1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/PseudoSourceValueManager.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/WasmEHFuncInfo.h" 42 #include "llvm/CodeGen/WinEHFuncInfo.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSlotTracker.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DOTGraphTraits.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 #include "LiveDebugValues/LiveDebugValues.h" 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "codegen" 84 85 static cl::opt<unsigned> AlignAllFunctions( 86 "align-all-functions", 87 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 88 "means align on 16B boundaries)."), 89 cl::init(0), cl::Hidden); 90 91 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 92 using P = MachineFunctionProperties::Property; 93 94 // clang-format off 95 switch(Prop) { 96 case P::FailedISel: return "FailedISel"; 97 case P::IsSSA: return "IsSSA"; 98 case P::Legalized: return "Legalized"; 99 case P::NoPHIs: return "NoPHIs"; 100 case P::NoVRegs: return "NoVRegs"; 101 case P::RegBankSelected: return "RegBankSelected"; 102 case P::Selected: return "Selected"; 103 case P::TracksLiveness: return "TracksLiveness"; 104 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 105 case P::FailsVerification: return "FailsVerification"; 106 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 107 } 108 // clang-format on 109 llvm_unreachable("Invalid machine function property"); 110 } 111 112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 113 if (!F.hasFnAttribute(Attribute::SafeStack)) 114 return; 115 116 auto *Existing = 117 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 118 119 if (!Existing || Existing->getNumOperands() != 2) 120 return; 121 122 auto *MetadataName = "unsafe-stack-size"; 123 if (auto &N = Existing->getOperand(0)) { 124 if (N.equalsStr(MetadataName)) { 125 if (auto &Op = Existing->getOperand(1)) { 126 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 127 FrameInfo.setUnsafeStackSize(Val); 128 } 129 } 130 } 131 } 132 133 // Pin the vtable to this file. 134 void MachineFunction::Delegate::anchor() {} 135 136 void MachineFunctionProperties::print(raw_ostream &OS) const { 137 const char *Separator = ""; 138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 139 if (!Properties[I]) 140 continue; 141 OS << Separator << getPropertyName(static_cast<Property>(I)); 142 Separator = ", "; 143 } 144 } 145 146 //===----------------------------------------------------------------------===// 147 // MachineFunction implementation 148 //===----------------------------------------------------------------------===// 149 150 // Out-of-line virtual method. 151 MachineFunctionInfo::~MachineFunctionInfo() = default; 152 153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 154 MBB->getParent()->deleteMachineBasicBlock(MBB); 155 } 156 157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 158 const Function &F) { 159 if (auto MA = F.getFnStackAlign()) 160 return *MA; 161 return STI->getFrameLowering()->getStackAlign(); 162 } 163 164 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 165 const TargetSubtargetInfo &STI, 166 unsigned FunctionNum, MachineModuleInfo &mmi) 167 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 168 FunctionNumber = FunctionNum; 169 init(); 170 } 171 172 void MachineFunction::handleInsertion(MachineInstr &MI) { 173 if (TheDelegate) 174 TheDelegate->MF_HandleInsertion(MI); 175 } 176 177 void MachineFunction::handleRemoval(MachineInstr &MI) { 178 if (TheDelegate) 179 TheDelegate->MF_HandleRemoval(MI); 180 } 181 182 void MachineFunction::handleChangeDesc(MachineInstr &MI, 183 const MCInstrDesc &TID) { 184 if (TheDelegate) 185 TheDelegate->MF_HandleChangeDesc(MI, TID); 186 } 187 188 void MachineFunction::init() { 189 // Assume the function starts in SSA form with correct liveness. 190 Properties.set(MachineFunctionProperties::Property::IsSSA); 191 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 192 if (STI->getRegisterInfo()) 193 RegInfo = new (Allocator) MachineRegisterInfo(this); 194 else 195 RegInfo = nullptr; 196 197 MFInfo = nullptr; 198 199 // We can realign the stack if the target supports it and the user hasn't 200 // explicitly asked us not to. 201 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 202 !F.hasFnAttribute("no-realign-stack"); 203 bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) || 204 F.hasFnAttribute("stackrealign"); 205 FrameInfo = new (Allocator) MachineFrameInfo( 206 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 207 /*ForcedRealign=*/ForceRealignSP && CanRealignSP); 208 209 setUnsafeStackSize(F, *FrameInfo); 210 211 if (F.hasFnAttribute(Attribute::StackAlignment)) 212 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 213 214 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 215 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 216 217 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 218 // FIXME: Use Function::hasOptSize(). 219 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 220 Alignment = std::max(Alignment, 221 STI->getTargetLowering()->getPrefFunctionAlignment()); 222 223 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls 224 // to load a type hash before the function label. Ensure functions are aligned 225 // by a least 4 to avoid unaligned access, which is especially important for 226 // -mno-unaligned-access. 227 if (F.hasMetadata(LLVMContext::MD_func_sanitize) || 228 F.getMetadata(LLVMContext::MD_kcfi_type)) 229 Alignment = std::max(Alignment, Align(4)); 230 231 if (AlignAllFunctions) 232 Alignment = Align(1ULL << AlignAllFunctions); 233 234 JumpTableInfo = nullptr; 235 236 if (isFuncletEHPersonality(classifyEHPersonality( 237 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 238 WinEHInfo = new (Allocator) WinEHFuncInfo(); 239 } 240 241 if (isScopedEHPersonality(classifyEHPersonality( 242 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 243 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 244 } 245 246 assert(Target.isCompatibleDataLayout(getDataLayout()) && 247 "Can't create a MachineFunction using a Module with a " 248 "Target-incompatible DataLayout attached\n"); 249 250 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 251 } 252 253 void MachineFunction::initTargetMachineFunctionInfo( 254 const TargetSubtargetInfo &STI) { 255 assert(!MFInfo && "MachineFunctionInfo already set"); 256 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); 257 } 258 259 MachineFunction::~MachineFunction() { 260 clear(); 261 } 262 263 void MachineFunction::clear() { 264 Properties.reset(); 265 // Don't call destructors on MachineInstr and MachineOperand. All of their 266 // memory comes from the BumpPtrAllocator which is about to be purged. 