xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision aa1a8ff2d6dbc51ef058f46f3db5a8bb77967145)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/PseudoSourceValueManager.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/WasmEHFuncInfo.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/EHPersonalities.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSlotTracker.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/SectionKind.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/DOTGraphTraits.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
78 
79 #include "LiveDebugValues/LiveDebugValues.h"
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "codegen"
84 
85 static cl::opt<unsigned> AlignAllFunctions(
86     "align-all-functions",
87     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
88              "means align on 16B boundaries)."),
89     cl::init(0), cl::Hidden);
90 
91 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
92   using P = MachineFunctionProperties::Property;
93 
94   // clang-format off
95   switch(Prop) {
96   case P::FailedISel: return "FailedISel";
97   case P::IsSSA: return "IsSSA";
98   case P::Legalized: return "Legalized";
99   case P::NoPHIs: return "NoPHIs";
100   case P::NoVRegs: return "NoVRegs";
101   case P::RegBankSelected: return "RegBankSelected";
102   case P::Selected: return "Selected";
103   case P::TracksLiveness: return "TracksLiveness";
104   case P::TiedOpsRewritten: return "TiedOpsRewritten";
105   case P::FailsVerification: return "FailsVerification";
106   case P::TracksDebugUserValues: return "TracksDebugUserValues";
107   }
108   // clang-format on
109   llvm_unreachable("Invalid machine function property");
110 }
111 
112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
113   if (!F.hasFnAttribute(Attribute::SafeStack))
114     return;
115 
116   auto *Existing =
117       dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
118 
119   if (!Existing || Existing->getNumOperands() != 2)
120     return;
121 
122   auto *MetadataName = "unsafe-stack-size";
123   if (auto &N = Existing->getOperand(0)) {
124     if (N.equalsStr(MetadataName)) {
125       if (auto &Op = Existing->getOperand(1)) {
126         auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
127         FrameInfo.setUnsafeStackSize(Val);
128       }
129     }
130   }
131 }
132 
133 // Pin the vtable to this file.
134 void MachineFunction::Delegate::anchor() {}
135 
136 void MachineFunctionProperties::print(raw_ostream &OS) const {
137   const char *Separator = "";
138   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
139     if (!Properties[I])
140       continue;
141     OS << Separator << getPropertyName(static_cast<Property>(I));
142     Separator = ", ";
143   }
144 }
145 
146 //===----------------------------------------------------------------------===//
147 // MachineFunction implementation
148 //===----------------------------------------------------------------------===//
149 
150 // Out-of-line virtual method.
151 MachineFunctionInfo::~MachineFunctionInfo() = default;
152 
153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
154   MBB->getParent()->deleteMachineBasicBlock(MBB);
155 }
156 
157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
158                                            const Function &F) {
159   if (auto MA = F.getFnStackAlign())
160     return *MA;
161   return STI->getFrameLowering()->getStackAlign();
162 }
163 
164 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
165                                  const TargetSubtargetInfo &STI,
166                                  unsigned FunctionNum, MachineModuleInfo &mmi)
167     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
168   FunctionNumber = FunctionNum;
169   init();
170 }
171 
172 void MachineFunction::handleInsertion(MachineInstr &MI) {
173   if (TheDelegate)
174     TheDelegate->MF_HandleInsertion(MI);
175 }
176 
177 void MachineFunction::handleRemoval(MachineInstr &MI) {
178   if (TheDelegate)
179     TheDelegate->MF_HandleRemoval(MI);
180 }
181 
182 void MachineFunction::handleChangeDesc(MachineInstr &MI,
183                                        const MCInstrDesc &TID) {
184   if (TheDelegate)
185     TheDelegate->MF_HandleChangeDesc(MI, TID);
186 }
187 
188 void MachineFunction::init() {
189   // Assume the function starts in SSA form with correct liveness.
190   Properties.set(MachineFunctionProperties::Property::IsSSA);
191   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
192   if (STI->getRegisterInfo())
193     RegInfo = new (Allocator) MachineRegisterInfo(this);
194   else
195     RegInfo = nullptr;
196 
197   MFInfo = nullptr;
198 
199   // We can realign the stack if the target supports it and the user hasn't
200   // explicitly asked us not to.
201   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
202                       !F.hasFnAttribute("no-realign-stack");
203   FrameInfo = new (Allocator) MachineFrameInfo(
204       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
205       /*ForcedRealign=*/CanRealignSP &&
206           F.hasFnAttribute(Attribute::StackAlignment));
207 
208   setUnsafeStackSize(F, *FrameInfo);
209 
210   if (F.hasFnAttribute(Attribute::StackAlignment))
211     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
212 
213   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
214   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
215 
216   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
217   // FIXME: Use Function::hasOptSize().
218   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
219     Alignment = std::max(Alignment,
220                          STI->getTargetLowering()->getPrefFunctionAlignment());
221 
222   // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
223   // to load a type hash before the function label. Ensure functions are aligned
224   // by a least 4 to avoid unaligned access, which is especially important for
225   // -mno-unaligned-access.
226   if (F.hasMetadata(LLVMContext::MD_func_sanitize) ||
227       F.getMetadata(LLVMContext::MD_kcfi_type))
228     Alignment = std::max(Alignment, Align(4));
229 
230   if (AlignAllFunctions)
231     Alignment = Align(1ULL << AlignAllFunctions);
232 
233   JumpTableInfo = nullptr;
234 
235   if (isFuncletEHPersonality(classifyEHPersonality(
236           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
237     WinEHInfo = new (Allocator) WinEHFuncInfo();
238   }
239 
240   if (isScopedEHPersonality(classifyEHPersonality(
241           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
242     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
243   }
244 
245   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
246          "Can't create a MachineFunction using a Module with a "
247          "Target-incompatible DataLayout attached\n");
248 
249   PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
250 }
251 
252 void MachineFunction::initTargetMachineFunctionInfo(
253     const TargetSubtargetInfo &STI) {
254   assert(!MFInfo && "MachineFunctionInfo already set");
255   MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
256 }
257 
258 MachineFunction::~MachineFunction() {
259   clear();
260 }
261 
262 void MachineFunction::clear() {
263   Properties.reset();
264   // Don't call destructors on MachineInstr and MachineOperand. All of their
265   // memory comes from the BumpPtrAllocator which is about to be purged.
