xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 643ac419fafba89f5adda0e0ea75b538727453fb)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
78 
79 #include "LiveDebugValues/LiveDebugValues.h"
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "codegen"
84 
85 static cl::opt<unsigned> AlignAllFunctions(
86     "align-all-functions",
87     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
88              "means align on 16B boundaries)."),
89     cl::init(0), cl::Hidden);
90 
91 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
92   using P = MachineFunctionProperties::Property;
93 
94   // clang-format off
95   switch(Prop) {
96   case P::FailedISel: return "FailedISel";
97   case P::IsSSA: return "IsSSA";
98   case P::Legalized: return "Legalized";
99   case P::NoPHIs: return "NoPHIs";
100   case P::NoVRegs: return "NoVRegs";
101   case P::RegBankSelected: return "RegBankSelected";
102   case P::Selected: return "Selected";
103   case P::TracksLiveness: return "TracksLiveness";
104   case P::TiedOpsRewritten: return "TiedOpsRewritten";
105   case P::FailsVerification: return "FailsVerification";
106   case P::TracksDebugUserValues: return "TracksDebugUserValues";
107   }
108   // clang-format on
109   llvm_unreachable("Invalid machine function property");
110 }
111 
112 // Pin the vtable to this file.
113 void MachineFunction::Delegate::anchor() {}
114 
115 void MachineFunctionProperties::print(raw_ostream &OS) const {
116   const char *Separator = "";
117   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
118     if (!Properties[I])
119       continue;
120     OS << Separator << getPropertyName(static_cast<Property>(I));
121     Separator = ", ";
122   }
123 }
124 
125 //===----------------------------------------------------------------------===//
126 // MachineFunction implementation
127 //===----------------------------------------------------------------------===//
128 
129 // Out-of-line virtual method.
130 MachineFunctionInfo::~MachineFunctionInfo() = default;
131 
132 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
133   MBB->getParent()->deleteMachineBasicBlock(MBB);
134 }
135 
136 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
137                                            const Function &F) {
138   if (auto MA = F.getFnStackAlign())
139     return MA->value();
140   return STI->getFrameLowering()->getStackAlign().value();
141 }
142 
143 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
144                                  const TargetSubtargetInfo &STI,
145                                  unsigned FunctionNum, MachineModuleInfo &mmi)
146     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
147   FunctionNumber = FunctionNum;
148   init();
149 }
150 
151 void MachineFunction::handleInsertion(MachineInstr &MI) {
152   if (TheDelegate)
153     TheDelegate->MF_HandleInsertion(MI);
154 }
155 
156 void MachineFunction::handleRemoval(MachineInstr &MI) {
157   if (TheDelegate)
158     TheDelegate->MF_HandleRemoval(MI);
159 }
160 
161 void MachineFunction::init() {
162   // Assume the function starts in SSA form with correct liveness.
163   Properties.set(MachineFunctionProperties::Property::IsSSA);
164   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
165   if (STI->getRegisterInfo())
166     RegInfo = new (Allocator) MachineRegisterInfo(this);
167   else
168     RegInfo = nullptr;
169 
170   MFInfo = nullptr;
171   // We can realign the stack if the target supports it and the user hasn't
172   // explicitly asked us not to.
173   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
174                       !F.hasFnAttribute("no-realign-stack");
175   FrameInfo = new (Allocator) MachineFrameInfo(
176       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
177       /*ForcedRealign=*/CanRealignSP &&
178           F.hasFnAttribute(Attribute::StackAlignment));
179 
180   if (F.hasFnAttribute(Attribute::StackAlignment))
181     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
182 
183   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
184   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
185 
186   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
187   // FIXME: Use Function::hasOptSize().
188   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
189     Alignment = std::max(Alignment,
190                          STI->getTargetLowering()->getPrefFunctionAlignment());
191 
192   if (AlignAllFunctions)
193     Alignment = Align(1ULL << AlignAllFunctions);
194 
195   JumpTableInfo = nullptr;
196 
197   if (isFuncletEHPersonality(classifyEHPersonality(
198           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
199     WinEHInfo = new (Allocator) WinEHFuncInfo();
200   }
201 
202   if (isScopedEHPersonality(classifyEHPersonality(
203           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
204     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
205   }
206 
207   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
208          "Can't create a MachineFunction using a Module with a "
209          "Target-incompatible DataLayout attached\n");
210 
211   PSVManager =
212     std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
213                                                   getInstrInfo()));
214 }
215 
216 MachineFunction::~MachineFunction() {
217   clear();
218 }
219 
220 void MachineFunction::clear() {
221   Properties.reset();
222   // Don't call destructors on MachineInstr and MachineOperand. All of their
223   // memory comes from the BumpPtrAllocator which is about to be purged.
224   //
225   // Do call MachineBasicBlock destructors, it contains std::vectors.
226   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
227     I->Insts.clearAndLeakNodesUnsafely();
228   MBBNumbering.clear();
229 
230   InstructionRecycler.clear(Allocator);
231   OperandRecycler.clear(Allocator);
232   BasicBlockRecycler.clear(Allocator);
233   CodeViewAnnotations.clear();
234   VariableDbgInfos.clear();
235   if (RegInfo) {
236     RegInfo->~MachineRegisterInfo();
237     Allocator.Deallocate(RegInfo);
238   }
239   if (MFInfo) {
240     MFInfo->~MachineFunctionInfo();
241     Allocator.Deallocate(MFInfo);
242   }
243 
244   FrameInfo->~MachineFrameInfo();
245   Allocator.Deallocate(FrameInfo);
246 
247   ConstantPool->~MachineConstantPool();
248   Allocator.Deallocate(ConstantPool);
249 
250   if (JumpTableInfo) {
251     JumpTableInfo->~MachineJumpTableInfo();
252     Allocator.Deallocate(JumpTableInfo);
253   }
254 
255   if (WinEHInfo) {
256     WinEHInfo->~WinEHFuncInfo();
257     Allocator.Deallocate(WinEHInfo);
258   }
259 
260   if (WasmEHInfo) {
261     WasmEHInfo->~WasmEHFuncInfo();
262     Allocator.Deallocate(WasmEHInfo);
263   }
264 }
265 
266 const DataLayout &MachineFunction::getDataLayout() const {
267   return F.getParent()->getDataLayout();
268 }
269 
270 /// Get the JumpTableInfo for this function.
