which case it is the pointer size.
1237   switch (getEntryKind()) {
1238   case MachineJumpTableInfo::EK_BlockAddress:
1239     return TD.getPointerSize();
1240   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1241     return 8;
1242   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1243   case MachineJumpTableInfo::EK_LabelDifference32:
1244   case MachineJumpTableInfo::EK_Custom32:
1245     return 4;
1246   case MachineJumpTableInfo::EK_Inline:
1247     return 0;
1248   }
1249   llvm_unreachable("Unknown jump table encoding!");
1250 }
1251 
1252 /// Return the alignment of each entry in the jump table.
1253 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1254   // The alignment of a jump table entry is the alignment of int32 unless the
1255   // entry is just the address of a block, in which case it is the pointer
1256   // alignment.
1257   switch (getEntryKind()) {
1258   case MachineJumpTableInfo::EK_BlockAddress:
1259     return TD.getPointerABIAlignment(0).value();
1260   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1261     return TD.getABIIntegerTypeAlignment(64).value();
1262   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1263   case MachineJumpTableInfo::EK_LabelDifference32:
1264   case MachineJumpTableInfo::EK_Custom32:
1265     return TD.getABIIntegerTypeAlignment(32).value();
1266   case MachineJumpTableInfo::EK_Inline:
1267     return 1;
1268   }
1269   llvm_unreachable("Unknown jump table encoding!");
1270 }
1271 
1272 /// Create a new jump table entry in the jump table info.
1273 unsigned MachineJumpTableInfo::createJumpTableIndex(
1274                                const std::vector<MachineBasicBlock*> &DestBBs) {
1275   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1276   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1277   return JumpTables.size()-1;
1278 }
1279 
1280 /// If Old is the target of any jump tables, update the jump tables to branch
1281 /// to New instead.
1282 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1283                                                   MachineBasicBlock *New) {
1284   assert(Old != New && "Not making a change?");
1285   bool MadeChange = false;
1286   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1287     ReplaceMBBInJumpTable(i, Old, New);
1288   return MadeChange;
1289 }
1290 
1291 /// If MBB is present in any jump tables, remove it.
1292 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1293   bool MadeChange = false;
1294   for (MachineJumpTableEntry &JTE : JumpTables) {
1295     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1296     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1297     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1298   }
1299   return MadeChange;
1300 }
1301 
1302 /// If Old is a target of the jump tables, update the jump table to branch to
1303 /// New instead.
1304 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1305                                                  MachineBasicBlock *Old,
1306                                                  MachineBasicBlock *New) {
1307   assert(Old != New && "Not making a change?");
1308   bool MadeChange = false;
1309   MachineJumpTableEntry &JTE = JumpTables[Idx];
1310   for (MachineBasicBlock *&MBB : JTE.MBBs)
1311     if (MBB == Old) {
1312       MBB = New;
1313       MadeChange = true;
1314     }
1315   return MadeChange;
1316 }
1317 
1318 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1319   if (JumpTables.empty()) return;
1320 
1321   OS << "Jump Tables:\n";
1322 
1323   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1324     OS << printJumpTableEntryReference(i) << ':';
1325     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1326       OS << ' ' << printMBBReference(*MBB);
1327     if (i != e)
1328       OS << '\n';
1329   }
1330 
1331   OS << '\n';
1332 }
1333 
1334 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1335 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1336 #endif
1337 
1338 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1339   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1340 }
1341 
1342 //===----------------------------------------------------------------------===//
1343 //  MachineConstantPool implementation
1344 //===----------------------------------------------------------------------===//
1345 
1346 void MachineConstantPoolValue::anchor() {}
1347 
1348 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1349   return DL.getTypeAllocSize(Ty);
1350 }
1351 
1352 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1353   if (isMachineConstantPoolEntry())
1354     return Val.MachineCPVal->getSizeInBytes(DL);
1355   return DL.getTypeAllocSize(Val.ConstVal->getType());
1356 }
1357 
1358 bool MachineConstantPoolEntry::needsRelocation() const {
1359   if (isMachineConstantPoolEntry())
1360     return true;
1361   return Val.ConstVal->needsDynamicRelocation();
1362 }
1363 
1364 SectionKind
1365 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1366   if (needsRelocation())
1367     return SectionKind::getReadOnlyWithRel();
1368   switch (getSizeInBytes(*DL)) {
1369   case 4:
1370     return SectionKind::getMergeableConst4();
1371   case 8:
1372     return SectionKind::getMergeableConst8();
1373   case 16:
1374     return SectionKind::getMergeableConst16();
1375   case 32:
1376     return SectionKind::getMergeableConst32();
1377   default:
1378     return SectionKind::getReadOnly();
1379   }
1380 }
1381 
1382 MachineConstantPool::~MachineConstantPool() {
1383   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1384   // so keep track of which we've deleted to avoid double deletions.
