1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/DOTGraphTraits.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/GraphWriter.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <string> 73 #include <type_traits> 74 #include <utility> 75 #include <vector> 76 77 #include "LiveDebugValues/LiveDebugValues.h" 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 // clang-format off 93 switch(Prop) { 94 case P::FailedISel: return "FailedISel"; 95 case P::IsSSA: return "IsSSA"; 96 case P::Legalized: return "Legalized"; 97 case P::NoPHIs: return "NoPHIs"; 98 case P::NoVRegs: return "NoVRegs"; 99 case P::RegBankSelected: return "RegBankSelected"; 100 case P::Selected: return "Selected"; 101 case P::TracksLiveness: return "TracksLiveness"; 102 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 103 case P::FailsVerification: return "FailsVerification"; 104 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 105 } 106 // clang-format on 107 llvm_unreachable("Invalid machine function property"); 108 } 109 110 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 111 if (!F.hasFnAttribute(Attribute::SafeStack)) 112 return; 113 114 auto *Existing = 115 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 116 117 if (!Existing || Existing->getNumOperands() != 2) 118 return; 119 120 auto *MetadataName = "unsafe-stack-size"; 121 if (auto &N = Existing->getOperand(0)) { 122 if (cast<MDString>(N.get())->getString() == MetadataName) { 123 if (auto &Op = Existing->getOperand(1)) { 124 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 125 FrameInfo.setUnsafeStackSize(Val); 126 } 127 } 128 } 129 } 130 131 // Pin the vtable to this file. 132 void MachineFunction::Delegate::anchor() {} 133 134 void MachineFunctionProperties::print(raw_ostream &OS) const { 135 const char *Separator = ""; 136 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 137 if (!Properties[I]) 138 continue; 139 OS << Separator << getPropertyName(static_cast<Property>(I)); 140 Separator = ", "; 141 } 142 } 143 144 //===----------------------------------------------------------------------===// 145 // MachineFunction implementation 146 //===----------------------------------------------------------------------===// 147 148 // Out-of-line virtual method. 149 MachineFunctionInfo::~MachineFunctionInfo() = default; 150 151 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 152 MBB->getParent()->deleteMachineBasicBlock(MBB); 153 } 154 155 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 156 const Function &F) { 157 if (auto MA = F.getFnStackAlign()) 158 return *MA; 159 return STI->getFrameLowering()->getStackAlign(); 160 } 161 162 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 163 const TargetSubtargetInfo &STI, 164 unsigned FunctionNum, MachineModuleInfo &mmi) 165 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 166 FunctionNumber = FunctionNum; 167 init(); 168 } 169 170 void MachineFunction::handleInsertion(MachineInstr &MI) { 171 if (TheDelegate) 172 TheDelegate->MF_HandleInsertion(MI); 173 } 174 175 void MachineFunction::handleRemoval(MachineInstr &MI) { 176 if (TheDelegate) 177 TheDelegate->MF_HandleRemoval(MI); 178 } 179 180 void MachineFunction::init() { 181 // Assume the function starts in SSA form with correct liveness. 182 Properties.set(MachineFunctionProperties::Property::IsSSA); 183 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 184 if (STI->getRegisterInfo()) 185 RegInfo = new (Allocator) MachineRegisterInfo(this); 186 else 187 RegInfo = nullptr; 188 189 MFInfo = nullptr; 190 // We can realign the stack if the target supports it and the user hasn't 191 // explicitly asked us not to. 192 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 193 !F.hasFnAttribute("no-realign-stack"); 194 FrameInfo = new (Allocator) MachineFrameInfo( 195 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 196 /*ForcedRealign=*/CanRealignSP && 197 F.hasFnAttribute(Attribute::StackAlignment)); 198 199 setUnsafeStackSize(F, *FrameInfo); 200 201 if (F.hasFnAttribute(Attribute::StackAlignment)) 202 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 203 204 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 205 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 206 207 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 208 // FIXME: Use Function::hasOptSize(). 209 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 210 Alignment = std::max(Alignment, 211 STI->getTargetLowering()->getPrefFunctionAlignment()); 212 213 if (AlignAllFunctions) 214 Alignment = Align(1ULL << AlignAllFunctions); 215 216 JumpTableInfo = nullptr; 217 218 if (isFuncletEHPersonality(classifyEHPersonality( 219 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 220 WinEHInfo = new (Allocator) WinEHFuncInfo(); 221 } 222 223 if (isScopedEHPersonality(classifyEHPersonality( 224 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 225 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 226 } 227 228 assert(Target.isCompatibleDataLayout(getDataLayout()) && 229 "Can't create a MachineFunction using a Module with a " 230 "Target-incompatible DataLayout attached\n"); 231 232 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 233 } 234 235 MachineFunction::~MachineFunction() { 236 clear(); 237 } 238 239 void MachineFunction::clear() { 240 Properties.reset(); 241 // Don't call destructors on MachineInstr and MachineOperand. All of their 242 // memory comes from the BumpPtrAllocator which is about to be purged. 243 // 244 // Do call MachineBasicBlock destructors, it contains std::vectors. 245 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 246 I->Insts.clearAndLeakNodesUnsafely(); 247 MBBNumbering.clear(); 248 249 InstructionRecycler.clear(Allocator); 250 OperandRecycler.clear(Allocator); 251 BasicBlockRecycler.clear(Allocator); 252 CodeViewAnnotations.clear(); 253 VariableDbgInfos.clear(); 254 if (RegInfo) { 255 RegInfo->~MachineRegisterInfo(); 256 Allocator.Deallocate(RegInfo); 257 } 258 if (MFInfo) { 259 MFInfo->~MachineFunctionInfo(); 260 Allocator.Deallocate(MFInfo); 261 } 262 263 FrameInfo->~MachineFrameInfo(); 264 Allocator.Deallocate(FrameInfo); 265 266 ConstantPool->~MachineConstantPool(); 267 Allocator.Deallocate(ConstantPool); 268 269 if (JumpTableInfo) { 270 JumpTableInfo->~MachineJumpTableInfo(); 271 Allocator.Deallocate(JumpTableInfo); 272 } 273 274 if (WinEHInfo) { 275 WinEHInfo->~WinEHFuncInfo(); 276 Allocator.Deallocate(WinEHInfo); 277 } 278 279 if (WasmEHInfo) { 280 WasmEHInfo->~WasmEHFuncInfo(); 281 Allocator.Deallocate(WasmEHInfo); 282 } 283 } 284 285 const DataLayout &MachineFunction::getDataLayout() const { 286 return F.getParent()->getDataLayout(); 287 } 288 289 /// Get the JumpTableInfo for this function. 