271 /// If it does not already exist, allocate one.
272 MachineJumpTableInfo *MachineFunction::
273 getOrCreateJumpTableInfo(unsigned EntryKind) {
274   if (JumpTableInfo) return JumpTableInfo;
275 
276   JumpTableInfo = new (Allocator)
277     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
278   return JumpTableInfo;
279 }
280 
281 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
282   return F.getDenormalMode(FPType);
283 }
284 
285 /// Should we be emitting segmented stack stuff for the function
286 bool MachineFunction::shouldSplitStack() const {
287   return getFunction().hasFnAttribute("split-stack");
288 }
289 
290 LLVM_NODISCARD unsigned
291 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
292   FrameInstructions.push_back(Inst);
293   return FrameInstructions.size() - 1;
294 }
295 
296 /// This discards all of the MachineBasicBlock numbers and recomputes them.
297 /// This guarantees that the MBB numbers are sequential, dense, and match the
298 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
299 /// is specified, only that block and those after it are renumbered.
300 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
301   if (empty()) { MBBNumbering.clear(); return; }
302   MachineFunction::iterator MBBI, E = end();
303   if (MBB == nullptr)
304     MBBI = begin();
305   else
306     MBBI = MBB->getIterator();
307 
308   // Figure out the block number this should have.
309   unsigned BlockNo = 0;
310   if (MBBI != begin())
311     BlockNo = std::prev(MBBI)->getNumber() + 1;
312 
313   for (; MBBI != E; ++MBBI, ++BlockNo) {
314     if (MBBI->getNumber() != (int)BlockNo) {
315       // Remove use of the old number.
316       if (MBBI->getNumber() != -1) {
317         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
318                "MBB number mismatch!");
319         MBBNumbering[MBBI->getNumber()] = nullptr;
320       }
321 
322       // If BlockNo is already taken, set that block's number to -1.
323       if (MBBNumbering[BlockNo])
324         MBBNumbering[BlockNo]->setNumber(-1);
325 
326       MBBNumbering[BlockNo] = &*MBBI;
327       MBBI->setNumber(BlockNo);
328     }
329   }
330 
331   // Okay, all the blocks are renumbered.  If we have compactified the block
332   // numbering, shrink MBBNumbering now.
333   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
334   MBBNumbering.resize(BlockNo);
335 }
336 
337 /// This method iterates over the basic blocks and assigns their IsBeginSection
338 /// and IsEndSection fields. This must be called after MBB layout is finalized
339 /// and the SectionID's are assigned to MBBs.
340 void MachineFunction::assignBeginEndSections() {
341   front().setIsBeginSection();
342   auto CurrentSectionID = front().getSectionID();
343   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
344     if (MBBI->getSectionID() == CurrentSectionID)
345       continue;
346     MBBI->setIsBeginSection();
347     std::prev(MBBI)->setIsEndSection();
348     CurrentSectionID = MBBI->getSectionID();
349   }
350   back().setIsEndSection();
351 }
352 
353 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
354 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
355                                                   DebugLoc DL,
356                                                   bool NoImplicit) {
357   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
358       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
359 }
360 
361 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
362 /// identical in all ways except the instruction has no parent, prev, or next.
363 MachineInstr *
364 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
365   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
366              MachineInstr(*this, *Orig);
367 }
368 
369 MachineInstr &MachineFunction::cloneMachineInstrBundle(
370     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
371     const MachineInstr &Orig) {
372   MachineInstr *FirstClone = nullptr;
373   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
374   while (true) {
375     MachineInstr *Cloned = CloneMachineInstr(&*I);
376     MBB.insert(InsertBefore, Cloned);
377     if (FirstClone == nullptr) {
378       FirstClone = Cloned;
379     } else {
380       Cloned->bundleWithPred();
381     }
382 
383     if (!I->isBundledWithSucc())
384       break;
385     ++I;
386   }
387   // Copy over call site info to the cloned instruction if needed. If Orig is in
388   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
389   // the bundle.
390   if (Orig.shouldUpdateCallSiteInfo())
391     copyCallSiteInfo(&Orig, FirstClone);
392   return *FirstClone;
393 }
394 
395 /// Delete the given MachineInstr.
396 ///
397 /// This function also serves as the MachineInstr destructor - the real
398 /// ~MachineInstr() destructor must be empty.
399 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
400   // Verify that a call site info is at valid state. This assertion should
401   // be triggered during the implementation of support for the
402   // call site info of a new architecture. If the assertion is triggered,
403   // back trace will tell where to insert a call to updateCallSiteInfo().
404   assert((!MI->isCandidateForCallSiteEntry() ||
405           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
406          "Call site info was not updated!");
407   // Strip it for parts. The operand array and the MI object itself are
408   // independently recyclable.
409   if (MI->Operands)
410     deallocateOperandArray(MI->CapOperands, MI->Operands);
411   // Don't call ~MachineInstr() which must be trivial anyway because
412   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
413   // destructors.
414   InstructionRecycler.Deallocate(Allocator, MI);
415 }
416 
417 /// Allocate a new MachineBasicBlock. Use this instead of
418 /// `new MachineBasicBlock'.
419 MachineBasicBlock *
420 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
421   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
422              MachineBasicBlock(*this, bb);
423 }
424 
425 /// Delete the given MachineBasicBlock.
