xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 722b16673c40aedf280895f2f2f676bb494518d7)
1  //===- MachineFunction.cpp ------------------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Collect native machine code information for a function.  This allows
10  // target-specific information about the generated code to be stored with each
11  // function.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "llvm/CodeGen/MachineFunction.h"
16  #include "llvm/ADT/BitVector.h"
17  #include "llvm/ADT/DenseMap.h"
18  #include "llvm/ADT/DenseSet.h"
19  #include "llvm/ADT/STLExtras.h"
20  #include "llvm/ADT/SmallString.h"
21  #include "llvm/ADT/SmallVector.h"
22  #include "llvm/ADT/StringRef.h"
23  #include "llvm/ADT/Twine.h"
24  #include "llvm/Analysis/ConstantFolding.h"
25  #include "llvm/Analysis/ProfileSummaryInfo.h"
26  #include "llvm/CodeGen/MachineBasicBlock.h"
27  #include "llvm/CodeGen/MachineConstantPool.h"
28  #include "llvm/CodeGen/MachineFrameInfo.h"
29  #include "llvm/CodeGen/MachineInstr.h"
30  #include "llvm/CodeGen/MachineJumpTableInfo.h"
31  #include "llvm/CodeGen/MachineMemOperand.h"
32  #include "llvm/CodeGen/MachineModuleInfo.h"
33  #include "llvm/CodeGen/MachineRegisterInfo.h"
34  #include "llvm/CodeGen/PseudoSourceValue.h"
35  #include "llvm/CodeGen/TargetFrameLowering.h"
36  #include "llvm/CodeGen/TargetInstrInfo.h"
37  #include "llvm/CodeGen/TargetLowering.h"
38  #include "llvm/CodeGen/TargetRegisterInfo.h"
39  #include "llvm/CodeGen/TargetSubtargetInfo.h"
40  #include "llvm/CodeGen/WasmEHFuncInfo.h"
41  #include "llvm/CodeGen/WinEHFuncInfo.h"
42  #include "llvm/Config/llvm-config.h"
43  #include "llvm/IR/Attributes.h"
44  #include "llvm/IR/BasicBlock.h"
45  #include "llvm/IR/Constant.h"
46  #include "llvm/IR/DataLayout.h"
47  #include "llvm/IR/DerivedTypes.h"
48  #include "llvm/IR/EHPersonalities.h"
49  #include "llvm/IR/Function.h"
50  #include "llvm/IR/GlobalValue.h"
51  #include "llvm/IR/Instruction.h"
52  #include "llvm/IR/Instructions.h"
53  #include "llvm/IR/Metadata.h"
54  #include "llvm/IR/Module.h"
55  #include "llvm/IR/ModuleSlotTracker.h"
56  #include "llvm/IR/Value.h"
57  #include "llvm/MC/MCContext.h"
58  #include "llvm/MC/MCSymbol.h"
59  #include "llvm/MC/SectionKind.h"
60  #include "llvm/Support/Casting.h"
61  #include "llvm/Support/CommandLine.h"
62  #include "llvm/Support/Compiler.h"
63  #include "llvm/Support/DOTGraphTraits.h"
64  #include "llvm/Support/ErrorHandling.h"
65  #include "llvm/Support/GraphWriter.h"
66  #include "llvm/Support/raw_ostream.h"
67  #include "llvm/Target/TargetMachine.h"
68  #include <algorithm>
69  #include <cassert>
70  #include <cstddef>
71  #include <cstdint>
72  #include <iterator>
73  #include <string>
74  #include <type_traits>
75  #include <utility>
76  #include <vector>
77  
78  #include "LiveDebugValues/LiveDebugValues.h"
79  
80  using namespace llvm;
81  
82  #define DEBUG_TYPE "codegen"
83  
84  static cl::opt<unsigned> AlignAllFunctions(
85      "align-all-functions",
86      cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
87               "means align on 16B boundaries)."),
88      cl::init(0), cl::Hidden);
89  
90  static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
91    using P = MachineFunctionProperties::Property;
92  
93    // clang-format off
94    switch(Prop) {
95    case P::FailedISel: return "FailedISel";
96    case P::IsSSA: return "IsSSA";
97    case P::Legalized: return "Legalized";
98    case P::NoPHIs: return "NoPHIs";
99    case P::NoVRegs: return "NoVRegs";
100    case P::RegBankSelected: return "RegBankSelected";
101    case P::Selected: return "Selected";
102    case P::TracksLiveness: return "TracksLiveness";
103    case P::TiedOpsRewritten: return "TiedOpsRewritten";
104    case P::FailsVerification: return "FailsVerification";
105    case P::TracksDebugUserValues: return "TracksDebugUserValues";
106    }
107    // clang-format on
108    llvm_unreachable("Invalid machine function property");
109  }
110  
111  void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
112    if (!F.hasFnAttribute(Attribute::SafeStack))
113      return;
114  
115    auto *Existing =
116        dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
117  
118    if (!Existing || Existing->getNumOperands() != 2)
119      return;
120  
121    auto *MetadataName = "unsafe-stack-size";
122    if (auto &N = Existing->getOperand(0)) {
123      if (N.equalsStr(MetadataName)) {
124        if (auto &Op = Existing->getOperand(1)) {
125          auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
126          FrameInfo.setUnsafeStackSize(Val);
127        }
128      }
129    }
130  }
131  
132  // Pin the vtable to this file.
133  void MachineFunction::Delegate::anchor() {}
134  
135  void MachineFunctionProperties::print(raw_ostream &OS) const {
136    const char *Separator = "";
137    for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
138      if (!Properties[I])
139        continue;
140      OS << Separator << getPropertyName(static_cast<Property>(I));
141      Separator = ", ";
142    }
143  }
144  
145  //===----------------------------------------------------------------------===//
146  // MachineFunction implementation
147  //===----------------------------------------------------------------------===//
148  
149  // Out-of-line virtual method.
150  MachineFunctionInfo::~MachineFunctionInfo() = default;
151  
152  void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
153    MBB->getParent()->deleteMachineBasicBlock(MBB);
154  }
155  
156  static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
157                                             const Function &F) {
158    if (auto MA = F.getFnStackAlign())
159      return *MA;
160    return STI->getFrameLowering()->getStackAlign();
161  }
162  
163  MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
164                                   const TargetSubtargetInfo &STI,
165                                   unsigned FunctionNum, MachineModuleInfo &mmi)
166      : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
167    FunctionNumber = FunctionNum;
168    init();
169  }
170  
171  void MachineFunction::handleInsertion(MachineInstr &MI) {
172    if (TheDelegate)
173      TheDelegate->MF_HandleInsertion(MI);
174  }
175  
176  void MachineFunction::handleRemoval(MachineInstr &MI) {
177    if (TheDelegate)
178      TheDelegate->MF_HandleRemoval(MI);
179  }
180  
181  void MachineFunction::init() {
182    // Assume the function starts in SSA form with correct liveness.
