1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/WasmEHFuncInfo.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/GraphWriter.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "codegen" 80 81 static cl::opt<unsigned> AlignAllFunctions( 82 "align-all-functions", 83 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 84 "means align on 16B boundaries)."), 85 cl::init(0), cl::Hidden); 86 87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 88 using P = MachineFunctionProperties::Property; 89 90 switch(Prop) { 91 case P::FailedISel: return "FailedISel"; 92 case P::IsSSA: return "IsSSA"; 93 case P::Legalized: return "Legalized"; 94 case P::NoPHIs: return "NoPHIs"; 95 case P::NoVRegs: return "NoVRegs"; 96 case P::RegBankSelected: return "RegBankSelected"; 97 case P::Selected: return "Selected"; 98 case P::TracksLiveness: return "TracksLiveness"; 99 } 100 llvm_unreachable("Invalid machine function property"); 101 } 102 103 // Pin the vtable to this file. 104 void MachineFunction::Delegate::anchor() {} 105 106 void MachineFunctionProperties::print(raw_ostream &OS) const { 107 const char *Separator = ""; 108 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 109 if (!Properties[I]) 110 continue; 111 OS << Separator << getPropertyName(static_cast<Property>(I)); 112 Separator = ", "; 113 } 114 } 115 116 //===----------------------------------------------------------------------===// 117 // MachineFunction implementation 118 //===----------------------------------------------------------------------===// 119 120 // Out-of-line virtual method. 121 MachineFunctionInfo::~MachineFunctionInfo() = default; 122 123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 124 MBB->getParent()->DeleteMachineBasicBlock(MBB); 125 } 126 127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 128 const Function &F) { 129 if (F.hasFnAttribute(Attribute::StackAlignment)) 130 return F.getFnStackAlignment(); 131 return STI->getFrameLowering()->getStackAlignment(); 132 } 133 134 MachineFunction::MachineFunction(const Function &F, 135 const LLVMTargetMachine &Target, 136 const TargetSubtargetInfo &STI, 137 unsigned FunctionNum, MachineModuleInfo &mmi) 138 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 139 FunctionNumber = FunctionNum; 140 init(); 141 } 142 143 void MachineFunction::handleInsertion(MachineInstr &MI) { 144 if (TheDelegate) 145 TheDelegate->MF_HandleInsertion(MI); 146 } 147 148 void MachineFunction::handleRemoval(MachineInstr &MI) { 149 if (TheDelegate) 150 TheDelegate->MF_HandleRemoval(MI); 151 } 152 153 void MachineFunction::init() { 154 // Assume the function starts in SSA form with correct liveness. 155 Properties.set(MachineFunctionProperties::Property::IsSSA); 156 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 157 if (STI->getRegisterInfo()) 158 RegInfo = new (Allocator) MachineRegisterInfo(this); 159 else 160 RegInfo = nullptr; 161 162 MFInfo = nullptr; 163 // We can realign the stack if the target supports it and the user hasn't 164 // explicitly asked us not to. 165 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 166 !F.hasFnAttribute("no-realign-stack"); 167 FrameInfo = new (Allocator) MachineFrameInfo( 168 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 169 /*ForcedRealign=*/CanRealignSP && 170 F.hasFnAttribute(Attribute::StackAlignment)); 171 172 if (F.hasFnAttribute(Attribute::StackAlignment)) 173 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment()); 174 175 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 176 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 177 178 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 179 // FIXME: Use Function::hasOptSize(). 180 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 181 Alignment = std::max(Alignment, 182 STI->getTargetLowering()->getPrefFunctionAlignment()); 183 184 if (AlignAllFunctions) 185 Alignment = Align(1ULL << AlignAllFunctions); 186 187 JumpTableInfo = nullptr; 188 189 if (isFuncletEHPersonality(classifyEHPersonality( 190 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 191 WinEHInfo = new (Allocator) WinEHFuncInfo(); 192 } 193 194 if (isScopedEHPersonality(classifyEHPersonality( 195 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 196 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 197 } 198 199 assert(Target.isCompatibleDataLayout(getDataLayout()) && 200 "Can't create a MachineFunction using a Module with a " 201 "Target-incompatible DataLayout attached\n"); 202 203 PSVManager = 204 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 205 getInstrInfo())); 206 } 207 208 MachineFunction::~MachineFunction() { 209 clear(); 210 } 211 212 void MachineFunction::clear() { 213 Properties.reset(); 214 // Don't call destructors on MachineInstr and MachineOperand. All of their 215 // memory comes from the BumpPtrAllocator which is about to be purged. 