426 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
427   assert(MBB->getParent() == this && "MBB parent mismatch!");
428   // Clean up any references to MBB in jump tables before deleting it.
429   if (JumpTableInfo)
430     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
431   MBB->~MachineBasicBlock();
432   BasicBlockRecycler.Deallocate(Allocator, MBB);
433 }
434 
435 MachineMemOperand *MachineFunction::getMachineMemOperand(
436     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
437     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
438     SyncScope::ID SSID, AtomicOrdering Ordering,
439     AtomicOrdering FailureOrdering) {
440   return new (Allocator)
441       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
442                         SSID, Ordering, FailureOrdering);
443 }
444 
445 MachineMemOperand *MachineFunction::getMachineMemOperand(
446     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
447     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
448     SyncScope::ID SSID, AtomicOrdering Ordering,
449     AtomicOrdering FailureOrdering) {
450   return new (Allocator)
451       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
452                         Ordering, FailureOrdering);
453 }
454 
455 MachineMemOperand *MachineFunction::getMachineMemOperand(
456     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
457   return new (Allocator)
458       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
459                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
460                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
461 }
462 
463 MachineMemOperand *MachineFunction::getMachineMemOperand(
464     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
465   return new (Allocator)
466       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
467                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
468                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
469 }
470 
471 MachineMemOperand *
472 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
473                                       int64_t Offset, LLT Ty) {
474   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
475 
476   // If there is no pointer value, the offset isn't tracked so we need to adjust
477   // the base alignment.
478   Align Alignment = PtrInfo.V.isNull()
479                         ? commonAlignment(MMO->getBaseAlign(), Offset)
480                         : MMO->getBaseAlign();
481 
482   // Do not preserve ranges, since we don't necessarily know what the high bits
483   // are anymore.
484   return new (Allocator) MachineMemOperand(
485       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
486       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
487       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
488 }
489 
490 MachineMemOperand *
491 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
492                                       const AAMDNodes &AAInfo) {
493   MachinePointerInfo MPI = MMO->getValue() ?
494              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
495              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
496 
497   return new (Allocator) MachineMemOperand(
498       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
499       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
500       MMO->getFailureOrdering());
501 }
502 
503 MachineMemOperand *
504 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
505                                       MachineMemOperand::Flags Flags) {
506   return new (Allocator) MachineMemOperand(
507       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
508       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
509       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
510 }
511 
512 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
513     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
514     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
515   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
516                                          PostInstrSymbol, HeapAllocMarker);
517 }
518 
519 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
520   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
521   llvm::copy(Name, Dest);
522   Dest[Name.size()] = 0;
523   return Dest;
524 }
525 
526 uint32_t *MachineFunction::allocateRegMask() {
527   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
528   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
529   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
530   memset(Mask, 0, Size * sizeof(Mask[0]));
531   return Mask;
532 }
533 
534 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
535   int* AllocMask = Allocator.Allocate<int>(Mask.size());
536   copy(Mask, AllocMask);
537   return {AllocMask, Mask.size()};
538 }
539 
540 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
541 LLVM_DUMP_METHOD void MachineFunction::dump() const {
542   print(dbgs());
543 }
544 #endif
545 
546 StringRef MachineFunction::getName() const {
547   return getFunction().getName();
548 }
549 
550 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
551   OS << "# Machine code for function " << getName() << ": ";
552   getProperties().print(OS);
553   OS << '\n';
554 
555   // Print Frame Information
556   FrameInfo->print(*this, OS);
557 
558   // Print JumpTable Information
559   if (JumpTableInfo)
560     JumpTableInfo->print(OS);
561 
562   // Print Constant Pool
563   ConstantPool->print(OS);
564 
565   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
566 
567   if (RegInfo && !RegInfo->livein_empty()) {
568     OS << "Function Live Ins: ";
569     for (MachineRegisterInfo::livein_iterator
570          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
571       OS << printReg(I->first, TRI);
572       if (I->second)
573         OS << " in " << printReg(I->second, TRI);
574       if (std::next(I) != E)
575         OS << ", ";
576     }
577     OS << '\n';
578   }
579 
580   ModuleSlotTracker MST(getFunction().getParent());
581   MST.incorporateFunction(getFunction());
582   for (const auto &BB : *this) {
583     OS << '\n';
584     // If we print the whole function, print it at its most verbose level.
585     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
586   }
587 
588   OS << "\n# End machine code for function " << getName() << ".\n\n";
589 }
590 
591 /// True if this function needs frame moves for debug or exceptions.
592 bool MachineFunction::needsFrameMoves() const {
593   return getMMI().hasDebugInfo() ||
594          getTarget().Options.ForceDwarfFrameSection ||
595          F.needsUnwindTableEntry();
596 }
597 
598 namespace llvm {
599 
600   template<>
601   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
602     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
603 
604     static std::string getGraphName(const MachineFunction *F) {
605       return ("CFG for '" + F->getName() + "' function").str();
606     }
607 
608     std::string getNodeLabel(const MachineBasicBlock *Node,
609                              const MachineFunction *Graph) {
610       std::string OutStr;
611       {
612         raw_string_ostream OSS(OutStr);
613 
614         if (isSimple()) {
615           OSS << printMBBReference(*Node);
616           if (const BasicBlock *BB = Node->getBasicBlock())
617             OSS << ": " << BB->getName();
618         } else
619           Node->print(OSS);
620       }
621 
622       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
623 
624       // Process string output to make it nicer...
