xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "codegen"
80 
81 static cl::opt<unsigned> AlignAllFunctions(
82     "align-all-functions",
83     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
84              "means align on 16B boundaries)."),
85     cl::init(0), cl::Hidden);
86 
87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
88   using P = MachineFunctionProperties::Property;
89 
90   switch(Prop) {
91   case P::FailedISel: return "FailedISel";
92   case P::IsSSA: return "IsSSA";
93   case P::Legalized: return "Legalized";
94   case P::NoPHIs: return "NoPHIs";
95   case P::NoVRegs: return "NoVRegs";
96   case P::RegBankSelected: return "RegBankSelected";
97   case P::Selected: return "Selected";
98   case P::TracksLiveness: return "TracksLiveness";
99   }
100   llvm_unreachable("Invalid machine function property");
101 }
102 
103 // Pin the vtable to this file.
104 void MachineFunction::Delegate::anchor() {}
105 
106 void MachineFunctionProperties::print(raw_ostream &OS) const {
107   const char *Separator = "";
108   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
109     if (!Properties[I])
110       continue;
111     OS << Separator << getPropertyName(static_cast<Property>(I));
112     Separator = ", ";
113   }
114 }
115 
116 //===----------------------------------------------------------------------===//
117 // MachineFunction implementation
118 //===----------------------------------------------------------------------===//
119 
120 // Out-of-line virtual method.
121 MachineFunctionInfo::~MachineFunctionInfo() = default;
122 
123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
124   MBB->getParent()->DeleteMachineBasicBlock(MBB);
125 }
126 
127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
128                                            const Function &F) {
129   if (F.hasFnAttribute(Attribute::StackAlignment))
130     return F.getFnStackAlignment();
131   return STI->getFrameLowering()->getStackAlignment();
132 }
133 
134 MachineFunction::MachineFunction(const Function &F,
135                                  const LLVMTargetMachine &Target,
136                                  const TargetSubtargetInfo &STI,
137                                  unsigned FunctionNum, MachineModuleInfo &mmi)
138     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
139   FunctionNumber = FunctionNum;
140   init();
141 }
142 
143 void MachineFunction::handleInsertion(MachineInstr &MI) {
144   if (TheDelegate)
145     TheDelegate->MF_HandleInsertion(MI);
146 }
147 
148 void MachineFunction::handleRemoval(MachineInstr &MI) {
149   if (TheDelegate)
150     TheDelegate->MF_HandleRemoval(MI);
151 }
152 
153 void MachineFunction::init() {
154   // Assume the function starts in SSA form with correct liveness.
155   Properties.set(MachineFunctionProperties::Property::IsSSA);
156   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
157   if (STI->getRegisterInfo())
158     RegInfo = new (Allocator) MachineRegisterInfo(this);
159   else
160     RegInfo = nullptr;
161 
162   MFInfo = nullptr;
163   // We can realign the stack if the target supports it and the user hasn't
164   // explicitly asked us not to.
165   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
166                       !F.hasFnAttribute("no-realign-stack");
167   FrameInfo = new (Allocator) MachineFrameInfo(
168       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
169       /*ForcedRealign=*/CanRealignSP &&
170           F.hasFnAttribute(Attribute::StackAlignment));
171 
172   if (F.hasFnAttribute(Attribute::StackAlignment))
173     FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
174 
175   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
176   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
177 
178   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
179   // FIXME: Use Function::hasOptSize().
180   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
181     Alignment = std::max(Alignment,
182                          STI->getTargetLowering()->getPrefFunctionAlignment());
183 
184   if (AlignAllFunctions)
185     Alignment = Align(1ULL << AlignAllFunctions);
186 
187   JumpTableInfo = nullptr;
188 
189   if (isFuncletEHPersonality(classifyEHPersonality(
190           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
191     WinEHInfo = new (Allocator) WinEHFuncInfo();
192   }
193 
194   if (isScopedEHPersonality(classifyEHPersonality(
195           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
196     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
197   }
198 
199   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
200          "Can't create a MachineFunction using a Module with a "
201          "Target-incompatible DataLayout attached\n");
202 
203   PSVManager =
204     std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
205                                                   getInstrInfo()));
206 }
207 
208 MachineFunction::~MachineFunction() {
209   clear();
210 }
211 
212 void MachineFunction::clear() {
213   Properties.reset();
214   // Don't call destructors on MachineInstr and MachineOperand. All of their
215   // memory comes from the BumpPtrAllocator which is about to be purged.