183    Properties.set(MachineFunctionProperties::Property::IsSSA);
184    Properties.set(MachineFunctionProperties::Property::TracksLiveness);
185    if (STI->getRegisterInfo())
186      RegInfo = new (Allocator) MachineRegisterInfo(this);
187    else
188      RegInfo = nullptr;
189  
190    MFInfo = nullptr;
191  
192    // We can realign the stack if the target supports it and the user hasn't
193    // explicitly asked us not to.
194    bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
195                        !F.hasFnAttribute("no-realign-stack");
196    FrameInfo = new (Allocator) MachineFrameInfo(
197        getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
198        /*ForcedRealign=*/CanRealignSP &&
199            F.hasFnAttribute(Attribute::StackAlignment));
200  
201    setUnsafeStackSize(F, *FrameInfo);
202  
203    if (F.hasFnAttribute(Attribute::StackAlignment))
204      FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
205  
206    ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
207    Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
208  
209    // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
210    // FIXME: Use Function::hasOptSize().
211    if (!F.hasFnAttribute(Attribute::OptimizeForSize))
212      Alignment = std::max(Alignment,
213                           STI->getTargetLowering()->getPrefFunctionAlignment());
214  
215    // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
216    // to load a type hash before the function label. Ensure functions are aligned
217    // by a least 4 to avoid unaligned access, which is especially important for
218    // -mno-unaligned-access.
219    if (F.hasMetadata(LLVMContext::MD_func_sanitize) ||
220        F.getMetadata(LLVMContext::MD_kcfi_type))
221      Alignment = std::max(Alignment, Align(4));
222  
223    if (AlignAllFunctions)
224      Alignment = Align(1ULL << AlignAllFunctions);
225  
226    JumpTableInfo = nullptr;
227  
228    if (isFuncletEHPersonality(classifyEHPersonality(
229            F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
230      WinEHInfo = new (Allocator) WinEHFuncInfo();
231    }
232  
233    if (isScopedEHPersonality(classifyEHPersonality(
234            F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
235      WasmEHInfo = new (Allocator) WasmEHFuncInfo();
236    }
237  
238    assert(Target.isCompatibleDataLayout(getDataLayout()) &&
239           "Can't create a MachineFunction using a Module with a "
240           "Target-incompatible DataLayout attached\n");
241  
242    PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
243  }
244  
245  void MachineFunction::initTargetMachineFunctionInfo(
246      const TargetSubtargetInfo &STI) {
247    assert(!MFInfo && "MachineFunctionInfo already set");
248    MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
249  }
250  
251  MachineFunction::~MachineFunction() {
252    clear();
253  }
254  
255  void MachineFunction::clear() {
256    Properties.reset();
257    // Don't call destructors on MachineInstr and MachineOperand. All of their
258    // memory comes from the BumpPtrAllocator which is about to be purged.
259    //
260    // Do call MachineBasicBlock destructors, it contains std::vectors.
261    for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
262      I->Insts.clearAndLeakNodesUnsafely();
263    MBBNumbering.clear();
264  
265    InstructionRecycler.clear(Allocator);
266    OperandRecycler.clear(Allocator);
267    BasicBlockRecycler.clear(Allocator);
268    CodeViewAnnotations.clear();
269    VariableDbgInfos.clear();
270    if (RegInfo) {
271      RegInfo->~MachineRegisterInfo();
272      Allocator.Deallocate(RegInfo);
273    }
274    if (MFInfo) {
275      MFInfo->~MachineFunctionInfo();
276      Allocator.Deallocate(MFInfo);
277    }
278  
279    FrameInfo->~MachineFrameInfo();
280    Allocator.Deallocate(FrameInfo);
281  
282    ConstantPool->~MachineConstantPool();
283    Allocator.Deallocate(ConstantPool);
284  
285    if (JumpTableInfo) {
286      JumpTableInfo->~MachineJumpTableInfo();
287      Allocator.Deallocate(JumpTableInfo);
288    }
289  
290    if (WinEHInfo) {
291      WinEHInfo->~WinEHFuncInfo();
292      Allocator.Deallocate(WinEHInfo);
293    }
294  
295    if (WasmEHInfo) {
296      WasmEHInfo->~WasmEHFuncInfo();
297      Allocator.Deallocate(WasmEHInfo);
298    }
299  }
300  
301  const DataLayout &MachineFunction::getDataLayout() const {
302    return F.getParent()->getDataLayout();
303  }
304  
305  /// Get the JumpTableInfo for this function.
306  /// If it does not already exist, allocate one.
307  MachineJumpTableInfo *MachineFunction::
308  getOrCreateJumpTableInfo(unsigned EntryKind) {
309    if (JumpTableInfo) return JumpTableInfo;
310  
311    JumpTableInfo = new (Allocator)
312      MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
313    return JumpTableInfo;
314  }
315  
316  DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
317    return F.getDenormalMode(FPType);
318  }
319  
320  /// Should we be emitting segmented stack stuff for the function
321  bool MachineFunction::shouldSplitStack() const {
322    return getFunction().hasFnAttribute("split-stack");
323  }
324  
325  [[nodiscard]] unsigned
326  MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
327    FrameInstructions.push_back(Inst);
328    return FrameInstructions.size() - 1;
329  }
330  
331  /// This discards all of the MachineBasicBlock numbers and recomputes them.
332  /// This guarantees that the MBB numbers are sequential, dense, and match the
333  /// ordering of the blocks within the function.  If a specific MachineBasicBlock
334  /// is specified, only that block and those after it are renumbered.
335  void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
336    if (empty()) { MBBNumbering.clear(); return; }
337    MachineFunction::iterator MBBI, E = end();
338    if (MBB == nullptr)
339      MBBI = begin();
340    else
341      MBBI = MBB->getIterator();
342  
343    // Figure out the block number this should have.
344    unsigned BlockNo = 0;
345    if (MBBI != begin())
346      BlockNo = std::prev(MBBI)->getNumber() + 1;
347  
348    for (; MBBI != E; ++MBBI, ++BlockNo) {
349      if (MBBI->getNumber() != (int)BlockNo) {
350        // Remove use of the old number.