267 // 268 // Do call MachineBasicBlock destructors, it contains std::vectors. 269 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 270 I->Insts.clearAndLeakNodesUnsafely(); 271 MBBNumbering.clear(); 272 273 InstructionRecycler.clear(Allocator); 274 OperandRecycler.clear(Allocator); 275 BasicBlockRecycler.clear(Allocator); 276 CodeViewAnnotations.clear(); 277 VariableDbgInfos.clear(); 278 if (RegInfo) { 279 RegInfo->~MachineRegisterInfo(); 280 Allocator.Deallocate(RegInfo); 281 } 282 if (MFInfo) { 283 MFInfo->~MachineFunctionInfo(); 284 Allocator.Deallocate(MFInfo); 285 } 286 287 FrameInfo->~MachineFrameInfo(); 288 Allocator.Deallocate(FrameInfo); 289 290 ConstantPool->~MachineConstantPool(); 291 Allocator.Deallocate(ConstantPool); 292 293 if (JumpTableInfo) { 294 JumpTableInfo->~MachineJumpTableInfo(); 295 Allocator.Deallocate(JumpTableInfo); 296 } 297 298 if (WinEHInfo) { 299 WinEHInfo->~WinEHFuncInfo(); 300 Allocator.Deallocate(WinEHInfo); 301 } 302 303 if (WasmEHInfo) { 304 WasmEHInfo->~WasmEHFuncInfo(); 305 Allocator.Deallocate(WasmEHInfo); 306 } 307 } 308 309 const DataLayout &MachineFunction::getDataLayout() const { 310 return F.getDataLayout(); 311 } 312 313 /// Get the JumpTableInfo for this function. 314 /// If it does not already exist, allocate one. 315 MachineJumpTableInfo *MachineFunction:: 316 getOrCreateJumpTableInfo(unsigned EntryKind) { 317 if (JumpTableInfo) return JumpTableInfo; 318 319 JumpTableInfo = new (Allocator) 320 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 321 return JumpTableInfo; 322 } 323 324 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 325 return F.getDenormalMode(FPType); 326 } 327 328 /// Should we be emitting segmented stack stuff for the function 329 bool MachineFunction::shouldSplitStack() const { 330 return getFunction().hasFnAttribute("split-stack"); 331 } 332 333 [[nodiscard]] unsigned 334 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 335 FrameInstructions.push_back(Inst); 336 return FrameInstructions.size() - 1; 337 } 338 339 /// This discards all of the MachineBasicBlock numbers and recomputes them. 340 /// This guarantees that the MBB numbers are sequential, dense, and match the 341 /// ordering of the blocks within the function. If a specific MachineBasicBlock 342 /// is specified, only that block and those after it are renumbered. 343 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 344 if (empty()) { MBBNumbering.clear(); return; } 345 MachineFunction::iterator MBBI, E = end(); 346 if (MBB == nullptr) 347 MBBI = begin(); 348 else 349 MBBI = MBB->getIterator(); 350 351 // Figure out the block number this should have. 352 unsigned BlockNo = 0; 353 if (MBBI != begin()) 354 BlockNo = std::prev(MBBI)->getNumber() + 1; 355 356 for (; MBBI != E; ++MBBI, ++BlockNo) { 357 if (MBBI->getNumber() != (int)BlockNo) { 358 // Remove use of the old number. 359 if (MBBI->getNumber() != -1) { 360 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 361 "MBB number mismatch!"); 362 MBBNumbering[MBBI->getNumber()] = nullptr; 363 } 364 365 // If BlockNo is already taken, set that block's number to -1. 366 if (MBBNumbering[BlockNo]) 367 MBBNumbering[BlockNo]->setNumber(-1); 368 369 MBBNumbering[BlockNo] = &*MBBI; 370 MBBI->setNumber(BlockNo); 371 } 372 } 373 374 // Okay, all the blocks are renumbered. If we have compactified the block 375 // numbering, shrink MBBNumbering now. 376 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 377 MBBNumbering.resize(BlockNo); 378 } 379 380 /// This method iterates over the basic blocks and assigns their IsBeginSection 381 /// and IsEndSection fields. This must be called after MBB layout is finalized 382 /// and the SectionID's are assigned to MBBs. 383 void MachineFunction::assignBeginEndSections() { 384 front().setIsBeginSection(); 385 auto CurrentSectionID = front().getSectionID(); 386 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 387 if (MBBI->getSectionID() == CurrentSectionID) 388 continue; 389 MBBI->setIsBeginSection(); 390 std::prev(MBBI)->setIsEndSection(); 391 CurrentSectionID = MBBI->getSectionID(); 392 } 393 back().setIsEndSection(); 394 } 395 396 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 397 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 398 DebugLoc DL, 399 bool NoImplicit) { 400 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 401 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 402 } 403 404 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 405 /// identical in all ways except the instruction has no parent, prev, or next. 406 MachineInstr * 407 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 408 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 409 MachineInstr(*this, *Orig); 410 } 411 412 MachineInstr &MachineFunction::cloneMachineInstrBundle( 413 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 414 const MachineInstr &Orig) { 415 MachineInstr *FirstClone = nullptr; 416 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 417 while (true) { 418 MachineInstr *Cloned = CloneMachineInstr(&*I); 419 MBB.insert(InsertBefore, Cloned); 420 if (FirstClone == nullptr) { 421 FirstClone = Cloned; 422 } else { 423 Cloned->bundleWithPred(); 424 } 425 426 if (!I->isBundledWithSucc()) 427 break; 428 ++I; 429 } 430 // Copy over call site info to the cloned instruction if needed. If Orig is in 431 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 432 // the bundle. 433 if (Orig.shouldUpdateCallSiteInfo()) 434 copyCallSiteInfo(&Orig, FirstClone); 435 return *FirstClone; 436 } 437 438 /// Delete the given MachineInstr. 439 /// 440 /// This function also serves as the MachineInstr destructor - the real 441 /// ~MachineInstr() destructor must be empty. 442 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 443 // Verify that a call site info is at valid state. This assertion should 444 // be triggered during the implementation of support for the 445 // call site info of a new architecture. If the assertion is triggered, 446 // back trace will tell where to insert a call to updateCallSiteInfo(). 447 assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) && 448 "Call site info was not updated!"); 449 // Strip it for parts. The operand array and the MI object itself are 450 // independently recyclable. 