216   //
217   // Do call MachineBasicBlock destructors, it contains std::vectors.
218   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
219     I->Insts.clearAndLeakNodesUnsafely();
220   MBBNumbering.clear();
221 
222   InstructionRecycler.clear(Allocator);
223   OperandRecycler.clear(Allocator);
224   BasicBlockRecycler.clear(Allocator);
225   CodeViewAnnotations.clear();
226   VariableDbgInfos.clear();
227   if (RegInfo) {
228     RegInfo->~MachineRegisterInfo();
229     Allocator.Deallocate(RegInfo);
230   }
231   if (MFInfo) {
232     MFInfo->~MachineFunctionInfo();
233     Allocator.Deallocate(MFInfo);
234   }
235 
236   FrameInfo->~MachineFrameInfo();
237   Allocator.Deallocate(FrameInfo);
238 
239   ConstantPool->~MachineConstantPool();
240   Allocator.Deallocate(ConstantPool);
241 
242   if (JumpTableInfo) {
243     JumpTableInfo->~MachineJumpTableInfo();
244     Allocator.Deallocate(JumpTableInfo);
245   }
246 
247   if (WinEHInfo) {
248     WinEHInfo->~WinEHFuncInfo();
249     Allocator.Deallocate(WinEHInfo);
250   }
251 
252   if (WasmEHInfo) {
253     WasmEHInfo->~WasmEHFuncInfo();
254     Allocator.Deallocate(WasmEHInfo);
255   }
256 }
257 
258 const DataLayout &MachineFunction::getDataLayout() const {
259   return F.getParent()->getDataLayout();
260 }
261 
262 /// Get the JumpTableInfo for this function.
263 /// If it does not already exist, allocate one.
264 MachineJumpTableInfo *MachineFunction::
265 getOrCreateJumpTableInfo(unsigned EntryKind) {
266   if (JumpTableInfo) return JumpTableInfo;
267 
268   JumpTableInfo = new (Allocator)
269     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
270   return JumpTableInfo;
271 }
272 
273 /// Should we be emitting segmented stack stuff for the function
274 bool MachineFunction::shouldSplitStack() const {
275   return getFunction().hasFnAttribute("split-stack");
276 }
277 
278 LLVM_NODISCARD unsigned
279 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
280   FrameInstructions.push_back(Inst);
281   return FrameInstructions.size() - 1;
282 }
283 
284 /// This discards all of the MachineBasicBlock numbers and recomputes them.
285 /// This guarantees that the MBB numbers are sequential, dense, and match the
286 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
287 /// is specified, only that block and those after it are renumbered.
288 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
289   if (empty()) { MBBNumbering.clear(); return; }
290   MachineFunction::iterator MBBI, E = end();
291   if (MBB == nullptr)
292     MBBI = begin();
293   else
294     MBBI = MBB->getIterator();
295 
296   // Figure out the block number this should have.
297   unsigned BlockNo = 0;
298   if (MBBI != begin())
299     BlockNo = std::prev(MBBI)->getNumber() + 1;
300 
301   for (; MBBI != E; ++MBBI, ++BlockNo) {
302     if (MBBI->getNumber() != (int)BlockNo) {
303       // Remove use of the old number.
304       if (MBBI->getNumber() != -1) {
305         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
306                "MBB number mismatch!");
307         MBBNumbering[MBBI->getNumber()] = nullptr;
308       }
309 
310       // If BlockNo is already taken, set that block's number to -1.
311       if (MBBNumbering[BlockNo])
312         MBBNumbering[BlockNo]->setNumber(-1);
313 
314       MBBNumbering[BlockNo] = &*MBBI;
315       MBBI->setNumber(BlockNo);
316     }
317   }
318 
319   // Okay, all the blocks are renumbered.  If we have compactified the block
320   // numbering, shrink MBBNumbering now.