216 // 217 // Do call MachineBasicBlock destructors, it contains std::vectors. 218 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 219 I->Insts.clearAndLeakNodesUnsafely(); 220 MBBNumbering.clear(); 221 222 InstructionRecycler.clear(Allocator); 223 OperandRecycler.clear(Allocator); 224 BasicBlockRecycler.clear(Allocator); 225 CodeViewAnnotations.clear(); 226 VariableDbgInfos.clear(); 227 if (RegInfo) { 228 RegInfo->~MachineRegisterInfo(); 229 Allocator.Deallocate(RegInfo); 230 } 231 if (MFInfo) { 232 MFInfo->~MachineFunctionInfo(); 233 Allocator.Deallocate(MFInfo); 234 } 235 236 FrameInfo->~MachineFrameInfo(); 237 Allocator.Deallocate(FrameInfo); 238 239 ConstantPool->~MachineConstantPool(); 240 Allocator.Deallocate(ConstantPool); 241 242 if (JumpTableInfo) { 243 JumpTableInfo->~MachineJumpTableInfo(); 244 Allocator.Deallocate(JumpTableInfo); 245 } 246 247 if (WinEHInfo) { 248 WinEHInfo->~WinEHFuncInfo(); 249 Allocator.Deallocate(WinEHInfo); 250 } 251 252 if (WasmEHInfo) { 253 WasmEHInfo->~WasmEHFuncInfo(); 254 Allocator.Deallocate(WasmEHInfo); 255 } 256 } 257 258 const DataLayout &MachineFunction::getDataLayout() const { 259 return F.getParent()->getDataLayout(); 260 } 261 262 /// Get the JumpTableInfo for this function. 263 /// If it does not already exist, allocate one. 264 MachineJumpTableInfo *MachineFunction:: 265 getOrCreateJumpTableInfo(unsigned EntryKind) { 266 if (JumpTableInfo) return JumpTableInfo; 267 268 JumpTableInfo = new (Allocator) 269 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 270 return JumpTableInfo; 271 } 272 273 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 274 // TODO: Should probably avoid the connection to the IR and store directly 275 // in the MachineFunction. 276 Attribute Attr = F.getFnAttribute("denormal-fp-math"); 277 278 // FIXME: This should assume IEEE behavior on an unspecified 279 // attribute. However, the one current user incorrectly assumes a non-IEEE 280 // target by default. 281 StringRef Val = Attr.getValueAsString(); 282 if (Val.empty()) 283 return DenormalMode::Invalid; 284 285 return parseDenormalFPAttribute(Val); 286 } 287 288 /// Should we be emitting segmented stack stuff for the function 289 bool MachineFunction::shouldSplitStack() const { 290 return getFunction().hasFnAttribute("split-stack"); 291 } 292 293 LLVM_NODISCARD unsigned 294 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 295 FrameInstructions.push_back(Inst); 296 return FrameInstructions.size() - 1; 297 } 298 299 /// This discards all of the MachineBasicBlock numbers and recomputes them. 300 /// This guarantees that the MBB numbers are sequential, dense, and match the 301 /// ordering of the blocks within the function. If a specific MachineBasicBlock 302 /// is specified, only that block and those after it are renumbered. 303 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 304 if (empty()) { MBBNumbering.clear(); return; } 305 MachineFunction::iterator MBBI, E = end(); 306 if (MBB == nullptr) 307 MBBI = begin(); 308 else 309 MBBI = MBB->getIterator(); 310 311 // Figure out the block number this should have. 312 unsigned BlockNo = 0; 313 if (MBBI != begin()) 314 BlockNo = std::prev(MBBI)->getNumber() + 1; 315 316 for (; MBBI != E; ++MBBI, ++BlockNo) { 317 if (MBBI->getNumber() != (int)BlockNo) { 318 // Remove use of the old number. 319 if (MBBI->getNumber() != -1) { 320 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 321 "MBB number mismatch!"); 322 MBBNumbering[MBBI->getNumber()] = nullptr; 323 } 324 325 // If BlockNo is already taken, set that block's number to -1. 326 if (MBBNumbering[BlockNo]) 327 MBBNumbering[BlockNo]->setNumber(-1); 328 329 MBBNumbering[BlockNo] = &*MBBI; 330 MBBI->setNumber(BlockNo); 331 } 332 } 333 334 // Okay, all the blocks are renumbered. If we have compactified the block 335 // numbering, shrink MBBNumbering now. 336 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 337 MBBNumbering.resize(BlockNo); 338 } 339 340 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 341 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 342 const DebugLoc &DL, 343 bool NoImp) { 344 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 345 MachineInstr(*this, MCID, DL, NoImp); 346 } 347 348 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 349 /// identical in all ways except the instruction has no parent, prev, or