266   //
267   // Do call MachineBasicBlock destructors, it contains std::vectors.
268   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
269     I->Insts.clearAndLeakNodesUnsafely();
270   MBBNumbering.clear();
271 
272   InstructionRecycler.clear(Allocator);
273   OperandRecycler.clear(Allocator);
274   BasicBlockRecycler.clear(Allocator);
275   CodeViewAnnotations.clear();
276   VariableDbgInfos.clear();
277   if (RegInfo) {
278     RegInfo->~MachineRegisterInfo();
279     Allocator.Deallocate(RegInfo);
280   }
281   if (MFInfo) {
282     MFInfo->~MachineFunctionInfo();
283     Allocator.Deallocate(MFInfo);
284   }
285 
286   FrameInfo->~MachineFrameInfo();
287   Allocator.Deallocate(FrameInfo);
288 
289   ConstantPool->~MachineConstantPool();
290   Allocator.Deallocate(ConstantPool);
291 
292   if (JumpTableInfo) {
293     JumpTableInfo->~MachineJumpTableInfo();
294     Allocator.Deallocate(JumpTableInfo);
295   }
296 
297   if (WinEHInfo) {
298     WinEHInfo->~WinEHFuncInfo();
299     Allocator.Deallocate(WinEHInfo);
300   }
301 
302   if (WasmEHInfo) {
303     WasmEHInfo->~WasmEHFuncInfo();
304     Allocator.Deallocate(WasmEHInfo);
305   }
306 }
307 
308 const DataLayout &MachineFunction::getDataLayout() const {
309   return F.getParent()->getDataLayout();
310 }
311 
312 /// Get the JumpTableInfo for this function.
313 /// If it does not already exist, allocate one.
314 MachineJumpTableInfo *MachineFunction::
315 getOrCreateJumpTableInfo(unsigned EntryKind) {
316   if (JumpTableInfo) return JumpTableInfo;
317 
318   JumpTableInfo = new (Allocator)
319     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
320   return JumpTableInfo;
321 }
322 
323 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
324   return F.getDenormalMode(FPType);
325 }
326 
327 /// Should we be emitting segmented stack stuff for the function
328 bool MachineFunction::shouldSplitStack() const {
329   return getFunction().hasFnAttribute("split-stack");
330 }
331 
332 [[nodiscard]] unsigned
333 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
334   FrameInstructions.push_back(Inst);
335   return FrameInstructions.size() - 1;
336 }
337 
338 /// This discards all of the MachineBasicBlock numbers and recomputes them.
339 /// This guarantees that the MBB numbers are sequential, dense, and match the
340 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
341 /// is specified, only that block and those after it are renumbered.
342 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
343   if (empty()) { MBBNumbering.clear(); return; }
344   MachineFunction::iterator MBBI, E = end();
345   if (MBB == nullptr)
346     MBBI = begin();
347   else
348     MBBI = MBB->getIterator();
349 
350   // Figure out the block number this should have.
351   unsigned BlockNo = 0;
352   if (MBBI != begin())
353     BlockNo = std::prev(MBBI)->getNumber() + 1;
354 
355   for (; MBBI != E; ++MBBI, ++BlockNo) {
356     if (MBBI->getNumber() != (int)BlockNo) {
357       // Remove use of the old number.
358       if (MBBI->getNumber() != -1) {
359         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
360                "MBB number mismatch!");
361         MBBNumbering[MBBI->getNumber()] = nullptr;
362       }
363 
364       // If BlockNo is already taken, set that block's number to -1.
365       if (MBBNumbering[BlockNo])
366         MBBNumbering[BlockNo]->setNumber(-1);
367 
368       MBBNumbering[BlockNo] = &*MBBI;
369       MBBI->setNumber(BlockNo);
370     }
371   }
372 
373   // Okay, all the blocks are renumbered.  If we have compactified the block
374   // numbering, shrink MBBNumbering now.
375   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
376   MBBNumbering.resize(BlockNo);
377 }
378 
379 /// This method iterates over the basic blocks and assigns their IsBeginSection
380 /// and IsEndSection fields. This must be called after MBB layout is finalized
381 /// and the SectionID's are assigned to MBBs.
382 void MachineFunction::assignBeginEndSections() {
383   front().setIsBeginSection();
384   auto CurrentSectionID = front().getSectionID();
385   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
386     if (MBBI->getSectionID() == CurrentSectionID)
387       continue;
388     MBBI->setIsBeginSection();
389     std::prev(MBBI)->setIsEndSection();
390     CurrentSectionID = MBBI->getSectionID();
391   }
392   back().setIsEndSection();
393 }
394 
395 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
396 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
397                                                   DebugLoc DL,
398                                                   bool NoImplicit) {
399   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
400       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
401 }
402 
403 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
404 /// identical in all ways except the instruction has no parent, prev, or next.
405 MachineInstr *
406 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
407   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
408              MachineInstr(*this, *Orig);
409 }
410 
411 MachineInstr &MachineFunction::cloneMachineInstrBundle(
412     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
413     const MachineInstr &Orig) {
414   MachineInstr *FirstClone = nullptr;
415   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
416   while (true) {
417     MachineInstr *Cloned = CloneMachineInstr(&*I);
418     MBB.insert(InsertBefore, Cloned);
419     if (FirstClone == nullptr) {
420       FirstClone = Cloned;
421     } else {
422       Cloned->bundleWithPred();
423     }
424 
425     if (!I->isBundledWithSucc())
426       break;
427     ++I;
428   }
429   // Copy over call site info to the cloned instruction if needed. If Orig is in
430   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
431   // the bundle.