321   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
322   MBBNumbering.resize(BlockNo);
323 }
324 
325 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
326 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
327                                                   const DebugLoc &DL,
328                                                   bool NoImp) {
329   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
330     MachineInstr(*this, MCID, DL, NoImp);
331 }
332 
333 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
334 /// identical in all ways except the instruction has no parent, prev, or next.
335 MachineInstr *
336 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
337   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
338              MachineInstr(*this, *Orig);
339 }
340 
341 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
342     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
343   MachineInstr *FirstClone = nullptr;
344   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
345   while (true) {
346     MachineInstr *Cloned = CloneMachineInstr(&*I);
347     MBB.insert(InsertBefore, Cloned);
348     if (FirstClone == nullptr) {
349       FirstClone = Cloned;
350     } else {
351       Cloned->bundleWithPred();
352     }
353 
354     if (!I->isBundledWithSucc())
355       break;
356     ++I;
357   }
358   return *FirstClone;
359 }
360 
361 /// Delete the given MachineInstr.
362 ///
363 /// This function also serves as the MachineInstr destructor - the real
364 /// ~MachineInstr() destructor must be empty.
365 void
366 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
367   // Verify that a call site info is at valid state. This assertion should
368   // be triggered during the implementation of support for the
369   // call site info of a new architecture. If the assertion is triggered,
370   // back trace will tell where to insert a call to updateCallSiteInfo().
371   assert((!MI->isCall(MachineInstr::IgnoreBundle) ||
372           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
373          "Call site info was not updated!");
374   // Strip it for parts. The operand array and the MI object itself are
375   // independently recyclable.
376   if (MI->Operands)
377     deallocateOperandArray(MI->CapOperands, MI->Operands);
378   // Don't call ~MachineInstr() which must be trivial anyway because
379   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
380   // destructors.
381   InstructionRecycler.Deallocate(Allocator, MI);
382 }
383 
384 /// Allocate a new MachineBasicBlock. Use this instead of
385 /// `new MachineBasicBlock'.
386 MachineBasicBlock *
387 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
388   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
389              MachineBasicBlock(*this, bb);
390 }
391 
392 /// Delete the given MachineBasicBlock.
393 void
394 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
395   assert(MBB->getParent() == this && "MBB parent mismatch!");
396   MBB->~MachineBasicBlock();
397   BasicBlockRecycler.Deallocate(Allocator, MBB);
398 }
399 
400 MachineMemOperand *MachineFunction::getMachineMemOperand(
401     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
402     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
403     SyncScope::ID SSID, AtomicOrdering Ordering,
404     AtomicOrdering FailureOrdering) {
405   return new (Allocator)
406       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
407                         SSID, Ordering, FailureOrdering);
408 }
409 
410 MachineMemOperand *
411 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
412                                       int64_t Offset, uint64_t Size) {
413   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
414 
415   // If there is no pointer value, the offset isn't tracked so we need to adjust
416   // the base alignment.
417   unsigned Align = PtrInfo.V.isNull()
418                        ? MinAlign(MMO->getBaseAlignment(), Offset)
419                        : MMO->getBaseAlignment();
420 
421   return new (Allocator)
422       MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
423                         Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
