1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/GraphWriter.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <string> 73 #include <type_traits> 74 #include <utility> 75 #include <vector> 76 77 #include "LiveDebugValues/LiveDebugValues.h" 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 // clang-format off 93 switch(Prop) { 94 case P::FailedISel: return "FailedISel"; 95 case P::IsSSA: return "IsSSA"; 96 case P::Legalized: return "Legalized"; 97 case P::NoPHIs: return "NoPHIs"; 98 case P::NoVRegs: return "NoVRegs"; 99 case P::RegBankSelected: return "RegBankSelected"; 100 case P::Selected: return "Selected"; 101 case P::TracksLiveness: return "TracksLiveness"; 102 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 103 case P::FailsVerification: return "FailsVerification"; 104 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 105 } 106 // clang-format on 107 llvm_unreachable("Invalid machine function property"); 108 } 109 110 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 111 if (!F.hasFnAttribute(Attribute::SafeStack)) 112 return; 113 114 auto *Existing = 115 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 116 117 if (!Existing || Existing->getNumOperands() != 2) 118 return; 119 120 auto *MetadataName = "unsafe-stack-size"; 121 if (auto &N = Existing->getOperand(0)) { 122 if (cast<MDString>(N.get())->getString() == MetadataName) { 123 if (auto &Op = Existing->getOperand(1)) { 124 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 125 FrameInfo.setUnsafeStackSize(Val); 126 } 127 } 128 } 129 } 130 131 // Pin the vtable to this file. 132 void MachineFunction::Delegate::anchor() {} 133 134 void MachineFunctionProperties::print(raw_ostream &OS) const { 135 const char *Separator = ""; 136 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 137 if (!Properties[I]) 138 continue; 139 OS << Separator << getPropertyName(static_cast<Property>(I)); 140 Separator = ", "; 141 } 142 } 143 144 //===----------------------------------------------------------------------===// 145 // MachineFunction implementation 146 //===----------------------------------------------------------------------===// 147 148 // Out-of-line virtual method. 149 MachineFunctionInfo::~MachineFunctionInfo() = default; 150 151 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 152 MBB->getParent()->deleteMachineBasicBlock(MBB); 153 } 154 155 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 156 const Function &F) { 157 if (auto MA = F.getFnStackAlign()) 158 return *MA; 159 return STI->getFrameLowering()->getStackAlign(); 160 } 161 162 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 163 const TargetSubtargetInfo &STI, 164 unsigned FunctionNum, MachineModuleInfo &mmi) 165 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 166 FunctionNumber = FunctionNum; 167 init(); 168 } 169 170 void MachineFunction::handleInsertion(MachineInstr &MI) { 171 if (TheDelegate) 172 TheDelegate->MF_HandleInsertion(MI); 173 } 174 175 void MachineFunction::handleRemoval(MachineInstr &MI) { 176 if (TheDelegate) 177 TheDelegate->MF_HandleRemoval(MI); 178 } 179 180 void MachineFunction::init() { 181 // Assume the function starts in SSA form with correct liveness. 182 Properties.set(MachineFunctionProperties::Property::IsSSA); 183 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 184 if (STI->getRegisterInfo()) 185 RegInfo = new (Allocator) MachineRegisterInfo(this); 186 else 187 RegInfo = nullptr; 188 189 MFInfo = nullptr; 190 191 // We can realign the stack if the target supports it and the user hasn't 192 // explicitly asked us not to. 193 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 194 !F.hasFnAttribute("no-realign-stack"); 195 FrameInfo = new (Allocator) MachineFrameInfo( 196 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 197 /*ForcedRealign=*/CanRealignSP && 198 F.hasFnAttribute(Attribute::StackAlignment)); 199 200 setUnsafeStackSize(F, *FrameInfo); 201 202 if (F.hasFnAttribute(Attribute::StackAlignment)) 203 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 204 205 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 206 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 207 208 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 209 // FIXME: Use Function::hasOptSize(). 210 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 211 Alignment = std::max(Alignment, 212 STI->getTargetLowering()->getPrefFunctionAlignment()); 213 214 if (AlignAllFunctions) 215 Alignment = Align(1ULL << AlignAllFunctions); 216 217 JumpTableInfo = nullptr; 218 219 if (isFuncletEHPersonality(classifyEHPersonality( 220 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 221 WinEHInfo = new (Allocator) WinEHFuncInfo(); 222 } 223 224 if (isScopedEHPersonality(classifyEHPersonality( 225 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 226 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 227 } 228 229 assert(Target.isCompatibleDataLayout(getDataLayout()) && 230 "Can't create a MachineFunction using a Module with a " 231 "Target-incompatible DataLayout attached\n"); 232 233 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 234 } 235 236 void MachineFunction::initTargetMachineFunctionInfo( 237 const TargetSubtargetInfo &STI) { 238 assert(!MFInfo && "MachineFunctionInfo already set"); 239 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); 240 } 241 242 MachineFunction::~MachineFunction() { 243 clear(); 244 } 245 246 void MachineFunction::clear() { 247 Properties.reset(); 248 // Don't call destructors on MachineInstr and MachineOperand. All of their 249 // memory comes from the BumpPtrAllocator which is about to be purged. 250 // 251 // Do call MachineBasicBlock destructors, it contains std::vectors. 