351        if (MBBI->getNumber() != -1) {
352          assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
353                 "MBB number mismatch!");
354          MBBNumbering[MBBI->getNumber()] = nullptr;
355        }
356  
357        // If BlockNo is already taken, set that block's number to -1.
358        if (MBBNumbering[BlockNo])
359          MBBNumbering[BlockNo]->setNumber(-1);
360  
361        MBBNumbering[BlockNo] = &*MBBI;
362        MBBI->setNumber(BlockNo);
363      }
364    }
365  
366    // Okay, all the blocks are renumbered.  If we have compactified the block
367    // numbering, shrink MBBNumbering now.
368    assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
369    MBBNumbering.resize(BlockNo);
370  }
371  
372  /// This method iterates over the basic blocks and assigns their IsBeginSection
373  /// and IsEndSection fields. This must be called after MBB layout is finalized
374  /// and the SectionID's are assigned to MBBs.
375  void MachineFunction::assignBeginEndSections() {
376    front().setIsBeginSection();
377    auto CurrentSectionID = front().getSectionID();
378    for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
379      if (MBBI->getSectionID() == CurrentSectionID)
380        continue;
381      MBBI->setIsBeginSection();
382      std::prev(MBBI)->setIsEndSection();
383      CurrentSectionID = MBBI->getSectionID();
384    }
385    back().setIsEndSection();
386  }
387  
388  /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
389  MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
390                                                    DebugLoc DL,
391                                                    bool NoImplicit) {
392    return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
393        MachineInstr(*this, MCID, std::move(DL), NoImplicit);
394  }
395  
396  /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
397  /// identical in all ways except the instruction has no parent, prev, or next.
398  MachineInstr *
399  MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
400    return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
401               MachineInstr(*this, *Orig);
402  }
403  
404  MachineInstr &MachineFunction::cloneMachineInstrBundle(
405      MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
406      const MachineInstr &Orig) {
407    MachineInstr *FirstClone = nullptr;
408    MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
409    while (true) {
410      MachineInstr *Cloned = CloneMachineInstr(&*I);
411      MBB.insert(InsertBefore, Cloned);
412      if (FirstClone == nullptr) {
413        FirstClone = Cloned;
414      } else {
415        Cloned->bundleWithPred();
416      }
417  
418      if (!I->isBundledWithSucc())
419        break;
420      ++I;
421    }
422    // Copy over call site info to the cloned instruction if needed. If Orig is in
423    // a bundle, copyCallSiteInfo takes care of finding the call instruction in
424    // the bundle.
425    if (Orig.shouldUpdateCallSiteInfo())
426      copyCallSiteInfo(&Orig, FirstClone);
427    return *FirstClone;
428  }
429  
430  /// Delete the given MachineInstr.
431  ///
432  /// This function also serves as the MachineInstr destructor - the real
433  /// ~MachineInstr() destructor must be empty.
434  void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
435    // Verify that a call site info is at valid state. This assertion should
436    // be triggered during the implementation of support for the
437    // call site info of a new architecture. If the assertion is triggered,
438    // back trace will tell where to insert a call to updateCallSiteInfo().
439    assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) &&
440           "Call site info was not updated!");
441    // Strip it for parts. The operand array and the MI object itself are
442    // independently recyclable.
443    if (MI->Operands)
444      deallocateOperandArray(MI->CapOperands, MI->Operands);
445    // Don't call ~MachineInstr() which must be trivial anyway because
446    // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
447    // destructors.
448    InstructionRecycler.Deallocate(Allocator, MI);
449  }
450  
451  /// Allocate a new MachineBasicBlock. Use this instead of
452  /// `new MachineBasicBlock'.
453  MachineBasicBlock *
454  MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
455    MachineBasicBlock *MBB =
456        new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
457            MachineBasicBlock(*this, bb);
458    // Set BBID for `-basic-block=sections=labels` and
459    // `-basic-block-sections=list` to allow robust mapping of profiles to basic
460    // blocks.
461    if (Target.getBBSectionsType() == BasicBlockSection::Labels ||
462        Target.getBBSectionsType() == BasicBlockSection::List)
463      MBB->setBBID(NextBBID++);
464    return MBB;
465  }
466  
467  /// Delete the given MachineBasicBlock.
468  void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
469    assert(MBB->getParent() == this && "MBB parent mismatch!");
470    // Clean up any references to MBB in jump tables before deleting it.
471    if (JumpTableInfo)
472      JumpTableInfo->RemoveMBBFromJumpTables(MBB);
473    MBB->~MachineBasicBlock();
474    BasicBlockRecycler.Deallocate(Allocator, MBB);
475  }
476  
477  MachineMemOperand *MachineFunction::getMachineMemOperand(
478      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
479      Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
480      SyncScope::ID SSID, AtomicOrdering Ordering,
481      AtomicOrdering FailureOrdering) {
482    return new (Allocator)
483        MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
484                          SSID, Ordering, FailureOrdering);
485  }
486  
487  MachineMemOperand *MachineFunction::getMachineMemOperand(
488      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
489      Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
490      SyncScope::ID SSID, AtomicOrdering Ordering,
491      AtomicOrdering FailureOrdering) {
492    return new (Allocator)
493        MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
494                          Ordering, FailureOrdering);
495  }
496  
497  MachineMemOperand *MachineFunction::getMachineMemOperand(
498      const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
499    return new (Allocator)
500        MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
501                          AAMDNodes(), nullptr, MMO->getSyncScopeID(),
502                          MMO->getSuccessOrdering(), MMO->getFailureOrdering());
503  }
504  
505  MachineMemOperand *MachineFunction::getMachineMemOperand(
506      const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
507    return new (Allocator)
508        MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
509                          AAMDNodes(), nullptr, MMO->getSyncScopeID(),
510                          MMO->getSuccessOrdering(), MMO->getFailureOrdering());
511  }
512  
513  MachineMemOperand *
514  MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
515                                        int64_t Offset, LLT Ty) {
516    const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
517  
518    // If there is no pointer value, the offset isn't tracked so we need to adjust
519    // the base alignment.
520    Align Alignment = PtrInfo.V.isNull()
521                          ? commonAlignment(MMO->getBaseAlign(), Offset)
522                          : MMO->getBaseAlign();
523  
524    // Do not preserve ranges, since we don't necessarily know what the high bits
525    // are anymore.