424                         MMO->getOrdering(), MMO->getFailureOrdering());
425 }
426 
427 MachineMemOperand *
428 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
429                                       const AAMDNodes &AAInfo) {
430   MachinePointerInfo MPI = MMO->getValue() ?
431              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
432              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
433 
434   return new (Allocator)
435              MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
436                                MMO->getBaseAlignment(), AAInfo,
437                                MMO->getRanges(), MMO->getSyncScopeID(),
438                                MMO->getOrdering(), MMO->getFailureOrdering());
439 }
440 
441 MachineMemOperand *
442 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
443                                       MachineMemOperand::Flags Flags) {
444   return new (Allocator) MachineMemOperand(
445       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(),
446       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
447       MMO->getOrdering(), MMO->getFailureOrdering());
448 }
449 
450 MachineInstr::ExtraInfo *
451 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs,
452                                    MCSymbol *PreInstrSymbol,
453                                    MCSymbol *PostInstrSymbol) {
454   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
455                                          PostInstrSymbol, nullptr);
456 }
457 
458 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfoWithMarker(
459     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
460     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
461   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
462                                          PostInstrSymbol, HeapAllocMarker);
463 }
464 
465 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
466   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
467   llvm::copy(Name, Dest);
468   Dest[Name.size()] = 0;
469   return Dest;
470 }
471 
472 uint32_t *MachineFunction::allocateRegMask() {
473   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
474   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
475   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
476   memset(Mask, 0, Size * sizeof(Mask[0]));
477   return Mask;
478 }
479 
480 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
481 LLVM_DUMP_METHOD void MachineFunction::dump() const {
482   print(dbgs());
483 }
484 #endif
485 
486 StringRef MachineFunction::getName() const {
487   return getFunction().getName();
488 }
489 
490 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
491   OS << "# Machine code for function " << getName() << ": ";
492   getProperties().print(OS);
493   OS << '\n';
494 
495   // Print Frame Information
496   FrameInfo->print(*this, OS);
497 
498   // Print JumpTable Information
499   if (JumpTableInfo)
500     JumpTableInfo->print(OS);
501 
502   // Print Constant Pool
503   ConstantPool->print(OS);
504 
505   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
506 
507   if (RegInfo && !RegInfo->livein_empty()) {
508     OS << "Function Live Ins: ";
509     for (MachineRegisterInfo::livein_iterator
510          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
511       OS << printReg(I->first, TRI);
512       if (I->second)
513         OS << " in " << printReg(I->second, TRI);
514       if (std::next(I) != E)
515         OS << ", ";
516     }
517     OS << '\n';
518   }
519 
520   ModuleSlotTracker MST(getFunction().getParent());
521   MST.incorporateFunction(getFunction());
522   for (const auto &BB : *this) {
523     OS << '\n';
524     // If we print the whole function, print it at its most verbose level.
525     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
526   }
527 
528   OS << "\n# End machine code for function " << getName() << ".\n\n";
529 }
530 
531 namespace llvm {
532 
533   template<>
534   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
535     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
536 
537     static std::string getGraphName(const MachineFunction *F) {
538       return ("CFG for '" + F->getName() + "' function").str();
539     }
540 
541     std::string getNodeLabel(const MachineBasicBlock *Node,
542                              const MachineFunction *Graph) {
543       std::string OutStr;
544       {
545         raw_string_ostream OSS(OutStr);
546 
547         if (isSimple()) {
548           OSS << printMBBReference(*Node);
549           if (const BasicBlock *BB = Node->getBasicBlock())
550             OSS << ": " << BB->getName();
551         } else
552           Node->print(OSS);
553       }
554 
555       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
556 
557       // Process string output to make it nicer...
558       for (unsigned i = 0; i != OutStr.length(); ++i)
559         if (OutStr[i] == '\n') {                            // Left justify
560           OutStr[i] = '\\';
561           OutStr.insert(OutStr.begin()+i+1, 'l');
562         }
563       return OutStr;
564     }
565   };
566 
567 } // end namespace llvm
568 
569 void MachineFunction::viewCFG() const
570 {
571 #ifndef NDEBUG
572   ViewGraph(this, "mf" + getName());
573 #else
574   errs() << "MachineFunction::viewCFG is only available in debug builds on "
575          << "systems with Graphviz or gv!\n";
576 #endif // NDEBUG
577 }
578 
579 void MachineFunction::viewCFGOnly() const
580 {
581 #ifndef NDEBUG
582   ViewGraph(this, "mf" + getName(), true);
583 #else
584   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
585          << "systems with Graphviz or gv!\n";
586 #endif // NDEBUG
587 }
588 
589 /// Add the specified physical register as a live-in value and
590 /// create a corresponding virtual register for it.
591 unsigned MachineFunction::addLiveIn(unsigned PReg,
592                                     const TargetRegisterClass *RC) {
593   MachineRegisterInfo &MRI = getRegInfo();
594   unsigned VReg = MRI.getLiveInVirtReg(PReg);
595   if (VReg) {
596     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
597     (void)VRegRC;
598     // A physical register can be added several times.
