xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineDominators.cpp (revision 3d265fce43746c293ae826e9603adbfe09f93cf6)
1 //===- MachineDominators.cpp - Machine Dominator Calculation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements simple dominator construction algorithms for finding
10 // forward dominators on machine functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineDominators.h"
15 #include "llvm/ADT/SmallBitVector.h"
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/InitializePasses.h"
18 #include "llvm/Support/CommandLine.h"
19 
20 using namespace llvm;
21 
22 namespace llvm {
23 // Always verify dominfo if expensive checking is enabled.
24 #ifdef EXPENSIVE_CHECKS
25 bool VerifyMachineDomInfo = true;
26 #else
27 bool VerifyMachineDomInfo = false;
28 #endif
29 } // namespace llvm
30 
31 static cl::opt<bool, true> VerifyMachineDomInfoX(
32     "verify-machine-dom-info", cl::location(VerifyMachineDomInfo), cl::Hidden,
33     cl::desc("Verify machine dominator info (time consuming)"));
34 
35 namespace llvm {
36 template class DomTreeNodeBase<MachineBasicBlock>;
37 template class DominatorTreeBase<MachineBasicBlock, false>; // DomTreeBase
38 }
39 
40 char MachineDominatorTree::ID = 0;
41 
42 INITIALIZE_PASS(MachineDominatorTree, "machinedomtree",
43                 "MachineDominator Tree Construction", true, true)
44 
45 char &llvm::MachineDominatorsID = MachineDominatorTree::ID;
46 
47 void MachineDominatorTree::getAnalysisUsage(AnalysisUsage &AU) const {
48   AU.setPreservesAll();
49   MachineFunctionPass::getAnalysisUsage(AU);
50 }
51 
52 bool MachineDominatorTree::runOnMachineFunction(MachineFunction &F) {
53   calculate(F);
54   return false;
55 }
56 
57 void MachineDominatorTree::calculate(MachineFunction &F) {
58   CriticalEdgesToSplit.clear();
59   NewBBs.clear();
60   DT.reset(new DomTreeBase<MachineBasicBlock>());
61   DT->recalculate(F);
62 }
63 
64 MachineDominatorTree::MachineDominatorTree()
65     : MachineFunctionPass(ID) {
66   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
67 }
68 
69 void MachineDominatorTree::releaseMemory() {
70   CriticalEdgesToSplit.clear();
71   DT.reset(nullptr);
72 }
73 
74 void MachineDominatorTree::verifyAnalysis() const {
75   if (DT && VerifyMachineDomInfo)
76     if (!DT->verify(DomTreeT::VerificationLevel::Basic)) {
77       errs() << "MachineDominatorTree verification failed\n";
78       abort();
79     }
80 }
81 
82 void MachineDominatorTree::print(raw_ostream &OS, const Module*) const {
83   if (DT)
84     DT->print(OS);
85 }
86 
87 void MachineDominatorTree::applySplitCriticalEdges() const {
88   // Bail out early if there is nothing to do.
89   if (CriticalEdgesToSplit.empty())
90     return;
91 
92   // For each element in CriticalEdgesToSplit, remember whether or not element
93   // is the new immediate domminator of its successor. The mapping is done by
94   // index, i.e., the information for the ith element of CriticalEdgesToSplit is
95   // the ith element of IsNewIDom.
96   SmallBitVector IsNewIDom(CriticalEdgesToSplit.size(), true);
97   size_t Idx = 0;
98 
99   // Collect all the dominance properties info, before invalidating
100   // the underlying DT.
101   for (CriticalEdge &Edge : CriticalEdgesToSplit) {
102     // Update dominator information.
103     MachineBasicBlock *Succ = Edge.ToBB;
104     MachineDomTreeNode *SuccDTNode = DT->getNode(Succ);
105 
106     for (MachineBasicBlock *PredBB : Succ->predecessors()) {
107       if (PredBB == Edge.NewBB)
108         continue;
109       // If we are in this situation:
110       // FromBB1        FromBB2
111       //    +              +
112       //   + +            + +
113       //  +   +          +   +
114       // ...  Split1  Split2 ...
115       //           +   +
116       //            + +
117       //             +
118       //            Succ
119       // Instead of checking the domiance property with Split2, we check it with
120       // FromBB2 since Split2 is still unknown of the underlying DT structure.
121       if (NewBBs.count(PredBB)) {
122         assert(PredBB->pred_size() == 1 && "A basic block resulting from a "
123                                            "critical edge split has more "
124                                            "than one predecessor!");
125         PredBB = *PredBB->pred_begin();
126       }
127       if (!DT->dominates(SuccDTNode, DT->getNode(PredBB))) {
128         IsNewIDom[Idx] = false;
129         break;
130       }
131     }
132     ++Idx;
133   }
134 
135   // Now, update DT with the collected dominance properties info.
136   Idx = 0;
137   for (CriticalEdge &Edge : CriticalEdgesToSplit) {
138     // We know FromBB dominates NewBB.
139     MachineDomTreeNode *NewDTNode = DT->addNewBlock(Edge.NewBB, Edge.FromBB);
140 
141     // If all the other predecessors of "Succ" are dominated by "Succ" itself
142     // then the new block is the new immediate dominator of "Succ". Otherwise,
143     // the new block doesn't dominate anything.
144     if (IsNewIDom[Idx])
145       DT->changeImmediateDominator(DT->getNode(Edge.ToBB), NewDTNode);
146     ++Idx;
147   }
148   NewBBs.clear();
149   CriticalEdgesToSplit.clear();
150 }
151