290 /// If it does not already exist, allocate one. 291 MachineJumpTableInfo *MachineFunction:: 292 getOrCreateJumpTableInfo(unsigned EntryKind) { 293 if (JumpTableInfo) return JumpTableInfo; 294 295 JumpTableInfo = new (Allocator) 296 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 297 return JumpTableInfo; 298 } 299 300 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 301 return F.getDenormalMode(FPType); 302 } 303 304 /// Should we be emitting segmented stack stuff for the function 305 bool MachineFunction::shouldSplitStack() const { 306 return getFunction().hasFnAttribute("split-stack"); 307 } 308 309 LLVM_NODISCARD unsigned 310 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 311 FrameInstructions.push_back(Inst); 312 return FrameInstructions.size() - 1; 313 } 314 315 /// This discards all of the MachineBasicBlock numbers and recomputes them. 316 /// This guarantees that the MBB numbers are sequential, dense, and match the 317 /// ordering of the blocks within the function. If a specific MachineBasicBlock 318 /// is specified, only that block and those after it are renumbered. 319 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 320 if (empty()) { MBBNumbering.clear(); return; } 321 MachineFunction::iterator MBBI, E = end(); 322 if (MBB == nullptr) 323 MBBI = begin(); 324 else 325 MBBI = MBB->getIterator(); 326 327 // Figure out the block number this should have. 328 unsigned BlockNo = 0; 329 if (MBBI != begin()) 330 BlockNo = std::prev(MBBI)->getNumber() + 1; 331 332 for (; MBBI != E; ++MBBI, ++BlockNo) { 333 if (MBBI->getNumber() != (int)BlockNo) { 334 // Remove use of the old number. 335 if (MBBI->getNumber() != -1) { 336 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 337 "MBB number mismatch!"); 338 MBBNumbering[MBBI->getNumber()] = nullptr; 339 } 340 341 // If BlockNo is already taken, set that block's number to -1. 342 if (MBBNumbering[BlockNo]) 343 MBBNumbering[BlockNo]->setNumber(-1); 344 345 MBBNumbering[BlockNo] = &*MBBI; 346 MBBI->setNumber(BlockNo); 347 } 348 } 349 350 // Okay, all the blocks are renumbered. If we have compactified the block 351 // numbering, shrink MBBNumbering now. 352 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 353 MBBNumbering.resize(BlockNo); 354 } 355 356 /// This method iterates over the basic blocks and assigns their IsBeginSection 357 /// and IsEndSection fields. This must be called after MBB layout is finalized 358 /// and the SectionID's are assigned to MBBs. 359 void MachineFunction::assignBeginEndSections() { 360 front().setIsBeginSection(); 361 auto CurrentSectionID = front().getSectionID(); 362 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 363 if (MBBI->getSectionID() == CurrentSectionID) 364 continue; 365 MBBI->setIsBeginSection(); 366 std::prev(MBBI)->setIsEndSection(); 367 CurrentSectionID = MBBI->getSectionID(); 368 } 369 back().setIsEndSection(); 370 } 371 372 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 373 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 374 DebugLoc DL, 375 bool NoImplicit) { 376 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 377 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 378 } 379 380 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 381 /// identical in all ways except the instruction has no parent, prev, or next. 382 MachineInstr * 383 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 384 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 385 MachineInstr(*this, *Orig); 386 } 387 388 MachineInstr &MachineFunction::cloneMachineInstrBundle( 389 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 390 const MachineInstr &Orig) { 391 MachineInstr *FirstClone = nullptr; 392 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 393 while (true) { 394 MachineInstr *Cloned = CloneMachineInstr(&*I); 395 MBB.insert(InsertBefore, Cloned); 396 if (FirstClone == nullptr) { 397 FirstClone = Cloned; 398 } else { 399 Cloned->bundleWithPred(); 400 } 401 402 if (!I->isBundledWithSucc()) 403 break; 404 ++I; 405 } 406 // Copy over call site info to the cloned instruction if needed. If Orig is in 407 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 408 // the bundle. 409 if (Orig.shouldUpdateCallSiteInfo()) 410 copyCallSiteInfo(&Orig, FirstClone); 411 return *FirstClone; 412 } 413 414 /// Delete the given MachineInstr. 415 /// 416 /// This function also serves as the MachineInstr destructor - the real 417 /// ~MachineInstr() destructor must be empty. 418 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 419 // Verify that a call site info is at valid state. This assertion should 420 // be triggered during the implementation of support for the 421 // call site info of a new architecture. If the assertion is triggered, 422 // back trace will tell where to insert a call to updateCallSiteInfo(). 423 assert((!MI->isCandidateForCallSiteEntry() || 424 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 425 "Call site info was not updated!"); 426 // Strip it for parts. The operand array and the MI object itself are 427 // independently recyclable. 428 if (MI->Operands) 429 deallocateOperandArray(MI->CapOperands, MI->Operands); 430 // Don't call ~MachineInstr() which must be trivial anyway because 431 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 432 // destructors. 433 InstructionRecycler.Deallocate(Allocator, MI); 434 } 435 436 /// Allocate a new MachineBasicBlock. Use this instead of 437 /// `new MachineBasicBlock'. 438 MachineBasicBlock * 439 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 440 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 441 MachineBasicBlock(*this, bb); 442 } 443 444 /// Delete the given MachineBasicBlock. 