599     // Between two calls, the register class of the related virtual register
600     // may have been constrained to match some operation constraints.
601     // In that case, check that the current register class includes the
602     // physical register and is a sub class of the specified RC.
603     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
604                              RC->hasSubClassEq(VRegRC))) &&
605             "Register class mismatch!");
606     return VReg;
607   }
608   VReg = MRI.createVirtualRegister(RC);
609   MRI.addLiveIn(PReg, VReg);
610   return VReg;
611 }
612 
613 /// Return the MCSymbol for the specified non-empty jump table.
614 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
615 /// normal 'L' label is returned.
616 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
617                                         bool isLinkerPrivate) const {
618   const DataLayout &DL = getDataLayout();
619   assert(JumpTableInfo && "No jump tables");
620   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
621 
622   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
623                                      : DL.getPrivateGlobalPrefix();
624   SmallString<60> Name;
625   raw_svector_ostream(Name)
626     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
627   return Ctx.getOrCreateSymbol(Name);
628 }
629 
630 /// Return a function-local symbol to represent the PIC base.
631 MCSymbol *MachineFunction::getPICBaseSymbol() const {
632   const DataLayout &DL = getDataLayout();
633   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
634                                Twine(getFunctionNumber()) + "$pb");
635 }
636 
637 /// \name Exception Handling
638 /// \{
639 
640 LandingPadInfo &
641 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
642   unsigned N = LandingPads.size();
643   for (unsigned i = 0; i < N; ++i) {
644     LandingPadInfo &LP = LandingPads[i];
645     if (LP.LandingPadBlock == LandingPad)
646       return LP;
647   }
648 
649   LandingPads.push_back(LandingPadInfo(LandingPad));
650   return LandingPads[N];
651 }
652 
653 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
654                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
655   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
656   LP.BeginLabels.push_back(BeginLabel);
657   LP.EndLabels.push_back(EndLabel);
658 }
659 
660 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
661   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
662   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
663   LP.LandingPadLabel = LandingPadLabel;
664 
665   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
666   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
667     if (const auto *PF =
668             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
669       getMMI().addPersonality(PF);
670 
671     if (LPI->isCleanup())
672       addCleanup(LandingPad);
673 
674     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
675     //        correct, but we need to do it this way because of how the DWARF EH
676     //        emitter processes the clauses.
677     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
678       Value *Val = LPI->getClause(I - 1);
679       if (LPI->isCatch(I - 1)) {
680         addCatchTypeInfo(LandingPad,
681                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
682       } else {
683         // Add filters in a list.
684         auto *CVal = cast<Constant>(Val);
685         SmallVector<const GlobalValue *, 4> FilterList;
686         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
687              II != IE; ++II)
688           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
689 
690         addFilterTypeInfo(LandingPad, FilterList);
691       }
692     }
693 
694   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
695     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
696       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
697       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
698     }
699 
700   } else {
701     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
702   }
703 
704   return LandingPadLabel;
705 }
706 
707 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
708                                        ArrayRef<const GlobalValue *> TyInfo) {
709   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
710   for (unsigned N = TyInfo.size(); N; --N)
711     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
712 }
713 
714 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
715                                         ArrayRef<const GlobalValue *> TyInfo) {
716   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
717   std::vector<unsigned> IdsInFilter(TyInfo.size());
718   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
719     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
720   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
721 }
722 
723 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
724                                       bool TidyIfNoBeginLabels) {
725   for (unsigned i = 0; i != LandingPads.size(); ) {
726     LandingPadInfo &LandingPad = LandingPads[i];
727     if (LandingPad.LandingPadLabel &&
728         !LandingPad.LandingPadLabel->isDefined() &&
729         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
730       LandingPad.LandingPadLabel = nullptr;
731 
732     // Special case: we *should* emit LPs with null LP MBB. This indicates
733     // "nounwind" case.