252 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 253 I->Insts.clearAndLeakNodesUnsafely(); 254 MBBNumbering.clear(); 255 256 InstructionRecycler.clear(Allocator); 257 OperandRecycler.clear(Allocator); 258 BasicBlockRecycler.clear(Allocator); 259 CodeViewAnnotations.clear(); 260 VariableDbgInfos.clear(); 261 if (RegInfo) { 262 RegInfo->~MachineRegisterInfo(); 263 Allocator.Deallocate(RegInfo); 264 } 265 if (MFInfo) { 266 MFInfo->~MachineFunctionInfo(); 267 Allocator.Deallocate(MFInfo); 268 } 269 270 FrameInfo->~MachineFrameInfo(); 271 Allocator.Deallocate(FrameInfo); 272 273 ConstantPool->~MachineConstantPool(); 274 Allocator.Deallocate(ConstantPool); 275 276 if (JumpTableInfo) { 277 JumpTableInfo->~MachineJumpTableInfo(); 278 Allocator.Deallocate(JumpTableInfo); 279 } 280 281 if (WinEHInfo) { 282 WinEHInfo->~WinEHFuncInfo(); 283 Allocator.Deallocate(WinEHInfo); 284 } 285 286 if (WasmEHInfo) { 287 WasmEHInfo->~WasmEHFuncInfo(); 288 Allocator.Deallocate(WasmEHInfo); 289 } 290 } 291 292 const DataLayout &MachineFunction::getDataLayout() const { 293 return F.getParent()->getDataLayout(); 294 } 295 296 /// Get the JumpTableInfo for this function. 297 /// If it does not already exist, allocate one. 298 MachineJumpTableInfo *MachineFunction:: 299 getOrCreateJumpTableInfo(unsigned EntryKind) { 300 if (JumpTableInfo) return JumpTableInfo; 301 302 JumpTableInfo = new (Allocator) 303 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 304 return JumpTableInfo; 305 } 306 307 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 308 return F.getDenormalMode(FPType); 309 } 310 311 /// Should we be emitting segmented stack stuff for the function 312 bool MachineFunction::shouldSplitStack() const { 313 return getFunction().hasFnAttribute("split-stack"); 314 } 315 316 [[nodiscard]] unsigned 317 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 318 FrameInstructions.push_back(Inst); 319 return FrameInstructions.size() - 1; 320 } 321 322 /// This discards all of the MachineBasicBlock numbers and recomputes them. 323 /// This guarantees that the MBB numbers are sequential, dense, and match the 324 /// ordering of the blocks within the function. If a specific MachineBasicBlock 325 /// is specified, only that block and those after it are renumbered. 326 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 327 if (empty()) { MBBNumbering.clear(); return; } 328 MachineFunction::iterator MBBI, E = end(); 329 if (MBB == nullptr) 330 MBBI = begin(); 331 else 332 MBBI = MBB->getIterator(); 333 334 // Figure out the block number this should have. 335 unsigned BlockNo = 0; 336 if (MBBI != begin()) 337 BlockNo = std::prev(MBBI)->getNumber() + 1; 338 339 for (; MBBI != E; ++MBBI, ++BlockNo) { 340 if (MBBI->getNumber() != (int)BlockNo) { 341 // Remove use of the old number. 342 if (MBBI->getNumber() != -1) { 343 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 344 "MBB number mismatch!"); 345 MBBNumbering[MBBI->getNumber()] = nullptr; 346 } 347 348 // If BlockNo is already taken, set that block's number to -1. 349 if (MBBNumbering[BlockNo]) 350 MBBNumbering[BlockNo]->setNumber(-1); 351 352 MBBNumbering[BlockNo] = &*MBBI; 353 MBBI->setNumber(BlockNo); 354 } 355 } 356 357 // Okay, all the blocks are renumbered. If we have compactified the block 358 // numbering, shrink MBBNumbering now. 359 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 360 MBBNumbering.resize(BlockNo); 361 } 362 363 /// This method iterates over the basic blocks and assigns their IsBeginSection 364 /// and IsEndSection fields. This must be called after MBB layout is finalized 365 /// and the SectionID's are assigned to MBBs. 366 void MachineFunction::assignBeginEndSections() { 367 front().setIsBeginSection(); 368 auto CurrentSectionID = front().getSectionID(); 369 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 370 if (MBBI->getSectionID() == CurrentSectionID) 371 continue; 372 MBBI->setIsBeginSection(); 373 std::prev(MBBI)->setIsEndSection(); 374 CurrentSectionID = MBBI->getSectionID(); 375 } 376 back().setIsEndSection(); 377 } 378 379 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 380 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 381 DebugLoc DL, 382 bool NoImplicit) { 383 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 384 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 385 } 386 387 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 388 /// identical in all ways except the instruction has no parent, prev, or next. 389 MachineInstr * 390 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 391 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 392 MachineInstr(*this, *Orig); 393 } 394 395 MachineInstr &MachineFunction::cloneMachineInstrBundle( 396 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 397 const MachineInstr &Orig) { 398 MachineInstr *FirstClone = nullptr; 399 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 400 while (true) { 401 MachineInstr *Cloned = CloneMachineInstr(&*I); 402 MBB.insert(InsertBefore, Cloned); 403 if (FirstClone == nullptr) { 404 FirstClone = Cloned; 405 } else { 406 Cloned->bundleWithPred(); 407 } 408 409 if (!I->isBundledWithSucc()) 410 break; 411 ++I; 412 } 413 // Copy over call site info to the cloned instruction if needed. If Orig is in 414 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 415 // the bundle. 416 if (Orig.shouldUpdateCallSiteInfo()) 417 copyCallSiteInfo(&Orig, FirstClone); 418 return *FirstClone; 419 } 420 421 /// Delete the given MachineInstr. 422 /// 423 /// This function also serves as the MachineInstr destructor - the real 424 /// ~MachineInstr() destructor must be empty. 425 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 426 // Verify that a call site info is at valid state. This assertion should 427 // be triggered during the implementation of support for the 428 // call site info of a new architecture. If the assertion is triggered, 429 // back trace will tell where to insert a call to updateCallSiteInfo(). 430 assert((!MI->isCandidateForCallSiteEntry() || 431 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 432 "Call site info was not updated!"); 433 // Strip it for parts. The operand array and the MI object itself are 434 // independently recyclable. 435 if (MI->Operands) 436 deallocateOperandArray(MI->CapOperands, MI->Operands); 437 // Don't call ~MachineInstr() which must be trivial anyway because 438 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 439 // destructors. 440 InstructionRecycler.Deallocate(Allocator, MI); 441 } 442 443 /// Allocate a new MachineBasicBlock. Use this instead of 444 /// `new MachineBasicBlock'. 