526    return new (Allocator) MachineMemOperand(
527        PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
528        MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
529        MMO->getSuccessOrdering(), MMO->getFailureOrdering());
530  }
531  
532  MachineMemOperand *
533  MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
534                                        const AAMDNodes &AAInfo) {
535    MachinePointerInfo MPI = MMO->getValue() ?
536               MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
537               MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
538  
539    return new (Allocator) MachineMemOperand(
540        MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
541        MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
542        MMO->getFailureOrdering());
543  }
544  
545  MachineMemOperand *
546  MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
547                                        MachineMemOperand::Flags Flags) {
548    return new (Allocator) MachineMemOperand(
549        MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
550        MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
551        MMO->getSuccessOrdering(), MMO->getFailureOrdering());
552  }
553  
554  MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
555      ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
556      MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
557      uint32_t CFIType) {
558    return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
559                                           PostInstrSymbol, HeapAllocMarker,
560                                           PCSections, CFIType);
561  }
562  
563  const char *MachineFunction::createExternalSymbolName(StringRef Name) {
564    char *Dest = Allocator.Allocate<char>(Name.size() + 1);
565    llvm::copy(Name, Dest);
566    Dest[Name.size()] = 0;
567    return Dest;
568  }
569  
570  uint32_t *MachineFunction::allocateRegMask() {
571    unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
572    unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
573    uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
574    memset(Mask, 0, Size * sizeof(Mask[0]));
575    return Mask;
576  }
577  
578  ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
579    int* AllocMask = Allocator.Allocate<int>(Mask.size());
580    copy(Mask, AllocMask);
581    return {AllocMask, Mask.size()};
582  }
583  
584  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
585  LLVM_DUMP_METHOD void MachineFunction::dump() const {
586    print(dbgs());
587  }
588  #endif
589  
590  StringRef MachineFunction::getName() const {
591    return getFunction().getName();
592  }
593  
594  void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
595    OS << "# Machine code for function " << getName() << ": ";
596    getProperties().print(OS);
597    OS << '\n';
598  
599    // Print Frame Information
600    FrameInfo->print(*this, OS);
601  
602    // Print JumpTable Information
603    if (JumpTableInfo)
604      JumpTableInfo->print(OS);
605  
606    // Print Constant Pool
607    ConstantPool->print(OS);
608  
609    const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
610  
611    if (RegInfo && !RegInfo->livein_empty()) {
612      OS << "Function Live Ins: ";
613      for (MachineRegisterInfo::livein_iterator
614           I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
615        OS << printReg(I->first, TRI);
616        if (I->second)
617          OS << " in " << printReg(I->second, TRI);
618        if (std::next(I) != E)
619          OS << ", ";
620      }
621      OS << '\n';
622    }
623  
624    ModuleSlotTracker MST(getFunction().getParent());
625    MST.incorporateFunction(getFunction());
626    for (const auto &BB : *this) {
627      OS << '\n';
628      // If we print the whole function, print it at its most verbose level.
629      BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
630    }
631  
632    OS << "\n# End machine code for function " << getName() << ".\n\n";
633  }
634  
635  /// True if this function needs frame moves for debug or exceptions.
636  bool MachineFunction::needsFrameMoves() const {
637    return getMMI().hasDebugInfo() ||
638           getTarget().Options.ForceDwarfFrameSection ||
639           F.needsUnwindTableEntry();
640  }
641  
642  namespace llvm {
643  
644    template<>
645    struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
646      DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
647  
648      static std::string getGraphName(const MachineFunction *F) {
649        return ("CFG for '" + F->getName() + "' function").str();
650      }
651  
652      std::string getNodeLabel(const MachineBasicBlock *Node,
653                               const MachineFunction *Graph) {
654        std::string OutStr;
655        {
656          raw_string_ostream OSS(OutStr);
657  
658          if (isSimple()) {
659            OSS << printMBBReference(*Node);
660            if (const BasicBlock *BB = Node->getBasicBlock())
661              OSS << ": " << BB->getName();
662          } else
663            Node->print(OSS);
664        }
665  
666        if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
667  
668        // Process string output to make it nicer...
669        for (unsigned i = 0; i != OutStr.length(); ++i)
670          if (OutStr[i] == '\n') {                            // Left justify
671            OutStr[i] = '\\';
672            OutStr.insert(OutStr.begin()+i+1, 'l');
673          }
674        return OutStr;
675      }
676    };
677  
678  } // end namespace llvm
679  
680  void MachineFunction::viewCFG() const
681  {
682  #ifndef NDEBUG
683    ViewGraph(this, "mf" + getName());
684  #else
685    errs() << "MachineFunction::viewCFG is only available in debug builds on "
686           << "systems with Graphviz or gv!\n";
687  #endif // NDEBUG
688  }
689  
690  void MachineFunction::viewCFGOnly() const
691  {
692  #ifndef NDEBUG
693    ViewGraph(this, "mf" + getName(), true);
694  #else
695    errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
696           << "systems with Graphviz or gv!\n";
697  #endif // NDEBUG
698  }
699  
700  /// Add the specified physical register as a live-in value and
701  /// create a corresponding virtual register for it.
702  Register MachineFunction::addLiveIn(MCRegister PReg,
703                                      const TargetRegisterClass *RC) {
704    MachineRegisterInfo &MRI = getRegInfo();
705    Register VReg = MRI.getLiveInVirtReg(PReg);
706    if (VReg) {
707      const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
708      (void)VRegRC;
709      // A physical register can be added several times.
710      // Between two calls, the register class of the related virtual register
711      // may have been constrained to match some operation constraints.
712      // In that case, check that the current register class includes the
713      // physical register and is a sub class of the specified RC.
714      assert((VRegRC == RC || (VRegRC->contains(PReg) &&
715                               RC->hasSubClassEq(VRegRC))) &&
716              "Register class mismatch!");
717      return VReg;
718    }
719    VReg = MRI.createVirtualRegister(RC);
720    MRI.addLiveIn(PReg, VReg);
721    return VReg;
722  }
723  
724  /// Return the MCSymbol for the specified non-empty jump table.
725  /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
726  /// normal 'L' label is returned.
727  MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
728                                          bool isLinkerPrivate) const {
729    const DataLayout &DL = getDataLayout();
730    assert(JumpTableInfo && "No jump tables");
731    assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
732  
733    StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
734                                       : DL.getPrivateGlobalPrefix();
735    SmallString<60> Name;
736    raw_svector_ostream(Name)
737      << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
738    return Ctx.getOrCreateSymbol(Name);
739  }
740  
741  /// Return a function-local symbol to represent the PIC base.