734     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
735       LandingPads.erase(LandingPads.begin() + i);
736       continue;
737     }
738 
739     if (TidyIfNoBeginLabels) {
740       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
741         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
742         MCSymbol *EndLabel = LandingPad.EndLabels[j];
743         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
744             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
745           continue;
746 
747         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
748         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
749         --j;
750         --e;
751       }
752 
753       // Remove landing pads with no try-ranges.
754       if (LandingPads[i].BeginLabels.empty()) {
755         LandingPads.erase(LandingPads.begin() + i);
756         continue;
757       }
758     }
759 
760     // If there is no landing pad, ensure that the list of typeids is empty.
761     // If the only typeid is a cleanup, this is the same as having no typeids.
762     if (!LandingPad.LandingPadBlock ||
763         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
764       LandingPad.TypeIds.clear();
765     ++i;
766   }
767 }
768 
769 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
770   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
771   LP.TypeIds.push_back(0);
772 }
773 
774 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
775                                          const Function *Filter,
776                                          const BlockAddress *RecoverBA) {
777   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
778   SEHHandler Handler;
779   Handler.FilterOrFinally = Filter;
780   Handler.RecoverBA = RecoverBA;
781   LP.SEHHandlers.push_back(Handler);
782 }
783 
784 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
785                                            const Function *Cleanup) {
786   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
787   SEHHandler Handler;
788   Handler.FilterOrFinally = Cleanup;
789   Handler.RecoverBA = nullptr;
790   LP.SEHHandlers.push_back(Handler);
791 }
792 
793 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
794                                             ArrayRef<unsigned> Sites) {
795   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
796 }
797 
798 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
799   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
800     if (TypeInfos[i] == TI) return i + 1;
801 
802   TypeInfos.push_back(TI);
803   return TypeInfos.size();
804 }
805 
806 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
807   // If the new filter coincides with the tail of an existing filter, then
808   // re-use the existing filter.  Folding filters more than this requires
809   // re-ordering filters and/or their elements - probably not worth it.
810   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
811        E = FilterEnds.end(); I != E; ++I) {
812     unsigned i = *I, j = TyIds.size();
813 
814     while (i && j)
815       if (FilterIds[--i] != TyIds[--j])
816         goto try_next;
817 
818     if (!j)
819       // The new filter coincides with range [i, end) of the existing filter.
820       return -(1 + i);
821 
822 try_next:;
823   }
824 
825   // Add the new filter.
826   int FilterID = -(1 + FilterIds.size());
827   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
828   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
829   FilterEnds.push_back(FilterIds.size());
830   FilterIds.push_back(0); // terminator
831   return FilterID;
832 }
833 
834 void MachineFunction::addCodeViewHeapAllocSite(MachineInstr *I,
835                                                const MDNode *MD) {
836   MCSymbol *BeginLabel = Ctx.createTempSymbol("heapallocsite", true);
837   MCSymbol *EndLabel = Ctx.createTempSymbol("heapallocsite", true);
838   I->setPreInstrSymbol(*this, BeginLabel);
839   I->setPostInstrSymbol(*this, EndLabel);
840 
841   const DIType *DI = dyn_cast<DIType>(MD);
842   CodeViewHeapAllocSites.push_back(std::make_tuple(BeginLabel, EndLabel, DI));
843 }
844 
845 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
846                                        const MachineInstr *New) {
847   assert(New->isCall() && "Call site info refers only to call instructions!");
848 
849   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old);
850   if (CSIt == CallSitesInfo.end())
851     return;
852 
853   CallSiteInfo CSInfo = std::move(CSIt->second);
854   CallSitesInfo.erase(CSIt);
855   CallSitesInfo[New] = CSInfo;
856 }
857 
858 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
859   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI);
860   if (CSIt == CallSitesInfo.end())
861     return;
862   CallSitesInfo.erase(CSIt);
863 }
864 
865 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
866                                        const MachineInstr *New) {
867   assert(New->isCall() && "Call site info refers only to call instructions!");
868 
869   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old);
870   if (CSIt == CallSitesInfo.end())
871     return;
872 
873   CallSiteInfo CSInfo = CSIt->second;
874   CallSitesInfo[New] = CSInfo;
875 }
876 
877 /// \}
878 
879 //===----------------------------------------------------------------------===//
880 //  MachineJumpTableInfo implementation
881 //===----------------------------------------------------------------------===//
882 
883 /// Return the size of each entry in the jump table.