625       for (unsigned i = 0; i != OutStr.length(); ++i)
626         if (OutStr[i] == '\n') {                            // Left justify
627           OutStr[i] = '\\';
628           OutStr.insert(OutStr.begin()+i+1, 'l');
629         }
630       return OutStr;
631     }
632   };
633 
634 } // end namespace llvm
635 
636 void MachineFunction::viewCFG() const
637 {
638 #ifndef NDEBUG
639   ViewGraph(this, "mf" + getName());
640 #else
641   errs() << "MachineFunction::viewCFG is only available in debug builds on "
642          << "systems with Graphviz or gv!\n";
643 #endif // NDEBUG
644 }
645 
646 void MachineFunction::viewCFGOnly() const
647 {
648 #ifndef NDEBUG
649   ViewGraph(this, "mf" + getName(), true);
650 #else
651   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
652          << "systems with Graphviz or gv!\n";
653 #endif // NDEBUG
654 }
655 
656 /// Add the specified physical register as a live-in value and
657 /// create a corresponding virtual register for it.
658 Register MachineFunction::addLiveIn(MCRegister PReg,
659                                     const TargetRegisterClass *RC) {
660   MachineRegisterInfo &MRI = getRegInfo();
661   Register VReg = MRI.getLiveInVirtReg(PReg);
662   if (VReg) {
663     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
664     (void)VRegRC;
665     // A physical register can be added several times.
666     // Between two calls, the register class of the related virtual register
667     // may have been constrained to match some operation constraints.
668     // In that case, check that the current register class includes the
669     // physical register and is a sub class of the specified RC.
670     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
671                              RC->hasSubClassEq(VRegRC))) &&
672             "Register class mismatch!");
673     return VReg;
674   }
675   VReg = MRI.createVirtualRegister(RC);
676   MRI.addLiveIn(PReg, VReg);
677   return VReg;
678 }
679 
680 /// Return the MCSymbol for the specified non-empty jump table.
681 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
682 /// normal 'L' label is returned.
683 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
684                                         bool isLinkerPrivate) const {
685   const DataLayout &DL = getDataLayout();
686   assert(JumpTableInfo && "No jump tables");
687   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
688 
689   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
690                                      : DL.getPrivateGlobalPrefix();
691   SmallString<60> Name;
692   raw_svector_ostream(Name)
693     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
694   return Ctx.getOrCreateSymbol(Name);
695 }
696 
697 /// Return a function-local symbol to represent the PIC base.
698 MCSymbol *MachineFunction::getPICBaseSymbol() const {
699   const DataLayout &DL = getDataLayout();
700   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
701                                Twine(getFunctionNumber()) + "$pb");
702 }
703 
704 /// \name Exception Handling
705 /// \{
706 
707 LandingPadInfo &
708 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
709   unsigned N = LandingPads.size();
710   for (unsigned i = 0; i < N; ++i) {
711     LandingPadInfo &LP = LandingPads[i];
712     if (LP.LandingPadBlock == LandingPad)
713       return LP;
714   }
715 
716   LandingPads.push_back(LandingPadInfo(LandingPad));
717   return LandingPads[N];
718 }
719 
720 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
721                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
722   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
723   LP.BeginLabels.push_back(BeginLabel);
724   LP.EndLabels.push_back(EndLabel);
725 }
726 
727 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
728   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
729   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
730   LP.LandingPadLabel = LandingPadLabel;
731 
732   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
733   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
734     if (const auto *PF =
735             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
736       getMMI().addPersonality(PF);
737 
738     if (LPI->isCleanup())
739       addCleanup(LandingPad);
740 
741     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
742     //        correct, but we need to do it this way because of how the DWARF EH
743     //        emitter processes the clauses.
744     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
745       Value *Val = LPI->getClause(I - 1);
746       if (LPI->isCatch(I - 1)) {
747         addCatchTypeInfo(LandingPad,
748                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
749       } else {
750         // Add filters in a list.
751         auto *CVal = cast<Constant>(Val);
752         SmallVector<const GlobalValue *, 4> FilterList;
753         for (const Use &U : CVal->operands())
754           FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts()));
755 
756         addFilterTypeInfo(LandingPad, FilterList);
757       }
758     }
759 
760   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
761     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
762       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
763       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
764     }
765 
766   } else {
767     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
768   }
769 
770   return LandingPadLabel;
771 }
772 
773 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
774                                        ArrayRef<const GlobalValue *> TyInfo) {
775   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
776   for (const GlobalValue *GV : llvm::reverse(TyInfo))
777     LP.TypeIds.push_back(getTypeIDFor(GV));
778 }
779 
780 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
781                                         ArrayRef<const GlobalValue *> TyInfo) {
782   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
783   std::vector<unsigned> IdsInFilter(TyInfo.size());
784   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
785     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
786   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
787 }
788 
789 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
790                                       bool TidyIfNoBeginLabels) {
791   for (unsigned i = 0; i != LandingPads.size(); ) {
792     LandingPadInfo &LandingPad = LandingPads[i];
793     if (LandingPad.LandingPadLabel &&
794         !LandingPad.LandingPadLabel->isDefined() &&
795         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
796       LandingPad.LandingPadLabel = nullptr;
797 
798     // Special case: we *should* emit LPs with null LP MBB. This indicates
799     // "nounwind" case.
800     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
801       LandingPads.erase(LandingPads.begin() + i);
802       continue;
803     }
804 
805     if (TidyIfNoBeginLabels) {
806       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
807         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
808         MCSymbol *EndLabel = LandingPad.EndLabels[j];
809         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
810             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
811           continue;
812 
813         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
814         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
815         --j;
816         --e;
817       }
818 
819       // Remove landing pads with no try-ranges.
820       if (LandingPads[i].BeginLabels.empty()) {
821         LandingPads.erase(LandingPads.begin() + i);
822         continue;
823       }
824     }
825 
826     // If there is no landing pad, ensure that the list of typeids is empty.
827     // If the only typeid is a cleanup, this is the same as having no typeids.