451 if (MI->Operands) 452 deallocateOperandArray(MI->CapOperands, MI->Operands); 453 // Don't call ~MachineInstr() which must be trivial anyway because 454 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 455 // destructors. 456 InstructionRecycler.Deallocate(Allocator, MI); 457 } 458 459 /// Allocate a new MachineBasicBlock. Use this instead of 460 /// `new MachineBasicBlock'. 461 MachineBasicBlock * 462 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB, 463 std::optional<UniqueBBID> BBID) { 464 MachineBasicBlock *MBB = 465 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 466 MachineBasicBlock(*this, BB); 467 // Set BBID for `-basic-block=sections=labels` and 468 // `-basic-block-sections=list` to allow robust mapping of profiles to basic 469 // blocks. 470 if (Target.getBBSectionsType() == BasicBlockSection::Labels || 471 Target.Options.BBAddrMap || 472 Target.getBBSectionsType() == BasicBlockSection::List) 473 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0}); 474 return MBB; 475 } 476 477 /// Delete the given MachineBasicBlock. 478 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 479 assert(MBB->getParent() == this && "MBB parent mismatch!"); 480 // Clean up any references to MBB in jump tables before deleting it. 481 if (JumpTableInfo) 482 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 483 MBB->~MachineBasicBlock(); 484 BasicBlockRecycler.Deallocate(Allocator, MBB); 485 } 486 487 MachineMemOperand *MachineFunction::getMachineMemOperand( 488 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, 489 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 490 SyncScope::ID SSID, AtomicOrdering Ordering, 491 AtomicOrdering FailureOrdering) { 492 assert((!Size.hasValue() || 493 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 494 "Unexpected an unknown size to be represented using " 495 "LocationSize::beforeOrAfter()"); 496 return new (Allocator) 497 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID, 498 Ordering, FailureOrdering); 499 } 500 501 MachineMemOperand *MachineFunction::getMachineMemOperand( 502 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 503 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 504 SyncScope::ID SSID, AtomicOrdering Ordering, 505 AtomicOrdering FailureOrdering) { 506 return new (Allocator) 507 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 508 Ordering, FailureOrdering); 509 } 510 511 MachineMemOperand * 512 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 513 const MachinePointerInfo &PtrInfo, 514 LocationSize Size) { 515 assert((!Size.hasValue() || 516 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 517 "Unexpected an unknown size to be represented using " 518 "LocationSize::beforeOrAfter()"); 519 return new (Allocator) 520 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 521 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 522 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 523 } 524 525 MachineMemOperand *MachineFunction::getMachineMemOperand( 526 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 527 return new (Allocator) 528 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 529 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 530 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 531 } 532 533 MachineMemOperand * 534 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 535 int64_t Offset, LLT Ty) { 536 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 537 538 // If there is no pointer value, the offset isn't tracked so we need to adjust 539 // the base alignment. 540 Align Alignment = PtrInfo.V.isNull() 541 ? commonAlignment(MMO->getBaseAlign(), Offset) 542 : MMO->getBaseAlign(); 543 544 // Do not preserve ranges, since we don't necessarily know what the high bits 545 // are anymore. 546 return new (Allocator) MachineMemOperand( 547 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 548 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 549 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 550 } 551 552 MachineMemOperand * 553 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 554 const AAMDNodes &AAInfo) { 555 MachinePointerInfo MPI = MMO->getValue() ? 556 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 557 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 558 559 return new (Allocator) MachineMemOperand( 560 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 561 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 562 MMO->getFailureOrdering()); 563 } 564 565 MachineMemOperand * 566 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 567 MachineMemOperand::Flags Flags) { 568 return new (Allocator) MachineMemOperand( 569 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 570 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 571 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 572 } 573 574 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 575 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 576 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, 577 uint32_t CFIType, MDNode *MMRAs) { 578 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 579 PostInstrSymbol, HeapAllocMarker, 580 PCSections, CFIType, MMRAs); 581 } 582 583 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 584 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 585 llvm::copy(Name, Dest); 586 Dest[Name.size()] = 0; 587 return Dest; 588 } 589 590 uint32_t *MachineFunction::allocateRegMask() { 591 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 592 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 593 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 594 memset(Mask, 0, Size * sizeof(Mask[0])); 595 return Mask; 596 } 597 598 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 599 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 600 copy(Mask, AllocMask); 601 return {AllocMask, Mask.size()}; 602 } 603 604 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 605 LLVM_DUMP_METHOD void MachineFunction::dump() const { 606 print(dbgs()); 607 } 608 #endif 609 610 StringRef MachineFunction::getName() const { 611 return getFunction().getName(); 612 } 613 614 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 615 OS << "# Machine code for function " << getName() << ": "; 616 getProperties().print(OS); 617 OS << '\n'; 618 619 // Print Frame Information 620 FrameInfo->print(*this, OS); 621 622 // Print JumpTable Information 623 if (JumpTableInfo) 624 JumpTableInfo->print(OS); 625 626 // Print Constant Pool 627 ConstantPool->print(OS); 628 629 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 630 631 if (RegInfo && !RegInfo->livein_empty()) { 632 OS << "Function Live Ins: "; 633 for (MachineRegisterInfo::livein_iterator 634 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 635 OS << printReg(I->first, TRI); 636 if (I->second) 637 OS << " in " << printReg(I->second, TRI); 638 if (std::next(I) != E) 639 OS << ", "; 640 } 641 OS << '\n'; 642 } 643 644 ModuleSlotTracker MST(getFunction().getParent()); 645 MST.incorporateFunction(getFunction()); 646 for (const auto &BB : *this) { 647 OS << '\n'; 648 // If we print the whole function, print it at its most verbose level. 