xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 419822b372f543b22d7fb04eae0dffacf058feb6)
1  //===- MachineFunction.cpp ------------------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Collect native machine code information for a function.  This allows
10  // target-specific information about the generated code to be stored with each
11  // function.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "llvm/CodeGen/MachineFunction.h"
16  #include "llvm/ADT/BitVector.h"
17  #include "llvm/ADT/DenseMap.h"
18  #include "llvm/ADT/DenseSet.h"
19  #include "llvm/ADT/STLExtras.h"
20  #include "llvm/ADT/SmallString.h"
21  #include "llvm/ADT/SmallVector.h"
22  #include "llvm/ADT/StringRef.h"
23  #include "llvm/ADT/Twine.h"
24  #include "llvm/Analysis/ConstantFolding.h"
25  #include "llvm/Analysis/EHPersonalities.h"
26  #include "llvm/CodeGen/MachineBasicBlock.h"
27  #include "llvm/CodeGen/MachineConstantPool.h"
28  #include "llvm/CodeGen/MachineFrameInfo.h"
29  #include "llvm/CodeGen/MachineInstr.h"
30  #include "llvm/CodeGen/MachineJumpTableInfo.h"
31  #include "llvm/CodeGen/MachineMemOperand.h"
32  #include "llvm/CodeGen/MachineModuleInfo.h"
33  #include "llvm/CodeGen/MachineRegisterInfo.h"
34  #include "llvm/CodeGen/PseudoSourceValue.h"
35  #include "llvm/CodeGen/TargetFrameLowering.h"
36  #include "llvm/CodeGen/TargetInstrInfo.h"
37  #include "llvm/CodeGen/TargetLowering.h"
38  #include "llvm/CodeGen/TargetRegisterInfo.h"
39  #include "llvm/CodeGen/TargetSubtargetInfo.h"
40  #include "llvm/CodeGen/WasmEHFuncInfo.h"
41  #include "llvm/CodeGen/WinEHFuncInfo.h"
42  #include "llvm/Config/llvm-config.h"
43  #include "llvm/IR/Attributes.h"
44  #include "llvm/IR/BasicBlock.h"
45  #include "llvm/IR/Constant.h"
46  #include "llvm/IR/DataLayout.h"
47  #include "llvm/IR/DebugInfoMetadata.h"
48  #include "llvm/IR/DerivedTypes.h"
49  #include "llvm/IR/Function.h"
50  #include "llvm/IR/GlobalValue.h"
51  #include "llvm/IR/Instruction.h"
52  #include "llvm/IR/Instructions.h"
53  #include "llvm/IR/Metadata.h"
54  #include "llvm/IR/Module.h"
55  #include "llvm/IR/ModuleSlotTracker.h"
56  #include "llvm/IR/Value.h"
57  #include "llvm/MC/MCContext.h"
58  #include "llvm/MC/MCSymbol.h"
59  #include "llvm/MC/SectionKind.h"
60  #include "llvm/Support/Casting.h"
61  #include "llvm/Support/CommandLine.h"
62  #include "llvm/Support/Compiler.h"
63  #include "llvm/Support/DOTGraphTraits.h"
64  #include "llvm/Support/Debug.h"
65  #include "llvm/Support/ErrorHandling.h"
66  #include "llvm/Support/GraphWriter.h"
67  #include "llvm/Support/raw_ostream.h"
68  #include "llvm/Target/TargetMachine.h"
69  #include <algorithm>
70  #include <cassert>
71  #include <cstddef>
72  #include <cstdint>
73  #include <iterator>
74  #include <string>
75  #include <type_traits>
76  #include <utility>
77  #include <vector>
78  
79  using namespace llvm;
80  
81  #define DEBUG_TYPE "codegen"
82  
83  static cl::opt<unsigned> AlignAllFunctions(
84      "align-all-functions",
85      cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86               "means align on 16B boundaries)."),
87      cl::init(0), cl::Hidden);
88  
89  static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90    using P = MachineFunctionProperties::Property;
91  
92    switch(Prop) {
93    case P::FailedISel: return "FailedISel";
94    case P::IsSSA: return "IsSSA";
95    case P::Legalized: return "Legalized";
96    case P::NoPHIs: return "NoPHIs";
97    case P::NoVRegs: return "NoVRegs";
98    case P::RegBankSelected: return "RegBankSelected";
99    case P::Selected: return "Selected";
100    case P::TracksLiveness: return "TracksLiveness";
101    case P::TiedOpsRewritten: return "TiedOpsRewritten";
102    }
103    llvm_unreachable("Invalid machine function property");
104  }
105  
106  // Pin the vtable to this file.
107  void MachineFunction::Delegate::anchor() {}
108  
109  void MachineFunctionProperties::print(raw_ostream &OS) const {
110    const char *Separator = "";
111    for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
112      if (!Properties[I])
113        continue;
114      OS << Separator << getPropertyName(static_cast<Property>(I));
115      Separator = ", ";
116    }
117  }
118  
119  //===----------------------------------------------------------------------===//
120  // MachineFunction implementation
121  //===----------------------------------------------------------------------===//
122  
123  // Out-of-line virtual method.
124  MachineFunctionInfo::~MachineFunctionInfo() = default;
125  
126  void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
127    MBB->getParent()->DeleteMachineBasicBlock(MBB);
128  }
129  
130  static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
131                                             const Function &F) {
132    if (F.hasFnAttribute(Attribute::StackAlignment))
133      return F.getFnStackAlignment();
134    return STI->getFrameLowering()->getStackAlign().value();
135  }
136  
137  MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
138                                   const TargetSubtargetInfo &STI,
139                                   unsigned FunctionNum, MachineModuleInfo &mmi)
140      : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
141    FunctionNumber = FunctionNum;
142    init();
143  }
144  
145  void MachineFunction::handleInsertion(MachineInstr &MI) {
146    if (TheDelegate)
147      TheDelegate->MF_HandleInsertion(MI);
148  }
149  
150  void MachineFunction::handleRemoval(MachineInstr &MI) {
151    if (TheDelegate)
152      TheDelegate->MF_HandleRemoval(MI);
153  }
154  
155  void MachineFunction::init() {
156    // Assume the function starts in SSA form with correct liveness.