445 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 446 assert(MBB->getParent() == this && "MBB parent mismatch!"); 447 // Clean up any references to MBB in jump tables before deleting it. 448 if (JumpTableInfo) 449 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 450 MBB->~MachineBasicBlock(); 451 BasicBlockRecycler.Deallocate(Allocator, MBB); 452 } 453 454 MachineMemOperand *MachineFunction::getMachineMemOperand( 455 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 456 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 457 SyncScope::ID SSID, AtomicOrdering Ordering, 458 AtomicOrdering FailureOrdering) { 459 return new (Allocator) 460 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 461 SSID, Ordering, FailureOrdering); 462 } 463 464 MachineMemOperand *MachineFunction::getMachineMemOperand( 465 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 466 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 467 SyncScope::ID SSID, AtomicOrdering Ordering, 468 AtomicOrdering FailureOrdering) { 469 return new (Allocator) 470 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 471 Ordering, FailureOrdering); 472 } 473 474 MachineMemOperand *MachineFunction::getMachineMemOperand( 475 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { 476 return new (Allocator) 477 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 478 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 479 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 480 } 481 482 MachineMemOperand *MachineFunction::getMachineMemOperand( 483 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 484 return new (Allocator) 485 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 486 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 487 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 488 } 489 490 MachineMemOperand * 491 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 492 int64_t Offset, LLT Ty) { 493 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 494 495 // If there is no pointer value, the offset isn't tracked so we need to adjust 496 // the base alignment. 497 Align Alignment = PtrInfo.V.isNull() 498 ? commonAlignment(MMO->getBaseAlign(), Offset) 499 : MMO->getBaseAlign(); 500 501 // Do not preserve ranges, since we don't necessarily know what the high bits 502 // are anymore. 503 return new (Allocator) MachineMemOperand( 504 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 505 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 506 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 507 } 508 509 MachineMemOperand * 510 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 511 const AAMDNodes &AAInfo) { 512 MachinePointerInfo MPI = MMO->getValue() ? 513 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 514 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 515 516 return new (Allocator) MachineMemOperand( 517 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 518 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 519 MMO->getFailureOrdering()); 520 } 521 522 MachineMemOperand * 523 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 524 MachineMemOperand::Flags Flags) { 525 return new (Allocator) MachineMemOperand( 526 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 527 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 528 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 529 } 530 531 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 532 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 533 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 534 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 535 PostInstrSymbol, HeapAllocMarker); 536 } 537 538 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 539 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 540 llvm::copy(Name, Dest); 541 Dest[Name.size()] = 0; 542 return Dest; 543 } 544 545 uint32_t *MachineFunction::allocateRegMask() { 546 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 547 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 548 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 549 memset(Mask, 0, Size * sizeof(Mask[0])); 550 return Mask; 551 } 552 553 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 554 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 555 copy(Mask, AllocMask); 556 return {AllocMask, Mask.size()}; 557 } 558 559 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 560 LLVM_DUMP_METHOD void MachineFunction::dump() const { 561 print(dbgs()); 562 } 563 #endif 564 565 StringRef MachineFunction::getName() const { 566 return getFunction().getName(); 567 } 568 569 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 570 OS << "# Machine code for function " << getName() << ": "; 571 getProperties().print(OS); 572 OS << '\n'; 573 574 // Print Frame Information 575 FrameInfo->print(*this, OS); 576 577 // Print JumpTable Information 578 if (JumpTableInfo) 579 JumpTableInfo->print(OS); 580 581 // Print Constant Pool 582 ConstantPool->print(OS); 583 584 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 585 586 if (RegInfo && !RegInfo->livein_empty()) { 587 OS << "Function Live Ins: "; 588 for (MachineRegisterInfo::livein_iterator 589 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 590 OS << printReg(I->first, TRI); 591 if (I->second) 592 OS << " in " << printReg(I->second, TRI); 593 if (std::next(I) != E) 594 OS << ", "; 595 } 596 OS << '\n'; 597 } 598 599 ModuleSlotTracker MST(getFunction().getParent()); 600 MST.incorporateFunction(getFunction()); 601 for (const auto &BB : *this) { 602 OS << '\n'; 603 // If we print the whole function, print it at its most verbose level. 604 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 605 } 606 607 OS << "\n# End machine code for function " << getName() << ".\n\n"; 608 } 609 610 /// True if this function needs frame moves for debug or exceptions. 611 bool MachineFunction::needsFrameMoves() const { 612 return getMMI().hasDebugInfo() || 613 getTarget().Options.ForceDwarfFrameSection || 614 F.needsUnwindTableEntry(); 615 } 616 617 namespace llvm { 618 619 template<> 620 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 621 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 622 623 static std::string getGraphName(const MachineFunction *F) { 624 return ("CFG for '" + F->getName() + "' function").str(); 625 } 626 627 std::string getNodeLabel(const MachineBasicBlock *Node, 628 const MachineFunction *Graph) { 629 std::string OutStr; 630 { 631 raw_string_ostream OSS(OutStr); 632 633 if (isSimple()) { 634 OSS << printMBBReference(*Node); 635 if (const BasicBlock *BB = Node->getBasicBlock()) 636 OSS << ": " << BB->getName(); 637 } else 638 Node->print(OSS); 639 } 640 641 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 642 643 // Process string output to make it nicer... 