649 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 650 } 651 652 OS << "\n# End machine code for function " << getName() << ".\n\n"; 653 } 654 655 /// True if this function needs frame moves for debug or exceptions. 656 bool MachineFunction::needsFrameMoves() const { 657 return getMMI().hasDebugInfo() || 658 getTarget().Options.ForceDwarfFrameSection || 659 F.needsUnwindTableEntry(); 660 } 661 662 namespace llvm { 663 664 template<> 665 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 666 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 667 668 static std::string getGraphName(const MachineFunction *F) { 669 return ("CFG for '" + F->getName() + "' function").str(); 670 } 671 672 std::string getNodeLabel(const MachineBasicBlock *Node, 673 const MachineFunction *Graph) { 674 std::string OutStr; 675 { 676 raw_string_ostream OSS(OutStr); 677 678 if (isSimple()) { 679 OSS << printMBBReference(*Node); 680 if (const BasicBlock *BB = Node->getBasicBlock()) 681 OSS << ": " << BB->getName(); 682 } else 683 Node->print(OSS); 684 } 685 686 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 687 688 // Process string output to make it nicer... 689 for (unsigned i = 0; i != OutStr.length(); ++i) 690 if (OutStr[i] == '\n') { // Left justify 691 OutStr[i] = '\\'; 692 OutStr.insert(OutStr.begin()+i+1, 'l'); 693 } 694 return OutStr; 695 } 696 }; 697 698 } // end namespace llvm 699 700 void MachineFunction::viewCFG() const 701 { 702 #ifndef NDEBUG 703 ViewGraph(this, "mf" + getName()); 704 #else 705 errs() << "MachineFunction::viewCFG is only available in debug builds on " 706 << "systems with Graphviz or gv!\n"; 707 #endif // NDEBUG 708 } 709 710 void MachineFunction::viewCFGOnly() const 711 { 712 #ifndef NDEBUG 713 ViewGraph(this, "mf" + getName(), true); 714 #else 715 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 716 << "systems with Graphviz or gv!\n"; 717 #endif // NDEBUG 718 } 719 720 /// Add the specified physical register as a live-in value and 721 /// create a corresponding virtual register for it. 722 Register MachineFunction::addLiveIn(MCRegister PReg, 723 const TargetRegisterClass *RC) { 724 MachineRegisterInfo &MRI = getRegInfo(); 725 Register VReg = MRI.getLiveInVirtReg(PReg); 726 if (VReg) { 727 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 728 (void)VRegRC; 729 // A physical register can be added several times. 730 // Between two calls, the register class of the related virtual register 731 // may have been constrained to match some operation constraints. 732 // In that case, check that the current register class includes the 733 // physical register and is a sub class of the specified RC. 734 assert((VRegRC == RC || (VRegRC->contains(PReg) && 735 RC->hasSubClassEq(VRegRC))) && 736 "Register class mismatch!"); 737 return VReg; 738 } 739 VReg = MRI.createVirtualRegister(RC); 740 MRI.addLiveIn(PReg, VReg); 741 return VReg; 742 } 743 744 /// Return the MCSymbol for the specified non-empty jump table. 745 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 746 /// normal 'L' label is returned. 747 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 748 bool isLinkerPrivate) const { 749 const DataLayout &DL = getDataLayout(); 750 assert(JumpTableInfo && "No jump tables"); 751 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 752 753 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 754 : DL.getPrivateGlobalPrefix(); 755 SmallString<60> Name; 756 raw_svector_ostream(Name) 757 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 758 return Ctx.getOrCreateSymbol(Name); 759 } 760 761 /// Return a function-local symbol to represent the PIC base. 762 MCSymbol *MachineFunction::getPICBaseSymbol() const { 763 const DataLayout &DL = getDataLayout(); 764 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 765 Twine(getFunctionNumber()) + "$pb"); 766 } 767 768 /// \name Exception Handling 769 /// \{ 770 771 LandingPadInfo & 772 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 773 unsigned N = LandingPads.size(); 774 for (unsigned i = 0; i < N; ++i) { 775 LandingPadInfo &LP = LandingPads[i]; 776 if (LP.LandingPadBlock == LandingPad) 777 return LP; 778 } 779 780 LandingPads.push_back(LandingPadInfo(LandingPad)); 781 return LandingPads[N]; 782 } 783 784 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 785 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 786 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 787 LP.BeginLabels.push_back(BeginLabel); 788 LP.EndLabels.push_back(EndLabel); 789 } 790 791 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 792 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 793 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 794 LP.LandingPadLabel = LandingPadLabel; 795 796 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 797 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 798 // If there's no typeid list specified, then "cleanup" is implicit. 799 // Otherwise, id 0 is reserved for the cleanup action. 800 if (LPI->isCleanup() && LPI->getNumClauses() != 0) 801 LP.TypeIds.push_back(0); 802 803 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 804 // correct, but we need to do it this way because of how the DWARF EH 805 // emitter processes the clauses. 