742  MCSymbol *MachineFunction::getPICBaseSymbol() const {
743    const DataLayout &DL = getDataLayout();
744    return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
745                                 Twine(getFunctionNumber()) + "$pb");
746  }
747  
748  /// \name Exception Handling
749  /// \{
750  
751  LandingPadInfo &
752  MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
753    unsigned N = LandingPads.size();
754    for (unsigned i = 0; i < N; ++i) {
755      LandingPadInfo &LP = LandingPads[i];
756      if (LP.LandingPadBlock == LandingPad)
757        return LP;
758    }
759  
760    LandingPads.push_back(LandingPadInfo(LandingPad));
761    return LandingPads[N];
762  }
763  
764  void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
765                                  MCSymbol *BeginLabel, MCSymbol *EndLabel) {
766    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
767    LP.BeginLabels.push_back(BeginLabel);
768    LP.EndLabels.push_back(EndLabel);
769  }
770  
771  MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
772    MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
773    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
774    LP.LandingPadLabel = LandingPadLabel;
775  
776    const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
777    if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
778      // If there's no typeid list specified, then "cleanup" is implicit.
779      // Otherwise, id 0 is reserved for the cleanup action.
780      if (LPI->isCleanup() && LPI->getNumClauses() != 0)
781        LP.TypeIds.push_back(0);
782  
783      // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
784      //        correct, but we need to do it this way because of how the DWARF EH
785      //        emitter processes the clauses.
786      for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
787        Value *Val = LPI->getClause(I - 1);
788        if (LPI->isCatch(I - 1)) {
789          LP.TypeIds.push_back(
790              getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
791        } else {
792          // Add filters in a list.
793          auto *CVal = cast<Constant>(Val);
794          SmallVector<unsigned, 4> FilterList;
795          for (const Use &U : CVal->operands())
796            FilterList.push_back(
797                getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
798  
799          LP.TypeIds.push_back(getFilterIDFor(FilterList));
800        }
801      }
802  
803    } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
804      for (unsigned I = CPI->arg_size(); I != 0; --I) {
805        auto *TypeInfo =
806            dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
807        LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
808      }
809  
810    } else {
811      assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
812    }
813  
814    return LandingPadLabel;
815  }
816  
817  void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
818                                              ArrayRef<unsigned> Sites) {
819    LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
820  }
821  
822  unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
823    for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
824      if (TypeInfos[i] == TI) return i + 1;
825  
826    TypeInfos.push_back(TI);
827    return TypeInfos.size();
828  }
829  
830  int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
831    // If the new filter coincides with the tail of an existing filter, then
832    // re-use the existing filter.  Folding filters more than this requires
833    // re-ordering filters and/or their elements - probably not worth it.
834    for (unsigned i : FilterEnds) {
835      unsigned j = TyIds.size();
836  
837      while (i && j)
838        if (FilterIds[--i] != TyIds[--j])
839          goto try_next;
840  
841      if (!j)
842        // The new filter coincides with range [i, end) of the existing filter.
843        return -(1 + i);
844  
845  try_next:;
846    }
847  
848    // Add the new filter.
849    int FilterID = -(1 + FilterIds.size());
850    FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
851    llvm::append_range(FilterIds, TyIds);
852    FilterEnds.push_back(FilterIds.size());
853    FilterIds.push_back(0); // terminator
854    return FilterID;
855  }
856  
857  MachineFunction::CallSiteInfoMap::iterator
858  MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
859    assert(MI->isCandidateForCallSiteEntry() &&
860           "Call site info refers only to call (MI) candidates");
861  
862    if (!Target.Options.EmitCallSiteInfo)
863      return CallSitesInfo.end();
864    return CallSitesInfo.find(MI);
865  }
866  
867  /// Return the call machine instruction or find a call within bundle.
868  static const MachineInstr *getCallInstr(const MachineInstr *MI) {
869    if (!MI->isBundle())
870      return MI;
871  
872    for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
873                                      getBundleEnd(MI->getIterator())))
874      if (BMI.isCandidateForCallSiteEntry())
875        return &BMI;
876  
877    llvm_unreachable("Unexpected bundle without a call site candidate");
878  }
879  
880  void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
881    assert(MI->shouldUpdateCallSiteInfo() &&
882           "Call site info refers only to call (MI) candidates or "
883           "candidates inside bundles");
884  
885    const MachineInstr *CallMI = getCallInstr(MI);
886    CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
887    if (CSIt == CallSitesInfo.end())
888      return;
889    CallSitesInfo.erase(CSIt);
890  }
891  
892  void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
893                                         const MachineInstr *New) {
894    assert(Old->shouldUpdateCallSiteInfo() &&
895           "Call site info refers only to call (MI) candidates or "
896           "candidates inside bundles");
897  
898    if (!New->isCandidateForCallSiteEntry())
899      return eraseCallSiteInfo(Old);
900  
901    const MachineInstr *OldCallMI = getCallInstr(Old);
902    CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
903    if (CSIt == CallSitesInfo.end())
904      return;
905  
906    CallSiteInfo CSInfo = CSIt->second;
907    CallSitesInfo[New] = CSInfo;
908  }
909  
910  void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
911                                         const MachineInstr *New) {
912    assert(Old->shouldUpdateCallSiteInfo() &&
913           "Call site info refers only to call (MI) candidates or "
914           "candidates inside bundles");
915  
916    if (!New->isCandidateForCallSiteEntry())
917      return eraseCallSiteInfo(Old);
918  
919    const MachineInstr *OldCallMI = getCallInstr(Old);
920    CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
921    if (CSIt == CallSitesInfo.end())
922      return;
923  
924    CallSiteInfo CSInfo = std::move(CSIt->second);
925    CallSitesInfo.erase(CSIt);
926    CallSitesInfo[New] = CSInfo;
927  }
928  
929  void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
930    DebugInstrNumberingCount = Num;
931  }
932  
933  void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
934                                                   DebugInstrOperandPair B,
935                                                   unsigned Subreg) {
936    // Catch any accidental self-loops.
937    assert(A.first != B.first);
938    // Don't allow any substitutions _from_ the memory operand number.
939    assert(A.second != DebugOperandMemNumber);
940  
941    DebugValueSubstitutions.push_back({A, B, Subreg});
942  }
943  
944  void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
945                                                     MachineInstr &New,
946                                                     unsigned MaxOperand) {
947    // If the Old instruction wasn't tracked at all, there is no work to do.
948    unsigned OldInstrNum = Old.peekDebugInstrNum();
949    if (!OldInstrNum)
950      return;
951  
952    // Iterate over all operands looking for defs to create substitutions for.
953    // Avoid creating new instr numbers unless we create a new substitution.
954    // While this has no functional effect, it risks confusing someone reading
955    // MIR output.
956    // Examine all the operands, or the first N specified by the caller.