644 for (unsigned i = 0; i != OutStr.length(); ++i) 645 if (OutStr[i] == '\n') { // Left justify 646 OutStr[i] = '\\'; 647 OutStr.insert(OutStr.begin()+i+1, 'l'); 648 } 649 return OutStr; 650 } 651 }; 652 653 } // end namespace llvm 654 655 void MachineFunction::viewCFG() const 656 { 657 #ifndef NDEBUG 658 ViewGraph(this, "mf" + getName()); 659 #else 660 errs() << "MachineFunction::viewCFG is only available in debug builds on " 661 << "systems with Graphviz or gv!\n"; 662 #endif // NDEBUG 663 } 664 665 void MachineFunction::viewCFGOnly() const 666 { 667 #ifndef NDEBUG 668 ViewGraph(this, "mf" + getName(), true); 669 #else 670 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 671 << "systems with Graphviz or gv!\n"; 672 #endif // NDEBUG 673 } 674 675 /// Add the specified physical register as a live-in value and 676 /// create a corresponding virtual register for it. 677 Register MachineFunction::addLiveIn(MCRegister PReg, 678 const TargetRegisterClass *RC) { 679 MachineRegisterInfo &MRI = getRegInfo(); 680 Register VReg = MRI.getLiveInVirtReg(PReg); 681 if (VReg) { 682 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 683 (void)VRegRC; 684 // A physical register can be added several times. 685 // Between two calls, the register class of the related virtual register 686 // may have been constrained to match some operation constraints. 687 // In that case, check that the current register class includes the 688 // physical register and is a sub class of the specified RC. 689 assert((VRegRC == RC || (VRegRC->contains(PReg) && 690 RC->hasSubClassEq(VRegRC))) && 691 "Register class mismatch!"); 692 return VReg; 693 } 694 VReg = MRI.createVirtualRegister(RC); 695 MRI.addLiveIn(PReg, VReg); 696 return VReg; 697 } 698 699 /// Return the MCSymbol for the specified non-empty jump table. 700 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 701 /// normal 'L' label is returned. 702 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 703 bool isLinkerPrivate) const { 704 const DataLayout &DL = getDataLayout(); 705 assert(JumpTableInfo && "No jump tables"); 706 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 707 708 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 709 : DL.getPrivateGlobalPrefix(); 710 SmallString<60> Name; 711 raw_svector_ostream(Name) 712 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 713 return Ctx.getOrCreateSymbol(Name); 714 } 715 716 /// Return a function-local symbol to represent the PIC base. 717 MCSymbol *MachineFunction::getPICBaseSymbol() const { 718 const DataLayout &DL = getDataLayout(); 719 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 720 Twine(getFunctionNumber()) + "$pb"); 721 } 722 723 /// \name Exception Handling 724 /// \{ 725 726 LandingPadInfo & 727 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 728 unsigned N = LandingPads.size(); 729 for (unsigned i = 0; i < N; ++i) { 730 LandingPadInfo &LP = LandingPads[i]; 731 if (LP.LandingPadBlock == LandingPad) 732 return LP; 733 } 734 735 LandingPads.push_back(LandingPadInfo(LandingPad)); 736 return LandingPads[N]; 737 } 738 739 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 740 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 741 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 742 LP.BeginLabels.push_back(BeginLabel); 743 LP.EndLabels.push_back(EndLabel); 744 } 745 746 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 747 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 748 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 749 LP.LandingPadLabel = LandingPadLabel; 750 751 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 752 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 753 if (const auto *PF = 754 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 755 getMMI().addPersonality(PF); 756 757 if (LPI->isCleanup()) 758 addCleanup(LandingPad); 759 760 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 761 // correct, but we need to do it this way because of how the DWARF EH 762 // emitter processes the clauses. 763 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 764 Value *Val = LPI->getClause(I - 1); 765 if (LPI->isCatch(I - 1)) { 766 addCatchTypeInfo(LandingPad, 767 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 768 } else { 769 // Add filters in a list. 770 auto *CVal = cast<Constant>(Val); 771 SmallVector<const GlobalValue *, 4> FilterList; 772 for (const Use &U : CVal->operands()) 773 FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts())); 774 775 addFilterTypeInfo(LandingPad, FilterList); 776 } 777 } 778 779 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 780 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 781 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 782 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 783 } 784 785 } else { 786 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 787 } 788 789 return LandingPadLabel; 790 } 791 792 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 793 ArrayRef<const GlobalValue *> TyInfo) { 794 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 795 for (const GlobalValue *GV : llvm::reverse(TyInfo)) 796 LP.TypeIds.push_back(getTypeIDFor(GV)); 797 } 798 799 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 800 ArrayRef<const GlobalValue *> TyInfo) { 801 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 802 std::vector<unsigned> IdsInFilter(TyInfo.size()); 803 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 804 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 805 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 806 } 807 808 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 809 bool TidyIfNoBeginLabels) { 810 for (unsigned i = 0; i != LandingPads.size(); ) { 811 LandingPadInfo &LandingPad = LandingPads[i]; 812 if (LandingPad.LandingPadLabel && 813 !LandingPad.LandingPadLabel->isDefined() && 814 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 815 LandingPad.LandingPadLabel = nullptr; 816 817 // Special case: we *should* emit LPs with null LP MBB. This indicates 818 // "nounwind" case. 819 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 820 LandingPads.erase(LandingPads.begin() + i); 821 continue; 822 } 823 824 if (TidyIfNoBeginLabels) { 825 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 826 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 827 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 828 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 829 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 830 continue; 831 832 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 833 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 834 --j; 835 --e; 836 } 837 838 // Remove landing pads with no try-ranges. 