806 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 807 Value *Val = LPI->getClause(I - 1); 808 if (LPI->isCatch(I - 1)) { 809 LP.TypeIds.push_back( 810 getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts()))); 811 } else { 812 // Add filters in a list. 813 auto *CVal = cast<Constant>(Val); 814 SmallVector<unsigned, 4> FilterList; 815 for (const Use &U : CVal->operands()) 816 FilterList.push_back( 817 getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts()))); 818 819 LP.TypeIds.push_back(getFilterIDFor(FilterList)); 820 } 821 } 822 823 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 824 for (unsigned I = CPI->arg_size(); I != 0; --I) { 825 auto *TypeInfo = 826 dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts()); 827 LP.TypeIds.push_back(getTypeIDFor(TypeInfo)); 828 } 829 830 } else { 831 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 832 } 833 834 return LandingPadLabel; 835 } 836 837 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 838 ArrayRef<unsigned> Sites) { 839 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 840 } 841 842 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 843 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 844 if (TypeInfos[i] == TI) return i + 1; 845 846 TypeInfos.push_back(TI); 847 return TypeInfos.size(); 848 } 849 850 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { 851 // If the new filter coincides with the tail of an existing filter, then 852 // re-use the existing filter. Folding filters more than this requires 853 // re-ordering filters and/or their elements - probably not worth it. 854 for (unsigned i : FilterEnds) { 855 unsigned j = TyIds.size(); 856 857 while (i && j) 858 if (FilterIds[--i] != TyIds[--j]) 859 goto try_next; 860 861 if (!j) 862 // The new filter coincides with range [i, end) of the existing filter. 863 return -(1 + i); 864 865 try_next:; 866 } 867 868 // Add the new filter. 869 int FilterID = -(1 + FilterIds.size()); 870 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 871 llvm::append_range(FilterIds, TyIds); 872 FilterEnds.push_back(FilterIds.size()); 873 FilterIds.push_back(0); // terminator 874 return FilterID; 875 } 876 877 MachineFunction::CallSiteInfoMap::iterator 878 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 879 assert(MI->isCandidateForCallSiteEntry() && 880 "Call site info refers only to call (MI) candidates"); 881 882 if (!Target.Options.EmitCallSiteInfo) 883 return CallSitesInfo.end(); 884 return CallSitesInfo.find(MI); 885 } 886 887 /// Return the call machine instruction or find a call within bundle. 888 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 889 if (!MI->isBundle()) 890 return MI; 891 892 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 893 getBundleEnd(MI->getIterator()))) 894 if (BMI.isCandidateForCallSiteEntry()) 895 return &BMI; 896 897 llvm_unreachable("Unexpected bundle without a call site candidate"); 898 } 899 900 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 901 assert(MI->shouldUpdateCallSiteInfo() && 902 "Call site info refers only to call (MI) candidates or " 903 "candidates inside bundles"); 904 905 const MachineInstr *CallMI = getCallInstr(MI); 906 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 907 if (CSIt == CallSitesInfo.end()) 908 return; 909 CallSitesInfo.erase(CSIt); 910 } 911 912 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 913 const MachineInstr *New) { 914 assert(Old->shouldUpdateCallSiteInfo() && 915 "Call site info refers only to call (MI) candidates or " 916 "candidates inside bundles"); 917 918 if (!New->isCandidateForCallSiteEntry()) 919 return eraseCallSiteInfo(Old); 920 921 const MachineInstr *OldCallMI = getCallInstr(Old); 922 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 923 if (CSIt == CallSitesInfo.end()) 924 return; 925 926 CallSiteInfo CSInfo = CSIt->second; 927 CallSitesInfo[New] = CSInfo; 928 } 929 930 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 931 const MachineInstr *New) { 932 assert(Old->shouldUpdateCallSiteInfo() && 933 "Call site info refers only to call (MI) candidates or " 934 "candidates inside bundles"); 935 936 if (!New->isCandidateForCallSiteEntry()) 937 return eraseCallSiteInfo(Old); 938 939 const MachineInstr *OldCallMI = getCallInstr(Old); 940 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 941 if (CSIt == CallSitesInfo.end()) 942 return; 943 944 CallSiteInfo CSInfo = std::move(CSIt->second); 945 CallSitesInfo.erase(CSIt); 946 CallSitesInfo[New] = CSInfo; 947 } 948 949 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 950 DebugInstrNumberingCount = Num; 951 } 952 953 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 954 DebugInstrOperandPair B, 955 unsigned Subreg) { 956 // Catch any accidental self-loops. 957 assert(A.first != B.first); 958 // Don't allow any substitutions _from_ the memory operand number. 959 assert(A.second != DebugOperandMemNumber); 960 961 DebugValueSubstitutions.push_back({A, B, Subreg}); 962 } 963 964 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 965 MachineInstr &New, 966 unsigned MaxOperand) { 967 // If the Old instruction wasn't tracked at all, there is no work to do. 968 unsigned OldInstrNum = Old.peekDebugInstrNum(); 969 if (!OldInstrNum) 970 return; 971 972 // Iterate over all operands looking for defs to create substitutions for. 973 // Avoid creating new instr numbers unless we create a new substitution. 974 // While this has no functional effect, it risks confusing someone reading 975 // MIR output. 976 // Examine all the operands, or the first N specified by the caller. 977 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 978 for (unsigned int I = 0; I < MaxOperand; ++I) { 979 const auto &OldMO = Old.getOperand(I); 980 auto &NewMO = New.getOperand(I); 981 (void)NewMO; 982 983 if (!OldMO.isReg() || !OldMO.isDef()) 984 continue; 985 assert(NewMO.isDef()); 986 987 unsigned NewInstrNum = New.getDebugInstrNum(); 988 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 989 std::make_pair(NewInstrNum, I)); 990 } 991 } 992 993 auto MachineFunction::salvageCopySSA( 994 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 995 -> DebugInstrOperandPair { 996 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 997 998 // Check whether this copy-like instruction has already been salvaged into 999 // an operand pair. 1000 Register Dest; 1001 if (auto CopyDstSrc = TII.isCopyInstr(MI)) { 1002 Dest = CopyDstSrc->Destination->getReg(); 1003 } else { 1004 assert(MI.isSubregToReg()); 1005 Dest = MI.getOperand(0).getReg(); 1006 } 1007 1008 auto CacheIt = DbgPHICache.find(Dest); 1009 if (CacheIt != DbgPHICache.end()) 1010 return CacheIt->second; 1011 1012 // Calculate the instruction number to use, or install a DBG_PHI. 1013 auto OperandPair = salvageCopySSAImpl(MI); 1014 DbgPHICache.insert({Dest, OperandPair}); 1015 return OperandPair; 1016 } 1017 1018 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 1019 -> DebugInstrOperandPair { 1020 MachineRegisterInfo &MRI = getRegInfo(); 1021 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1022 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1023 1024 // Chase the value read by a copy-like instruction back to the instruction 1025 // that ultimately _defines_ that value. This may pass: 1026 // * Through multiple intermediate copies, including subregister moves / 1027 // copies, 1028 // * Copies from physical registers that must then be traced back to the 1029 // defining instruction, 1030 // * Or, physical registers may be live-in to (only) the entry block, which 1031 // requires a DBG_PHI to be created. 