157    Properties.set(MachineFunctionProperties::Property::IsSSA);
158    Properties.set(MachineFunctionProperties::Property::TracksLiveness);
159    if (STI->getRegisterInfo())
160      RegInfo = new (Allocator) MachineRegisterInfo(this);
161    else
162      RegInfo = nullptr;
163  
164    MFInfo = nullptr;
165    // We can realign the stack if the target supports it and the user hasn't
166    // explicitly asked us not to.
167    bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
168                        !F.hasFnAttribute("no-realign-stack");
169    FrameInfo = new (Allocator) MachineFrameInfo(
170        getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
171        /*ForcedRealign=*/CanRealignSP &&
172            F.hasFnAttribute(Attribute::StackAlignment));
173  
174    if (F.hasFnAttribute(Attribute::StackAlignment))
175      FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
176  
177    ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
178    Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
179  
180    // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
181    // FIXME: Use Function::hasOptSize().
182    if (!F.hasFnAttribute(Attribute::OptimizeForSize))
183      Alignment = std::max(Alignment,
184                           STI->getTargetLowering()->getPrefFunctionAlignment());
185  
186    if (AlignAllFunctions)
187      Alignment = Align(1ULL << AlignAllFunctions);
188  
189    JumpTableInfo = nullptr;
190  
191    if (isFuncletEHPersonality(classifyEHPersonality(
192            F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
193      WinEHInfo = new (Allocator) WinEHFuncInfo();
194    }
195  
196    if (isScopedEHPersonality(classifyEHPersonality(
197            F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
198      WasmEHInfo = new (Allocator) WasmEHFuncInfo();
199    }
200  
201    assert(Target.isCompatibleDataLayout(getDataLayout()) &&
202           "Can't create a MachineFunction using a Module with a "
203           "Target-incompatible DataLayout attached\n");
204  
205    PSVManager =
206      std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
207                                                    getInstrInfo()));
208  }
209  
210  MachineFunction::~MachineFunction() {
211    clear();
212  }
213  
214  void MachineFunction::clear() {
215    Properties.reset();
216    // Don't call destructors on MachineInstr and MachineOperand. All of their
217    // memory comes from the BumpPtrAllocator which is about to be purged.
218    //
219    // Do call MachineBasicBlock destructors, it contains std::vectors.
220    for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
221      I->Insts.clearAndLeakNodesUnsafely();
222    MBBNumbering.clear();
223  
224    InstructionRecycler.clear(Allocator);
225    OperandRecycler.clear(Allocator);
226    BasicBlockRecycler.clear(Allocator);
227    CodeViewAnnotations.clear();
228    VariableDbgInfos.clear();
229    if (RegInfo) {
230      RegInfo->~MachineRegisterInfo();
231      Allocator.Deallocate(RegInfo);
232    }
233    if (MFInfo) {
234      MFInfo->~MachineFunctionInfo();
235      Allocator.Deallocate(MFInfo);
236    }
237  
238    FrameInfo->~MachineFrameInfo();
239    Allocator.Deallocate(FrameInfo);
240  
241    ConstantPool->~MachineConstantPool();
242    Allocator.Deallocate(ConstantPool);
243  
244    if (JumpTableInfo) {
245      JumpTableInfo->~MachineJumpTableInfo();
246      Allocator.Deallocate(JumpTableInfo);
247    }
248  
249    if (WinEHInfo) {
250      WinEHInfo->~WinEHFuncInfo();
251      Allocator.Deallocate(WinEHInfo);
252    }
253  
254    if (WasmEHInfo) {
255      WasmEHInfo->~WasmEHFuncInfo();
256      Allocator.Deallocate(WasmEHInfo);
257    }
258  }
259  
260  const DataLayout &MachineFunction::getDataLayout() const {
261    return F.getParent()->getDataLayout();
262  }
263  
264  /// Get the JumpTableInfo for this function.
265  /// If it does not already exist, allocate one.
266  MachineJumpTableInfo *MachineFunction::
267  getOrCreateJumpTableInfo(unsigned EntryKind) {
268    if (JumpTableInfo) return JumpTableInfo;
269  
270    JumpTableInfo = new (Allocator)
271      MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
272    return JumpTableInfo;
273  }
274  
275  DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
276    return F.getDenormalMode(FPType);
277  }
278  
279  /// Should we be emitting segmented stack stuff for the function
280  bool MachineFunction::shouldSplitStack() const {
281    return getFunction().hasFnAttribute("split-stack");
282  }
283  
284  LLVM_NODISCARD unsigned
285  MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
286    FrameInstructions.push_back(Inst);
287    return FrameInstructions.size() - 1;
288  }
289  
290  /// This discards all of the MachineBasicBlock numbers and recomputes them.
291  /// This guarantees that the MBB numbers are sequential, dense, and match the
292  /// ordering of the blocks within the function.  If a specific MachineBasicBlock
293  /// is specified, only that block and those after it are renumbered.
294  void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
295    if (empty()) { MBBNumbering.clear(); return; }
296    MachineFunction::iterator MBBI, E = end();
297    if (MBB == nullptr)
298      MBBI = begin();
299    else
300      MBBI = MBB->getIterator();
301  
302    // Figure out the block number this should have.
303    unsigned BlockNo = 0;
304    if (MBBI != begin())
305      BlockNo = std::prev(MBBI)->getNumber() + 1;
306  
307    for (; MBBI != E; ++MBBI, ++BlockNo) {
308      if (MBBI->getNumber() != (int)BlockNo) {
309        // Remove use of the old number.
310        if (MBBI->getNumber() != -1) {
311          assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
312                 "MBB number mismatch!");
313          MBBNumbering[MBBI->getNumber()] = nullptr;
314        }
315  
316        // If BlockNo is already taken, set that block's number to -1.
317        if (MBBNumbering[BlockNo])
318          MBBNumbering[BlockNo]->setNumber(-1);
319  
320        MBBNumbering[BlockNo] = &*MBBI;
321        MBBI->setNumber(BlockNo);
322      }
323    }
324  
325    // Okay, all the blocks are renumbered.  If we have compactified the block
326    // numbering, shrink MBBNumbering now.
327    assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
328    MBBNumbering.resize(BlockNo);
329  }
330  
331  /// This method iterates over the basic blocks and assigns their IsBeginSection
332  /// and IsEndSection fields. This must be called after MBB layout is finalized
333  /// and the SectionID's are assigned to MBBs.