839 if (LandingPads[i].BeginLabels.empty()) { 840 LandingPads.erase(LandingPads.begin() + i); 841 continue; 842 } 843 } 844 845 // If there is no landing pad, ensure that the list of typeids is empty. 846 // If the only typeid is a cleanup, this is the same as having no typeids. 847 if (!LandingPad.LandingPadBlock || 848 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 849 LandingPad.TypeIds.clear(); 850 ++i; 851 } 852 } 853 854 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 855 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 856 LP.TypeIds.push_back(0); 857 } 858 859 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 860 ArrayRef<unsigned> Sites) { 861 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 862 } 863 864 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 865 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 866 if (TypeInfos[i] == TI) return i + 1; 867 868 TypeInfos.push_back(TI); 869 return TypeInfos.size(); 870 } 871 872 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 873 // If the new filter coincides with the tail of an existing filter, then 874 // re-use the existing filter. Folding filters more than this requires 875 // re-ordering filters and/or their elements - probably not worth it. 876 for (unsigned i : FilterEnds) { 877 unsigned j = TyIds.size(); 878 879 while (i && j) 880 if (FilterIds[--i] != TyIds[--j]) 881 goto try_next; 882 883 if (!j) 884 // The new filter coincides with range [i, end) of the existing filter. 885 return -(1 + i); 886 887 try_next:; 888 } 889 890 // Add the new filter. 891 int FilterID = -(1 + FilterIds.size()); 892 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 893 llvm::append_range(FilterIds, TyIds); 894 FilterEnds.push_back(FilterIds.size()); 895 FilterIds.push_back(0); // terminator 896 return FilterID; 897 } 898 899 MachineFunction::CallSiteInfoMap::iterator 900 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 901 assert(MI->isCandidateForCallSiteEntry() && 902 "Call site info refers only to call (MI) candidates"); 903 904 if (!Target.Options.EmitCallSiteInfo) 905 return CallSitesInfo.end(); 906 return CallSitesInfo.find(MI); 907 } 908 909 /// Return the call machine instruction or find a call within bundle. 910 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 911 if (!MI->isBundle()) 912 return MI; 913 914 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 915 getBundleEnd(MI->getIterator()))) 916 if (BMI.isCandidateForCallSiteEntry()) 917 return &BMI; 918 919 llvm_unreachable("Unexpected bundle without a call site candidate"); 920 } 921 922 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 923 assert(MI->shouldUpdateCallSiteInfo() && 924 "Call site info refers only to call (MI) candidates or " 925 "candidates inside bundles"); 926 927 const MachineInstr *CallMI = getCallInstr(MI); 928 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 929 if (CSIt == CallSitesInfo.end()) 930 return; 931 CallSitesInfo.erase(CSIt); 932 } 933 934 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 935 const MachineInstr *New) { 936 assert(Old->shouldUpdateCallSiteInfo() && 937 "Call site info refers only to call (MI) candidates or " 938 "candidates inside bundles"); 939 940 if (!New->isCandidateForCallSiteEntry()) 941 return eraseCallSiteInfo(Old); 942 943 const MachineInstr *OldCallMI = getCallInstr(Old); 944 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 945 if (CSIt == CallSitesInfo.end()) 946 return; 947 948 CallSiteInfo CSInfo = CSIt->second; 949 CallSitesInfo[New] = CSInfo; 950 } 951 952 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 953 const MachineInstr *New) { 954 assert(Old->shouldUpdateCallSiteInfo() && 955 "Call site info refers only to call (MI) candidates or " 956 "candidates inside bundles"); 957 958 if (!New->isCandidateForCallSiteEntry()) 959 return eraseCallSiteInfo(Old); 960 961 const MachineInstr *OldCallMI = getCallInstr(Old); 962 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 963 if (CSIt == CallSitesInfo.end()) 964 return; 965 966 CallSiteInfo CSInfo = std::move(CSIt->second); 967 CallSitesInfo.erase(CSIt); 968 CallSitesInfo[New] = CSInfo; 969 } 970 971 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 972 DebugInstrNumberingCount = Num; 973 } 974 975 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 976 DebugInstrOperandPair B, 977 unsigned Subreg) { 978 // Catch any accidental self-loops. 979 assert(A.first != B.first); 980 // Don't allow any substitutions _from_ the memory operand number. 981 assert(A.second != DebugOperandMemNumber); 982 983 DebugValueSubstitutions.push_back({A, B, Subreg}); 984 } 985 986 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 987 MachineInstr &New, 988 unsigned MaxOperand) { 989 // If the Old instruction wasn't tracked at all, there is no work to do. 990 unsigned OldInstrNum = Old.peekDebugInstrNum(); 991 if (!OldInstrNum) 992 return; 993 994 // Iterate over all operands looking for defs to create substitutions for. 995 // Avoid creating new instr numbers unless we create a new substitution. 996 // While this has no functional effect, it risks confusing someone reading 997 // MIR output. 998 // Examine all the operands, or the first N specified by the caller. 