next. 350 MachineInstr * 351 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 352 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 353 MachineInstr(*this, *Orig); 354 } 355 356 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 357 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 358 MachineInstr *FirstClone = nullptr; 359 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 360 while (true) { 361 MachineInstr *Cloned = CloneMachineInstr(&*I); 362 MBB.insert(InsertBefore, Cloned); 363 if (FirstClone == nullptr) { 364 FirstClone = Cloned; 365 } else { 366 Cloned->bundleWithPred(); 367 } 368 369 if (!I->isBundledWithSucc()) 370 break; 371 ++I; 372 } 373 return *FirstClone; 374 } 375 376 /// Delete the given MachineInstr. 377 /// 378 /// This function also serves as the MachineInstr destructor - the real 379 /// ~MachineInstr() destructor must be empty. 380 void 381 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 382 // Verify that a call site info is at valid state. This assertion should 383 // be triggered during the implementation of support for the 384 // call site info of a new architecture. If the assertion is triggered, 385 // back trace will tell where to insert a call to updateCallSiteInfo(). 386 assert((!MI->isCall(MachineInstr::IgnoreBundle) || 387 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 388 "Call site info was not updated!"); 389 // Strip it for parts. The operand array and the MI object itself are 390 // independently recyclable. 391 if (MI->Operands) 392 deallocateOperandArray(MI->CapOperands, MI->Operands); 393 // Don't call ~MachineInstr() which must be trivial anyway because 394 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 395 // destructors. 396 InstructionRecycler.Deallocate(Allocator, MI); 397 } 398 399 /// Allocate a new MachineBasicBlock. Use this instead of 400 /// `new MachineBasicBlock'. 401 MachineBasicBlock * 402 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 403 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 404 MachineBasicBlock(*this, bb); 405 } 406 407 /// Delete the given MachineBasicBlock. 408 void 409 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 410 assert(MBB->getParent() == this && "MBB parent mismatch!"); 411 MBB->~MachineBasicBlock(); 412 BasicBlockRecycler.Deallocate(Allocator, MBB); 413 } 414 415 MachineMemOperand *MachineFunction::getMachineMemOperand( 416 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 417 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 418 SyncScope::ID SSID, AtomicOrdering Ordering, 419 AtomicOrdering FailureOrdering) { 420 return new (Allocator) 421 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 422 SSID, Ordering, FailureOrdering); 423 } 424 425 MachineMemOperand * 426 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 427 int64_t Offset, uint64_t Size) { 428 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 429 430 // If there is no pointer value, the offset isn't tracked so we need to adjust 431 // the base alignment. 432 unsigned Align = PtrInfo.V.isNull() 433 ? MinAlign(MMO->getBaseAlignment(), Offset) 434 : MMO->getBaseAlignment(); 435 436 return new (Allocator) 437 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size, 438 Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(), 439 MMO->getOrdering(), MMO->getFailureOrdering()); 440 } 441 442 MachineMemOperand * 443 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 444 const AAMDNodes &AAInfo) { 445 MachinePointerInfo MPI = MMO->getValue() ? 446 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 447 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 448 449 return new (Allocator) 450 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(), 451 MMO->getBaseAlignment(), AAInfo, 452 MMO->getRanges(), MMO->getSyncScopeID(), 453 MMO->getOrdering(), MMO->getFailureOrdering()); 454 } 455 456 MachineMemOperand * 457 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 458 MachineMemOperand::Flags Flags) { 459 return new (Allocator) MachineMemOperand( 460 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(), 461 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 462 MMO->getOrdering(), MMO->getFailureOrdering()); 463 } 464 465 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 466 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 467 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 468 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 469 PostInstrSymbol, HeapAllocMarker); 470 } 471 472 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 473 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 