828     if (!LandingPad.LandingPadBlock ||
829         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
830       LandingPad.TypeIds.clear();
831     ++i;
832   }
833 }
834 
835 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
836   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
837   LP.TypeIds.push_back(0);
838 }
839 
840 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
841                                          const Function *Filter,
842                                          const BlockAddress *RecoverBA) {
843   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
844   SEHHandler Handler;
845   Handler.FilterOrFinally = Filter;
846   Handler.RecoverBA = RecoverBA;
847   LP.SEHHandlers.push_back(Handler);
848 }
849 
850 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
851                                            const Function *Cleanup) {
852   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
853   SEHHandler Handler;
854   Handler.FilterOrFinally = Cleanup;
855   Handler.RecoverBA = nullptr;
856   LP.SEHHandlers.push_back(Handler);
857 }
858 
859 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
860                                             ArrayRef<unsigned> Sites) {
861   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
862 }
863 
864 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
865   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
866     if (TypeInfos[i] == TI) return i + 1;
867 
868   TypeInfos.push_back(TI);
869   return TypeInfos.size();
870 }
871 
872 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
873   // If the new filter coincides with the tail of an existing filter, then
874   // re-use the existing filter.  Folding filters more than this requires
875   // re-ordering filters and/or their elements - probably not worth it.
876   for (unsigned i : FilterEnds) {
877     unsigned j = TyIds.size();
878 
879     while (i && j)
880       if (FilterIds[--i] != TyIds[--j])
881         goto try_next;
882 
883     if (!j)
884       // The new filter coincides with range [i, end) of the existing filter.
885       return -(1 + i);
886 
887 try_next:;
888   }
889 
890   // Add the new filter.
891   int FilterID = -(1 + FilterIds.size());
892   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
893   llvm::append_range(FilterIds, TyIds);
894   FilterEnds.push_back(FilterIds.size());
895   FilterIds.push_back(0); // terminator
896   return FilterID;
897 }
898 
899 MachineFunction::CallSiteInfoMap::iterator
900 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
901   assert(MI->isCandidateForCallSiteEntry() &&
902          "Call site info refers only to call (MI) candidates");
903 
904   if (!Target.Options.EmitCallSiteInfo)
905     return CallSitesInfo.end();
906   return CallSitesInfo.find(MI);
907 }
908 
909 /// Return the call machine instruction or find a call within bundle.
910 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
911   if (!MI->isBundle())
912     return MI;
913 
914   for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
915                               getBundleEnd(MI->getIterator())))
916     if (BMI.isCandidateForCallSiteEntry())
917       return &BMI;
918 
919   llvm_unreachable("Unexpected bundle without a call site candidate");
920 }
921 
922 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
923   assert(MI->shouldUpdateCallSiteInfo() &&
924          "Call site info refers only to call (MI) candidates or "
925          "candidates inside bundles");
926 
927   const MachineInstr *CallMI = getCallInstr(MI);
928   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
929   if (CSIt == CallSitesInfo.end())
930     return;
931   CallSitesInfo.erase(CSIt);
932 }
933 
934 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
935                                        const MachineInstr *New) {
936   assert(Old->shouldUpdateCallSiteInfo() &&
937          "Call site info refers only to call (MI) candidates or "
938          "candidates inside bundles");
939 
940   if (!New->isCandidateForCallSiteEntry())
941     return eraseCallSiteInfo(Old);
942 
943   const MachineInstr *OldCallMI = getCallInstr(Old);
944   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
945   if (CSIt == CallSitesInfo.end())
946     return;
947 
948   CallSiteInfo CSInfo = CSIt->second;
949   CallSitesInfo[New] = CSInfo;
950 }
951 
952 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
953                                        const MachineInstr *New) {
954   assert(Old->shouldUpdateCallSiteInfo() &&
955          "Call site info refers only to call (MI) candidates or "
956          "candidates inside bundles");
957 
958   if (!New->isCandidateForCallSiteEntry())
959     return eraseCallSiteInfo(Old);
960 
961   const MachineInstr *OldCallMI = getCallInstr(Old);
962   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
963   if (CSIt == CallSitesInfo.end())
964     return;
965 
966   CallSiteInfo CSInfo = std::move(CSIt->second);
967   CallSitesInfo.erase(CSIt);
968   CallSitesInfo[New] = CSInfo;
969 }
970 
971 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
972   DebugInstrNumberingCount = Num;
973 }
974 
975 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
976                                                  DebugInstrOperandPair B,
977                                                  unsigned Subreg) {
978   // Catch any accidental self-loops.
979   assert(A.first != B.first);
980   // Don't allow any substitutions _from_ the memory operand number.
981   assert(A.second != DebugOperandMemNumber);
982 
983   DebugValueSubstitutions.push_back({A, B, Subreg});
984 }
985 
986 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
987                                                    MachineInstr &New,
988                                                    unsigned MaxOperand) {
989   // If the Old instruction wasn't tracked at all, there is no work to do.
990   unsigned OldInstrNum = Old.peekDebugInstrNum();
991   if (!OldInstrNum)
992     return;
993 
994   // Iterate over all operands looking for defs to create substitutions for.
995   // Avoid creating new instr numbers unless we create a new substitution.
996   // While this has no functional effect, it risks confusing someone reading
997   // MIR output.
998   // Examine all the operands, or the first N specified by the caller.
999   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
1000   for (unsigned int I = 0; I < MaxOperand; ++I) {
1001     const auto &OldMO = Old.getOperand(I);
1002     auto &NewMO = New.getOperand(I);
1003     (void)NewMO;
1004 
1005     if (!OldMO.isReg() || !OldMO.isDef())
1006       continue;
1007     assert(NewMO.isDef());
1008 
1009     unsigned NewInstrNum = New.getDebugInstrNum();
1010     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
1011                                std::make_pair(NewInstrNum, I));
1012   }
1013 }
1014 
1015 auto MachineFunction::salvageCopySSA(MachineInstr &MI)
1016     -> DebugInstrOperandPair {
1017   MachineRegisterInfo &MRI = getRegInfo();
1018   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1019   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1020 
1021   // Chase the value read by a copy-like instruction back to the instruction
1022   // that ultimately _defines_ that value. This may pass:
1023   //  * Through multiple intermediate copies, including subregister moves /
1024   //    copies,
1025   //  * Copies from physical registers that must then be traced back to the
1026   //    defining instruction,
1027   //  * Or, physical registers may be live-in to (only) the entry block, which
1028   //    requires a DBG_PHI to be created.