432   if (Orig.shouldUpdateCallSiteInfo())
433     copyCallSiteInfo(&Orig, FirstClone);
434   return *FirstClone;
435 }
436 
437 /// Delete the given MachineInstr.
438 ///
439 /// This function also serves as the MachineInstr destructor - the real
440 /// ~MachineInstr() destructor must be empty.
441 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
442   // Verify that a call site info is at valid state. This assertion should
443   // be triggered during the implementation of support for the
444   // call site info of a new architecture. If the assertion is triggered,
445   // back trace will tell where to insert a call to updateCallSiteInfo().
446   assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) &&
447          "Call site info was not updated!");
448   // Strip it for parts. The operand array and the MI object itself are
449   // independently recyclable.
450   if (MI->Operands)
451     deallocateOperandArray(MI->CapOperands, MI->Operands);
452   // Don't call ~MachineInstr() which must be trivial anyway because
453   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
454   // destructors.
455   InstructionRecycler.Deallocate(Allocator, MI);
456 }
457 
458 /// Allocate a new MachineBasicBlock. Use this instead of
459 /// `new MachineBasicBlock'.
460 MachineBasicBlock *
461 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB,
462                                          std::optional<UniqueBBID> BBID) {
463   MachineBasicBlock *MBB =
464       new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
465           MachineBasicBlock(*this, BB);
466   // Set BBID for `-basic-block=sections=labels` and
467   // `-basic-block-sections=list` to allow robust mapping of profiles to basic
468   // blocks.
469   if (Target.getBBSectionsType() == BasicBlockSection::Labels ||
470       Target.getBBSectionsType() == BasicBlockSection::List)
471     MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0});
472   return MBB;
473 }
474 
475 /// Delete the given MachineBasicBlock.
476 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
477   assert(MBB->getParent() == this && "MBB parent mismatch!");
478   // Clean up any references to MBB in jump tables before deleting it.
479   if (JumpTableInfo)
480     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
481   MBB->~MachineBasicBlock();
482   BasicBlockRecycler.Deallocate(Allocator, MBB);
483 }
484 
485 MachineMemOperand *MachineFunction::getMachineMemOperand(
486     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
487     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
488     SyncScope::ID SSID, AtomicOrdering Ordering,
489     AtomicOrdering FailureOrdering) {
490   return new (Allocator)
491       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
492                         SSID, Ordering, FailureOrdering);
493 }
494 
495 MachineMemOperand *MachineFunction::getMachineMemOperand(
496     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
497     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
498     SyncScope::ID SSID, AtomicOrdering Ordering,
499     AtomicOrdering FailureOrdering) {
500   return new (Allocator)
501       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
502                         Ordering, FailureOrdering);
503 }
504 
505 MachineMemOperand *MachineFunction::getMachineMemOperand(
506     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
507   return new (Allocator)
508       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
509                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
510                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
511 }
512 
513 MachineMemOperand *MachineFunction::getMachineMemOperand(
514     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
515   return new (Allocator)
516       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
517                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
518                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
519 }
520 
521 MachineMemOperand *
522 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
523                                       int64_t Offset, LLT Ty) {
524   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
525 
526   // If there is no pointer value, the offset isn't tracked so we need to adjust
527   // the base alignment.
528   Align Alignment = PtrInfo.V.isNull()
529                         ? commonAlignment(MMO->getBaseAlign(), Offset)
530                         : MMO->getBaseAlign();
531 
532   // Do not preserve ranges, since we don't necessarily know what the high bits
533   // are anymore.
534   return new (Allocator) MachineMemOperand(
535       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
536       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
537       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
538 }
539 
540 MachineMemOperand *
541 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
542                                       const AAMDNodes &AAInfo) {
543   MachinePointerInfo MPI = MMO->getValue() ?
544              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
545              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
546 
547   return new (Allocator) MachineMemOperand(
548       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
549       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
550       MMO->getFailureOrdering());
551 }
552 
553 MachineMemOperand *
554 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
555                                       MachineMemOperand::Flags Flags) {
556   return new (Allocator) MachineMemOperand(
557       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
558       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
559       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
560 }
561 
562 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
563     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
564     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
565     uint32_t CFIType) {
566   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
567                                          PostInstrSymbol, HeapAllocMarker,
568                                          PCSections, CFIType);
569 }
570 
571 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
572   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
573   llvm::copy(Name, Dest);
574   Dest[Name.size()] = 0;
575   return Dest;
576 }
577 
578 uint32_t *MachineFunction::allocateRegMask() {
579   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
580   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
581   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
582   memset(Mask, 0, Size * sizeof(Mask[0]));
583   return Mask;
584 }
585 
586 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
587   int* AllocMask = Allocator.Allocate<int>(Mask.size());
588   copy(Mask, AllocMask);
589   return {AllocMask, Mask.size()};
590 }
591 
592 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
593 LLVM_DUMP_METHOD void MachineFunction::dump() const {
594   print(dbgs());
595 }
596 #endif
597 
598 StringRef MachineFunction::getName() const {
599   return getFunction().getName();
600 }
601 
602 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
603   OS << "# Machine code for function " << getName() << ": ";
604   getProperties().print(OS);
605   OS << '\n';
606 
607   // Print Frame Information
608   FrameInfo->print(*this, OS);
609 
610   // Print JumpTable Information
611   if (JumpTableInfo)
612     JumpTableInfo->print(OS);
613 
614   // Print Constant Pool
615   ConstantPool->print(OS);
616 
617   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
618 
619   if (RegInfo && !RegInfo->livein_empty()) {
620     OS << "Function Live Ins: ";
621     for (MachineRegisterInfo::livein_iterator
622          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
623       OS << printReg(I->first, TRI);
624       if (I->second)
625         OS << " in " << printReg(I->second, TRI);
626       if (std::next(I) != E)
627         OS << ", ";
628     }
629     OS << '\n';
630   }
631 
632   ModuleSlotTracker MST(getFunction().getParent());
633   MST.incorporateFunction(getFunction());
634   for (const auto &BB : *this) {
635     OS << '\n';
636     // If we print the whole function, print it at its most verbose level.