474 llvm::copy(Name, Dest); 475 Dest[Name.size()] = 0; 476 return Dest; 477 } 478 479 uint32_t *MachineFunction::allocateRegMask() { 480 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 481 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 482 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 483 memset(Mask, 0, Size * sizeof(Mask[0])); 484 return Mask; 485 } 486 487 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 488 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 489 copy(Mask, AllocMask); 490 return {AllocMask, Mask.size()}; 491 } 492 493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 494 LLVM_DUMP_METHOD void MachineFunction::dump() const { 495 print(dbgs()); 496 } 497 #endif 498 499 StringRef MachineFunction::getName() const { 500 return getFunction().getName(); 501 } 502 503 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 504 OS << "# Machine code for function " << getName() << ": "; 505 getProperties().print(OS); 506 OS << '\n'; 507 508 // Print Frame Information 509 FrameInfo->print(*this, OS); 510 511 // Print JumpTable Information 512 if (JumpTableInfo) 513 JumpTableInfo->print(OS); 514 515 // Print Constant Pool 516 ConstantPool->print(OS); 517 518 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 519 520 if (RegInfo && !RegInfo->livein_empty()) { 521 OS << "Function Live Ins: "; 522 for (MachineRegisterInfo::livein_iterator 523 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 524 OS << printReg(I->first, TRI); 525 if (I->second) 526 OS << " in " << printReg(I->second, TRI); 527 if (std::next(I) != E) 528 OS << ", "; 529 } 530 OS << '\n'; 531 } 532 533 ModuleSlotTracker MST(getFunction().getParent()); 534 MST.incorporateFunction(getFunction()); 535 for (const auto &BB : *this) { 536 OS << '\n'; 537 // If we print the whole function, print it at its most verbose level. 538 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 539 } 540 541 OS << "\n# End machine code for function " << getName() << ".\n\n"; 542 } 543 544 /// True if this function needs frame moves for debug or exceptions. 545 bool MachineFunction::needsFrameMoves() const { 546 return getMMI().hasDebugInfo() || 547 getTarget().Options.ForceDwarfFrameSection || 548 F.needsUnwindTableEntry(); 549 } 550 551 namespace llvm { 552 553 template<> 554 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 555 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 556 557 static std::string getGraphName(const MachineFunction *F) { 558 return ("CFG for '" + F->getName() + "' function").str(); 559 } 560 561 std::string getNodeLabel(const MachineBasicBlock *Node, 562 const MachineFunction *Graph) { 563 std::string OutStr; 564 { 565 raw_string_ostream OSS(OutStr); 566 567 if (isSimple()) { 568 OSS << printMBBReference(*Node); 569 if (const BasicBlock *BB = Node->getBasicBlock()) 570 OSS << ": " << BB->getName(); 571 } else 572 Node->print(OSS); 573 } 574 575 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 576 577 // Process string output to make it nicer... 578 for (unsigned i = 0; i != OutStr.length(); ++i) 579 if (OutStr[i] == '\n') { // Left justify 580 OutStr[i] = '\\'; 581 OutStr.insert(OutStr.begin()+i+1, 'l'); 582 } 583 return OutStr; 584 } 585 }; 586 587 } // end namespace llvm 588 589 void MachineFunction::viewCFG() const 590 { 591 #ifndef NDEBUG 592 ViewGraph(this, "mf" + getName()); 593 #else 594 errs() << "MachineFunction::viewCFG is only available in debug builds on " 595 << "systems with Graphviz or gv!\n"; 596 #endif // NDEBUG 597 } 598 599 void MachineFunction::viewCFGOnly() const 600 { 601 #ifndef NDEBUG 602 ViewGraph(this, "mf" + getName(), true); 603 #else 604 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 605 << "systems with Graphviz or gv!\n"; 606 #endif // NDEBUG 607 } 608 609 /// Add the specified physical register as a live-in value and 610 /// create a corresponding virtual register for it. 611 unsigned MachineFunction::addLiveIn(unsigned PReg, 612 const TargetRegisterClass *RC) { 613 MachineRegisterInfo &MRI = getRegInfo(); 614 unsigned VReg = MRI.getLiveInVirtReg(PReg); 615 if (VReg) { 616 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 617 (void)VRegRC; 618 // A physical register can be added several times. 619 // Between two calls, the register class of the related virtual register 620 // may have been constrained to match some operation constraints. 