884 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
885   // The size of a jump table entry is 4 bytes unless the entry is just the
886   // address of a block, in which case it is the pointer size.
887   switch (getEntryKind()) {
888   case MachineJumpTableInfo::EK_BlockAddress:
889     return TD.getPointerSize();
890   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
891     return 8;
892   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
893   case MachineJumpTableInfo::EK_LabelDifference32:
894   case MachineJumpTableInfo::EK_Custom32:
895     return 4;
896   case MachineJumpTableInfo::EK_Inline:
897     return 0;
898   }
899   llvm_unreachable("Unknown jump table encoding!");
900 }
901 
902 /// Return the alignment of each entry in the jump table.
903 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
904   // The alignment of a jump table entry is the alignment of int32 unless the
905   // entry is just the address of a block, in which case it is the pointer
906   // alignment.
907   switch (getEntryKind()) {
908   case MachineJumpTableInfo::EK_BlockAddress:
909     return TD.getPointerABIAlignment(0).value();
910   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
911     return TD.getABIIntegerTypeAlignment(64).value();
912   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
913   case MachineJumpTableInfo::EK_LabelDifference32:
914   case MachineJumpTableInfo::EK_Custom32:
915     return TD.getABIIntegerTypeAlignment(32).value();
916   case MachineJumpTableInfo::EK_Inline:
917     return 1;
918   }
919   llvm_unreachable("Unknown jump table encoding!");
920 }
921 
922 /// Create a new jump table entry in the jump table info.
923 unsigned MachineJumpTableInfo::createJumpTableIndex(
924                                const std::vector<MachineBasicBlock*> &DestBBs) {
925   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
926   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
927   return JumpTables.size()-1;
928 }
929 
930 /// If Old is the target of any jump tables, update the jump tables to branch
931 /// to New instead.
932 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
933                                                   MachineBasicBlock *New) {
934   assert(Old != New && "Not making a change?");
935   bool MadeChange = false;
936   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
937     ReplaceMBBInJumpTable(i, Old, New);
938   return MadeChange;
939 }
940 
941 /// If Old is a target of the jump tables, update the jump table to branch to
942 /// New instead.
943 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
944                                                  MachineBasicBlock *Old,
945                                                  MachineBasicBlock *New) {
946   assert(Old != New && "Not making a change?");
947   bool MadeChange = false;
948   MachineJumpTableEntry &JTE = JumpTables[Idx];
949   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
950     if (JTE.MBBs[j] == Old) {
951       JTE.MBBs[j] = New;
952       MadeChange = true;
953     }
954   return MadeChange;
955 }
956 
957 void MachineJumpTableInfo::print(raw_ostream &OS) const {
958   if (JumpTables.empty()) return;
959 
960   OS << "Jump Tables:\n";
961 
962   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
963     OS << printJumpTableEntryReference(i) << ':';
964     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
965       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
966     if (i != e)
967       OS << '\n';
968   }
969 
970   OS << '\n';
971 }
972 
973 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
974 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
975 #endif
976 
977 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
978   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
979 }
980 
981 //===----------------------------------------------------------------------===//
982 //  MachineConstantPool implementation
983 //===----------------------------------------------------------------------===//
984 
985 void MachineConstantPoolValue::anchor() {}
986 
987 Type *MachineConstantPoolEntry::getType() const {
988   if (isMachineConstantPoolEntry())
989     return Val.MachineCPVal->getType();
990   return Val.ConstVal->getType();
991 }
992 
993 bool MachineConstantPoolEntry::needsRelocation() const {
994   if (isMachineConstantPoolEntry())
995     return true;
996   return Val.ConstVal->needsRelocation();
997 }
998 
999 SectionKind
1000 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1001   if (needsRelocation())
1002     return SectionKind::getReadOnlyWithRel();
1003   switch (DL->getTypeAllocSize(getType())) {
1004   case 4:
1005     return SectionKind::getMergeableConst4();
1006   case 8:
1007     return SectionKind::getMergeableConst8();
1008   case 16:
1009     return SectionKind::getMergeableConst16();
1010   case 32:
1011     return SectionKind::getMergeableConst32();
1012   default:
1013     return SectionKind::getReadOnly();
1014   }
1015 }
1016 
1017 MachineConstantPool::~MachineConstantPool() {
1018   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1019   // so keep track of which we've deleted to avoid double deletions.