334  void MachineFunction::assignBeginEndSections() {
335    front().setIsBeginSection();
336    auto CurrentSectionID = front().getSectionID();
337    for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
338      if (MBBI->getSectionID() == CurrentSectionID)
339        continue;
340      MBBI->setIsBeginSection();
341      std::prev(MBBI)->setIsEndSection();
342      CurrentSectionID = MBBI->getSectionID();
343    }
344    back().setIsEndSection();
345  }
346  
347  /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
348  MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
349                                                    const DebugLoc &DL,
350                                                    bool NoImplicit) {
351    return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
352        MachineInstr(*this, MCID, DL, NoImplicit);
353  }
354  
355  /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
356  /// identical in all ways except the instruction has no parent, prev, or next.
357  MachineInstr *
358  MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
359    return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
360               MachineInstr(*this, *Orig);
361  }
362  
363  MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
364      MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
365    MachineInstr *FirstClone = nullptr;
366    MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
367    while (true) {
368      MachineInstr *Cloned = CloneMachineInstr(&*I);
369      MBB.insert(InsertBefore, Cloned);
370      if (FirstClone == nullptr) {
371        FirstClone = Cloned;
372      } else {
373        Cloned->bundleWithPred();
374      }
375  
376      if (!I->isBundledWithSucc())
377        break;
378      ++I;
379    }
380    // Copy over call site info to the cloned instruction if needed. If Orig is in
381    // a bundle, copyCallSiteInfo takes care of finding the call instruction in
382    // the bundle.
383    if (Orig.shouldUpdateCallSiteInfo())
384      copyCallSiteInfo(&Orig, FirstClone);
385    return *FirstClone;
386  }
387  
388  /// Delete the given MachineInstr.
389  ///
390  /// This function also serves as the MachineInstr destructor - the real
391  /// ~MachineInstr() destructor must be empty.
392  void
393  MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
394    // Verify that a call site info is at valid state. This assertion should
395    // be triggered during the implementation of support for the
396    // call site info of a new architecture. If the assertion is triggered,
397    // back trace will tell where to insert a call to updateCallSiteInfo().
398    assert((!MI->isCandidateForCallSiteEntry() ||
399            CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
400           "Call site info was not updated!");
401    // Strip it for parts. The operand array and the MI object itself are
402    // independently recyclable.
403    if (MI->Operands)
404      deallocateOperandArray(MI->CapOperands, MI->Operands);
405    // Don't call ~MachineInstr() which must be trivial anyway because
406    // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
407    // destructors.
408    InstructionRecycler.Deallocate(Allocator, MI);
409  }
410  
411  /// Allocate a new MachineBasicBlock. Use this instead of
412  /// `new MachineBasicBlock'.
413  MachineBasicBlock *
414  MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
415    return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
416               MachineBasicBlock(*this, bb);
417  }
418  
419  /// Delete the given MachineBasicBlock.
420  void
421  MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
422    assert(MBB->getParent() == this && "MBB parent mismatch!");
423    // Clean up any references to MBB in jump tables before deleting it.
424    if (JumpTableInfo)
425      JumpTableInfo->RemoveMBBFromJumpTables(MBB);
426    MBB->~MachineBasicBlock();
427    BasicBlockRecycler.Deallocate(Allocator, MBB);
428  }
429  
430  MachineMemOperand *MachineFunction::getMachineMemOperand(
431      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
432      Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
433      SyncScope::ID SSID, AtomicOrdering Ordering,
434      AtomicOrdering FailureOrdering) {
435    return new (Allocator)
436        MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
437                          SSID, Ordering, FailureOrdering);
438  }
439  
440  MachineMemOperand *MachineFunction::getMachineMemOperand(
441      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
442      Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
443      SyncScope::ID SSID, AtomicOrdering Ordering,
444      AtomicOrdering FailureOrdering) {
445    return new (Allocator)
446        MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
447                          Ordering, FailureOrdering);
448  }
449  
450  MachineMemOperand *MachineFunction::getMachineMemOperand(
451      const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
452    return new (Allocator)
453        MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
454                          AAMDNodes(), nullptr, MMO->getSyncScopeID(),
455                          MMO->getSuccessOrdering(), MMO->getFailureOrdering());
456  }
457  
458  MachineMemOperand *MachineFunction::getMachineMemOperand(
459      const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
460    return new (Allocator)
461        MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
462                          AAMDNodes(), nullptr, MMO->getSyncScopeID(),
463                          MMO->getSuccessOrdering(), MMO->getFailureOrdering());
464  }
465  
466  MachineMemOperand *
467  MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
468                                        int64_t Offset, LLT Ty) {
469    const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
470  
471    // If there is no pointer value, the offset isn't tracked so we need to adjust
472    // the base alignment.
473    Align Alignment = PtrInfo.V.isNull()
474                          ? commonAlignment(MMO->getBaseAlign(), Offset)
475                          : MMO->getBaseAlign();
476  
477    // Do not preserve ranges, since we don't necessarily know what the high bits
478    // are anymore.
479    return new (Allocator) MachineMemOperand(
480        PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
481        MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
482        MMO->getSuccessOrdering(), MMO->getFailureOrdering());
483  }
484  
485  MachineMemOperand *
486  MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
487                                        const AAMDNodes &AAInfo) {
488    MachinePointerInfo MPI = MMO->getValue() ?
489               MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
490               MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
491  
492    return new (Allocator) MachineMemOperand(
493        MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
494        MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
495        MMO->getFailureOrdering());
496  }
497  
498  MachineMemOperand *
499  MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
500                                        MachineMemOperand::Flags Flags) {
501    return new (Allocator) MachineMemOperand(
502        MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
503        MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
504        MMO->getSuccessOrdering(), MMO->getFailureOrdering());
505  }
506  
507  MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
508      ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
509      MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
510    return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
511                                           PostInstrSymbol, HeapAllocMarker);
512  }
513  
514  const char *MachineFunction::createExternalSymbolName(StringRef Name) {
515    char *Dest = Allocator.Allocate<char>(Name.size() + 1);
516    llvm::copy(Name, Dest);
517    Dest[Name.size()] = 0;
518    return Dest;
519  }
520  
521  uint32_t *MachineFunction::allocateRegMask() {
522    unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
523    unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
524    uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
525    memset(Mask, 0, Size * sizeof(Mask[0]));
526    return Mask;
527  }
528  
529  ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
530    int* AllocMask = Allocator.Allocate<int>(Mask.size());
531    copy(Mask, AllocMask);
532    return {AllocMask, Mask.size()};
533  }
534  
535  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
536  LLVM_DUMP_METHOD void MachineFunction::dump() const {
537    print(dbgs());
538  }
539  #endif
540  
541  StringRef MachineFunction::getName() const {
542    return getFunction().getName();
543  }
544  
545  void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
546    OS << "# Machine code for function " << getName() << ": ";
547    getProperties().print(OS);
548    OS << '\n';
549  
550    // Print Frame Information
551    FrameInfo->print(*this, OS);
552  
553    // Print JumpTable Information
554    if (JumpTableInfo)
555      JumpTableInfo->print(OS);
556  
557    // Print Constant Pool
558    ConstantPool->print(OS);
559  
560    const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
561  
562    if (RegInfo && !RegInfo->livein_empty()) {
563      OS << "Function Live Ins: ";
564      for (MachineRegisterInfo::livein_iterator
565           I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
566        OS << printReg(I->first, TRI);
567        if (I->second)
568          OS << " in " << printReg(I->second, TRI);
569        if (std::next(I) != E)
570          OS << ", ";
571      }
572      OS << '\n';
573    }
574  
575    ModuleSlotTracker MST(getFunction().getParent());
576    MST.incorporateFunction(getFunction());
577    for (const auto &BB : *this) {
578      OS << '\n';
579      // If we print the whole function, print it at its most verbose level.