637     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
638   }
639 
640   OS << "\n# End machine code for function " << getName() << ".\n\n";
641 }
642 
643 /// True if this function needs frame moves for debug or exceptions.
644 bool MachineFunction::needsFrameMoves() const {
645   return getMMI().hasDebugInfo() ||
646          getTarget().Options.ForceDwarfFrameSection ||
647          F.needsUnwindTableEntry();
648 }
649 
650 namespace llvm {
651 
652   template<>
653   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
654     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
655 
656     static std::string getGraphName(const MachineFunction *F) {
657       return ("CFG for '" + F->getName() + "' function").str();
658     }
659 
660     std::string getNodeLabel(const MachineBasicBlock *Node,
661                              const MachineFunction *Graph) {
662       std::string OutStr;
663       {
664         raw_string_ostream OSS(OutStr);
665 
666         if (isSimple()) {
667           OSS << printMBBReference(*Node);
668           if (const BasicBlock *BB = Node->getBasicBlock())
669             OSS << ": " << BB->getName();
670         } else
671           Node->print(OSS);
672       }
673 
674       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
675 
676       // Process string output to make it nicer...
677       for (unsigned i = 0; i != OutStr.length(); ++i)
678         if (OutStr[i] == '\n') {                            // Left justify
679           OutStr[i] = '\\';
680           OutStr.insert(OutStr.begin()+i+1, 'l');
681         }
682       return OutStr;
683     }
684   };
685 
686 } // end namespace llvm
687 
688 void MachineFunction::viewCFG() const
689 {
690 #ifndef NDEBUG
691   ViewGraph(this, "mf" + getName());
692 #else
693   errs() << "MachineFunction::viewCFG is only available in debug builds on "
694          << "systems with Graphviz or gv!\n";
695 #endif // NDEBUG
696 }
697 
698 void MachineFunction::viewCFGOnly() const
699 {
700 #ifndef NDEBUG
701   ViewGraph(this, "mf" + getName(), true);
702 #else
703   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
704          << "systems with Graphviz or gv!\n";
705 #endif // NDEBUG
706 }
707 
708 /// Add the specified physical register as a live-in value and
709 /// create a corresponding virtual register for it.
710 Register MachineFunction::addLiveIn(MCRegister PReg,
711                                     const TargetRegisterClass *RC) {
712   MachineRegisterInfo &MRI = getRegInfo();
713   Register VReg = MRI.getLiveInVirtReg(PReg);
714   if (VReg) {
715     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
716     (void)VRegRC;
717     // A physical register can be added several times.
718     // Between two calls, the register class of the related virtual register
719     // may have been constrained to match some operation constraints.
720     // In that case, check that the current register class includes the
721     // physical register and is a sub class of the specified RC.
722     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
723                              RC->hasSubClassEq(VRegRC))) &&
724             "Register class mismatch!");
725     return VReg;
726   }
727   VReg = MRI.createVirtualRegister(RC);
728   MRI.addLiveIn(PReg, VReg);
729   return VReg;
730 }
731 
732 /// Return the MCSymbol for the specified non-empty jump table.
733 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
734 /// normal 'L' label is returned.
735 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
736                                         bool isLinkerPrivate) const {
737   const DataLayout &DL = getDataLayout();
738   assert(JumpTableInfo && "No jump tables");
739   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
740 
741   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
742                                      : DL.getPrivateGlobalPrefix();
743   SmallString<60> Name;
744   raw_svector_ostream(Name)
745     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
746   return Ctx.getOrCreateSymbol(Name);
747 }
748 
749 /// Return a function-local symbol to represent the PIC base.
750 MCSymbol *MachineFunction::getPICBaseSymbol() const {
751   const DataLayout &DL = getDataLayout();
752   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
753                                Twine(getFunctionNumber()) + "$pb");
754 }
755 
756 /// \name Exception Handling
757 /// \{
758 
759 LandingPadInfo &
760 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
761   unsigned N = LandingPads.size();
762   for (unsigned i = 0; i < N; ++i) {
763     LandingPadInfo &LP = LandingPads[i];
764     if (LP.LandingPadBlock == LandingPad)
765       return LP;
766   }
767 
768   LandingPads.push_back(LandingPadInfo(LandingPad));
769   return LandingPads[N];
770 }
771 
772 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
773                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
774   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
775   LP.BeginLabels.push_back(BeginLabel);
776   LP.EndLabels.push_back(EndLabel);
777 }
778 
779 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
780   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
781   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
782   LP.LandingPadLabel = LandingPadLabel;
783 
784   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
785   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
786     // If there's no typeid list specified, then "cleanup" is implicit.
787     // Otherwise, id 0 is reserved for the cleanup action.
788     if (LPI->isCleanup() && LPI->getNumClauses() != 0)
789       LP.TypeIds.push_back(0);
790 
791     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
792     //        correct, but we need to do it this way because of how the DWARF EH
793     //        emitter processes the clauses.
794     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
795       Value *Val = LPI->getClause(I - 1);
796       if (LPI->isCatch(I - 1)) {
797         LP.TypeIds.push_back(
798             getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
799       } else {
800         // Add filters in a list.
801         auto *CVal = cast<Constant>(Val);
802         SmallVector<unsigned, 4> FilterList;
803         for (const Use &U : CVal->operands())
804           FilterList.push_back(
805               getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
806 
807         LP.TypeIds.push_back(getFilterIDFor(FilterList));
808       }
809     }
810 
811   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
812     for (unsigned I = CPI->arg_size(); I != 0; --I) {
813       auto *TypeInfo =
814           dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
815       LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
816     }
817 
818   } else {
819     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
820   }
821 
822   return LandingPadLabel;
823 }
824 
825 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
826                                             ArrayRef<unsigned> Sites) {
827   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
828 }
829 
830 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
831   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
832     if (TypeInfos[i] == TI) return i + 1;
833 
834   TypeInfos.push_back(TI);
835   return TypeInfos.size();
836 }
837 
838 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
839   // If the new filter coincides with the tail of an existing filter, then
840   // re-use the existing filter.  Folding filters more than this requires
841   // re-ordering filters and/or their elements - probably not worth it.