621 // In that case, check that the current register class includes the 622 // physical register and is a sub class of the specified RC. 623 assert((VRegRC == RC || (VRegRC->contains(PReg) && 624 RC->hasSubClassEq(VRegRC))) && 625 "Register class mismatch!"); 626 return VReg; 627 } 628 VReg = MRI.createVirtualRegister(RC); 629 MRI.addLiveIn(PReg, VReg); 630 return VReg; 631 } 632 633 /// Return the MCSymbol for the specified non-empty jump table. 634 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 635 /// normal 'L' label is returned. 636 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 637 bool isLinkerPrivate) const { 638 const DataLayout &DL = getDataLayout(); 639 assert(JumpTableInfo && "No jump tables"); 640 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 641 642 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 643 : DL.getPrivateGlobalPrefix(); 644 SmallString<60> Name; 645 raw_svector_ostream(Name) 646 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 647 return Ctx.getOrCreateSymbol(Name); 648 } 649 650 /// Return a function-local symbol to represent the PIC base. 651 MCSymbol *MachineFunction::getPICBaseSymbol() const { 652 const DataLayout &DL = getDataLayout(); 653 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 654 Twine(getFunctionNumber()) + "$pb"); 655 } 656 657 /// \name Exception Handling 658 /// \{ 659 660 LandingPadInfo & 661 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 662 unsigned N = LandingPads.size(); 663 for (unsigned i = 0; i < N; ++i) { 664 LandingPadInfo &LP = LandingPads[i]; 665 if (LP.LandingPadBlock == LandingPad) 666 return LP; 667 } 668 669 LandingPads.push_back(LandingPadInfo(LandingPad)); 670 return LandingPads[N]; 671 } 672 673 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 674 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 675 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 676 LP.BeginLabels.push_back(BeginLabel); 677 LP.EndLabels.push_back(EndLabel); 678 } 679 680 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 681 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 682 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 683 LP.LandingPadLabel = LandingPadLabel; 684 685 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 686 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 687 if (const auto *PF = 688 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 689 getMMI().addPersonality(PF); 690 691 if (LPI->isCleanup()) 692 addCleanup(LandingPad); 693 694 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 695 // correct, but we need to do it this way because of how the DWARF EH 696 // emitter processes the clauses. 697 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 698 Value *Val = LPI->getClause(I - 1); 699 if (LPI->isCatch(I - 1)) { 700 addCatchTypeInfo(LandingPad, 701 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 702 } else { 703 // Add filters in a list. 704 auto *CVal = cast<Constant>(Val); 705 SmallVector<const GlobalValue *, 4> FilterList; 706 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); 707 II != IE; ++II) 708 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts())); 709 710 addFilterTypeInfo(LandingPad, FilterList); 711 } 712 } 713 714 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 715 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 716 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 717 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 718 } 719 720 } else { 721 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 722 } 723 724 return LandingPadLabel; 725 } 726 727 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 728 ArrayRef<const GlobalValue *> TyInfo) { 729 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 730 for (unsigned N = TyInfo.size(); N; --N) 731 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 732 } 733 734 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 735 ArrayRef<const GlobalValue *> TyInfo) { 736 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 737 std::vector<unsigned> IdsInFilter(TyInfo.size()); 738 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 739 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 740 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 741 } 742 743 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 744 bool TidyIfNoBeginLabels) { 745 for (unsigned i = 0; i != LandingPads.size(); ) { 746 LandingPadInfo &LandingPad = LandingPads[i]; 747 if (LandingPad.LandingPadLabel && 748 !LandingPad.LandingPadLabel->isDefined() && 749 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 750 LandingPad.LandingPadLabel = nullptr; 751 752 // Special case: we *should* emit LPs with null LP MBB. This indicates 753 // "nounwind" case. 754 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 755 LandingPads.erase(LandingPads.begin() + i); 756 continue; 757 } 758 759 if (TidyIfNoBeginLabels) { 760 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 761 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 762 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 763 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 764 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 765 continue; 766 767 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 768 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 769 --j; 770 --e; 771 } 772 773 // Remove landing pads with no try-ranges. 