1020   DenseSet<MachineConstantPoolValue*> Deleted;
1021   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1022     if (Constants[i].isMachineConstantPoolEntry()) {
1023       Deleted.insert(Constants[i].Val.MachineCPVal);
1024       delete Constants[i].Val.MachineCPVal;
1025     }
1026   for (DenseSet<MachineConstantPoolValue*>::iterator I =
1027        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1028        I != E; ++I) {
1029     if (Deleted.count(*I) == 0)
1030       delete *I;
1031   }
1032 }
1033 
1034 /// Test whether the given two constants can be allocated the same constant pool
1035 /// entry.
1036 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1037                                       const DataLayout &DL) {
1038   // Handle the trivial case quickly.
1039   if (A == B) return true;
1040 
1041   // If they have the same type but weren't the same constant, quickly
1042   // reject them.
1043   if (A->getType() == B->getType()) return false;
1044 
1045   // We can't handle structs or arrays.
1046   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1047       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1048     return false;
1049 
1050   // For now, only support constants with the same size.
1051   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1052   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1053     return false;
1054 
1055   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1056 
1057   // Try constant folding a bitcast of both instructions to an integer.  If we
1058   // get two identical ConstantInt's, then we are good to share them.  We use
1059   // the constant folding APIs to do this so that we get the benefit of
1060   // DataLayout.
1061   if (isa<PointerType>(A->getType()))
1062     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1063                                 const_cast<Constant *>(A), IntTy, DL);
1064   else if (A->getType() != IntTy)
1065     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1066                                 IntTy, DL);
1067   if (isa<PointerType>(B->getType()))
1068     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1069                                 const_cast<Constant *>(B), IntTy, DL);
1070   else if (B->getType() != IntTy)
1071     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1072                                 IntTy, DL);
1073 
1074   return A == B;
1075 }
1076 
1077 /// Create a new entry in the constant pool or return an existing one.
1078 /// User must specify the log2 of the minimum required alignment for the object.
1079 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1080                                                    unsigned Alignment) {
1081   assert(Alignment && "Alignment must be specified!");
1082   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1083 
1084   // Check to see if we already have this constant.
1085   //
1086   // FIXME, this could be made much more efficient for large constant pools.
1087   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1088     if (!Constants[i].isMachineConstantPoolEntry() &&
1089         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1090       if ((unsigned)Constants[i].getAlignment() < Alignment)
1091         Constants[i].Alignment = Alignment;
1092       return i;
1093     }
1094 
1095   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1096   return Constants.size()-1;
1097 }
1098 
1099 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1100                                                    unsigned Alignment) {
1101   assert(Alignment && "Alignment must be specified!");
1102   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1103 
1104   // Check to see if we already have this constant.
1105   //
1106   // FIXME, this could be made much more efficient for large constant pools.
1107   int Idx = V->getExistingMachineCPValue(this, Alignment);
1108   if (Idx != -1) {
1109     MachineCPVsSharingEntries.insert(V);
1110     return (unsigned)Idx;
1111   }
1112 
1113   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1114   return Constants.size()-1;
1115 }
1116 
1117 void MachineConstantPool::print(raw_ostream &OS) const {
1118   if (Constants.empty()) return;
1119 
1120   OS << "Constant Pool:\n";
1121   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1122     OS << "  cp#" << i << ": ";
1123     if (Constants[i].isMachineConstantPoolEntry())
1124       Constants[i].Val.MachineCPVal->print(OS);
1125     else
1126       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1127     OS << ", align=" << Constants[i].getAlignment();
1128     OS << "\n";
1129   }
1130 }
1131 
1132 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1133 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1134 #endif
1135