842   for (unsigned i : FilterEnds) {
843     unsigned j = TyIds.size();
844 
845     while (i && j)
846       if (FilterIds[--i] != TyIds[--j])
847         goto try_next;
848 
849     if (!j)
850       // The new filter coincides with range [i, end) of the existing filter.
851       return -(1 + i);
852 
853 try_next:;
854   }
855 
856   // Add the new filter.
857   int FilterID = -(1 + FilterIds.size());
858   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
859   llvm::append_range(FilterIds, TyIds);
860   FilterEnds.push_back(FilterIds.size());
861   FilterIds.push_back(0); // terminator
862   return FilterID;
863 }
864 
865 MachineFunction::CallSiteInfoMap::iterator
866 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
867   assert(MI->isCandidateForCallSiteEntry() &&
868          "Call site info refers only to call (MI) candidates");
869 
870   if (!Target.Options.EmitCallSiteInfo)
871     return CallSitesInfo.end();
872   return CallSitesInfo.find(MI);
873 }
874 
875 /// Return the call machine instruction or find a call within bundle.
876 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
877   if (!MI->isBundle())
878     return MI;
879 
880   for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
881                                     getBundleEnd(MI->getIterator())))
882     if (BMI.isCandidateForCallSiteEntry())
883       return &BMI;
884 
885   llvm_unreachable("Unexpected bundle without a call site candidate");
886 }
887 
888 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
889   assert(MI->shouldUpdateCallSiteInfo() &&
890          "Call site info refers only to call (MI) candidates or "
891          "candidates inside bundles");
892 
893   const MachineInstr *CallMI = getCallInstr(MI);
894   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
895   if (CSIt == CallSitesInfo.end())
896     return;
897   CallSitesInfo.erase(CSIt);
898 }
899 
900 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
901                                        const MachineInstr *New) {
902   assert(Old->shouldUpdateCallSiteInfo() &&
903          "Call site info refers only to call (MI) candidates or "
904          "candidates inside bundles");
905 
906   if (!New->isCandidateForCallSiteEntry())
907     return eraseCallSiteInfo(Old);
908 
909   const MachineInstr *OldCallMI = getCallInstr(Old);
910   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
911   if (CSIt == CallSitesInfo.end())
912     return;
913 
914   CallSiteInfo CSInfo = CSIt->second;
915   CallSitesInfo[New] = CSInfo;
916 }
917 
918 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
919                                        const MachineInstr *New) {
920   assert(Old->shouldUpdateCallSiteInfo() &&
921          "Call site info refers only to call (MI) candidates or "
922          "candidates inside bundles");
923 
924   if (!New->isCandidateForCallSiteEntry())
925     return eraseCallSiteInfo(Old);
926 
927   const MachineInstr *OldCallMI = getCallInstr(Old);
928   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
929   if (CSIt == CallSitesInfo.end())
930     return;
931 
932   CallSiteInfo CSInfo = std::move(CSIt->second);
933   CallSitesInfo.erase(CSIt);
934   CallSitesInfo[New] = CSInfo;
935 }
936 
937 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
938   DebugInstrNumberingCount = Num;
939 }
940 
941 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
942                                                  DebugInstrOperandPair B,
943                                                  unsigned Subreg) {
944   // Catch any accidental self-loops.
945   assert(A.first != B.first);
946   // Don't allow any substitutions _from_ the memory operand number.
947   assert(A.second != DebugOperandMemNumber);
948 
949   DebugValueSubstitutions.push_back({A, B, Subreg});
950 }
951 
952 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
953                                                    MachineInstr &New,
954                                                    unsigned MaxOperand) {
955   // If the Old instruction wasn't tracked at all, there is no work to do.
956   unsigned OldInstrNum = Old.peekDebugInstrNum();
957   if (!OldInstrNum)
958     return;
959 
960   // Iterate over all operands looking for defs to create substitutions for.
961   // Avoid creating new instr numbers unless we create a new substitution.
962   // While this has no functional effect, it risks confusing someone reading
963   // MIR output.
964   // Examine all the operands, or the first N specified by the caller.
965   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
966   for (unsigned int I = 0; I < MaxOperand; ++I) {
967     const auto &OldMO = Old.getOperand(I);
968     auto &NewMO = New.getOperand(I);
969     (void)NewMO;
970 
971     if (!OldMO.isReg() || !OldMO.isDef())
972       continue;
973     assert(NewMO.isDef());
974 
975     unsigned NewInstrNum = New.getDebugInstrNum();
976     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
977                                std::make_pair(NewInstrNum, I));
978   }
979 }
980 
981 auto MachineFunction::salvageCopySSA(
982     MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
983     -> DebugInstrOperandPair {
984   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
985 
986   // Check whether this copy-like instruction has already been salvaged into
987   // an operand pair.
988   Register Dest;
989   if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
990     Dest = CopyDstSrc->Destination->getReg();
991   } else {
992     assert(MI.isSubregToReg());
993     Dest = MI.getOperand(0).getReg();
994   }
995 
996   auto CacheIt = DbgPHICache.find(Dest);
997   if (CacheIt != DbgPHICache.end())
998     return CacheIt->second;
999 
1000   // Calculate the instruction number to use, or install a DBG_PHI.