957    MaxOperand = std::min(MaxOperand, Old.getNumOperands());
958    for (unsigned int I = 0; I < MaxOperand; ++I) {
959      const auto &OldMO = Old.getOperand(I);
960      auto &NewMO = New.getOperand(I);
961      (void)NewMO;
962  
963      if (!OldMO.isReg() || !OldMO.isDef())
964        continue;
965      assert(NewMO.isDef());
966  
967      unsigned NewInstrNum = New.getDebugInstrNum();
968      makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
969                                 std::make_pair(NewInstrNum, I));
970    }
971  }
972  
973  auto MachineFunction::salvageCopySSA(
974      MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
975      -> DebugInstrOperandPair {
976    const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
977  
978    // Check whether this copy-like instruction has already been salvaged into
979    // an operand pair.
980    Register Dest;
981    if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
982      Dest = CopyDstSrc->Destination->getReg();
983    } else {
984      assert(MI.isSubregToReg());
985      Dest = MI.getOperand(0).getReg();
986    }
987  
988    auto CacheIt = DbgPHICache.find(Dest);
989    if (CacheIt != DbgPHICache.end())
990      return CacheIt->second;
991  
992    // Calculate the instruction number to use, or install a DBG_PHI.
993    auto OperandPair = salvageCopySSAImpl(MI);
994    DbgPHICache.insert({Dest, OperandPair});
995    return OperandPair;
996  }
997  
998  auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
999      -> DebugInstrOperandPair {
1000    MachineRegisterInfo &MRI = getRegInfo();
1001    const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1002    const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1003  
1004    // Chase the value read by a copy-like instruction back to the instruction
1005    // that ultimately _defines_ that value. This may pass:
1006    //  * Through multiple intermediate copies, including subregister moves /
1007    //    copies,
1008    //  * Copies from physical registers that must then be traced back to the
1009    //    defining instruction,
1010    //  * Or, physical registers may be live-in to (only) the entry block, which
1011    //    requires a DBG_PHI to be created.
1012    // We can pursue this problem in that order: trace back through copies,
1013    // optionally through a physical register, to a defining instruction. We
1014    // should never move from physreg to vreg. As we're still in SSA form, no need
1015    // to worry about partial definitions of registers.
1016  
1017    // Helper lambda to interpret a copy-like instruction. Takes instruction,
1018    // returns the register read and any subregister identifying which part is
1019    // read.
1020    auto GetRegAndSubreg =
1021        [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1022      Register NewReg, OldReg;
1023      unsigned SubReg;
1024      if (Cpy.isCopy()) {
1025        OldReg = Cpy.getOperand(0).getReg();
1026        NewReg = Cpy.getOperand(1).getReg();
1027        SubReg = Cpy.getOperand(1).getSubReg();
1028      } else if (Cpy.isSubregToReg()) {
1029        OldReg = Cpy.getOperand(0).getReg();
1030        NewReg = Cpy.getOperand(2).getReg();
1031        SubReg = Cpy.getOperand(3).getImm();
1032      } else {
1033        auto CopyDetails = *TII.isCopyInstr(Cpy);
1034        const MachineOperand &Src = *CopyDetails.Source;
1035        const MachineOperand &Dest = *CopyDetails.Destination;
1036        OldReg = Dest.getReg();
1037        NewReg = Src.getReg();
1038        SubReg = Src.getSubReg();
1039      }
1040  
1041      return {NewReg, SubReg};
1042    };
1043  
1044    // First seek either the defining instruction, or a copy from a physreg.
1045    // During search, the current state is the current copy instruction, and which
1046    // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1047    // deal with those later.
1048    auto State = GetRegAndSubreg(MI);
1049    auto CurInst = MI.getIterator();
1050    SmallVector<unsigned, 4> SubregsSeen;
1051    while (true) {
1052      // If we've found a copy from a physreg, first portion of search is over.
1053      if (!State.first.isVirtual())
1054        break;
1055  
1056      // Record any subregister qualifier.
1057      if (State.second)
1058        SubregsSeen.push_back(State.second);
1059  
1060      assert(MRI.hasOneDef(State.first));
1061      MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1062      CurInst = Inst.getIterator();
1063  
1064      // Any non-copy instruction is the defining instruction we're seeking.
1065      if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1066        break;
1067      State = GetRegAndSubreg(Inst);
1068    };
1069  
1070    // Helper lambda to apply additional subregister substitutions to a known
1071    // instruction/operand pair. Adds new (fake) substitutions so that we can
1072    // record the subregister. FIXME: this isn't very space efficient if multiple
1073    // values are tracked back through the same copies; cache something later.
1074    auto ApplySubregisters =
1075        [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1076      for (unsigned Subreg : reverse(SubregsSeen)) {
1077        // Fetch a new instruction number, not attached to an actual instruction.
1078        unsigned NewInstrNumber = getNewDebugInstrNum();
1079        // Add a substitution from the "new" number to the known one, with a
1080        // qualifying subreg.
1081        makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1082        // Return the new number; to find the underlying value, consumers need to
1083        // deal with the qualifying subreg.
1084        P = {NewInstrNumber, 0};
1085      }
1086      return P;
1087    };
1088  
1089    // If we managed to find the defining instruction after COPYs, return an
1090    // instruction / operand pair after adding subregister qualifiers.
1091    if (State.first.isVirtual()) {
1092      // Virtual register def -- we can just look up where this happens.
1093      MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1094      for (auto &MO : Inst->all_defs()) {
1095        if (MO.getReg() != State.first)
1096          continue;
1097        return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1098      }
1099  
1100      llvm_unreachable("Vreg def with no corresponding operand?");
1101    }
1102  
1103    // Our search ended in a copy from a physreg: walk back up the function
1104    // looking for whatever defines the physreg.
1105    assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1106    State = GetRegAndSubreg(*CurInst);
1107    Register RegToSeek = State.first;
1108  
1109    auto RMII = CurInst->getReverseIterator();
1110    auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1111    for (auto &ToExamine : PrevInstrs) {
1112      for (auto &MO : ToExamine.all_defs()) {
1113        // Test for operand that defines something aliasing RegToSeek.
1114        if (!TRI.regsOverlap(RegToSeek, MO.getReg()))
1115          continue;
1116  
1117        return ApplySubregisters(
1118            {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1119      }
1120    }
1121  
1122    MachineBasicBlock &InsertBB = *CurInst->getParent();
1123  
1124    // We reached the start of the block before finding a defining instruction.
1125    // There are numerous scenarios where this can happen:
1126    // * Constant physical registers,
1127    // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1128    // * Arguments in the entry block,
1129    // * Exception handling landing pads.