445 MachineBasicBlock * 446 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 447 MachineBasicBlock *MBB = 448 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 449 MachineBasicBlock(*this, bb); 450 // Set BBID for `-basic-block=sections=labels` and 451 // `-basic-block-sections=list` to allow robust mapping of profiles to basic 452 // blocks. 453 if (Target.getBBSectionsType() == BasicBlockSection::Labels || 454 Target.getBBSectionsType() == BasicBlockSection::List) 455 MBB->setBBID(NextBBID++); 456 return MBB; 457 } 458 459 /// Delete the given MachineBasicBlock. 460 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 461 assert(MBB->getParent() == this && "MBB parent mismatch!"); 462 // Clean up any references to MBB in jump tables before deleting it. 463 if (JumpTableInfo) 464 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 465 MBB->~MachineBasicBlock(); 466 BasicBlockRecycler.Deallocate(Allocator, MBB); 467 } 468 469 MachineMemOperand *MachineFunction::getMachineMemOperand( 470 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 471 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 472 SyncScope::ID SSID, AtomicOrdering Ordering, 473 AtomicOrdering FailureOrdering) { 474 return new (Allocator) 475 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 476 SSID, Ordering, FailureOrdering); 477 } 478 479 MachineMemOperand *MachineFunction::getMachineMemOperand( 480 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 481 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 482 SyncScope::ID SSID, AtomicOrdering Ordering, 483 AtomicOrdering FailureOrdering) { 484 return new (Allocator) 485 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 486 Ordering, FailureOrdering); 487 } 488 489 MachineMemOperand *MachineFunction::getMachineMemOperand( 490 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { 491 return new (Allocator) 492 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 493 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 494 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 495 } 496 497 MachineMemOperand *MachineFunction::getMachineMemOperand( 498 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 499 return new (Allocator) 500 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 501 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 502 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 503 } 504 505 MachineMemOperand * 506 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 507 int64_t Offset, LLT Ty) { 508 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 509 510 // If there is no pointer value, the offset isn't tracked so we need to adjust 511 // the base alignment. 512 Align Alignment = PtrInfo.V.isNull() 513 ? commonAlignment(MMO->getBaseAlign(), Offset) 514 : MMO->getBaseAlign(); 515 516 // Do not preserve ranges, since we don't necessarily know what the high bits 517 // are anymore. 518 return new (Allocator) MachineMemOperand( 519 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 520 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 521 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 522 } 523 524 MachineMemOperand * 525 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 526 const AAMDNodes &AAInfo) { 527 MachinePointerInfo MPI = MMO->getValue() ? 528 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 529 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 530 531 return new (Allocator) MachineMemOperand( 532 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 533 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 534 MMO->getFailureOrdering()); 535 } 536 537 MachineMemOperand * 538 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 539 MachineMemOperand::Flags Flags) { 540 return new (Allocator) MachineMemOperand( 541 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 542 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 543 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 544 } 545 546 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 547 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 548 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, 549 uint32_t CFIType) { 550 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 551 PostInstrSymbol, HeapAllocMarker, 552 PCSections, CFIType); 553 } 554 555 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 556 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 557 llvm::copy(Name, Dest); 558 Dest[Name.size()] = 0; 559 return Dest; 560 } 561 562 uint32_t *MachineFunction::allocateRegMask() { 563 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 564 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 565 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 566 memset(Mask, 0, Size * sizeof(Mask[0])); 567 return Mask; 568 } 569 570 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 571 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 572 copy(Mask, AllocMask); 573 return {AllocMask, Mask.size()}; 574 } 575 576 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 577 LLVM_DUMP_METHOD void MachineFunction::dump() const { 578 print(dbgs()); 579 } 580 #endif 581 582 StringRef MachineFunction::getName() const { 583 return getFunction().getName(); 584 } 585 586 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 587 OS << "# Machine code for function " << getName() << ": "; 588 getProperties().print(OS); 589 OS << '\n'; 590 591 // Print Frame Information 592 FrameInfo->print(*this, OS); 593 594 // Print JumpTable Information 595 if (JumpTableInfo) 596 JumpTableInfo->print(OS); 597 598 // Print Constant Pool 599 ConstantPool->print(OS); 600 601 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 602 603 if (RegInfo && !RegInfo->livein_empty()) { 604 OS << "Function Live Ins: "; 605 for (MachineRegisterInfo::livein_iterator 606 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 607 OS << printReg(I->first, TRI); 608 if (I->second) 609 OS << " in " << printReg(I->second, TRI); 610 if (std::next(I) != E) 611 OS << ", "; 612 } 613 OS << '\n'; 614 } 615 616 ModuleSlotTracker MST(getFunction().getParent()); 617 MST.incorporateFunction(getFunction()); 618 for (const auto &BB : *this) { 619 OS << '\n'; 620 // If we print the whole function, print it at its most verbose level. 