580      BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
581    }
582  
583    OS << "\n# End machine code for function " << getName() << ".\n\n";
584  }
585  
586  /// True if this function needs frame moves for debug or exceptions.
587  bool MachineFunction::needsFrameMoves() const {
588    return getMMI().hasDebugInfo() ||
589           getTarget().Options.ForceDwarfFrameSection ||
590           F.needsUnwindTableEntry();
591  }
592  
593  namespace llvm {
594  
595    template<>
596    struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
597      DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
598  
599      static std::string getGraphName(const MachineFunction *F) {
600        return ("CFG for '" + F->getName() + "' function").str();
601      }
602  
603      std::string getNodeLabel(const MachineBasicBlock *Node,
604                               const MachineFunction *Graph) {
605        std::string OutStr;
606        {
607          raw_string_ostream OSS(OutStr);
608  
609          if (isSimple()) {
610            OSS << printMBBReference(*Node);
611            if (const BasicBlock *BB = Node->getBasicBlock())
612              OSS << ": " << BB->getName();
613          } else
614            Node->print(OSS);
615        }
616  
617        if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
618  
619        // Process string output to make it nicer...
620        for (unsigned i = 0; i != OutStr.length(); ++i)
621          if (OutStr[i] == '\n') {                            // Left justify
622            OutStr[i] = '\\';
623            OutStr.insert(OutStr.begin()+i+1, 'l');
624          }
625        return OutStr;
626      }
627    };
628  
629  } // end namespace llvm
630  
631  void MachineFunction::viewCFG() const
632  {
633  #ifndef NDEBUG
634    ViewGraph(this, "mf" + getName());
635  #else
636    errs() << "MachineFunction::viewCFG is only available in debug builds on "
637           << "systems with Graphviz or gv!\n";
638  #endif // NDEBUG
639  }
640  
641  void MachineFunction::viewCFGOnly() const
642  {
643  #ifndef NDEBUG
644    ViewGraph(this, "mf" + getName(), true);
645  #else
646    errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
647           << "systems with Graphviz or gv!\n";
648  #endif // NDEBUG
649  }
650  
651  /// Add the specified physical register as a live-in value and
652  /// create a corresponding virtual register for it.
653  Register MachineFunction::addLiveIn(MCRegister PReg,
654                                      const TargetRegisterClass *RC) {
655    MachineRegisterInfo &MRI = getRegInfo();
656    Register VReg = MRI.getLiveInVirtReg(PReg);
657    if (VReg) {
658      const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
659      (void)VRegRC;
660      // A physical register can be added several times.
661      // Between two calls, the register class of the related virtual register
662      // may have been constrained to match some operation constraints.
663      // In that case, check that the current register class includes the
664      // physical register and is a sub class of the specified RC.
665      assert((VRegRC == RC || (VRegRC->contains(PReg) &&
666                               RC->hasSubClassEq(VRegRC))) &&
667              "Register class mismatch!");
668      return VReg;
669    }
670    VReg = MRI.createVirtualRegister(RC);
671    MRI.addLiveIn(PReg, VReg);
672    return VReg;
673  }
674  
675  /// Return the MCSymbol for the specified non-empty jump table.
676  /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
677  /// normal 'L' label is returned.
678  MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
679                                          bool isLinkerPrivate) const {
680    const DataLayout &DL = getDataLayout();
681    assert(JumpTableInfo && "No jump tables");
682    assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
683  
684    StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
685                                       : DL.getPrivateGlobalPrefix();
686    SmallString<60> Name;
687    raw_svector_ostream(Name)
688      << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
689    return Ctx.getOrCreateSymbol(Name);
690  }
691  
692  /// Return a function-local symbol to represent the PIC base.
693  MCSymbol *MachineFunction::getPICBaseSymbol() const {
694    const DataLayout &DL = getDataLayout();
695    return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
696                                 Twine(getFunctionNumber()) + "$pb");
697  }
698  
699  /// \name Exception Handling
700  /// \{
701  
702  LandingPadInfo &
703  MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
704    unsigned N = LandingPads.size();
705    for (unsigned i = 0; i < N; ++i) {
706      LandingPadInfo &LP = LandingPads[i];
707      if (LP.LandingPadBlock == LandingPad)
708        return LP;
709    }
710  
711    LandingPads.push_back(LandingPadInfo(LandingPad));
712    return LandingPads[N];
713  }
714  
715  void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
716                                  MCSymbol *BeginLabel, MCSymbol *EndLabel) {
717    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
718    LP.BeginLabels.push_back(BeginLabel);
719    LP.EndLabels.push_back(EndLabel);
720  }
721  
722  MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
723    MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
724    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
725    LP.LandingPadLabel = LandingPadLabel;
726  
727    const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
728    if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
729      if (const auto *PF =
730              dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
731        getMMI().addPersonality(PF);
732  
733      if (LPI->isCleanup())
734        addCleanup(LandingPad);
735  
736      // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
737      //        correct, but we need to do it this way because of how the DWARF EH
738      //        emitter processes the clauses.
739      for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
740        Value *Val = LPI->getClause(I - 1);
741        if (LPI->isCatch(I - 1)) {
742          addCatchTypeInfo(LandingPad,
743                           dyn_cast<GlobalValue>(Val->stripPointerCasts()));
744        } else {
745          // Add filters in a list.