1032 // We can pursue this problem in that order: trace back through copies, 1033 // optionally through a physical register, to a defining instruction. We 1034 // should never move from physreg to vreg. As we're still in SSA form, no need 1035 // to worry about partial definitions of registers. 1036 1037 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1038 // returns the register read and any subregister identifying which part is 1039 // read. 1040 auto GetRegAndSubreg = 1041 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1042 Register NewReg, OldReg; 1043 unsigned SubReg; 1044 if (Cpy.isCopy()) { 1045 OldReg = Cpy.getOperand(0).getReg(); 1046 NewReg = Cpy.getOperand(1).getReg(); 1047 SubReg = Cpy.getOperand(1).getSubReg(); 1048 } else if (Cpy.isSubregToReg()) { 1049 OldReg = Cpy.getOperand(0).getReg(); 1050 NewReg = Cpy.getOperand(2).getReg(); 1051 SubReg = Cpy.getOperand(3).getImm(); 1052 } else { 1053 auto CopyDetails = *TII.isCopyInstr(Cpy); 1054 const MachineOperand &Src = *CopyDetails.Source; 1055 const MachineOperand &Dest = *CopyDetails.Destination; 1056 OldReg = Dest.getReg(); 1057 NewReg = Src.getReg(); 1058 SubReg = Src.getSubReg(); 1059 } 1060 1061 return {NewReg, SubReg}; 1062 }; 1063 1064 // First seek either the defining instruction, or a copy from a physreg. 1065 // During search, the current state is the current copy instruction, and which 1066 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1067 // deal with those later. 1068 auto State = GetRegAndSubreg(MI); 1069 auto CurInst = MI.getIterator(); 1070 SmallVector<unsigned, 4> SubregsSeen; 1071 while (true) { 1072 // If we've found a copy from a physreg, first portion of search is over. 1073 if (!State.first.isVirtual()) 1074 break; 1075 1076 // Record any subregister qualifier. 1077 if (State.second) 1078 SubregsSeen.push_back(State.second); 1079 1080 assert(MRI.hasOneDef(State.first)); 1081 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1082 CurInst = Inst.getIterator(); 1083 1084 // Any non-copy instruction is the defining instruction we're seeking. 1085 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1086 break; 1087 State = GetRegAndSubreg(Inst); 1088 }; 1089 1090 // Helper lambda to apply additional subregister substitutions to a known 1091 // instruction/operand pair. Adds new (fake) substitutions so that we can 1092 // record the subregister. FIXME: this isn't very space efficient if multiple 1093 // values are tracked back through the same copies; cache something later. 1094 auto ApplySubregisters = 1095 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1096 for (unsigned Subreg : reverse(SubregsSeen)) { 1097 // Fetch a new instruction number, not attached to an actual instruction. 1098 unsigned NewInstrNumber = getNewDebugInstrNum(); 1099 // Add a substitution from the "new" number to the known one, with a 1100 // qualifying subreg. 1101 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1102 // Return the new number; to find the underlying value, consumers need to 1103 // deal with the qualifying subreg. 1104 P = {NewInstrNumber, 0}; 1105 } 1106 return P; 1107 }; 1108 1109 // If we managed to find the defining instruction after COPYs, return an 1110 // instruction / operand pair after adding subregister qualifiers. 1111 if (State.first.isVirtual()) { 1112 // Virtual register def -- we can just look up where this happens. 1113 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1114 for (auto &MO : Inst->all_defs()) { 1115 if (MO.getReg() != State.first) 1116 continue; 1117 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()}); 1118 } 1119 1120 llvm_unreachable("Vreg def with no corresponding operand?"); 1121 } 1122 1123 // Our search ended in a copy from a physreg: walk back up the function 1124 // looking for whatever defines the physreg. 1125 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1126 State = GetRegAndSubreg(*CurInst); 1127 Register RegToSeek = State.first; 1128 1129 auto RMII = CurInst->getReverseIterator(); 1130 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1131 for (auto &ToExamine : PrevInstrs) { 1132 for (auto &MO : ToExamine.all_defs()) { 1133 // Test for operand that defines something aliasing RegToSeek. 1134 if (!TRI.regsOverlap(RegToSeek, MO.getReg())) 1135 continue; 1136 1137 return ApplySubregisters( 1138 {ToExamine.getDebugInstrNum(), MO.getOperandNo()}); 1139 } 1140 } 1141 1142 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1143 1144 // We reached the start of the block before finding a defining instruction. 1145 // There are numerous scenarios where this can happen: 1146 // * Constant physical registers, 1147 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1148 // * Arguments in the entry block, 1149 // * Exception handling landing pads. 1150 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1151 // the variable value at this position, rather than checking it makes sense. 1152 1153 // Create DBG_PHI for specified physreg. 1154 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1155 TII.get(TargetOpcode::DBG_PHI)); 1156 Builder.addReg(State.first); 1157 unsigned NewNum = getNewDebugInstrNum(); 1158 Builder.addImm(NewNum); 1159 return ApplySubregisters({NewNum, 0u}); 1160 } 1161 1162 void MachineFunction::finalizeDebugInstrRefs() { 1163 auto *TII = getSubtarget().getInstrInfo(); 1164 1165 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1166 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); 1167 MI.setDesc(RefII); 1168 MI.setDebugValueUndef(); 1169 }; 1170 1171 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1172 for (auto &MBB : *this) { 1173 for (auto &MI : MBB) { 1174 if (!MI.isDebugRef()) 1175 continue; 1176 1177 bool IsValidRef = true; 1178 1179 for (MachineOperand &MO : MI.debug_operands()) { 1180 if (!MO.isReg()) 1181 continue; 1182 1183 Register Reg = MO.getReg(); 1184 1185 // Some vregs can be deleted as redundant in the meantime. Mark those 1186 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1187 // quickly deleted, leaving dangling references to vregs with no def. 1188 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1189 IsValidRef = false; 1190 break; 1191 } 1192 1193 assert(Reg.isVirtual()); 1194 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1195 1196 // If we've found a copy-like instruction, follow it back to the 1197 // instruction that defines the source value, see salvageCopySSA docs 1198 // for why this is important. 