621 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 622 } 623 624 OS << "\n# End machine code for function " << getName() << ".\n\n"; 625 } 626 627 /// True if this function needs frame moves for debug or exceptions. 628 bool MachineFunction::needsFrameMoves() const { 629 return getMMI().hasDebugInfo() || 630 getTarget().Options.ForceDwarfFrameSection || 631 F.needsUnwindTableEntry(); 632 } 633 634 namespace llvm { 635 636 template<> 637 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 638 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 639 640 static std::string getGraphName(const MachineFunction *F) { 641 return ("CFG for '" + F->getName() + "' function").str(); 642 } 643 644 std::string getNodeLabel(const MachineBasicBlock *Node, 645 const MachineFunction *Graph) { 646 std::string OutStr; 647 { 648 raw_string_ostream OSS(OutStr); 649 650 if (isSimple()) { 651 OSS << printMBBReference(*Node); 652 if (const BasicBlock *BB = Node->getBasicBlock()) 653 OSS << ": " << BB->getName(); 654 } else 655 Node->print(OSS); 656 } 657 658 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 659 660 // Process string output to make it nicer... 661 for (unsigned i = 0; i != OutStr.length(); ++i) 662 if (OutStr[i] == '\n') { // Left justify 663 OutStr[i] = '\\'; 664 OutStr.insert(OutStr.begin()+i+1, 'l'); 665 } 666 return OutStr; 667 } 668 }; 669 670 } // end namespace llvm 671 672 void MachineFunction::viewCFG() const 673 { 674 #ifndef NDEBUG 675 ViewGraph(this, "mf" + getName()); 676 #else 677 errs() << "MachineFunction::viewCFG is only available in debug builds on " 678 << "systems with Graphviz or gv!\n"; 679 #endif // NDEBUG 680 } 681 682 void MachineFunction::viewCFGOnly() const 683 { 684 #ifndef NDEBUG 685 ViewGraph(this, "mf" + getName(), true); 686 #else 687 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 688 << "systems with Graphviz or gv!\n"; 689 #endif // NDEBUG 690 } 691 692 /// Add the specified physical register as a live-in value and 693 /// create a corresponding virtual register for it. 694 Register MachineFunction::addLiveIn(MCRegister PReg, 695 const TargetRegisterClass *RC) { 696 MachineRegisterInfo &MRI = getRegInfo(); 697 Register VReg = MRI.getLiveInVirtReg(PReg); 698 if (VReg) { 699 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 700 (void)VRegRC; 701 // A physical register can be added several times. 702 // Between two calls, the register class of the related virtual register 703 // may have been constrained to match some operation constraints. 704 // In that case, check that the current register class includes the 705 // physical register and is a sub class of the specified RC. 706 assert((VRegRC == RC || (VRegRC->contains(PReg) && 707 RC->hasSubClassEq(VRegRC))) && 708 "Register class mismatch!"); 709 return VReg; 710 } 711 VReg = MRI.createVirtualRegister(RC); 712 MRI.addLiveIn(PReg, VReg); 713 return VReg; 714 } 715 716 /// Return the MCSymbol for the specified non-empty jump table. 717 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 718 /// normal 'L' label is returned. 719 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 720 bool isLinkerPrivate) const { 721 const DataLayout &DL = getDataLayout(); 722 assert(JumpTableInfo && "No jump tables"); 723 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 724 725 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 726 : DL.getPrivateGlobalPrefix(); 727 SmallString<60> Name; 728 raw_svector_ostream(Name) 729 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 730 return Ctx.getOrCreateSymbol(Name); 731 } 732 733 /// Return a function-local symbol to represent the PIC base. 734 MCSymbol *MachineFunction::getPICBaseSymbol() const { 735 const DataLayout &DL = getDataLayout(); 736 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 737 Twine(getFunctionNumber()) + "$pb"); 738 } 739 740 /// \name Exception Handling 741 /// \{ 742 743 LandingPadInfo & 744 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 745 unsigned N = LandingPads.size(); 746 for (unsigned i = 0; i < N; ++i) { 747 LandingPadInfo &LP = LandingPads[i]; 748 if (LP.LandingPadBlock == LandingPad) 749 return LP; 750 } 751 752 LandingPads.push_back(LandingPadInfo(LandingPad)); 753 return LandingPads[N]; 754 } 755 756 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 757 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 758 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 759 LP.BeginLabels.push_back(BeginLabel); 760 LP.EndLabels.push_back(EndLabel); 761 } 762 763 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 764 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 765 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 766 LP.LandingPadLabel = LandingPadLabel; 767 768 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 769 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 770 // If there's no typeid list specified, then "cleanup" is implicit. 771 // Otherwise, id 0 is reserved for the cleanup action. 772 if (LPI->isCleanup() && LPI->getNumClauses() != 0) 773 LP.TypeIds.push_back(0); 774 775 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 776 // correct, but we need to do it this way because of how the DWARF EH 777 // emitter processes the clauses. 