746          auto *CVal = cast<Constant>(Val);
747          SmallVector<const GlobalValue *, 4> FilterList;
748          for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
749               II != IE; ++II)
750            FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
751  
752          addFilterTypeInfo(LandingPad, FilterList);
753        }
754      }
755  
756    } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
757      for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
758        Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
759        addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
760      }
761  
762    } else {
763      assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
764    }
765  
766    return LandingPadLabel;
767  }
768  
769  void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
770                                         ArrayRef<const GlobalValue *> TyInfo) {
771    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
772    for (unsigned N = TyInfo.size(); N; --N)
773      LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
774  }
775  
776  void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
777                                          ArrayRef<const GlobalValue *> TyInfo) {
778    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
779    std::vector<unsigned> IdsInFilter(TyInfo.size());
780    for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
781      IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
782    LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
783  }
784  
785  void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
786                                        bool TidyIfNoBeginLabels) {
787    for (unsigned i = 0; i != LandingPads.size(); ) {
788      LandingPadInfo &LandingPad = LandingPads[i];
789      if (LandingPad.LandingPadLabel &&
790          !LandingPad.LandingPadLabel->isDefined() &&
791          (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
792        LandingPad.LandingPadLabel = nullptr;
793  
794      // Special case: we *should* emit LPs with null LP MBB. This indicates
795      // "nounwind" case.
796      if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
797        LandingPads.erase(LandingPads.begin() + i);
798        continue;
799      }
800  
801      if (TidyIfNoBeginLabels) {
802        for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
803          MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
804          MCSymbol *EndLabel = LandingPad.EndLabels[j];
805          if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
806              (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
807            continue;
808  
809          LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
810          LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
811          --j;
812          --e;
813        }
814  
815        // Remove landing pads with no try-ranges.
816        if (LandingPads[i].BeginLabels.empty()) {
817          LandingPads.erase(LandingPads.begin() + i);
818          continue;
819        }
820      }
821  
822      // If there is no landing pad, ensure that the list of typeids is empty.
823      // If the only typeid is a cleanup, this is the same as having no typeids.
824      if (!LandingPad.LandingPadBlock ||
825          (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
826        LandingPad.TypeIds.clear();
827      ++i;
828    }
829  }
830  
831  void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
832    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
833    LP.TypeIds.push_back(0);
834  }
835  
836  void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
837                                           const Function *Filter,
838                                           const BlockAddress *RecoverBA) {
839    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
840    SEHHandler Handler;
841    Handler.FilterOrFinally = Filter;
842    Handler.RecoverBA = RecoverBA;
843    LP.SEHHandlers.push_back(Handler);
844  }
845  
846  void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
847                                             const Function *Cleanup) {
848    LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
849    SEHHandler Handler;
850    Handler.FilterOrFinally = Cleanup;
851    Handler.RecoverBA = nullptr;
852    LP.SEHHandlers.push_back(Handler);
853  }
854  
855  void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
856                                              ArrayRef<unsigned> Sites) {
857    LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
858  }
859  
860  unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
861    for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
862      if (TypeInfos[i] == TI) return i + 1;
863  
864    TypeInfos.push_back(TI);
865    return TypeInfos.size();
866  }
867  
868  int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
869    // If the new filter coincides with the tail of an existing filter, then
870    // re-use the existing filter.  Folding filters more than this requires
871    // re-ordering filters and/or their elements - probably not worth it.
872    for (unsigned i : FilterEnds) {
873      unsigned j = TyIds.size();
874  
875      while (i && j)
876        if (FilterIds[--i] != TyIds[--j])
877          goto try_next;
878  
879      if (!j)
880        // The new filter coincides with range [i, end) of the existing filter.
881        return -(1 + i);
882  
883  try_next:;
884    }
885  
886    // Add the new filter.
887    int FilterID = -(1 + FilterIds.size());
888    FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
889    llvm::append_range(FilterIds, TyIds);
890    FilterEnds.push_back(FilterIds.size());
891    FilterIds.push_back(0); // terminator
892    return FilterID;
893  }
894  
895  MachineFunction::CallSiteInfoMap::iterator
896  MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
897    assert(MI->isCandidateForCallSiteEntry() &&
898           "Call site info refers only to call (MI) candidates");
899  
900    if (!Target.Options.EmitCallSiteInfo)
901      return CallSitesInfo.end();
902    return CallSitesInfo.find(MI);
903  }
904  
905  /// Return the call machine instruction or find a call within bundle.
906  static const MachineInstr *getCallInstr(const MachineInstr *MI) {
907    if (!MI->isBundle())
908      return MI;
909  
910    for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
911                                getBundleEnd(MI->getIterator())))
912      if (BMI.isCandidateForCallSiteEntry())
913        return &BMI;
914  
915    llvm_unreachable("Unexpected bundle without a call site candidate");
916  }
917  
918  void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
919    assert(MI->shouldUpdateCallSiteInfo() &&
920           "Call site info refers only to call (MI) candidates or "
921           "candidates inside bundles");
922  
923    const MachineInstr *CallMI = getCallInstr(MI);
924    CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
925    if (CSIt == CallSitesInfo.end())
926      return;
927    CallSitesInfo.erase(CSIt);
928  }
929  
930  void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
931                                         const MachineInstr *New) {
932    assert(Old->shouldUpdateCallSiteInfo() &&
933           "Call site info refers only to call (MI) candidates or "
934           "candidates inside bundles");
935  
936    if (!New->isCandidateForCallSiteEntry())
937      return eraseCallSiteInfo(Old);
938  
939    const MachineInstr *OldCallMI = getCallInstr(Old);
940    CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
941    if (CSIt == CallSitesInfo.end())
942      return;
943  
944    CallSiteInfo CSInfo = CSIt->second;
945    CallSitesInfo[New] = CSInfo;
946  }
947  
948  void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
949                                         const MachineInstr *New) {
950    assert(Old->shouldUpdateCallSiteInfo() &&
951           "Call site info refers only to call (MI) candidates or "
952           "candidates inside bundles");
953  
954    if (!New->isCandidateForCallSiteEntry())
955      return eraseCallSiteInfo(Old);
956  
957    const MachineInstr *OldCallMI = getCallInstr(Old);
958    CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
959    if (CSIt == CallSitesInfo.end())
960      return;
961  
962    CallSiteInfo CSInfo = std::move(CSIt->second);
963    CallSitesInfo.erase(CSIt);
964    CallSitesInfo[New] = CSInfo;
965  }
966  
967  void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
968    DebugInstrNumberingCount = Num;
969  }
970  
971  void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
972                                                   DebugInstrOperandPair B,
973                                                   unsigned Subreg) {
974    // Catch any accidental self-loops.