1001   auto OperandPair = salvageCopySSAImpl(MI);
1002   DbgPHICache.insert({Dest, OperandPair});
1003   return OperandPair;
1004 }
1005 
1006 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
1007     -> DebugInstrOperandPair {
1008   MachineRegisterInfo &MRI = getRegInfo();
1009   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1010   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1011 
1012   // Chase the value read by a copy-like instruction back to the instruction
1013   // that ultimately _defines_ that value. This may pass:
1014   //  * Through multiple intermediate copies, including subregister moves /
1015   //    copies,
1016   //  * Copies from physical registers that must then be traced back to the
1017   //    defining instruction,
1018   //  * Or, physical registers may be live-in to (only) the entry block, which
1019   //    requires a DBG_PHI to be created.
1020   // We can pursue this problem in that order: trace back through copies,
1021   // optionally through a physical register, to a defining instruction. We
1022   // should never move from physreg to vreg. As we're still in SSA form, no need
1023   // to worry about partial definitions of registers.
1024 
1025   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1026   // returns the register read and any subregister identifying which part is
1027   // read.
1028   auto GetRegAndSubreg =
1029       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1030     Register NewReg, OldReg;
1031     unsigned SubReg;
1032     if (Cpy.isCopy()) {
1033       OldReg = Cpy.getOperand(0).getReg();
1034       NewReg = Cpy.getOperand(1).getReg();
1035       SubReg = Cpy.getOperand(1).getSubReg();
1036     } else if (Cpy.isSubregToReg()) {
1037       OldReg = Cpy.getOperand(0).getReg();
1038       NewReg = Cpy.getOperand(2).getReg();
1039       SubReg = Cpy.getOperand(3).getImm();
1040     } else {
1041       auto CopyDetails = *TII.isCopyInstr(Cpy);
1042       const MachineOperand &Src = *CopyDetails.Source;
1043       const MachineOperand &Dest = *CopyDetails.Destination;
1044       OldReg = Dest.getReg();
1045       NewReg = Src.getReg();
1046       SubReg = Src.getSubReg();
1047     }
1048 
1049     return {NewReg, SubReg};
1050   };
1051 
1052   // First seek either the defining instruction, or a copy from a physreg.
1053   // During search, the current state is the current copy instruction, and which
1054   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1055   // deal with those later.
1056   auto State = GetRegAndSubreg(MI);
1057   auto CurInst = MI.getIterator();
1058   SmallVector<unsigned, 4> SubregsSeen;
1059   while (true) {
1060     // If we've found a copy from a physreg, first portion of search is over.
1061     if (!State.first.isVirtual())
1062       break;
1063 
1064     // Record any subregister qualifier.
1065     if (State.second)
1066       SubregsSeen.push_back(State.second);
1067 
1068     assert(MRI.hasOneDef(State.first));
1069     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1070     CurInst = Inst.getIterator();
1071 
1072     // Any non-copy instruction is the defining instruction we're seeking.
1073     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1074       break;
1075     State = GetRegAndSubreg(Inst);
1076   };
1077 
1078   // Helper lambda to apply additional subregister substitutions to a known
1079   // instruction/operand pair. Adds new (fake) substitutions so that we can
1080   // record the subregister. FIXME: this isn't very space efficient if multiple
1081   // values are tracked back through the same copies; cache something later.
1082   auto ApplySubregisters =
1083       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1084     for (unsigned Subreg : reverse(SubregsSeen)) {
1085       // Fetch a new instruction number, not attached to an actual instruction.
1086       unsigned NewInstrNumber = getNewDebugInstrNum();
1087       // Add a substitution from the "new" number to the known one, with a
1088       // qualifying subreg.
1089       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1090       // Return the new number; to find the underlying value, consumers need to
1091       // deal with the qualifying subreg.
1092       P = {NewInstrNumber, 0};
1093     }
1094     return P;
1095   };
1096 
1097   // If we managed to find the defining instruction after COPYs, return an
1098   // instruction / operand pair after adding subregister qualifiers.
1099   if (State.first.isVirtual()) {
1100     // Virtual register def -- we can just look up where this happens.
1101     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1102     for (auto &MO : Inst->all_defs()) {
1103       if (MO.getReg() != State.first)
1104         continue;
1105       return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1106     }
1107 
1108     llvm_unreachable("Vreg def with no corresponding operand?");
1109   }
1110 
1111   // Our search ended in a copy from a physreg: walk back up the function
1112   // looking for whatever defines the physreg.
1113   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1114   State = GetRegAndSubreg(*CurInst);
1115   Register RegToSeek = State.first;
1116 
1117   auto RMII = CurInst->getReverseIterator();
1118   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1119   for (auto &ToExamine : PrevInstrs) {
1120     for (auto &MO : ToExamine.all_defs()) {
1121       // Test for operand that defines something aliasing RegToSeek.
1122       if (!TRI.regsOverlap(RegToSeek, MO.getReg()))
1123         continue;
1124 
1125       return ApplySubregisters(
1126           {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1127     }
1128   }
1129 
1130   MachineBasicBlock &InsertBB = *CurInst->getParent();
1131 
1132   // We reached the start of the block before finding a defining instruction.
1133   // There are numerous scenarios where this can happen:
1134   // * Constant physical registers,
1135   // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1136   // * Arguments in the entry block,
1137   // * Exception handling landing pads.
1138   // Validating all of them is too difficult, so just insert a DBG_PHI reading
1139   // the variable value at this position, rather than checking it makes sense.
1140 
1141   // Create DBG_PHI for specified physreg.
1142   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1143                          TII.get(TargetOpcode::DBG_PHI));
1144   Builder.addReg(State.first);
1145   unsigned NewNum = getNewDebugInstrNum();
1146   Builder.addImm(NewNum);
1147   return ApplySubregisters({NewNum, 0u});
1148 }
1149 
1150 void MachineFunction::finalizeDebugInstrRefs() {
1151   auto *TII = getSubtarget().getInstrInfo();
1152 
1153   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1154     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1155     MI.setDesc(RefII);
1156     MI.setDebugValueUndef();
1157   };
1158 
1159   DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1160   for (auto &MBB : *this) {
1161     for (auto &MI : MBB) {
1162       if (!MI.isDebugRef())
1163         continue;
1164 
1165       bool IsValidRef = true;
1166 
1167       for (MachineOperand &MO : MI.debug_operands()) {
1168         if (!MO.isReg())
1169           continue;
1170 
1171         Register Reg = MO.getReg();
1172 
1173         // Some vregs can be deleted as redundant in the meantime. Mark those
1174         // as DBG_VALUE $noreg. Additionally, some normal instructions are
1175         // quickly deleted, leaving dangling references to vregs with no def.