1029   // We can pursue this problem in that order: trace back through copies,
1030   // optionally through a physical register, to a defining instruction. We
1031   // should never move from physreg to vreg. As we're still in SSA form, no need
1032   // to worry about partial definitions of registers.
1033 
1034   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1035   // returns the register read and any subregister identifying which part is
1036   // read.
1037   auto GetRegAndSubreg =
1038       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1039     Register NewReg, OldReg;
1040     unsigned SubReg;
1041     if (Cpy.isCopy()) {
1042       OldReg = Cpy.getOperand(0).getReg();
1043       NewReg = Cpy.getOperand(1).getReg();
1044       SubReg = Cpy.getOperand(1).getSubReg();
1045     } else if (Cpy.isSubregToReg()) {
1046       OldReg = Cpy.getOperand(0).getReg();
1047       NewReg = Cpy.getOperand(2).getReg();
1048       SubReg = Cpy.getOperand(3).getImm();
1049     } else {
1050       auto CopyDetails = *TII.isCopyInstr(Cpy);
1051       const MachineOperand &Src = *CopyDetails.Source;
1052       const MachineOperand &Dest = *CopyDetails.Destination;
1053       OldReg = Dest.getReg();
1054       NewReg = Src.getReg();
1055       SubReg = Src.getSubReg();
1056     }
1057 
1058     return {NewReg, SubReg};
1059   };
1060 
1061   // First seek either the defining instruction, or a copy from a physreg.
1062   // During search, the current state is the current copy instruction, and which
1063   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1064   // deal with those later.
1065   auto State = GetRegAndSubreg(MI);
1066   auto CurInst = MI.getIterator();
1067   SmallVector<unsigned, 4> SubregsSeen;
1068   while (true) {
1069     // If we've found a copy from a physreg, first portion of search is over.
1070     if (!State.first.isVirtual())
1071       break;
1072 
1073     // Record any subregister qualifier.
1074     if (State.second)
1075       SubregsSeen.push_back(State.second);
1076 
1077     assert(MRI.hasOneDef(State.first));
1078     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1079     CurInst = Inst.getIterator();
1080 
1081     // Any non-copy instruction is the defining instruction we're seeking.
1082     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1083       break;
1084     State = GetRegAndSubreg(Inst);
1085   };
1086 
1087   // Helper lambda to apply additional subregister substitutions to a known
1088   // instruction/operand pair. Adds new (fake) substitutions so that we can
1089   // record the subregister. FIXME: this isn't very space efficient if multiple
1090   // values are tracked back through the same copies; cache something later.
1091   auto ApplySubregisters =
1092       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1093     for (unsigned Subreg : reverse(SubregsSeen)) {
1094       // Fetch a new instruction number, not attached to an actual instruction.
1095       unsigned NewInstrNumber = getNewDebugInstrNum();
1096       // Add a substitution from the "new" number to the known one, with a
1097       // qualifying subreg.
1098       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1099       // Return the new number; to find the underlying value, consumers need to
1100       // deal with the qualifying subreg.
1101       P = {NewInstrNumber, 0};
1102     }
1103     return P;
1104   };
1105 
1106   // If we managed to find the defining instruction after COPYs, return an
1107   // instruction / operand pair after adding subregister qualifiers.
1108   if (State.first.isVirtual()) {
1109     // Virtual register def -- we can just look up where this happens.
1110     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1111     for (auto &MO : Inst->operands()) {
1112       if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
1113         continue;
1114       return ApplySubregisters(
1115           {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)});
1116     }
1117 
1118     llvm_unreachable("Vreg def with no corresponding operand?");
1119   }
1120 
1121   // Our search ended in a copy from a physreg: walk back up the function
1122   // looking for whatever defines the physreg.
1123   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1124   State = GetRegAndSubreg(*CurInst);
1125   Register RegToSeek = State.first;
1126 
1127   auto RMII = CurInst->getReverseIterator();
1128   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1129   for (auto &ToExamine : PrevInstrs) {
1130     for (auto &MO : ToExamine.operands()) {
1131       // Test for operand that defines something aliasing RegToSeek.
1132       if (!MO.isReg() || !MO.isDef() ||
1133           !TRI.regsOverlap(RegToSeek, MO.getReg()))
1134         continue;
1135 
1136       return ApplySubregisters(
1137           {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)});
1138     }
1139   }
1140 
1141   MachineBasicBlock &InsertBB = *CurInst->getParent();
1142 
1143   // We reached the start of the block before finding a defining instruction.
1144   // It could be from a constant register, otherwise it must be an argument.
1145   if (TRI.isConstantPhysReg(State.first)) {
1146     // We can produce a DBG_PHI that identifies the constant physreg. Doesn't
1147     // matter where we put it, as it's constant valued.
1148     assert(CurInst->isCopy());
1149   } else if (State.first == TRI.getFrameRegister(*this)) {
1150     // LLVM IR is allowed to read the framepointer by calling a
1151     // llvm.frameaddress.* intrinsic. We can support this by emitting a
1152     // DBG_PHI $fp. This isn't ideal, because it extends the behaviours /
1153     // position that DBG_PHIs appear at, limiting what can be done later.
1154     // TODO: see if there's a better way of expressing these variable
1155     // locations.
1156     ;
1157   } else {
1158     // Assert that this is the entry block, or an EH pad. If it isn't, then
1159     // there is some code construct we don't recognise that deals with physregs
1160     // across blocks.