1130    // Validating all of them is too difficult, so just insert a DBG_PHI reading
1131    // the variable value at this position, rather than checking it makes sense.
1132  
1133    // Create DBG_PHI for specified physreg.
1134    auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1135                           TII.get(TargetOpcode::DBG_PHI));
1136    Builder.addReg(State.first);
1137    unsigned NewNum = getNewDebugInstrNum();
1138    Builder.addImm(NewNum);
1139    return ApplySubregisters({NewNum, 0u});
1140  }
1141  
1142  void MachineFunction::finalizeDebugInstrRefs() {
1143    auto *TII = getSubtarget().getInstrInfo();
1144  
1145    auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1146      const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1147      MI.setDesc(RefII);
1148      MI.setDebugValueUndef();
1149    };
1150  
1151    DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1152    for (auto &MBB : *this) {
1153      for (auto &MI : MBB) {
1154        if (!MI.isDebugRef())
1155          continue;
1156  
1157        bool IsValidRef = true;
1158  
1159        for (MachineOperand &MO : MI.debug_operands()) {
1160          if (!MO.isReg())
1161            continue;
1162  
1163          Register Reg = MO.getReg();
1164  
1165          // Some vregs can be deleted as redundant in the meantime. Mark those
1166          // as DBG_VALUE $noreg. Additionally, some normal instructions are
1167          // quickly deleted, leaving dangling references to vregs with no def.
1168          if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1169            IsValidRef = false;
1170            break;
1171          }
1172  
1173          assert(Reg.isVirtual());
1174          MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1175  
1176          // If we've found a copy-like instruction, follow it back to the
1177          // instruction that defines the source value, see salvageCopySSA docs
1178          // for why this is important.
1179          if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1180            auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1181            MO.ChangeToDbgInstrRef(Result.first, Result.second);
1182          } else {
1183            // Otherwise, identify the operand number that the VReg refers to.
1184            unsigned OperandIdx = 0;
1185            for (const auto &DefMO : DefMI.operands()) {
1186              if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1187                break;
1188              ++OperandIdx;
1189            }
1190            assert(OperandIdx < DefMI.getNumOperands());
1191  
1192            // Morph this instr ref to point at the given instruction and operand.
1193            unsigned ID = DefMI.getDebugInstrNum();
1194            MO.ChangeToDbgInstrRef(ID, OperandIdx);
1195          }
1196        }
1197  
1198        if (!IsValidRef)
1199          MakeUndefDbgValue(MI);
1200      }
1201    }
1202  }
1203  
1204  bool MachineFunction::shouldUseDebugInstrRef() const {
1205    // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1206    // have optimized code inlined into this unoptimized code, however with
1207    // fewer and less aggressive optimizations happening, coverage and accuracy
1208    // should not suffer.
1209    if (getTarget().getOptLevel() == CodeGenOpt::None)
1210      return false;
1211  
1212    // Don't use instr-ref if this function is marked optnone.
1213    if (F.hasFnAttribute(Attribute::OptimizeNone))
1214      return false;
1215  
1216    if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1217      return true;
1218  
1219    return false;
1220  }
1221  
1222  bool MachineFunction::useDebugInstrRef() const {
1223    return UseDebugInstrRef;
1224  }
1225  
1226  void MachineFunction::setUseDebugInstrRef(bool Use) {
1227    UseDebugInstrRef = Use;
1228  }
1229  
1230  // Use one million as a high / reserved number.
1231  const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1232  
1233  /// \}
1234  
1235  //===----------------------------------------------------------------------===//
1236  //  MachineJumpTableInfo implementation
1237  //===----------------------------------------------------------------------===//
1238  
1239  /// Return the size of each entry in the jump table.
1240  unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1241    // The size of a jump table entry is 4 bytes unless the entry is just the
1242    // address of a block, in which case it is the pointer size.
1243    switch (getEntryKind()) {
1244    case MachineJumpTableInfo::EK_BlockAddress:
1245      return TD.getPointerSize();
1246    case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1247      return 8;
1248    case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1249    case MachineJumpTableInfo::EK_LabelDifference32:
1250    case MachineJumpTableInfo::EK_Custom32:
1251      return 4;
1252    case MachineJumpTableInfo::EK_Inline:
1253      return 0;
1254    }
1255    llvm_unreachable("Unknown jump table encoding!");
1256  }
1257  
1258  /// Return the alignment of each entry in the jump table.
1259  unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1260    // The alignment of a jump table entry is the alignment of int32 unless the
1261    // entry is just the address of a block, in which case it is the pointer
1262    // alignment.
1263    switch (getEntryKind()) {
1264    case MachineJumpTableInfo::EK_BlockAddress:
1265      return TD.getPointerABIAlignment(0).value();
1266    case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1267      return TD.getABIIntegerTypeAlignment(64).value();
1268    case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1269    case MachineJumpTableInfo::EK_LabelDifference32:
1270    case MachineJumpTableInfo::EK_Custom32:
1271      return TD.getABIIntegerTypeAlignment(32).value();
1272    case MachineJumpTableInfo::EK_Inline:
1273      return 1;
1274    }
1275    llvm_unreachable("Unknown jump table encoding!");
1276  }
1277  
1278  /// Create a new jump table entry in the jump table info.
1279  unsigned MachineJumpTableInfo::createJumpTableIndex(
1280                                 const std::vector<MachineBasicBlock*> &DestBBs) {
1281    assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1282    JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1283    return JumpTables.size()-1;
1284  }
1285  
1286  /// If Old is the target of any jump tables, update the jump tables to branch
1287  /// to New instead.
1288  bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1289                                                    MachineBasicBlock *New) {
1290    assert(Old != New && "Not making a change?");
1291    bool MadeChange = false;
1292    for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1293      ReplaceMBBInJumpTable(i, Old, New);
1294    return MadeChange;
1295  }
1296  
1297  /// If MBB is present in any jump tables, remove it.
1298  bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1299    bool MadeChange = false;
1300    for (MachineJumpTableEntry &JTE : JumpTables) {
1301      auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1302      MadeChange |= (removeBeginItr != JTE.MBBs.end());
1303      JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1304    }
1305    return MadeChange;
1306  }
1307  
1308  /// If Old is a target of the jump tables, update the jump table to branch to
1309  /// New instead.