999 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 1000 for (unsigned int I = 0; I < MaxOperand; ++I) { 1001 const auto &OldMO = Old.getOperand(I); 1002 auto &NewMO = New.getOperand(I); 1003 (void)NewMO; 1004 1005 if (!OldMO.isReg() || !OldMO.isDef()) 1006 continue; 1007 assert(NewMO.isDef()); 1008 1009 unsigned NewInstrNum = New.getDebugInstrNum(); 1010 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 1011 std::make_pair(NewInstrNum, I)); 1012 } 1013 } 1014 1015 auto MachineFunction::salvageCopySSA( 1016 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 1017 -> DebugInstrOperandPair { 1018 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1019 1020 // Check whether this copy-like instruction has already been salvaged into 1021 // an operand pair. 1022 Register Dest; 1023 if (auto CopyDstSrc = TII.isCopyInstr(MI)) { 1024 Dest = CopyDstSrc->Destination->getReg(); 1025 } else { 1026 assert(MI.isSubregToReg()); 1027 Dest = MI.getOperand(0).getReg(); 1028 } 1029 1030 auto CacheIt = DbgPHICache.find(Dest); 1031 if (CacheIt != DbgPHICache.end()) 1032 return CacheIt->second; 1033 1034 // Calculate the instruction number to use, or install a DBG_PHI. 1035 auto OperandPair = salvageCopySSAImpl(MI); 1036 DbgPHICache.insert({Dest, OperandPair}); 1037 return OperandPair; 1038 } 1039 1040 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 1041 -> DebugInstrOperandPair { 1042 MachineRegisterInfo &MRI = getRegInfo(); 1043 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1044 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1045 1046 // Chase the value read by a copy-like instruction back to the instruction 1047 // that ultimately _defines_ that value. This may pass: 1048 // * Through multiple intermediate copies, including subregister moves / 1049 // copies, 1050 // * Copies from physical registers that must then be traced back to the 1051 // defining instruction, 1052 // * Or, physical registers may be live-in to (only) the entry block, which 1053 // requires a DBG_PHI to be created. 1054 // We can pursue this problem in that order: trace back through copies, 1055 // optionally through a physical register, to a defining instruction. We 1056 // should never move from physreg to vreg. As we're still in SSA form, no need 1057 // to worry about partial definitions of registers. 1058 1059 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1060 // returns the register read and any subregister identifying which part is 1061 // read. 1062 auto GetRegAndSubreg = 1063 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1064 Register NewReg, OldReg; 1065 unsigned SubReg; 1066 if (Cpy.isCopy()) { 1067 OldReg = Cpy.getOperand(0).getReg(); 1068 NewReg = Cpy.getOperand(1).getReg(); 1069 SubReg = Cpy.getOperand(1).getSubReg(); 1070 } else if (Cpy.isSubregToReg()) { 1071 OldReg = Cpy.getOperand(0).getReg(); 1072 NewReg = Cpy.getOperand(2).getReg(); 1073 SubReg = Cpy.getOperand(3).getImm(); 1074 } else { 1075 auto CopyDetails = *TII.isCopyInstr(Cpy); 1076 const MachineOperand &Src = *CopyDetails.Source; 1077 const MachineOperand &Dest = *CopyDetails.Destination; 1078 OldReg = Dest.getReg(); 1079 NewReg = Src.getReg(); 1080 SubReg = Src.getSubReg(); 1081 } 1082 1083 return {NewReg, SubReg}; 1084 }; 1085 1086 // First seek either the defining instruction, or a copy from a physreg. 1087 // During search, the current state is the current copy instruction, and which 1088 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1089 // deal with those later. 1090 auto State = GetRegAndSubreg(MI); 1091 auto CurInst = MI.getIterator(); 1092 SmallVector<unsigned, 4> SubregsSeen; 1093 while (true) { 1094 // If we've found a copy from a physreg, first portion of search is over. 1095 if (!State.first.isVirtual()) 1096 break; 1097 1098 // Record any subregister qualifier. 1099 if (State.second) 1100 SubregsSeen.push_back(State.second); 1101 1102 assert(MRI.hasOneDef(State.first)); 1103 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1104 CurInst = Inst.getIterator(); 1105 1106 // Any non-copy instruction is the defining instruction we're seeking. 1107 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1108 break; 1109 State = GetRegAndSubreg(Inst); 1110 }; 1111 1112 // Helper lambda to apply additional subregister substitutions to a known 1113 // instruction/operand pair. Adds new (fake) substitutions so that we can 1114 // record the subregister. FIXME: this isn't very space efficient if multiple 1115 // values are tracked back through the same copies; cache something later. 1116 auto ApplySubregisters = 1117 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1118 for (unsigned Subreg : reverse(SubregsSeen)) { 1119 // Fetch a new instruction number, not attached to an actual instruction. 1120 unsigned NewInstrNumber = getNewDebugInstrNum(); 1121 // Add a substitution from the "new" number to the known one, with a 1122 // qualifying subreg. 1123 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1124 // Return the new number; to find the underlying value, consumers need to 1125 // deal with the qualifying subreg. 1126 P = {NewInstrNumber, 0}; 1127 } 1128 return P; 1129 }; 1130 1131 // If we managed to find the defining instruction after COPYs, return an 1132 // instruction / operand pair after adding subregister qualifiers. 1133 if (State.first.isVirtual()) { 1134 // Virtual register def -- we can just look up where this happens. 1135 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1136 for (auto &MO : Inst->operands()) { 1137 if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) 1138 continue; 1139 return ApplySubregisters( 1140 {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); 1141 } 1142 1143 llvm_unreachable("Vreg def with no corresponding operand?"); 1144 } 1145 1146 // Our search ended in a copy from a physreg: walk back up the function 1147 // looking for whatever defines the physreg. 1148 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1149 State = GetRegAndSubreg(*CurInst); 1150 Register RegToSeek = State.first; 1151 1152 auto RMII = CurInst->getReverseIterator(); 1153 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1154 for (auto &ToExamine : PrevInstrs) { 1155 for (auto &MO : ToExamine.operands()) { 1156 // Test for operand that defines something aliasing RegToSeek. 1157 if (!MO.isReg() || !MO.isDef() || 1158 !TRI.regsOverlap(RegToSeek, MO.getReg())) 1159 continue; 1160 1161 return ApplySubregisters( 1162 {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); 1163 } 1164 } 1165 1166 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1167 1168 // We reached the start of the block before finding a defining instruction. 1169 // There are numerous scenarios where this can happen: 1170 // * Constant physical registers, 1171 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1172 // * Arguments in the entry block, 1173 // * Exception handling landing pads. 1174 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1175 // the variable value at this position, rather than checking it makes sense. 