774 if (LandingPads[i].BeginLabels.empty()) { 775 LandingPads.erase(LandingPads.begin() + i); 776 continue; 777 } 778 } 779 780 // If there is no landing pad, ensure that the list of typeids is empty. 781 // If the only typeid is a cleanup, this is the same as having no typeids. 782 if (!LandingPad.LandingPadBlock || 783 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 784 LandingPad.TypeIds.clear(); 785 ++i; 786 } 787 } 788 789 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 790 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 791 LP.TypeIds.push_back(0); 792 } 793 794 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 795 const Function *Filter, 796 const BlockAddress *RecoverBA) { 797 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 798 SEHHandler Handler; 799 Handler.FilterOrFinally = Filter; 800 Handler.RecoverBA = RecoverBA; 801 LP.SEHHandlers.push_back(Handler); 802 } 803 804 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 805 const Function *Cleanup) { 806 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 807 SEHHandler Handler; 808 Handler.FilterOrFinally = Cleanup; 809 Handler.RecoverBA = nullptr; 810 LP.SEHHandlers.push_back(Handler); 811 } 812 813 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 814 ArrayRef<unsigned> Sites) { 815 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 816 } 817 818 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 819 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 820 if (TypeInfos[i] == TI) return i + 1; 821 822 TypeInfos.push_back(TI); 823 return TypeInfos.size(); 824 } 825 826 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 827 // If the new filter coincides with the tail of an existing filter, then 828 // re-use the existing filter. Folding filters more than this requires 829 // re-ordering filters and/or their elements - probably not worth it. 830 for (std::vector<unsigned>::iterator I = FilterEnds.begin(), 831 E = FilterEnds.end(); I != E; ++I) { 832 unsigned i = *I, j = TyIds.size(); 833 834 while (i && j) 835 if (FilterIds[--i] != TyIds[--j]) 836 goto try_next; 837 838 if (!j) 839 // The new filter coincides with range [i, end) of the existing filter. 840 return -(1 + i); 841 842 try_next:; 843 } 844 845 // Add the new filter. 846 int FilterID = -(1 + FilterIds.size()); 847 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 848 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end()); 849 FilterEnds.push_back(FilterIds.size()); 850 FilterIds.push_back(0); // terminator 851 return FilterID; 852 } 853 854 MachineFunction::CallSiteInfoMap::iterator 855 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 856 assert(MI->isCall() && "Call site info refers only to call instructions!"); 857 858 if (!Target.Options.EnableDebugEntryValues) 859 return CallSitesInfo.end(); 860 return CallSitesInfo.find(MI); 861 } 862 863 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 864 const MachineInstr *New) { 865 assert(New->isCall() && "Call site info refers only to call instructions!"); 866 867 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old); 868 if (CSIt == CallSitesInfo.end()) 869 return; 870 871 CallSiteInfo CSInfo = std::move(CSIt->second); 872 CallSitesInfo.erase(CSIt); 873 CallSitesInfo[New] = CSInfo; 874 } 875 876 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 877 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI); 878 if (CSIt == CallSitesInfo.end()) 879 return; 880 CallSitesInfo.erase(CSIt); 881 } 882 883 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 884 const MachineInstr *New) { 885 assert(New->isCall() && "Call site info refers only to call instructions!"); 886 887 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old); 888 if (CSIt == CallSitesInfo.end()) 889 return; 890 891 CallSiteInfo CSInfo = CSIt->second; 892 CallSitesInfo[New] = CSInfo; 893 } 894 895 /// \} 896 897 //===----------------------------------------------------------------------===// 898 // MachineJumpTableInfo implementation 899 //===----------------------------------------------------------------------===// 900 901 /// Return the size of each entry in the jump table. 