778 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 779 Value *Val = LPI->getClause(I - 1); 780 if (LPI->isCatch(I - 1)) { 781 LP.TypeIds.push_back( 782 getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts()))); 783 } else { 784 // Add filters in a list. 785 auto *CVal = cast<Constant>(Val); 786 SmallVector<unsigned, 4> FilterList; 787 for (const Use &U : CVal->operands()) 788 FilterList.push_back( 789 getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts()))); 790 791 LP.TypeIds.push_back(getFilterIDFor(FilterList)); 792 } 793 } 794 795 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 796 for (unsigned I = CPI->arg_size(); I != 0; --I) { 797 auto *TypeInfo = 798 dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts()); 799 LP.TypeIds.push_back(getTypeIDFor(TypeInfo)); 800 } 801 802 } else { 803 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 804 } 805 806 return LandingPadLabel; 807 } 808 809 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 810 ArrayRef<unsigned> Sites) { 811 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 812 } 813 814 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 815 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 816 if (TypeInfos[i] == TI) return i + 1; 817 818 TypeInfos.push_back(TI); 819 return TypeInfos.size(); 820 } 821 822 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { 823 // If the new filter coincides with the tail of an existing filter, then 824 // re-use the existing filter. Folding filters more than this requires 825 // re-ordering filters and/or their elements - probably not worth it. 826 for (unsigned i : FilterEnds) { 827 unsigned j = TyIds.size(); 828 829 while (i && j) 830 if (FilterIds[--i] != TyIds[--j]) 831 goto try_next; 832 833 if (!j) 834 // The new filter coincides with range [i, end) of the existing filter. 835 return -(1 + i); 836 837 try_next:; 838 } 839 840 // Add the new filter. 841 int FilterID = -(1 + FilterIds.size()); 842 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 843 llvm::append_range(FilterIds, TyIds); 844 FilterEnds.push_back(FilterIds.size()); 845 FilterIds.push_back(0); // terminator 846 return FilterID; 847 } 848 849 MachineFunction::CallSiteInfoMap::iterator 850 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 851 assert(MI->isCandidateForCallSiteEntry() && 852 "Call site info refers only to call (MI) candidates"); 853 854 if (!Target.Options.EmitCallSiteInfo) 855 return CallSitesInfo.end(); 856 return CallSitesInfo.find(MI); 857 } 858 859 /// Return the call machine instruction or find a call within bundle. 860 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 861 if (!MI->isBundle()) 862 return MI; 863 864 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 865 getBundleEnd(MI->getIterator()))) 866 if (BMI.isCandidateForCallSiteEntry()) 867 return &BMI; 868 869 llvm_unreachable("Unexpected bundle without a call site candidate"); 870 } 871 872 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 873 assert(MI->shouldUpdateCallSiteInfo() && 874 "Call site info refers only to call (MI) candidates or " 875 "candidates inside bundles"); 876 877 const MachineInstr *CallMI = getCallInstr(MI); 878 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 879 if (CSIt == CallSitesInfo.end()) 880 return; 881 CallSitesInfo.erase(CSIt); 882 } 883 884 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 885 const MachineInstr *New) { 886 assert(Old->shouldUpdateCallSiteInfo() && 887 "Call site info refers only to call (MI) candidates or " 888 "candidates inside bundles"); 889 890 if (!New->isCandidateForCallSiteEntry()) 891 return eraseCallSiteInfo(Old); 892 893 const MachineInstr *OldCallMI = getCallInstr(Old); 894 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 895 if (CSIt == CallSitesInfo.end()) 896 return; 897 898 CallSiteInfo CSInfo = CSIt->second; 899 CallSitesInfo[New] = CSInfo; 900 } 901 902 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 903 const MachineInstr *New) { 904 assert(Old->shouldUpdateCallSiteInfo() && 905 "Call site info refers only to call (MI) candidates or " 906 "candidates inside bundles"); 907 908 if (!New->isCandidateForCallSiteEntry()) 909 return eraseCallSiteInfo(Old); 910 911 const MachineInstr *OldCallMI = getCallInstr(Old); 912 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 913 if (CSIt == CallSitesInfo.end()) 914 return; 915 916 CallSiteInfo CSInfo = std::move(CSIt->second); 917 CallSitesInfo.erase(CSIt); 918 CallSitesInfo[New] = CSInfo; 919 } 920 921 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 922 DebugInstrNumberingCount = Num; 923 } 924 925 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 926 DebugInstrOperandPair B, 927 unsigned Subreg) { 928 // Catch any accidental self-loops. 929 assert(A.first != B.first); 930 // Don't allow any substitutions _from_ the memory operand number. 931 assert(A.second != DebugOperandMemNumber); 932 933 DebugValueSubstitutions.push_back({A, B, Subreg}); 934 } 935 936 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 937 MachineInstr &New, 938 unsigned MaxOperand) { 939 // If the Old instruction wasn't tracked at all, there is no work to do. 940 unsigned OldInstrNum = Old.peekDebugInstrNum(); 941 if (!OldInstrNum) 942 return; 943 944 // Iterate over all operands looking for defs to create substitutions for. 945 // Avoid creating new instr numbers unless we create a new substitution. 946 // While this has no functional effect, it risks confusing someone reading 947 // MIR output. 948 // Examine all the operands, or the first N specified by the caller. 949 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 950 for (unsigned int I = 0; I < MaxOperand; ++I) { 951 const auto &OldMO = Old.getOperand(I); 952 auto &NewMO = New.getOperand(I); 953 (void)NewMO; 954 955 if (!OldMO.isReg() || !OldMO.isDef()) 956 continue; 957 assert(NewMO.isDef()); 958 959 unsigned NewInstrNum = New.getDebugInstrNum(); 960 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 961 std::make_pair(NewInstrNum, I)); 962 } 963 } 964 965 auto MachineFunction::salvageCopySSA( 966 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 967 -> DebugInstrOperandPair { 968 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 969 970 // Check whether this copy-like instruction has already been salvaged into 971 // an operand pair. 972 Register Dest; 973 if (auto CopyDstSrc = TII.isCopyInstr(MI)) { 974 Dest = CopyDstSrc->Destination->getReg(); 975 } else { 976 assert(MI.isSubregToReg()); 977 Dest = MI.getOperand(0).getReg(); 978 } 979 980 auto CacheIt = DbgPHICache.find(Dest); 981 if (CacheIt != DbgPHICache.end()) 982 return CacheIt->second; 983 984 // Calculate the instruction number to use, or install a DBG_PHI. 985 auto OperandPair = salvageCopySSAImpl(MI); 986 DbgPHICache.insert({Dest, OperandPair}); 987 return OperandPair; 988 } 989 990 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 991 -> DebugInstrOperandPair { 992 MachineRegisterInfo &MRI = getRegInfo(); 993 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 994 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 995 996 // Chase the value read by a copy-like instruction back to the instruction 997 // that ultimately _defines_ that value. This may pass: 998 // * Through multiple intermediate copies, including subregister moves / 999 // copies, 1000 // * Copies from physical registers that must then be traced back to the 1001 // defining instruction, 1002 // * Or, physical registers may be live-in to (only) the entry block, which 1003 // requires a DBG_PHI to be created. 