975    assert(A.first != B.first);
976    DebugValueSubstitutions.push_back({A, B, Subreg});
977  }
978  
979  void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
980                                                     MachineInstr &New,
981                                                     unsigned MaxOperand) {
982    // If the Old instruction wasn't tracked at all, there is no work to do.
983    unsigned OldInstrNum = Old.peekDebugInstrNum();
984    if (!OldInstrNum)
985      return;
986  
987    // Iterate over all operands looking for defs to create substitutions for.
988    // Avoid creating new instr numbers unless we create a new substitution.
989    // While this has no functional effect, it risks confusing someone reading
990    // MIR output.
991    // Examine all the operands, or the first N specified by the caller.
992    MaxOperand = std::min(MaxOperand, Old.getNumOperands());
993    for (unsigned int I = 0; I < MaxOperand; ++I) {
994      const auto &OldMO = Old.getOperand(I);
995      auto &NewMO = New.getOperand(I);
996      (void)NewMO;
997  
998      if (!OldMO.isReg() || !OldMO.isDef())
999        continue;
1000      assert(NewMO.isDef());
1001  
1002      unsigned NewInstrNum = New.getDebugInstrNum();
1003      makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
1004                                 std::make_pair(NewInstrNum, I));
1005    }
1006  }
1007  
1008  auto MachineFunction::salvageCopySSA(MachineInstr &MI)
1009      -> DebugInstrOperandPair {
1010    MachineRegisterInfo &MRI = getRegInfo();
1011    const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1012    const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1013  
1014    // Chase the value read by a copy-like instruction back to the instruction
1015    // that ultimately _defines_ that value. This may pass:
1016    //  * Through multiple intermediate copies, including subregister moves /
1017    //    copies,
1018    //  * Copies from physical registers that must then be traced back to the
1019    //    defining instruction,
1020    //  * Or, physical registers may be live-in to (only) the entry block, which
1021    //    requires a DBG_PHI to be created.
1022    // We can pursue this problem in that order: trace back through copies,
1023    // optionally through a physical register, to a defining instruction. We
1024    // should never move from physreg to vreg. As we're still in SSA form, no need
1025    // to worry about partial definitions of registers.
1026  
1027    // Helper lambda to interpret a copy-like instruction. Takes instruction,
1028    // returns the register read and any subregister identifying which part is
1029    // read.
1030    auto GetRegAndSubreg =
1031        [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1032      Register NewReg, OldReg;
1033      unsigned SubReg;
1034      if (Cpy.isCopy()) {
1035        OldReg = Cpy.getOperand(0).getReg();
1036        NewReg = Cpy.getOperand(1).getReg();
1037        SubReg = Cpy.getOperand(1).getSubReg();
1038      } else if (Cpy.isSubregToReg()) {
1039        OldReg = Cpy.getOperand(0).getReg();
1040        NewReg = Cpy.getOperand(2).getReg();
1041        SubReg = Cpy.getOperand(3).getImm();
1042      } else {
1043        auto CopyDetails = *TII.isCopyInstr(Cpy);
1044        const MachineOperand &Src = *CopyDetails.Source;
1045        const MachineOperand &Dest = *CopyDetails.Destination;
1046        OldReg = Dest.getReg();
1047        NewReg = Src.getReg();
1048        SubReg = Src.getSubReg();
1049      }
1050  
1051      return {NewReg, SubReg};
1052    };
1053  
1054    // First seek either the defining instruction, or a copy from a physreg.
1055    // During search, the current state is the current copy instruction, and which
1056    // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1057    // deal with those later.
1058    auto State = GetRegAndSubreg(MI);
1059    auto CurInst = MI.getIterator();
1060    SmallVector<unsigned, 4> SubregsSeen;
1061    while (true) {
1062      // If we've found a copy from a physreg, first portion of search is over.
1063      if (!State.first.isVirtual())
1064        break;
1065  
1066      // Record any subregister qualifier.
1067      if (State.second)
1068        SubregsSeen.push_back(State.second);
1069  
1070      assert(MRI.hasOneDef(State.first));
1071      MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1072      CurInst = Inst.getIterator();
1073  
1074      // Any non-copy instruction is the defining instruction we're seeking.
1075      if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1076        break;
1077      State = GetRegAndSubreg(Inst);
1078    };
1079  
1080    // Helper lambda to apply additional subregister substitutions to a known
1081    // instruction/operand pair. Adds new (fake) substitutions so that we can
1082    // record the subregister. FIXME: this isn't very space efficient if multiple
1083    // values are tracked back through the same copies; cache something later.
1084    auto ApplySubregisters =
1085        [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1086      for (unsigned Subreg : reverse(SubregsSeen)) {
1087        // Fetch a new instruction number, not attached to an actual instruction.
1088        unsigned NewInstrNumber = getNewDebugInstrNum();
1089        // Add a substitution from the "new" number to the known one, with a
1090        // qualifying subreg.
1091        makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1092        // Return the new number; to find the underlying value, consumers need to
1093        // deal with the qualifying subreg.
1094        P = {NewInstrNumber, 0};
1095      }
1096      return P;
1097    };
1098  
1099    // If we managed to find the defining instruction after COPYs, return an
1100    // instruction / operand pair after adding subregister qualifiers.
1101    if (State.first.isVirtual()) {
1102      // Virtual register def -- we can just look up where this happens.
1103      MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1104      for (auto &MO : Inst->operands()) {
1105        if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
1106          continue;
1107        return ApplySubregisters(
1108            {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)});
1109      }
1110  
1111      llvm_unreachable("Vreg def with no corresponding operand?");
1112    }
1113  
1114    // Our search ended in a copy from a physreg: walk back up the function
1115    // looking for whatever defines the physreg.
1116    assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1117    State = GetRegAndSubreg(*CurInst);
1118    Register RegToSeek = State.first;
1119  
1120    auto RMII = CurInst->getReverseIterator();
1121    auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1122    for (auto &ToExamine : PrevInstrs) {
1123      for (auto &MO : ToExamine.operands()) {
1124        // Test for operand that defines something aliasing RegToSeek.