1199 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1200 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1201 MO.ChangeToDbgInstrRef(Result.first, Result.second); 1202 } else { 1203 // Otherwise, identify the operand number that the VReg refers to. 1204 unsigned OperandIdx = 0; 1205 for (const auto &DefMO : DefMI.operands()) { 1206 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) 1207 break; 1208 ++OperandIdx; 1209 } 1210 assert(OperandIdx < DefMI.getNumOperands()); 1211 1212 // Morph this instr ref to point at the given instruction and operand. 1213 unsigned ID = DefMI.getDebugInstrNum(); 1214 MO.ChangeToDbgInstrRef(ID, OperandIdx); 1215 } 1216 } 1217 1218 if (!IsValidRef) 1219 MakeUndefDbgValue(MI); 1220 } 1221 } 1222 } 1223 1224 bool MachineFunction::shouldUseDebugInstrRef() const { 1225 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1226 // have optimized code inlined into this unoptimized code, however with 1227 // fewer and less aggressive optimizations happening, coverage and accuracy 1228 // should not suffer. 1229 if (getTarget().getOptLevel() == CodeGenOptLevel::None) 1230 return false; 1231 1232 // Don't use instr-ref if this function is marked optnone. 1233 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1234 return false; 1235 1236 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1237 return true; 1238 1239 return false; 1240 } 1241 1242 bool MachineFunction::useDebugInstrRef() const { 1243 return UseDebugInstrRef; 1244 } 1245 1246 void MachineFunction::setUseDebugInstrRef(bool Use) { 1247 UseDebugInstrRef = Use; 1248 } 1249 1250 // Use one million as a high / reserved number. 1251 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1252 1253 /// \} 1254 1255 //===----------------------------------------------------------------------===// 1256 // MachineJumpTableInfo implementation 1257 //===----------------------------------------------------------------------===// 1258 1259 /// Return the size of each entry in the jump table. 1260 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1261 // The size of a jump table entry is 4 bytes unless the entry is just the 1262 // address of a block, in which case it is the pointer size. 1263 switch (getEntryKind()) { 1264 case MachineJumpTableInfo::EK_BlockAddress: 1265 return TD.getPointerSize(); 1266 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1267 case MachineJumpTableInfo::EK_LabelDifference64: 1268 return 8; 1269 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1270 case MachineJumpTableInfo::EK_LabelDifference32: 1271 case MachineJumpTableInfo::EK_Custom32: 1272 return 4; 1273 case MachineJumpTableInfo::EK_Inline: 1274 return 0; 1275 } 1276 llvm_unreachable("Unknown jump table encoding!"); 1277 } 1278 1279 /// Return the alignment of each entry in the jump table. 1280 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1281 // The alignment of a jump table entry is the alignment of int32 unless the 1282 // entry is just the address of a block, in which case it is the pointer 1283 // alignment. 1284 switch (getEntryKind()) { 1285 case MachineJumpTableInfo::EK_BlockAddress: 1286 return TD.getPointerABIAlignment(0).value(); 1287 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1288 case MachineJumpTableInfo::EK_LabelDifference64: 1289 return TD.getABIIntegerTypeAlignment(64).value(); 1290 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1291 case MachineJumpTableInfo::EK_LabelDifference32: 1292 case MachineJumpTableInfo::EK_Custom32: 1293 return TD.getABIIntegerTypeAlignment(32).value(); 1294 case MachineJumpTableInfo::EK_Inline: 1295 return 1; 1296 } 1297 llvm_unreachable("Unknown jump table encoding!"); 1298 } 1299 1300 /// Create a new jump table entry in the jump table info. 1301 unsigned MachineJumpTableInfo::createJumpTableIndex( 1302 const std::vector<MachineBasicBlock*> &DestBBs) { 1303 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1304 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1305 return JumpTables.size()-1; 1306 } 1307 1308 /// If Old is the target of any jump tables, update the jump tables to branch 1309 /// to New instead. 1310 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1311 MachineBasicBlock *New) { 1312 assert(Old != New && "Not making a change?"); 1313 bool MadeChange = false; 1314 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1315 ReplaceMBBInJumpTable(i, Old, New); 1316 return MadeChange; 1317 } 1318 1319 /// If MBB is present in any jump tables, remove it. 1320 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1321 bool MadeChange = false; 1322 for (MachineJumpTableEntry &JTE : JumpTables) { 1323 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1324 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1325 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1326 } 1327 return MadeChange; 1328 } 1329 1330 /// If Old is a target of the jump tables, update the jump table to branch to 1331 /// New instead. 1332 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1333 MachineBasicBlock *Old, 1334 MachineBasicBlock *New) { 1335 assert(Old != New && "Not making a change?"); 1336 bool MadeChange = false; 1337 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1338 for (MachineBasicBlock *&MBB : JTE.MBBs) 1339 if (MBB == Old) { 1340 MBB = New; 1341 MadeChange = true; 1342 } 1343 return MadeChange; 1344 } 1345 1346 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1347 if (JumpTables.empty()) return; 1348 1349 OS << "Jump Tables:\n"; 1350 1351 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1352 OS << printJumpTableEntryReference(i) << ':'; 1353 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1354 OS << ' ' << printMBBReference(*MBB); 1355 if (i != e) 1356 OS << '\n'; 1357 } 1358 1359 OS << '\n'; 1360 } 1361 1362 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1363 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1364 #endif 1365 1366 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1367 