1004 // We can pursue this problem in that order: trace back through copies, 1005 // optionally through a physical register, to a defining instruction. We 1006 // should never move from physreg to vreg. As we're still in SSA form, no need 1007 // to worry about partial definitions of registers. 1008 1009 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1010 // returns the register read and any subregister identifying which part is 1011 // read. 1012 auto GetRegAndSubreg = 1013 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1014 Register NewReg, OldReg; 1015 unsigned SubReg; 1016 if (Cpy.isCopy()) { 1017 OldReg = Cpy.getOperand(0).getReg(); 1018 NewReg = Cpy.getOperand(1).getReg(); 1019 SubReg = Cpy.getOperand(1).getSubReg(); 1020 } else if (Cpy.isSubregToReg()) { 1021 OldReg = Cpy.getOperand(0).getReg(); 1022 NewReg = Cpy.getOperand(2).getReg(); 1023 SubReg = Cpy.getOperand(3).getImm(); 1024 } else { 1025 auto CopyDetails = *TII.isCopyInstr(Cpy); 1026 const MachineOperand &Src = *CopyDetails.Source; 1027 const MachineOperand &Dest = *CopyDetails.Destination; 1028 OldReg = Dest.getReg(); 1029 NewReg = Src.getReg(); 1030 SubReg = Src.getSubReg(); 1031 } 1032 1033 return {NewReg, SubReg}; 1034 }; 1035 1036 // First seek either the defining instruction, or a copy from a physreg. 1037 // During search, the current state is the current copy instruction, and which 1038 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1039 // deal with those later. 1040 auto State = GetRegAndSubreg(MI); 1041 auto CurInst = MI.getIterator(); 1042 SmallVector<unsigned, 4> SubregsSeen; 1043 while (true) { 1044 // If we've found a copy from a physreg, first portion of search is over. 1045 if (!State.first.isVirtual()) 1046 break; 1047 1048 // Record any subregister qualifier. 1049 if (State.second) 1050 SubregsSeen.push_back(State.second); 1051 1052 assert(MRI.hasOneDef(State.first)); 1053 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1054 CurInst = Inst.getIterator(); 1055 1056 // Any non-copy instruction is the defining instruction we're seeking. 1057 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1058 break; 1059 State = GetRegAndSubreg(Inst); 1060 }; 1061 1062 // Helper lambda to apply additional subregister substitutions to a known 1063 // instruction/operand pair. Adds new (fake) substitutions so that we can 1064 // record the subregister. FIXME: this isn't very space efficient if multiple 1065 // values are tracked back through the same copies; cache something later. 1066 auto ApplySubregisters = 1067 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1068 for (unsigned Subreg : reverse(SubregsSeen)) { 1069 // Fetch a new instruction number, not attached to an actual instruction. 1070 unsigned NewInstrNumber = getNewDebugInstrNum(); 1071 // Add a substitution from the "new" number to the known one, with a 1072 // qualifying subreg. 1073 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1074 // Return the new number; to find the underlying value, consumers need to 1075 // deal with the qualifying subreg. 1076 P = {NewInstrNumber, 0}; 1077 } 1078 return P; 1079 }; 1080 1081 // If we managed to find the defining instruction after COPYs, return an 1082 // instruction / operand pair after adding subregister qualifiers. 1083 if (State.first.isVirtual()) { 1084 // Virtual register def -- we can just look up where this happens. 1085 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1086 for (auto &MO : Inst->operands()) { 1087 if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) 1088 continue; 1089 return ApplySubregisters( 1090 {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); 1091 } 1092 1093 llvm_unreachable("Vreg def with no corresponding operand?"); 1094 } 1095 1096 // Our search ended in a copy from a physreg: walk back up the function 1097 // looking for whatever defines the physreg. 1098 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1099 State = GetRegAndSubreg(*CurInst); 1100 Register RegToSeek = State.first; 1101 1102 auto RMII = CurInst->getReverseIterator(); 1103 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1104 for (auto &ToExamine : PrevInstrs) { 1105 for (auto &MO : ToExamine.operands()) { 1106 // Test for operand that defines something aliasing RegToSeek. 1107 if (!MO.isReg() || !MO.isDef() || 1108 !TRI.regsOverlap(RegToSeek, MO.getReg())) 1109 continue; 1110 1111 return ApplySubregisters( 1112 {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); 1113 } 1114 } 1115 1116 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1117 1118 // We reached the start of the block before finding a defining instruction. 1119 // There are numerous scenarios where this can happen: 1120 // * Constant physical registers, 1121 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1122 // * Arguments in the entry block, 1123 // * Exception handling landing pads. 1124 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1125 // the variable value at this position, rather than checking it makes sense. 1126 1127 // Create DBG_PHI for specified physreg. 