1125        if (!MO.isReg() || !MO.isDef() ||
1126            !TRI.regsOverlap(RegToSeek, MO.getReg()))
1127          continue;
1128  
1129        return ApplySubregisters(
1130            {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)});
1131      }
1132    }
1133  
1134    MachineBasicBlock &InsertBB = *CurInst->getParent();
1135  
1136    // We reached the start of the block before finding a defining instruction.
1137    // It could be from a constant register, otherwise it must be an argument.
1138    if (TRI.isConstantPhysReg(State.first)) {
1139      // We can produce a DBG_PHI that identifies the constant physreg. Doesn't
1140      // matter where we put it, as it's constant valued.
1141      assert(CurInst->isCopy());
1142    } else if (State.first == TRI.getFrameRegister(*this)) {
1143      // LLVM IR is allowed to read the framepointer by calling a
1144      // llvm.frameaddress.* intrinsic. We can support this by emitting a
1145      // DBG_PHI $fp. This isn't ideal, because it extends the behaviours /
1146      // position that DBG_PHIs appear at, limiting what can be done later.
1147      // TODO: see if there's a better way of expressing these variable
1148      // locations.
1149      ;
1150    } else {
1151      // Assert that this is the entry block. If it isn't, then there is some
1152      // code construct we don't recognise that deals with physregs across
1153      // blocks.
1154      assert(!State.first.isVirtual());
1155      assert(&*InsertBB.getParent()->begin() == &InsertBB);
1156    }
1157  
1158    // Create DBG_PHI for specified physreg.
1159    auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1160                           TII.get(TargetOpcode::DBG_PHI));
1161    Builder.addReg(State.first, RegState::Debug);
1162    unsigned NewNum = getNewDebugInstrNum();
1163    Builder.addImm(NewNum);
1164    return ApplySubregisters({NewNum, 0u});
1165  }
1166  
1167  void MachineFunction::finalizeDebugInstrRefs() {
1168    auto *TII = getSubtarget().getInstrInfo();
1169  
1170    auto MakeDbgValue = [&](MachineInstr &MI) {
1171      const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE);
1172      MI.setDesc(RefII);
1173      MI.getOperand(1).ChangeToRegister(0, false);
1174      MI.getOperand(0).setIsDebug();
1175    };
1176  
1177    if (!getTarget().Options.ValueTrackingVariableLocations)
1178      return;
1179  
1180    for (auto &MBB : *this) {
1181      for (auto &MI : MBB) {
1182        if (!MI.isDebugRef() || !MI.getOperand(0).isReg())
1183          continue;
1184  
1185        Register Reg = MI.getOperand(0).getReg();
1186  
1187        // Some vregs can be deleted as redundant in the meantime. Mark those
1188        // as DBG_VALUE $noreg.
1189        if (Reg == 0) {
1190          MakeDbgValue(MI);
1191          continue;
1192        }
1193  
1194        assert(Reg.isVirtual());
1195        MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1196        assert(RegInfo->hasOneDef(Reg));
1197  
1198        // If we've found a copy-like instruction, follow it back to the
1199        // instruction that defines the source value, see salvageCopySSA docs
1200        // for why this is important.
1201        if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1202          auto Result = salvageCopySSA(DefMI);
1203          MI.getOperand(0).ChangeToImmediate(Result.first);
1204          MI.getOperand(1).setImm(Result.second);
1205        } else {
1206          // Otherwise, identify the operand number that the VReg refers to.
1207          unsigned OperandIdx = 0;
1208          for (const auto &MO : DefMI.operands()) {
1209            if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
1210              break;
1211            ++OperandIdx;
1212          }
1213          assert(OperandIdx < DefMI.getNumOperands());
1214  
1215          // Morph this instr ref to point at the given instruction and operand.
1216          unsigned ID = DefMI.getDebugInstrNum();
1217          MI.getOperand(0).ChangeToImmediate(ID);
1218          MI.getOperand(1).setImm(OperandIdx);
1219        }
1220      }
1221    }
1222  }
1223  
1224  /// \}
1225  
1226  //===----------------------------------------------------------------------===//
1227  //  MachineJumpTableInfo implementation
1228  //===----------------------------------------------------------------------===//
1229  
1230  /// Return the size of each entry in the jump table.
1231  unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1232    // The size of a jump table entry is 4 bytes unless the entry is just the
1233    // address of a block, in which case it is the pointer size.
1234    switch (getEntryKind()) {
1235    case MachineJumpTableInfo::EK_BlockAddress:
1236      return TD.getPointerSize();
1237    case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1238      return 8;
1239    case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1240    case MachineJumpTableInfo::EK_LabelDifference32:
1241    case MachineJumpTableInfo::EK_Custom32:
1242      return 4;
1243    case MachineJumpTableInfo::EK_Inline:
1244      return 0;
1245    }
1246    llvm_unreachable("Unknown jump table encoding!");
1247  }
1248  
1249  /// Return the alignment of each entry in the jump table.
1250  unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1251    // The alignment of a jump table entry is the alignment of int32 unless the
1252    // entry is just the address of a block, in which case it is the pointer
1253    // alignment.
1254    switch (getEntryKind()) {
1255    case MachineJumpTableInfo::EK_BlockAddress:
1256      return TD.getPointerABIAlignment(0).value();
1257    case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1258      return TD.getABIIntegerTypeAlignment(64).value();
1259    case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1260    case MachineJumpTableInfo::EK_LabelDifference32:
1261    case MachineJumpTableInfo::EK_Custom32:
1262      return TD.getABIIntegerTypeAlignment(32).value();
1263    case MachineJumpTableInfo::EK_Inline:
1264      return 1;
1265    }
1266    llvm_unreachable("Unknown jump table encoding!");
1267  }
1268  
1269  /// Create a new jump table entry in the jump table info.
1270  unsigned MachineJumpTableInfo::createJumpTableIndex(
1271                                 const std::vector<MachineBasicBlock*> &DestBBs) {
1272    assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1273    JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1274    return JumpTables.size()-1;
1275  }
1276  
1277  /// If Old is the target of any jump tables, update the jump tables to branch
1278  /// to New instead.
1279  bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1280                                                    MachineBasicBlock *New) {
1281    assert(Old != New && "Not making a change?");
1282    bool MadeChange = false;
1283    for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1284      ReplaceMBBInJumpTable(i, Old, New);
1285    return MadeChange;
1286  }
1287  
1288  /// If MBB is present in any jump tables, remove it.