1310  bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1311                                                   MachineBasicBlock *Old,
1312                                                   MachineBasicBlock *New) {
1313    assert(Old != New && "Not making a change?");
1314    bool MadeChange = false;
1315    MachineJumpTableEntry &JTE = JumpTables[Idx];
1316    for (MachineBasicBlock *&MBB : JTE.MBBs)
1317      if (MBB == Old) {
1318        MBB = New;
1319        MadeChange = true;
1320      }
1321    return MadeChange;
1322  }
1323  
1324  void MachineJumpTableInfo::print(raw_ostream &OS) const {
1325    if (JumpTables.empty()) return;
1326  
1327    OS << "Jump Tables:\n";
1328  
1329    for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1330      OS << printJumpTableEntryReference(i) << ':';
1331      for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1332        OS << ' ' << printMBBReference(*MBB);
1333      if (i != e)
1334        OS << '\n';
1335    }
1336  
1337    OS << '\n';
1338  }
1339  
1340  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1341  LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1342  #endif
1343  
1344  Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1345    return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1346  }
1347  
1348  //===----------------------------------------------------------------------===//
1349  //  MachineConstantPool implementation
1350  //===----------------------------------------------------------------------===//
1351  
1352  void MachineConstantPoolValue::anchor() {}
1353  
1354  unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1355    return DL.getTypeAllocSize(Ty);
1356  }
1357  
1358  unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1359    if (isMachineConstantPoolEntry())
1360      return Val.MachineCPVal->getSizeInBytes(DL);
1361    return DL.getTypeAllocSize(Val.ConstVal->getType());
1362  }
1363  
1364  bool MachineConstantPoolEntry::needsRelocation() const {
1365    if (isMachineConstantPoolEntry())
1366      return true;
1367    return Val.ConstVal->needsDynamicRelocation();
1368  }
1369  
1370  SectionKind
1371  MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1372    if (needsRelocation())
1373      return SectionKind::getReadOnlyWithRel();
1374    switch (getSizeInBytes(*DL)) {
1375    case 4:
1376      return SectionKind::getMergeableConst4();
1377    case 8:
1378      return SectionKind::getMergeableConst8();
1379    case 16:
1380      return SectionKind::getMergeableConst16();
1381    case 32:
1382      return SectionKind::getMergeableConst32();
1383    default:
1384      return SectionKind::getReadOnly();
1385    }
1386  }
1387  
1388  MachineConstantPool::~MachineConstantPool() {
1389    // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1390    // so keep track of which we've deleted to avoid double deletions.
1391    DenseSet<MachineConstantPoolValue*> Deleted;
1392    for (const MachineConstantPoolEntry &C : Constants)
1393      if (C.isMachineConstantPoolEntry()) {
1394        Deleted.insert(C.Val.MachineCPVal);
1395        delete C.Val.MachineCPVal;
1396      }
1397    for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1398      if (Deleted.count(CPV) == 0)
1399        delete CPV;
1400    }
1401  }
1402  
1403  /// Test whether the given two constants can be allocated the same constant pool
1404  /// entry referenced by \param A.
1405  static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1406                                        const DataLayout &DL) {
1407    // Handle the trivial case quickly.
1408    if (A == B) return true;
1409  
1410    // If they have the same type but weren't the same constant, quickly
1411    // reject them.
1412    if (A->getType() == B->getType()) return false;
1413  
1414    // We can't handle structs or arrays.
1415    if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1416        isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1417      return false;
1418  
1419    // For now, only support constants with the same size.
1420    uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1421    if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1422      return false;
1423  
1424    bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1425  
1426    Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1427  
1428    // Try constant folding a bitcast of both instructions to an integer.  If we
1429    // get two identical ConstantInt's, then we are good to share them.  We use
1430    // the constant folding APIs to do this so that we get the benefit of
1431    // DataLayout.
1432    if (isa<PointerType>(A->getType()))
1433      A = ConstantFoldCastOperand(Instruction::PtrToInt,
1434                                  const_cast<Constant *>(A), IntTy, DL);
1435    else if (A->getType() != IntTy)
1436      A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1437                                  IntTy, DL);
1438    if (isa<PointerType>(B->getType()))
1439      B = ConstantFoldCastOperand(Instruction::PtrToInt,
1440                                  const_cast<Constant *>(B), IntTy, DL);
1441    else if (B->getType() != IntTy)
1442      B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1443                                  IntTy, DL);
1444  
1445    if (A != B)
1446      return false;
1447  
1448    // Constants only safely match if A doesn't contain undef/poison.
1449    // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1450    // TODO: Handle cases where A and B have the same undef/poison elements.
1451    // TODO: Merge A and B with mismatching undef/poison elements.
1452    return !ContainsUndefOrPoisonA;
1453  }
1454  
1455  /// Create a new entry in the constant pool or return an existing one.
1456  /// User must specify the log2 of the minimum required alignment for the object.
1457  unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1458                                                     Align Alignment) {
1459    if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1460  
1461    // Check to see if we already have this constant.
1462    //
1463    // FIXME, this could be made much more efficient for large constant pools.
1464    for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1465      if (!Constants[i].isMachineConstantPoolEntry() &&
1466          CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1467        if (Constants[i].getAlign() < Alignment)
1468          Constants[i].Alignment = Alignment;
1469        return i;
1470      }
1471  
1472    Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1473    return Constants.size()-1;
1474  }
1475  
1476  unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1477                                                     Align Alignment) {
1478    if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1479  
1480    // Check to see if we already have this constant.
1481    //
1482    // FIXME, this could be made much more efficient for large constant pools.
1483    int Idx = V->getExistingMachineCPValue(this, Alignment);
1484    if (Idx != -1) {
1485      MachineCPVsSharingEntries.insert(V);
1486      return (unsigned)Idx;
1487    }
1488  
1489    Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1490    return Constants.size()-1;
1491  }
1492  
1493  void MachineConstantPool::print(raw_ostream &OS) const {
1494    if (Constants.empty()) return;
1495  
1496    OS << "Constant Pool:\n";
1497    for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1498      OS << "  cp#" << i << ": ";
1499      if (Constants[i].isMachineConstantPoolEntry())
1500        Constants[i].Val.MachineCPVal->print(OS);
1501      else
1502        Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1503      OS << ", align=" << Constants[i].getAlign().value();
1504      OS << "\n";
1505    }
1506  }
1507  
1508  //===----------------------------------------------------------------------===//
1509  // Template specialization for MachineFunction implementation of
1510  // ProfileSummaryInfo::getEntryCount().
1511  //===----------------------------------------------------------------------===//
1512  template <>
1513  std::optional<Function::ProfileCount>
1514  ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1515      const llvm::MachineFunction *F) const {
1516    return F->getFunction().getEntryCount();
1517  }
1518  
1519  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1520  LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1521  #endif
1522