1161     assert(!State.first.isVirtual());
1162     assert(&*InsertBB.getParent()->begin() == &InsertBB || InsertBB.isEHPad());
1163   }
1164 
1165   // Create DBG_PHI for specified physreg.
1166   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1167                          TII.get(TargetOpcode::DBG_PHI));
1168   Builder.addReg(State.first);
1169   unsigned NewNum = getNewDebugInstrNum();
1170   Builder.addImm(NewNum);
1171   return ApplySubregisters({NewNum, 0u});
1172 }
1173 
1174 void MachineFunction::finalizeDebugInstrRefs() {
1175   auto *TII = getSubtarget().getInstrInfo();
1176 
1177   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1178     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE);
1179     MI.setDesc(RefII);
1180     MI.getOperand(0).setReg(0);
1181     MI.getOperand(1).ChangeToRegister(0, false);
1182   };
1183 
1184   for (auto &MBB : *this) {
1185     for (auto &MI : MBB) {
1186       if (!MI.isDebugRef() || !MI.getOperand(0).isReg())
1187         continue;
1188 
1189       Register Reg = MI.getOperand(0).getReg();
1190 
1191       // Some vregs can be deleted as redundant in the meantime. Mark those
1192       // as DBG_VALUE $noreg. Additionally, some normal instructions are
1193       // quickly deleted, leaving dangling references to vregs with no def.
1194       if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1195         MakeUndefDbgValue(MI);
1196         continue;
1197       }
1198 
1199       assert(Reg.isVirtual());
1200       MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1201 
1202       // If we've found a copy-like instruction, follow it back to the
1203       // instruction that defines the source value, see salvageCopySSA docs
1204       // for why this is important.
1205       if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1206         auto Result = salvageCopySSA(DefMI);
1207         MI.getOperand(0).ChangeToImmediate(Result.first);
1208         MI.getOperand(1).setImm(Result.second);
1209       } else {
1210         // Otherwise, identify the operand number that the VReg refers to.
1211         unsigned OperandIdx = 0;
1212         for (const auto &MO : DefMI.operands()) {
1213           if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
1214             break;
1215           ++OperandIdx;
1216         }
1217         assert(OperandIdx < DefMI.getNumOperands());
1218 
1219         // Morph this instr ref to point at the given instruction and operand.
1220         unsigned ID = DefMI.getDebugInstrNum();
1221         MI.getOperand(0).ChangeToImmediate(ID);
1222         MI.getOperand(1).setImm(OperandIdx);
1223       }
1224     }
1225   }
1226 }
1227 
1228 bool MachineFunction::useDebugInstrRef() const {
1229   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1230   // have optimized code inlined into this unoptimized code, however with
1231   // fewer and less aggressive optimizations happening, coverage and accuracy
1232   // should not suffer.
1233   if (getTarget().getOptLevel() == CodeGenOpt::None)
1234     return false;
1235 
1236   // Don't use instr-ref if this function is marked optnone.
1237   if (F.hasFnAttribute(Attribute::OptimizeNone))
1238     return false;
1239 
1240   if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1241     return true;
1242 
1243   return false;
1244 }
1245 
1246 // Use one million as a high / reserved number.
1247 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1248 
1249 /// \}
1250 
1251 //===----------------------------------------------------------------------===//
1252 //  MachineJumpTableInfo implementation
1253 //===----------------------------------------------------------------------===//
1254 
1255 /// Return the size of each entry in the jump table.
1256 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1257   // The size of a jump table entry is 4 bytes unless the entry is just the
1258   // address of a block, in which case it is the pointer size.
1259   switch (getEntryKind()) {
1260   case MachineJumpTableInfo::EK_BlockAddress:
1261     return TD.getPointerSize();
1262   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1263     return 8;
1264   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1265   case MachineJumpTableInfo::EK_LabelDifference32:
1266   case MachineJumpTableInfo::EK_Custom32:
1267     return 4;
1268   case MachineJumpTableInfo::EK_Inline:
1269     return 0;
1270   }
1271   llvm_unreachable("Unknown jump table encoding!");
1272 }
1273 
1274 /// Return the alignment of each entry in the jump table.
1275 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1276   // The alignment of a jump table entry is the alignment of int32 unless the
1277   // entry is just the address of a block, in which case it is the pointer
1278   // alignment.
1279   switch (getEntryKind()) {
1280   case MachineJumpTableInfo::EK_BlockAddress:
1281     return TD.getPointerABIAlignment(0).value();
1282   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1283     return TD.getABIIntegerTypeAlignment(64).value();
1284   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1285   case MachineJumpTableInfo::EK_LabelDifference32:
1286   case MachineJumpTableInfo::EK_Custom32:
1287     return TD.getABIIntegerTypeAlignment(32).value();
1288   case MachineJumpTableInfo::EK_Inline:
1289     return 1;
1290   }
1291   llvm_unreachable("Unknown jump table encoding!");
1292 }
1293 
1294 /// Create a new jump table entry in the jump table info.
1295 unsigned MachineJumpTableInfo::createJumpTableIndex(
1296                                const std::vector<MachineBasicBlock*> &DestBBs) {
1297   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1298   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1299   return JumpTables.size()-1;
1300 }
1301 
1302 /// If Old is the target of any jump tables, update the jump tables to branch
1303 /// to New instead.
1304 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1305                                                   MachineBasicBlock *New) {
1306   assert(Old != New && "Not making a change?");
1307   bool MadeChange = false;
1308   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1309     ReplaceMBBInJumpTable(i, Old, New);
1310   return MadeChange;
1311 }
1312 
1313 /// If MBB is present in any jump tables, remove it.
1314 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1315   bool MadeChange = false;
1316   for (MachineJumpTableEntry &JTE : JumpTables) {
1317     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1318     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1319     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1320   }
1321   return MadeChange;
1322 }
1323 
1324 /// If Old is a target of the jump tables, update the jump table to branch to
1325 /// New instead.