902 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 903 // The size of a jump table entry is 4 bytes unless the entry is just the 904 // address of a block, in which case it is the pointer size. 905 switch (getEntryKind()) { 906 case MachineJumpTableInfo::EK_BlockAddress: 907 return TD.getPointerSize(); 908 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 909 return 8; 910 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 911 case MachineJumpTableInfo::EK_LabelDifference32: 912 case MachineJumpTableInfo::EK_Custom32: 913 return 4; 914 case MachineJumpTableInfo::EK_Inline: 915 return 0; 916 } 917 llvm_unreachable("Unknown jump table encoding!"); 918 } 919 920 /// Return the alignment of each entry in the jump table. 921 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 922 // The alignment of a jump table entry is the alignment of int32 unless the 923 // entry is just the address of a block, in which case it is the pointer 924 // alignment. 925 switch (getEntryKind()) { 926 case MachineJumpTableInfo::EK_BlockAddress: 927 return TD.getPointerABIAlignment(0).value(); 928 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 929 return TD.getABIIntegerTypeAlignment(64).value(); 930 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 931 case MachineJumpTableInfo::EK_LabelDifference32: 932 case MachineJumpTableInfo::EK_Custom32: 933 return TD.getABIIntegerTypeAlignment(32).value(); 934 case MachineJumpTableInfo::EK_Inline: 935 return 1; 936 } 937 llvm_unreachable("Unknown jump table encoding!"); 938 } 939 940 /// Create a new jump table entry in the jump table info. 941 unsigned MachineJumpTableInfo::createJumpTableIndex( 942 const std::vector<MachineBasicBlock*> &DestBBs) { 943 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 944 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 945 return JumpTables.size()-1; 946 } 947 948 /// If Old is the target of any jump tables, update the jump tables to branch 949 /// to New instead. 950 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 951 MachineBasicBlock *New) { 952 assert(Old != New && "Not making a change?"); 953 bool MadeChange = false; 954 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 955 ReplaceMBBInJumpTable(i, Old, New); 956 return MadeChange; 957 } 958 959 /// If Old is a target of the jump tables, update the jump table to branch to 960 /// New instead. 961 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 962 MachineBasicBlock *Old, 963 MachineBasicBlock *New) { 964 assert(Old != New && "Not making a change?"); 965 bool MadeChange = false; 966 MachineJumpTableEntry &JTE = JumpTables[Idx]; 967 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 968 if (JTE.MBBs[j] == Old) { 969 JTE.MBBs[j] = New; 970 MadeChange = true; 971 } 972 return MadeChange; 973 } 974 975 void MachineJumpTableInfo::print(raw_ostream &OS) const { 976 if (JumpTables.empty()) return; 977 978 OS << "Jump Tables:\n"; 979 980 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 981 OS << printJumpTableEntryReference(i) << ':'; 982 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 983 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 984 if (i != e) 985 OS << '\n'; 986 } 987 988 OS << '\n'; 989 } 990 991 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 992 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 993 #endif 994 995 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 996 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 997 } 998 999 //===----------------------------------------------------------------------===// 1000 // MachineConstantPool implementation 1001 //===----------------------------------------------------------------------===// 1002 1003 void MachineConstantPoolValue::anchor() {} 1004 1005 Type *MachineConstantPoolEntry::getType() const { 1006 if (isMachineConstantPoolEntry()) 1007 return Val.MachineCPVal->getType(); 1008 return Val.ConstVal->getType(); 1009 } 1010 1011 bool MachineConstantPoolEntry::needsRelocation() const { 1012 if (isMachineConstantPoolEntry()) 1013 return true; 1014 return Val.ConstVal->needsRelocation(); 1015 } 1016 1017 SectionKind 1018 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1019 if (needsRelocation()) 1020 return SectionKind::getReadOnlyWithRel(); 1021 switch (DL->getTypeAllocSize(getType())) { 1022 case 4: 1023 return SectionKind::getMergeableConst4(); 1024 case 8: 1025 return SectionKind::getMergeableConst8(); 1026 case 16: 1027 return SectionKind::getMergeableConst16(); 1028 case 32: 1029 return SectionKind::getMergeableConst32(); 1030 default: 1031 return SectionKind::getReadOnly(); 1032 } 1033 } 1034 1035 MachineConstantPool::~MachineConstantPool() { 1036 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1037 // so keep track of which we've deleted to avoid double deletions. 