1176 1177 // Create DBG_PHI for specified physreg. 1178 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1179 TII.get(TargetOpcode::DBG_PHI)); 1180 Builder.addReg(State.first); 1181 unsigned NewNum = getNewDebugInstrNum(); 1182 Builder.addImm(NewNum); 1183 return ApplySubregisters({NewNum, 0u}); 1184 } 1185 1186 void MachineFunction::finalizeDebugInstrRefs() { 1187 auto *TII = getSubtarget().getInstrInfo(); 1188 1189 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1190 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE); 1191 MI.setDesc(RefII); 1192 MI.getOperand(0).setReg(0); 1193 MI.getOperand(1).ChangeToRegister(0, false); 1194 }; 1195 1196 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1197 for (auto &MBB : *this) { 1198 for (auto &MI : MBB) { 1199 if (!MI.isDebugRef() || !MI.getOperand(0).isReg()) 1200 continue; 1201 1202 Register Reg = MI.getOperand(0).getReg(); 1203 1204 // Some vregs can be deleted as redundant in the meantime. Mark those 1205 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1206 // quickly deleted, leaving dangling references to vregs with no def. 1207 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1208 MakeUndefDbgValue(MI); 1209 continue; 1210 } 1211 1212 assert(Reg.isVirtual()); 1213 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1214 1215 // If we've found a copy-like instruction, follow it back to the 1216 // instruction that defines the source value, see salvageCopySSA docs 1217 // for why this is important. 1218 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1219 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1220 MI.getOperand(0).ChangeToImmediate(Result.first); 1221 MI.getOperand(1).setImm(Result.second); 1222 } else { 1223 // Otherwise, identify the operand number that the VReg refers to. 1224 unsigned OperandIdx = 0; 1225 for (const auto &MO : DefMI.operands()) { 1226 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 1227 break; 1228 ++OperandIdx; 1229 } 1230 assert(OperandIdx < DefMI.getNumOperands()); 1231 1232 // Morph this instr ref to point at the given instruction and operand. 1233 unsigned ID = DefMI.getDebugInstrNum(); 1234 MI.getOperand(0).ChangeToImmediate(ID); 1235 MI.getOperand(1).setImm(OperandIdx); 1236 } 1237 } 1238 } 1239 } 1240 1241 bool MachineFunction::useDebugInstrRef() const { 1242 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1243 // have optimized code inlined into this unoptimized code, however with 1244 // fewer and less aggressive optimizations happening, coverage and accuracy 1245 // should not suffer. 1246 if (getTarget().getOptLevel() == CodeGenOpt::None) 1247 return false; 1248 1249 // Don't use instr-ref if this function is marked optnone. 1250 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1251 return false; 1252 1253 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1254 return true; 1255 1256 return false; 1257 } 1258 1259 // Use one million as a high / reserved number. 1260 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1261 1262 /// \} 1263 1264 //===----------------------------------------------------------------------===// 1265 // MachineJumpTableInfo implementation 1266 //===----------------------------------------------------------------------===// 1267 1268 /// Return the size of each entry in the jump table. 1269 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1270 // The size of a jump table entry is 4 bytes unless the entry is just the 1271 // address of a block, in which case it is the pointer size. 1272 switch (getEntryKind()) { 1273 case MachineJumpTableInfo::EK_BlockAddress: 1274 return TD.getPointerSize(); 1275 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1276 return 8; 1277 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1278 case MachineJumpTableInfo::EK_LabelDifference32: 1279 case MachineJumpTableInfo::EK_Custom32: 1280 return 4; 1281 case MachineJumpTableInfo::EK_Inline: 1282 return 0; 1283 } 1284 llvm_unreachable("Unknown jump table encoding!"); 1285 } 1286 1287 /// Return the alignment of each entry in the jump table. 1288 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1289 // The alignment of a jump table entry is the alignment of int32 unless the 1290 // entry is just the address of a block, in which case it is the pointer 1291 // alignment. 1292 switch (getEntryKind()) { 1293 case MachineJumpTableInfo::EK_BlockAddress: 1294 return TD.getPointerABIAlignment(0).value(); 1295 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1296 return TD.getABIIntegerTypeAlignment(64).value(); 1297 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1298 case MachineJumpTableInfo::EK_LabelDifference32: 1299 case MachineJumpTableInfo::EK_Custom32: 1300 return TD.getABIIntegerTypeAlignment(32).value(); 1301 case MachineJumpTableInfo::EK_Inline: 1302 return 1; 1303 } 1304 llvm_unreachable("Unknown jump table encoding!"); 1305 } 1306 1307 /// Create a new jump table entry in the jump table info. 1308 unsigned MachineJumpTableInfo::createJumpTableIndex( 1309 const std::vector<MachineBasicBlock*> &DestBBs) { 1310 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1311 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1312 return JumpTables.size()-1; 1313 } 1314 1315 /// If Old is the target of any jump tables, update the jump tables to branch 1316 /// to New instead. 1317 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1318 MachineBasicBlock *New) { 1319 assert(Old != New && "Not making a change?"); 1320 bool MadeChange = false; 1321 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1322 ReplaceMBBInJumpTable(i, Old, New); 1323 return MadeChange; 1324 } 1325 1326 /// If MBB is present in any jump tables, remove it. 1327 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1328 bool MadeChange = false; 1329 for (MachineJumpTableEntry &JTE : JumpTables) { 1330 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1331 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1332 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1333 } 1334 return MadeChange; 1335 } 1336 1337 /// If Old is a target of the jump tables, update the jump table to branch to 1338 /// New instead. 