1289  bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1290    bool MadeChange = false;
1291    for (MachineJumpTableEntry &JTE : JumpTables) {
1292      auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1293      MadeChange |= (removeBeginItr != JTE.MBBs.end());
1294      JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1295    }
1296    return MadeChange;
1297  }
1298  
1299  /// If Old is a target of the jump tables, update the jump table to branch to
1300  /// New instead.
1301  bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1302                                                   MachineBasicBlock *Old,
1303                                                   MachineBasicBlock *New) {
1304    assert(Old != New && "Not making a change?");
1305    bool MadeChange = false;
1306    MachineJumpTableEntry &JTE = JumpTables[Idx];
1307    for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
1308      if (JTE.MBBs[j] == Old) {
1309        JTE.MBBs[j] = New;
1310        MadeChange = true;
1311      }
1312    return MadeChange;
1313  }
1314  
1315  void MachineJumpTableInfo::print(raw_ostream &OS) const {
1316    if (JumpTables.empty()) return;
1317  
1318    OS << "Jump Tables:\n";
1319  
1320    for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1321      OS << printJumpTableEntryReference(i) << ':';
1322      for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
1323        OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
1324      if (i != e)
1325        OS << '\n';
1326    }
1327  
1328    OS << '\n';
1329  }
1330  
1331  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1332  LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1333  #endif
1334  
1335  Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1336    return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1337  }
1338  
1339  //===----------------------------------------------------------------------===//
1340  //  MachineConstantPool implementation
1341  //===----------------------------------------------------------------------===//
1342  
1343  void MachineConstantPoolValue::anchor() {}
1344  
1345  unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1346    return DL.getTypeAllocSize(Ty);
1347  }
1348  
1349  unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1350    if (isMachineConstantPoolEntry())
1351      return Val.MachineCPVal->getSizeInBytes(DL);
1352    return DL.getTypeAllocSize(Val.ConstVal->getType());
1353  }
1354  
1355  bool MachineConstantPoolEntry::needsRelocation() const {
1356    if (isMachineConstantPoolEntry())
1357      return true;
1358    return Val.ConstVal->needsDynamicRelocation();
1359  }
1360  
1361  SectionKind
1362  MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1363    if (needsRelocation())
1364      return SectionKind::getReadOnlyWithRel();
1365    switch (getSizeInBytes(*DL)) {
1366    case 4:
1367      return SectionKind::getMergeableConst4();
1368    case 8:
1369      return SectionKind::getMergeableConst8();
1370    case 16:
1371      return SectionKind::getMergeableConst16();
1372    case 32:
1373      return SectionKind::getMergeableConst32();
1374    default:
1375      return SectionKind::getReadOnly();
1376    }
1377  }
1378  
1379  MachineConstantPool::~MachineConstantPool() {
1380    // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1381    // so keep track of which we've deleted to avoid double deletions.
1382    DenseSet<MachineConstantPoolValue*> Deleted;
1383    for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1384      if (Constants[i].isMachineConstantPoolEntry()) {
1385        Deleted.insert(Constants[i].Val.MachineCPVal);
1386        delete Constants[i].Val.MachineCPVal;
1387      }
1388    for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1389      if (Deleted.count(CPV) == 0)
1390        delete CPV;
1391    }
1392  }
1393  
1394  /// Test whether the given two constants can be allocated the same constant pool
1395  /// entry.
1396  static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1397                                        const DataLayout &DL) {
1398    // Handle the trivial case quickly.
1399    if (A == B) return true;
1400  
1401    // If they have the same type but weren't the same constant, quickly
1402    // reject them.
1403    if (A->getType() == B->getType()) return false;
1404  
1405    // We can't handle structs or arrays.
1406    if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1407        isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1408      return false;
1409  
1410    // For now, only support constants with the same size.
1411    uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1412    if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1413      return false;
1414  
1415    Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1416  
1417    // Try constant folding a bitcast of both instructions to an integer.  If we
1418    // get two identical ConstantInt's, then we are good to share them.  We use
1419    // the constant folding APIs to do this so that we get the benefit of
1420    // DataLayout.
1421    if (isa<PointerType>(A->getType()))
1422      A = ConstantFoldCastOperand(Instruction::PtrToInt,
1423                                  const_cast<Constant *>(A), IntTy, DL);
1424    else if (A->getType() != IntTy)
1425      A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1426                                  IntTy, DL);
1427    if (isa<PointerType>(B->getType()))
1428      B = ConstantFoldCastOperand(Instruction::PtrToInt,
1429                                  const_cast<Constant *>(B), IntTy, DL);
1430    else if (B->getType() != IntTy)
1431      B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1432                                  IntTy, DL);
1433  
1434    return A == B;
1435  }
1436  
1437  /// Create a new entry in the constant pool or return an existing one.
1438  /// User must specify the log2 of the minimum required alignment for the object.
1439  unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1440                                                     Align Alignment) {
1441    if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1442  
1443    // Check to see if we already have this constant.
1444    //
1445    // FIXME, this could be made much more efficient for large constant pools.
1446    for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1447      if (!Constants[i].isMachineConstantPoolEntry() &&
1448          CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1449        if (Constants[i].getAlign() < Alignment)
1450          Constants[i].Alignment = Alignment;
1451        return i;
1452      }
1453  
1454    Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1455    return Constants.size()-1;
1456  }
1457  
1458  unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1459                                                     Align Alignment) {
1460    if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1461  
1462    // Check to see if we already have this constant.
1463    //
1464    // FIXME, this could be made much more efficient for large constant pools.
1465    int Idx = V->getExistingMachineCPValue(this, Alignment);
1466    if (Idx != -1) {
1467      MachineCPVsSharingEntries.insert(V);
1468      return (unsigned)Idx;
1469    }
1470  
1471    Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1472    return Constants.size()-1;
1473  }
1474  
1475  void MachineConstantPool::print(raw_ostream &OS) const {
1476    if (Constants.empty()) return;
1477  
1478    OS << "Constant Pool:\n";
1479    for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1480      OS << "  cp#" << i << ": ";
1481      if (Constants[i].isMachineConstantPoolEntry())
1482        Constants[i].Val.MachineCPVal->print(OS);
1483      else
1484        Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1485      OS << ", align=" << Constants[i].getAlign().value();
1486      OS << "\n";
1487    }
1488  }
1489  
1490  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1491  LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1492  #endif
1493