1038 DenseSet<MachineConstantPoolValue*> Deleted; 1039 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1040 if (Constants[i].isMachineConstantPoolEntry()) { 1041 Deleted.insert(Constants[i].Val.MachineCPVal); 1042 delete Constants[i].Val.MachineCPVal; 1043 } 1044 for (DenseSet<MachineConstantPoolValue*>::iterator I = 1045 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end(); 1046 I != E; ++I) { 1047 if (Deleted.count(*I) == 0) 1048 delete *I; 1049 } 1050 } 1051 1052 /// Test whether the given two constants can be allocated the same constant pool 1053 /// entry. 1054 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1055 const DataLayout &DL) { 1056 // Handle the trivial case quickly. 1057 if (A == B) return true; 1058 1059 // If they have the same type but weren't the same constant, quickly 1060 // reject them. 1061 if (A->getType() == B->getType()) return false; 1062 1063 // We can't handle structs or arrays. 1064 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1065 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1066 return false; 1067 1068 // For now, only support constants with the same size. 1069 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1070 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1071 return false; 1072 1073 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1074 1075 // Try constant folding a bitcast of both instructions to an integer. If we 1076 // get two identical ConstantInt's, then we are good to share them. We use 1077 // the constant folding APIs to do this so that we get the benefit of 1078 // DataLayout. 1079 if (isa<PointerType>(A->getType())) 1080 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1081 const_cast<Constant *>(A), IntTy, DL); 1082 else if (A->getType() != IntTy) 1083 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1084 IntTy, DL); 1085 if (isa<PointerType>(B->getType())) 1086 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1087 const_cast<Constant *>(B), IntTy, DL); 1088 else if (B->getType() != IntTy) 1089 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1090 IntTy, DL); 1091 1092 return A == B; 1093 } 1094 1095 /// Create a new entry in the constant pool or return an existing one. 1096 /// User must specify the log2 of the minimum required alignment for the object. 1097 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1098 unsigned Alignment) { 1099 assert(Alignment && "Alignment must be specified!"); 1100 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1101 1102 // Check to see if we already have this constant. 1103 // 1104 // FIXME, this could be made much more efficient for large constant pools. 1105 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1106 if (!Constants[i].isMachineConstantPoolEntry() && 1107 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1108 if ((unsigned)Constants[i].getAlignment() < Alignment) 1109 Constants[i].Alignment = Alignment; 1110 return i; 1111 } 1112 1113 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1114 return Constants.size()-1; 1115 } 1116 1117 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1118 unsigned Alignment) { 1119 assert(Alignment && "Alignment must be specified!"); 1120 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1121 1122 // Check to see if we already have this constant. 1123 // 1124 // FIXME, this could be made much more efficient for large constant pools. 1125 int Idx = V->getExistingMachineCPValue(this, Alignment); 1126 if (Idx != -1) { 1127 MachineCPVsSharingEntries.insert(V); 1128 return (unsigned)Idx; 1129 } 1130 1131 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1132 return Constants.size()-1; 1133 } 1134 1135 void MachineConstantPool::print(raw_ostream &OS) const { 1136 if (Constants.empty()) return; 1137 1138 OS << "Constant Pool:\n"; 1139 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1140 OS << " cp#" << i << ": "; 1141 if (Constants[i].isMachineConstantPoolEntry()) 1142 Constants[i].Val.MachineCPVal->print(OS); 1143 else 1144 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1145 OS << ", align=" << Constants[i].getAlignment(); 1146 OS << "\n"; 1147 } 1148 } 1149 1150 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1151 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1152 #endif 1153