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1368 } 1369 1370 //===----------------------------------------------------------------------===// 1371 // MachineConstantPool implementation 1372 //===----------------------------------------------------------------------===// 1373 1374 void MachineConstantPoolValue::anchor() {} 1375 1376 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1377 return DL.getTypeAllocSize(Ty); 1378 } 1379 1380 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1381 if (isMachineConstantPoolEntry()) 1382 return Val.MachineCPVal->getSizeInBytes(DL); 1383 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1384 } 1385 1386 bool MachineConstantPoolEntry::needsRelocation() const { 1387 if (isMachineConstantPoolEntry()) 1388 return true; 1389 return Val.ConstVal->needsDynamicRelocation(); 1390 } 1391 1392 SectionKind 1393 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1394 if (needsRelocation()) 1395 return SectionKind::getReadOnlyWithRel(); 1396 switch (getSizeInBytes(*DL)) { 1397 case 4: 1398 return SectionKind::getMergeableConst4(); 1399 case 8: 1400 return SectionKind::getMergeableConst8(); 1401 case 16: 1402 return SectionKind::getMergeableConst16(); 1403 case 32: 1404 return SectionKind::getMergeableConst32(); 1405 default: 1406 return SectionKind::getReadOnly(); 1407 } 1408 } 1409 1410 MachineConstantPool::~MachineConstantPool() { 1411 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1412 // so keep track of which we've deleted to avoid double deletions. 1413 DenseSet<MachineConstantPoolValue*> Deleted; 1414 for (const MachineConstantPoolEntry &C : Constants) 1415 if (C.isMachineConstantPoolEntry()) { 1416 Deleted.insert(C.Val.MachineCPVal); 1417 delete C.Val.MachineCPVal; 1418 } 1419 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1420 if (Deleted.count(CPV) == 0) 1421 delete CPV; 1422 } 1423 } 1424 1425 /// Test whether the given two constants can be allocated the same constant pool 1426 /// entry referenced by \param A. 1427 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1428 const DataLayout &DL) { 1429 // Handle the trivial case quickly. 1430 if (A == B) return true; 1431 1432 // If they have the same type but weren't the same constant, quickly 1433 // reject them. 1434 if (A->getType() == B->getType()) return false; 1435 1436 // We can't handle structs or arrays. 1437 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1438 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1439 return false; 1440 1441 // For now, only support constants with the same size. 1442 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1443 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1444 return false; 1445 1446 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement(); 1447 1448 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1449 1450 // Try constant folding a bitcast of both instructions to an integer. If we 1451 // get two identical ConstantInt's, then we are good to share them. We use 1452 // the constant folding APIs to do this so that we get the benefit of 1453 // DataLayout. 1454 if (isa<PointerType>(A->getType())) 1455 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1456 const_cast<Constant *>(A), IntTy, DL); 1457 else if (A->getType() != IntTy) 1458 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1459 IntTy, DL); 1460 if (isa<PointerType>(B->getType())) 1461 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1462 const_cast<Constant *>(B), IntTy, DL); 1463 else if (B->getType() != IntTy) 1464 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1465 IntTy, DL); 1466 1467 if (A != B) 1468 return false; 1469 1470 // Constants only safely match if A doesn't contain undef/poison. 1471 // As we'll be reusing A, it doesn't matter if B contain undef/poison. 1472 // TODO: Handle cases where A and B have the same undef/poison elements. 1473 // TODO: Merge A and B with mismatching undef/poison elements. 1474 return !ContainsUndefOrPoisonA; 1475 } 1476 1477 /// Create a new entry in the constant pool or return an existing one. 1478 /// User must specify the log2 of the minimum required alignment for the object. 1479 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1480 Align Alignment) { 1481 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1482 1483 // Check to see if we already have this constant. 1484 // 1485 // FIXME, this could be made much more efficient for large constant pools. 1486 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1487 if (!Constants[i].isMachineConstantPoolEntry() && 1488 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1489 if (Constants[i].getAlign() < Alignment) 1490 Constants[i].Alignment = Alignment; 1491 return i; 1492 } 1493 1494 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1495 return Constants.size()-1; 1496 } 1497 1498 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1499 Align Alignment) { 1500 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1501 1502 // Check to see if we already have this constant. 1503 // 1504 // FIXME, this could be made much more efficient for large constant pools. 1505 int Idx = V->getExistingMachineCPValue(this, Alignment); 1506 if (Idx != -1) { 1507 MachineCPVsSharingEntries.insert(V); 1508 return (unsigned)Idx; 1509 } 1510 1511 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1512 return Constants.size()-1; 1513 } 1514 1515 void MachineConstantPool::print(raw_ostream &OS) const { 1516 if (Constants.empty()) return; 1517 1518 OS << "Constant Pool:\n"; 1519 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1520 OS << " cp#" << i << ": "; 1521 if (Constants[i].isMachineConstantPoolEntry()) 1522 Constants[i].Val.MachineCPVal->print(OS); 1523 else 1524 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1525 OS << ", align=" << Constants[i].getAlign().value(); 1526 OS << "\n"; 1527 } 1528 } 1529 1530 //===----------------------------------------------------------------------===// 1531 // Template specialization for MachineFunction implementation of 1532 // ProfileSummaryInfo::getEntryCount(). 1533 //===----------------------------------------------------------------------===// 1534 template <> 1535 std::optional<Function::ProfileCount> 1536 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>( 1537 const llvm::MachineFunction *F) const { 1538 return F->getFunction().getEntryCount(); 1539 } 1540 1541 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1542 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1543 #endif 1544