1128 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1129 TII.get(TargetOpcode::DBG_PHI)); 1130 Builder.addReg(State.first); 1131 unsigned NewNum = getNewDebugInstrNum(); 1132 Builder.addImm(NewNum); 1133 return ApplySubregisters({NewNum, 0u}); 1134 } 1135 1136 void MachineFunction::finalizeDebugInstrRefs() { 1137 auto *TII = getSubtarget().getInstrInfo(); 1138 1139 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1140 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); 1141 MI.setDesc(RefII); 1142 MI.setDebugValueUndef(); 1143 }; 1144 1145 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1146 for (auto &MBB : *this) { 1147 for (auto &MI : MBB) { 1148 if (!MI.isDebugRef()) 1149 continue; 1150 1151 bool IsValidRef = true; 1152 1153 for (MachineOperand &MO : MI.debug_operands()) { 1154 if (!MO.isReg()) 1155 continue; 1156 1157 Register Reg = MO.getReg(); 1158 1159 // Some vregs can be deleted as redundant in the meantime. Mark those 1160 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1161 // quickly deleted, leaving dangling references to vregs with no def. 1162 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1163 IsValidRef = false; 1164 break; 1165 } 1166 1167 assert(Reg.isVirtual()); 1168 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1169 1170 // If we've found a copy-like instruction, follow it back to the 1171 // instruction that defines the source value, see salvageCopySSA docs 1172 // for why this is important. 1173 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1174 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1175 MO.ChangeToDbgInstrRef(Result.first, Result.second); 1176 } else { 1177 // Otherwise, identify the operand number that the VReg refers to. 1178 unsigned OperandIdx = 0; 1179 for (const auto &DefMO : DefMI.operands()) { 1180 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) 1181 break; 1182 ++OperandIdx; 1183 } 1184 assert(OperandIdx < DefMI.getNumOperands()); 1185 1186 // Morph this instr ref to point at the given instruction and operand. 1187 unsigned ID = DefMI.getDebugInstrNum(); 1188 MO.ChangeToDbgInstrRef(ID, OperandIdx); 1189 } 1190 } 1191 1192 if (!IsValidRef) 1193 MakeUndefDbgValue(MI); 1194 } 1195 } 1196 } 1197 1198 bool MachineFunction::shouldUseDebugInstrRef() const { 1199 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1200 // have optimized code inlined into this unoptimized code, however with 1201 // fewer and less aggressive optimizations happening, coverage and accuracy 1202 // should not suffer. 1203 if (getTarget().getOptLevel() == CodeGenOpt::None) 1204 return false; 1205 1206 // Don't use instr-ref if this function is marked optnone. 1207 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1208 return false; 1209 1210 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1211 return true; 1212 1213 return false; 1214 } 1215 1216 bool MachineFunction::useDebugInstrRef() const { 1217 return UseDebugInstrRef; 1218 } 1219 1220 void MachineFunction::setUseDebugInstrRef(bool Use) { 1221 UseDebugInstrRef = Use; 1222 } 1223 1224 // Use one million as a high / reserved number. 1225 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1226 1227 /// \} 1228 1229 //===----------------------------------------------------------------------===// 1230 // MachineJumpTableInfo implementation 1231 //===----------------------------------------------------------------------===// 1232 1233 /// Return the size of each entry in the jump table. 1234 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1235 // The size of a jump table entry is 4 bytes unless the entry is just the 1236 // address of a block, in which case it is the pointer size. 1237 switch (getEntryKind()) { 1238 case MachineJumpTableInfo::EK_BlockAddress: 1239 return TD.getPointerSize(); 1240 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1241 return 8; 1242 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1243 case MachineJumpTableInfo::EK_LabelDifference32: 1244 case MachineJumpTableInfo::EK_Custom32: 1245 return 4; 1246 case MachineJumpTableInfo::EK_Inline: 1247 return 0; 1248 } 1249 llvm_unreachable("Unknown jump table encoding!"); 1250 } 1251 1252 /// Return the alignment of each entry in the jump table. 1253 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1254 // The alignment of a jump table entry is the alignment of int32 unless the 1255 // entry is just the address of a block, in which case it is the pointer 1256 // alignment. 1257 switch (getEntryKind()) { 1258 case MachineJumpTableInfo::EK_BlockAddress: 1259 return TD.getPointerABIAlignment(0).value(); 1260 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1261 return TD.getABIIntegerTypeAlignment(64).value(); 1262 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1263 case MachineJumpTableInfo::EK_LabelDifference32: 1264 case MachineJumpTableInfo::EK_Custom32: 1265 return TD.getABIIntegerTypeAlignment(32).value(); 1266 case MachineJumpTableInfo::EK_Inline: 1267 return 1; 1268 } 1269 llvm_unreachable("Unknown jump table encoding!"); 1270 } 1271 1272 /// Create a new jump table entry in the jump table info. 1273 unsigned MachineJumpTableInfo::createJumpTableIndex( 1274 const std::vector<MachineBasicBlock*> &DestBBs) { 1275 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1276 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1277 return JumpTables.size()-1; 1278 } 1279 1280 /// If Old is the target of any jump tables, update the jump tables to branch 1281 /// to New instead. 1282 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1283 MachineBasicBlock *New) { 1284 assert(Old != New && "Not making a change?"); 1285 bool MadeChange = false; 1286 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1287 ReplaceMBBInJumpTable(i, Old, New); 1288 return MadeChange; 1289 } 1290 1291 /// If MBB is present in any jump tables, remove it. 1292 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1293 bool MadeChange = false; 1294 for (MachineJumpTableEntry &JTE : JumpTables) { 1295 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1296 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1297 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1298 } 1299 return MadeChange; 1300 } 1301 1302 /// If Old is a target of the jump tables, update the jump table to branch to 1303 /// New instead. 