1176         if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1177           IsValidRef = false;
1178           break;
1179         }
1180 
1181         assert(Reg.isVirtual());
1182         MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1183 
1184         // If we've found a copy-like instruction, follow it back to the
1185         // instruction that defines the source value, see salvageCopySSA docs
1186         // for why this is important.
1187         if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1188           auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1189           MO.ChangeToDbgInstrRef(Result.first, Result.second);
1190         } else {
1191           // Otherwise, identify the operand number that the VReg refers to.
1192           unsigned OperandIdx = 0;
1193           for (const auto &DefMO : DefMI.operands()) {
1194             if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1195               break;
1196             ++OperandIdx;
1197           }
1198           assert(OperandIdx < DefMI.getNumOperands());
1199 
1200           // Morph this instr ref to point at the given instruction and operand.
1201           unsigned ID = DefMI.getDebugInstrNum();
1202           MO.ChangeToDbgInstrRef(ID, OperandIdx);
1203         }
1204       }
1205 
1206       if (!IsValidRef)
1207         MakeUndefDbgValue(MI);
1208     }
1209   }
1210 }
1211 
1212 bool MachineFunction::shouldUseDebugInstrRef() const {
1213   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1214   // have optimized code inlined into this unoptimized code, however with
1215   // fewer and less aggressive optimizations happening, coverage and accuracy
1216   // should not suffer.
1217   if (getTarget().getOptLevel() == CodeGenOptLevel::None)
1218     return false;
1219 
1220   // Don't use instr-ref if this function is marked optnone.
1221   if (F.hasFnAttribute(Attribute::OptimizeNone))
1222     return false;
1223 
1224   if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1225     return true;
1226 
1227   return false;
1228 }
1229 
1230 bool MachineFunction::useDebugInstrRef() const {
1231   return UseDebugInstrRef;
1232 }
1233 
1234 void MachineFunction::setUseDebugInstrRef(bool Use) {
1235   UseDebugInstrRef = Use;
1236 }
1237 
1238 // Use one million as a high / reserved number.
1239 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1240 
1241 /// \}
1242 
1243 //===----------------------------------------------------------------------===//
1244 //  MachineJumpTableInfo implementation
1245 //===----------------------------------------------------------------------===//
1246 
1247 /// Return the size of each entry in the jump table.
1248 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1249   // The size of a jump table entry is 4 bytes unless the entry is just the
1250   // address of a block, in which case it is the pointer size.
1251   switch (getEntryKind()) {
1252   case MachineJumpTableInfo::EK_BlockAddress:
1253     return TD.getPointerSize();
1254   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1255   case MachineJumpTableInfo::EK_LabelDifference64:
1256     return 8;
1257   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1258   case MachineJumpTableInfo::EK_LabelDifference32:
1259   case MachineJumpTableInfo::EK_Custom32:
1260     return 4;
1261   case MachineJumpTableInfo::EK_Inline:
1262     return 0;
1263   }
1264   llvm_unreachable("Unknown jump table encoding!");
1265 }
1266 
1267 /// Return the alignment of each entry in the jump table.
1268 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1269   // The alignment of a jump table entry is the alignment of int32 unless the
1270   // entry is just the address of a block, in which case it is the pointer
1271   // alignment.
1272   switch (getEntryKind()) {
1273   case MachineJumpTableInfo::EK_BlockAddress:
1274     return TD.getPointerABIAlignment(0).value();
1275   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1276   case MachineJumpTableInfo::EK_LabelDifference64:
1277     return TD.getABIIntegerTypeAlignment(64).value();
1278   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1279   case MachineJumpTableInfo::EK_LabelDifference32:
1280   case MachineJumpTableInfo::EK_Custom32:
1281     return TD.getABIIntegerTypeAlignment(32).value();
1282   case MachineJumpTableInfo::EK_Inline:
1283     return 1;
1284   }
1285   llvm_unreachable("Unknown jump table encoding!");
1286 }
1287 
1288 /// Create a new jump table entry in the jump table info.
1289 unsigned MachineJumpTableInfo::createJumpTableIndex(
1290                                const std::vector<MachineBasicBlock*> &DestBBs) {
1291   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1292   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1293   return JumpTables.size()-1;
1294 }
1295 
1296 /// If Old is the target of any jump tables, update the jump tables to branch
1297 /// to New instead.
1298 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1299                                                   MachineBasicBlock *New) {
1300   assert(Old != New && "Not making a change?");
1301   bool MadeChange = false;
1302   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1303     ReplaceMBBInJumpTable(i, Old, New);
1304   return MadeChange;
1305 }
1306 
1307 /// If MBB is present in any jump tables, remove it.
1308 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1309   bool MadeChange = false;
1310   for (MachineJumpTableEntry &JTE : JumpTables) {
1311     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1312     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1313     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1314   }
1315   return MadeChange;
1316 }
1317 
1318 /// If Old is a target of the jump tables, update the jump table to branch to
1319 /// New instead.