1326 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1327                                                  MachineBasicBlock *Old,
1328                                                  MachineBasicBlock *New) {
1329   assert(Old != New && "Not making a change?");
1330   bool MadeChange = false;
1331   MachineJumpTableEntry &JTE = JumpTables[Idx];
1332   for (MachineBasicBlock *&MBB : JTE.MBBs)
1333     if (MBB == Old) {
1334       MBB = New;
1335       MadeChange = true;
1336     }
1337   return MadeChange;
1338 }
1339 
1340 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1341   if (JumpTables.empty()) return;
1342 
1343   OS << "Jump Tables:\n";
1344 
1345   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1346     OS << printJumpTableEntryReference(i) << ':';
1347     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1348       OS << ' ' << printMBBReference(*MBB);
1349     if (i != e)
1350       OS << '\n';
1351   }
1352 
1353   OS << '\n';
1354 }
1355 
1356 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1357 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1358 #endif
1359 
1360 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1361   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1362 }
1363 
1364 //===----------------------------------------------------------------------===//
1365 //  MachineConstantPool implementation
1366 //===----------------------------------------------------------------------===//
1367 
1368 void MachineConstantPoolValue::anchor() {}
1369 
1370 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1371   return DL.getTypeAllocSize(Ty);
1372 }
1373 
1374 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1375   if (isMachineConstantPoolEntry())
1376     return Val.MachineCPVal->getSizeInBytes(DL);
1377   return DL.getTypeAllocSize(Val.ConstVal->getType());
1378 }
1379 
1380 bool MachineConstantPoolEntry::needsRelocation() const {
1381   if (isMachineConstantPoolEntry())
1382     return true;
1383   return Val.ConstVal->needsDynamicRelocation();
1384 }
1385 
1386 SectionKind
1387 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1388   if (needsRelocation())
1389     return SectionKind::getReadOnlyWithRel();
1390   switch (getSizeInBytes(*DL)) {
1391   case 4:
1392     return SectionKind::getMergeableConst4();
1393   case 8:
1394     return SectionKind::getMergeableConst8();
1395   case 16:
1396     return SectionKind::getMergeableConst16();
1397   case 32:
1398     return SectionKind::getMergeableConst32();
1399   default:
1400     return SectionKind::getReadOnly();
1401   }
1402 }
1403 
1404 MachineConstantPool::~MachineConstantPool() {
1405   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1406   // so keep track of which we've deleted to avoid double deletions.
1407   DenseSet<MachineConstantPoolValue*> Deleted;
1408   for (const MachineConstantPoolEntry &C : Constants)
1409     if (C.isMachineConstantPoolEntry()) {
1410       Deleted.insert(C.Val.MachineCPVal);
1411       delete C.Val.MachineCPVal;
1412     }
1413   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1414     if (Deleted.count(CPV) == 0)
1415       delete CPV;
1416   }
1417 }
1418 
1419 /// Test whether the given two constants can be allocated the same constant pool
1420 /// entry.
1421 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1422                                       const DataLayout &DL) {
1423   // Handle the trivial case quickly.
1424   if (A == B) return true;
1425 
1426   // If they have the same type but weren't the same constant, quickly
1427   // reject them.
1428   if (A->getType() == B->getType()) return false;
1429 
1430   // We can't handle structs or arrays.
1431   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1432       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1433     return false;
1434 
1435   // For now, only support constants with the same size.
1436   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1437   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1438     return false;
1439 
1440   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1441 
1442   // Try constant folding a bitcast of both instructions to an integer.  If we
1443   // get two identical ConstantInt's, then we are good to share them.  We use
1444   // the constant folding APIs to do this so that we get the benefit of
1445   // DataLayout.
1446   if (isa<PointerType>(A->getType()))
1447     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1448                                 const_cast<Constant *>(A), IntTy, DL);
1449   else if (A->getType() != IntTy)
1450     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1451                                 IntTy, DL);
1452   if (isa<PointerType>(B->getType()))
1453     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1454                                 const_cast<Constant *>(B), IntTy, DL);
1455   else if (B->getType() != IntTy)
1456     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1457                                 IntTy, DL);
1458 
1459   return A == B;
1460 }
1461 
1462 /// Create a new entry in the constant pool or return an existing one.
1463 /// User must specify the log2 of the minimum required alignment for the object.
1464 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1465                                                    Align Alignment) {
1466   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1467 
1468   // Check to see if we already have this constant.
1469   //
1470   // FIXME, this could be made much more efficient for large constant pools.
1471   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1472     if (!Constants[i].isMachineConstantPoolEntry() &&
1473         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1474       if (Constants[i].getAlign() < Alignment)
1475         Constants[i].Alignment = Alignment;
1476       return i;
1477     }
1478 
1479   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1480   return Constants.size()-1;
1481 }
1482 
1483 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1484                                                    Align Alignment) {
1485   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1486 
1487   // Check to see if we already have this constant.
1488   //
1489   // FIXME, this could be made much more efficient for large constant pools.
1490   int Idx = V->getExistingMachineCPValue(this, Alignment);
1491   if (Idx != -1) {
1492     MachineCPVsSharingEntries.insert(V);
1493     return (unsigned)Idx;
1494   }
1495 
1496   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1497   return Constants.size()-1;
1498 }
1499 
1500 void MachineConstantPool::print(raw_ostream &OS) const {
1501   if (Constants.empty()) return;
1502 
1503   OS << "Constant Pool:\n";
1504   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1505     OS << "  cp#" << i << ": ";
1506     if (Constants[i].isMachineConstantPoolEntry())
1507       Constants[i].Val.MachineCPVal->print(OS);
1508     else
1509       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1510     OS << ", align=" << Constants[i].getAlign().value();
1511     OS << "\n";
1512   }
1513 }
1514 
1515 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1516 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1517 #endif
1518