1304 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1305 MachineBasicBlock *Old, 1306 MachineBasicBlock *New) { 1307 assert(Old != New && "Not making a change?"); 1308 bool MadeChange = false; 1309 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1310 for (MachineBasicBlock *&MBB : JTE.MBBs) 1311 if (MBB == Old) { 1312 MBB = New; 1313 MadeChange = true; 1314 } 1315 return MadeChange; 1316 } 1317 1318 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1319 if (JumpTables.empty()) return; 1320 1321 OS << "Jump Tables:\n"; 1322 1323 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1324 OS << printJumpTableEntryReference(i) << ':'; 1325 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1326 OS << ' ' << printMBBReference(*MBB); 1327 if (i != e) 1328 OS << '\n'; 1329 } 1330 1331 OS << '\n'; 1332 } 1333 1334 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1335 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1336 #endif 1337 1338 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1339 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1340 } 1341 1342 //===----------------------------------------------------------------------===// 1343 // MachineConstantPool implementation 1344 //===----------------------------------------------------------------------===// 1345 1346 void MachineConstantPoolValue::anchor() {} 1347 1348 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1349 return DL.getTypeAllocSize(Ty); 1350 } 1351 1352 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1353 if (isMachineConstantPoolEntry()) 1354 return Val.MachineCPVal->getSizeInBytes(DL); 1355 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1356 } 1357 1358 bool MachineConstantPoolEntry::needsRelocation() const { 1359 if (isMachineConstantPoolEntry()) 1360 return true; 1361 return Val.ConstVal->needsDynamicRelocation(); 1362 } 1363 1364 SectionKind 1365 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1366 if (needsRelocation()) 1367 return SectionKind::getReadOnlyWithRel(); 1368 switch (getSizeInBytes(*DL)) { 1369 case 4: 1370 return SectionKind::getMergeableConst4(); 1371 case 8: 1372 return SectionKind::getMergeableConst8(); 1373 case 16: 1374 return SectionKind::getMergeableConst16(); 1375 case 32: 1376 return SectionKind::getMergeableConst32(); 1377 default: 1378 return SectionKind::getReadOnly(); 1379 } 1380 } 1381 1382 MachineConstantPool::~MachineConstantPool() { 1383 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1384 // so keep track of which we've deleted to avoid double deletions. 1385 DenseSet<MachineConstantPoolValue*> Deleted; 1386 for (const MachineConstantPoolEntry &C : Constants) 1387 if (C.isMachineConstantPoolEntry()) { 1388 Deleted.insert(C.Val.MachineCPVal); 1389 delete C.Val.MachineCPVal; 1390 } 1391 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1392 if (Deleted.count(CPV) == 0) 1393 delete CPV; 1394 } 1395 } 1396 1397 /// Test whether the given two constants can be allocated the same constant pool 1398 /// entry. 1399 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1400 const DataLayout &DL) { 1401 // Handle the trivial case quickly. 1402 if (A == B) return true; 1403 1404 // If they have the same type but weren't the same constant, quickly 1405 // reject them. 1406 if (A->getType() == B->getType()) return false; 1407 1408 // We can't handle structs or arrays. 1409 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1410 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1411 return false; 1412 1413 // For now, only support constants with the same size. 1414 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1415 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1416 return false; 1417 1418 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1419 1420 // Try constant folding a bitcast of both instructions to an integer. If we 1421 // get two identical ConstantInt's, then we are good to share them. We use 1422 // the constant folding APIs to do this so that we get the benefit of 1423 // DataLayout. 1424 if (isa<PointerType>(A->getType())) 1425 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1426 const_cast<Constant *>(A), IntTy, DL); 1427 else if (A->getType() != IntTy) 1428 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1429 IntTy, DL); 1430 if (isa<PointerType>(B->getType())) 1431 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1432 const_cast<Constant *>(B), IntTy, DL); 1433 else if (B->getType() != IntTy) 1434 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1435 IntTy, DL); 1436 1437 return A == B; 1438 } 1439 1440 /// Create a new entry in the constant pool or return an existing one. 1441 /// User must specify the log2 of the minimum required alignment for the object. 1442 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1443 Align Alignment) { 1444 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1445 1446 // Check to see if we already have this constant. 1447 // 1448 // FIXME, this could be made much more efficient for large constant pools. 1449 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1450 if (!Constants[i].isMachineConstantPoolEntry() && 1451 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1452 if (Constants[i].getAlign() < Alignment) 1453 Constants[i].Alignment = Alignment; 1454 return i; 1455 } 1456 1457 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1458 return Constants.size()-1; 1459 } 1460 1461 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1462 Align Alignment) { 1463 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1464 1465 // Check to see if we already have this constant. 1466 // 1467 // FIXME, this could be made much more efficient for large constant pools. 1468 int Idx = V->getExistingMachineCPValue(this, Alignment); 1469 if (Idx != -1) { 1470 MachineCPVsSharingEntries.insert(V); 1471 return (unsigned)Idx; 1472 } 1473 1474 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1475 return Constants.size()-1; 1476 } 1477 1478 void MachineConstantPool::print(raw_ostream &OS) const { 1479 if (Constants.empty()) return; 1480 1481 OS << "Constant Pool:\n"; 1482 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1483 OS << " cp#" << i << ": "; 1484 if (Constants[i].isMachineConstantPoolEntry()) 1485 Constants[i].Val.MachineCPVal->print(OS); 1486 else 1487 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1488 OS << ", align=" << Constants[i].getAlign().value(); 1489 OS << "\n"; 1490 } 1491 } 1492 1493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1494 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1495 #endif 1496