1320 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1321                                                  MachineBasicBlock *Old,
1322                                                  MachineBasicBlock *New) {
1323   assert(Old != New && "Not making a change?");
1324   bool MadeChange = false;
1325   MachineJumpTableEntry &JTE = JumpTables[Idx];
1326   for (MachineBasicBlock *&MBB : JTE.MBBs)
1327     if (MBB == Old) {
1328       MBB = New;
1329       MadeChange = true;
1330     }
1331   return MadeChange;
1332 }
1333 
1334 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1335   if (JumpTables.empty()) return;
1336 
1337   OS << "Jump Tables:\n";
1338 
1339   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1340     OS << printJumpTableEntryReference(i) << ':';
1341     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1342       OS << ' ' << printMBBReference(*MBB);
1343     if (i != e)
1344       OS << '\n';
1345   }
1346 
1347   OS << '\n';
1348 }
1349 
1350 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1351 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1352 #endif
1353 
1354 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1355   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1356 }
1357 
1358 //===----------------------------------------------------------------------===//
1359 //  MachineConstantPool implementation
1360 //===----------------------------------------------------------------------===//
1361 
1362 void MachineConstantPoolValue::anchor() {}
1363 
1364 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1365   return DL.getTypeAllocSize(Ty);
1366 }
1367 
1368 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1369   if (isMachineConstantPoolEntry())
1370     return Val.MachineCPVal->getSizeInBytes(DL);
1371   return DL.getTypeAllocSize(Val.ConstVal->getType());
1372 }
1373 
1374 bool MachineConstantPoolEntry::needsRelocation() const {
1375   if (isMachineConstantPoolEntry())
1376     return true;
1377   return Val.ConstVal->needsDynamicRelocation();
1378 }
1379 
1380 SectionKind
1381 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1382   if (needsRelocation())
1383     return SectionKind::getReadOnlyWithRel();
1384   switch (getSizeInBytes(*DL)) {
1385   case 4:
1386     return SectionKind::getMergeableConst4();
1387   case 8:
1388     return SectionKind::getMergeableConst8();
1389   case 16:
1390     return SectionKind::getMergeableConst16();
1391   case 32:
1392     return SectionKind::getMergeableConst32();
1393   default:
1394     return SectionKind::getReadOnly();
1395   }
1396 }
1397 
1398 MachineConstantPool::~MachineConstantPool() {
1399   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1400   // so keep track of which we've deleted to avoid double deletions.
1401   DenseSet<MachineConstantPoolValue*> Deleted;
1402   for (const MachineConstantPoolEntry &C : Constants)
1403     if (C.isMachineConstantPoolEntry()) {
1404       Deleted.insert(C.Val.MachineCPVal);
1405       delete C.Val.MachineCPVal;
1406     }
1407   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1408     if (Deleted.count(CPV) == 0)
1409       delete CPV;
1410   }
1411 }
1412 
1413 /// Test whether the given two constants can be allocated the same constant pool
1414 /// entry referenced by \param A.
1415 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1416                                       const DataLayout &DL) {
1417   // Handle the trivial case quickly.
1418   if (A == B) return true;
1419 
1420   // If they have the same type but weren't the same constant, quickly
1421   // reject them.
1422   if (A->getType() == B->getType()) return false;
1423 
1424   // We can't handle structs or arrays.
1425   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1426       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1427     return false;
1428 
1429   // For now, only support constants with the same size.
1430   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1431   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1432     return false;
1433 
1434   bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1435 
1436   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1437 
1438   // Try constant folding a bitcast of both instructions to an integer.  If we
1439   // get two identical ConstantInt's, then we are good to share them.  We use
1440   // the constant folding APIs to do this so that we get the benefit of
1441   // DataLayout.
1442   if (isa<PointerType>(A->getType()))
1443     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1444                                 const_cast<Constant *>(A), IntTy, DL);
1445   else if (A->getType() != IntTy)
1446     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1447                                 IntTy, DL);
1448   if (isa<PointerType>(B->getType()))
1449     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1450                                 const_cast<Constant *>(B), IntTy, DL);
1451   else if (B->getType() != IntTy)
1452     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1453                                 IntTy, DL);
1454 
1455   if (A != B)
1456     return false;
1457 
1458   // Constants only safely match if A doesn't contain undef/poison.
1459   // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1460   // TODO: Handle cases where A and B have the same undef/poison elements.
1461   // TODO: Merge A and B with mismatching undef/poison elements.
1462   return !ContainsUndefOrPoisonA;
1463 }
1464 
1465 /// Create a new entry in the constant pool or return an existing one.
1466 /// User must specify the log2 of the minimum required alignment for the object.
1467 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1468                                                    Align Alignment) {
1469   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1470 
1471   // Check to see if we already have this constant.
1472   //
1473   // FIXME, this could be made much more efficient for large constant pools.
1474   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1475     if (!Constants[i].isMachineConstantPoolEntry() &&
1476         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1477       if (Constants[i].getAlign() < Alignment)
1478         Constants[i].Alignment = Alignment;
1479       return i;
1480     }
1481 
1482   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1483   return Constants.size()-1;
1484 }
1485 
1486 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1487                                                    Align Alignment) {
1488   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1489 
1490   // Check to see if we already have this constant.
1491   //
1492   // FIXME, this could be made much more efficient for large constant pools.
1493   int Idx = V->getExistingMachineCPValue(this, Alignment);
1494   if (Idx != -1) {
1495     MachineCPVsSharingEntries.insert(V);
1496     return (unsigned)Idx;
1497   }
1498 
1499   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1500   return Constants.size()-1;
1501 }
1502 
1503 void MachineConstantPool::print(raw_ostream &OS) const {
1504   if (Constants.empty()) return;
1505 
1506   OS << "Constant Pool:\n";
1507   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1508     OS << "  cp#" << i << ": ";
1509     if (Constants[i].isMachineConstantPoolEntry())
1510       Constants[i].Val.MachineCPVal->print(OS);
1511     else
1512       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1513     OS << ", align=" << Constants[i].getAlign().value();
1514     OS << "\n";
1515   }
1516 }
1517 
1518 //===----------------------------------------------------------------------===//
1519 // Template specialization for MachineFunction implementation of
1520 // ProfileSummaryInfo::getEntryCount().
1521 //===----------------------------------------------------------------------===//
1522 template <>
1523 std::optional<Function::ProfileCount>
1524 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1525     const llvm::MachineFunction *F) const {
1526   return F->getFunction().getEntryCount();
1527 }
1528 
1529 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1530 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1531 #endif
1532