1339 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1340 MachineBasicBlock *Old, 1341 MachineBasicBlock *New) { 1342 assert(Old != New && "Not making a change?"); 1343 bool MadeChange = false; 1344 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1345 for (MachineBasicBlock *&MBB : JTE.MBBs) 1346 if (MBB == Old) { 1347 MBB = New; 1348 MadeChange = true; 1349 } 1350 return MadeChange; 1351 } 1352 1353 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1354 if (JumpTables.empty()) return; 1355 1356 OS << "Jump Tables:\n"; 1357 1358 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1359 OS << printJumpTableEntryReference(i) << ':'; 1360 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1361 OS << ' ' << printMBBReference(*MBB); 1362 if (i != e) 1363 OS << '\n'; 1364 } 1365 1366 OS << '\n'; 1367 } 1368 1369 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1370 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1371 #endif 1372 1373 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1374 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1375 } 1376 1377 //===----------------------------------------------------------------------===// 1378 // MachineConstantPool implementation 1379 //===----------------------------------------------------------------------===// 1380 1381 void MachineConstantPoolValue::anchor() {} 1382 1383 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1384 return DL.getTypeAllocSize(Ty); 1385 } 1386 1387 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1388 if (isMachineConstantPoolEntry()) 1389 return Val.MachineCPVal->getSizeInBytes(DL); 1390 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1391 } 1392 1393 bool MachineConstantPoolEntry::needsRelocation() const { 1394 if (isMachineConstantPoolEntry()) 1395 return true; 1396 return Val.ConstVal->needsDynamicRelocation(); 1397 } 1398 1399 SectionKind 1400 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1401 if (needsRelocation()) 1402 return SectionKind::getReadOnlyWithRel(); 1403 switch (getSizeInBytes(*DL)) { 1404 case 4: 1405 return SectionKind::getMergeableConst4(); 1406 case 8: 1407 return SectionKind::getMergeableConst8(); 1408 case 16: 1409 return SectionKind::getMergeableConst16(); 1410 case 32: 1411 return SectionKind::getMergeableConst32(); 1412 default: 1413 return SectionKind::getReadOnly(); 1414 } 1415 } 1416 1417 MachineConstantPool::~MachineConstantPool() { 1418 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1419 // so keep track of which we've deleted to avoid double deletions. 1420 DenseSet<MachineConstantPoolValue*> Deleted; 1421 for (const MachineConstantPoolEntry &C : Constants) 1422 if (C.isMachineConstantPoolEntry()) { 1423 Deleted.insert(C.Val.MachineCPVal); 1424 delete C.Val.MachineCPVal; 1425 } 1426 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1427 if (Deleted.count(CPV) == 0) 1428 delete CPV; 1429 } 1430 } 1431 1432 /// Test whether the given two constants can be allocated the same constant pool 1433 /// entry. 1434 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1435 const DataLayout &DL) { 1436 // Handle the trivial case quickly. 1437 if (A == B) return true; 1438 1439 // If they have the same type but weren't the same constant, quickly 1440 // reject them. 1441 if (A->getType() == B->getType()) return false; 1442 1443 // We can't handle structs or arrays. 1444 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1445 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1446 return false; 1447 1448 // For now, only support constants with the same size. 1449 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1450 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1451 return false; 1452 1453 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1454 1455 // Try constant folding a bitcast of both instructions to an integer. If we 1456 // get two identical ConstantInt's, then we are good to share them. We use 1457 // the constant folding APIs to do this so that we get the benefit of 1458 // DataLayout. 1459 if (isa<PointerType>(A->getType())) 1460 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1461 const_cast<Constant *>(A), IntTy, DL); 1462 else if (A->getType() != IntTy) 1463 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1464 IntTy, DL); 1465 if (isa<PointerType>(B->getType())) 1466 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1467 const_cast<Constant *>(B), IntTy, DL); 1468 else if (B->getType() != IntTy) 1469 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1470 IntTy, DL); 1471 1472 return A == B; 1473 } 1474 1475 /// Create a new entry in the constant pool or return an existing one. 1476 /// User must specify the log2 of the minimum required alignment for the object. 1477 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1478 Align Alignment) { 1479 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1480 1481 // Check to see if we already have this constant. 1482 // 1483 // FIXME, this could be made much more efficient for large constant pools. 1484 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1485 if (!Constants[i].isMachineConstantPoolEntry() && 1486 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1487 if (Constants[i].getAlign() < Alignment) 1488 Constants[i].Alignment = Alignment; 1489 return i; 1490 } 1491 1492 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1493 return Constants.size()-1; 1494 } 1495 1496 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1497 Align Alignment) { 1498 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1499 1500 // Check to see if we already have this constant. 1501 // 1502 // FIXME, this could be made much more efficient for large constant pools. 1503 int Idx = V->getExistingMachineCPValue(this, Alignment); 1504 if (Idx != -1) { 1505 MachineCPVsSharingEntries.insert(V); 1506 return (unsigned)Idx; 1507 } 1508 1509 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1510 return Constants.size()-1; 1511 } 1512 1513 void MachineConstantPool::print(raw_ostream &OS) const { 1514 if (Constants.empty()) return; 1515 1516 OS << "Constant Pool:\n"; 1517 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1518 OS << " cp#" << i << ": "; 1519 if (Constants[i].isMachineConstantPoolEntry()) 1520 Constants[i].Val.MachineCPVal->print(OS); 1521 else 1522 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1523 OS << ", align=" << Constants[i].getAlign().value(); 1524 OS << "\n"; 1525 } 1526 } 1527 1528 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1529 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1530 #endif 1531