1385   DenseSet<MachineConstantPoolValue*> Deleted;
1386   for (const MachineConstantPoolEntry &C : Constants)
1387     if (C.isMachineConstantPoolEntry()) {
1388       Deleted.insert(C.Val.MachineCPVal);
1389       delete C.Val.MachineCPVal;
1390     }
1391   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1392     if (Deleted.count(CPV) == 0)
1393       delete CPV;
1394   }
1395 }
1396 
1397 /// Test whether the given two constants can be allocated the same constant pool
1398 /// entry.
1399 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1400                                       const DataLayout &DL) {
1401   // Handle the trivial case quickly.
1402   if (A == B) return true;
1403 
1404   // If they have the same type but weren't the same constant, quickly
1405   // reject them.
1406   if (A->getType() == B->getType()) return false;
1407 
1408   // We can't handle structs or arrays.
1409   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1410       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1411     return false;
1412 
1413   // For now, only support constants with the same size.
1414   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1415   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1416     return false;
1417 
1418   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1419 
1420   // Try constant folding a bitcast of both instructions to an integer.  If we
1421   // get two identical ConstantInt's, then we are good to share them.  We use
1422   // the constant folding APIs to do this so that we get the benefit of
1423   // DataLayout.
1424   if (isa<PointerType>(A->getType()))
1425     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1426                                 const_cast<Constant *>(A), IntTy, DL);
1427   else if (A->getType() != IntTy)
1428     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1429                                 IntTy, DL);
1430   if (isa<PointerType>(B->getType()))
1431     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1432                                 const_cast<Constant *>(B), IntTy, DL);
1433   else if (B->getType() != IntTy)
1434     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1435                                 IntTy, DL);
1436 
1437   return A == B;
1438 }
1439 
1440 /// Create a new entry in the constant pool or return an existing one.
1441 /// User must specify the log2 of the minimum required alignment for the object.
1442 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1443                                                    Align Alignment) {
1444   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1445 
1446   // Check to see if we already have this constant.
1447   //
1448   // FIXME, this could be made much more efficient for large constant pools.
1449   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1450     if (!Constants[i].isMachineConstantPoolEntry() &&
1451         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1452       if (Constants[i].getAlign() < Alignment)
1453         Constants[i].Alignment = Alignment;
1454       return i;
1455     }
1456 
1457   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1458   return Constants.size()-1;
1459 }
1460 
1461 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1462                                                    Align Alignment) {
1463   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1464 
1465   // Check to see if we already have this constant.
1466   //
1467   // FIXME, this could be made much more efficient for large constant pools.
1468   int Idx = V->getExistingMachineCPValue(this, Alignment);
1469   if (Idx != -1) {
1470     MachineCPVsSharingEntries.insert(V);
1471     return (unsigned)Idx;
1472   }
1473 
1474   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1475   return Constants.size()-1;
1476 }
1477 
1478 void MachineConstantPool::print(raw_ostream &OS) const {
1479   if (Constants.empty()) return;
1480 
1481   OS << "Constant Pool:\n";
1482   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1483     OS << "  cp#" << i << ": ";
1484     if (Constants[i].isMachineConstantPoolEntry())
1485       Constants[i].Val.MachineCPVal->print(OS);
1486     else
1487       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1488     OS << ", align=" << Constants[i].getAlign().value();
1489     OS << "\n";
1490   }
1491 }
1492 
1493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1494 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1495 #endif
1496