xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The machine combiner pass uses machine trace metrics to ensure the combined
10 // instructions do not lengthen the critical path or the resource depth.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ProfileSummaryInfo.h"
16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
17 #include "llvm/CodeGen/MachineCombinerPattern.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/MachineSizeOpts.h"
24 #include "llvm/CodeGen/MachineTraceMetrics.h"
25 #include "llvm/CodeGen/RegisterClassInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSchedule.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "machine-combiner"
38 
39 STATISTIC(NumInstCombined, "Number of machineinst combined");
40 
41 static cl::opt<unsigned>
42 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
43               cl::desc("Incremental depth computation will be used for basic "
44                        "blocks with more instructions."), cl::init(500));
45 
46 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
47                                 cl::desc("Dump all substituted intrs"),
48                                 cl::init(false));
49 
50 #ifdef EXPENSIVE_CHECKS
51 static cl::opt<bool> VerifyPatternOrder(
52     "machine-combiner-verify-pattern-order", cl::Hidden,
53     cl::desc(
54         "Verify that the generated patterns are ordered by increasing latency"),
55     cl::init(true));
56 #else
57 static cl::opt<bool> VerifyPatternOrder(
58     "machine-combiner-verify-pattern-order", cl::Hidden,
59     cl::desc(
60         "Verify that the generated patterns are ordered by increasing latency"),
61     cl::init(false));
62 #endif
63 
64 namespace {
65 class MachineCombiner : public MachineFunctionPass {
66   const TargetSubtargetInfo *STI = nullptr;
67   const TargetInstrInfo *TII = nullptr;
68   const TargetRegisterInfo *TRI = nullptr;
69   MCSchedModel SchedModel;
70   MachineRegisterInfo *MRI = nullptr;
71   MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo
72   MachineTraceMetrics *Traces = nullptr;
73   MachineTraceMetrics::Ensemble *TraceEnsemble = nullptr;
74   MachineBlockFrequencyInfo *MBFI = nullptr;
75   ProfileSummaryInfo *PSI = nullptr;
76   RegisterClassInfo RegClassInfo;
77 
78   TargetSchedModel TSchedModel;
79 
80   /// True if optimizing for code size.
81   bool OptSize = false;
82 
83 public:
84   static char ID;
85   MachineCombiner() : MachineFunctionPass(ID) {
86     initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
87   }
88   void getAnalysisUsage(AnalysisUsage &AU) const override;
89   bool runOnMachineFunction(MachineFunction &MF) override;
90   StringRef getPassName() const override { return "Machine InstCombiner"; }
91 
92 private:
93   bool combineInstructions(MachineBasicBlock *);
94   MachineInstr *getOperandDef(const MachineOperand &MO);
95   bool isTransientMI(const MachineInstr *MI);
96   unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
97                     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
98                     MachineTraceMetrics::Trace BlockTrace,
99                     const MachineBasicBlock &MBB);
100   unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
101                       MachineTraceMetrics::Trace BlockTrace);
102   bool improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
103                                MachineTraceMetrics::Trace BlockTrace,
104                                SmallVectorImpl<MachineInstr *> &InsInstrs,
105                                SmallVectorImpl<MachineInstr *> &DelInstrs,
106                                DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
107                                unsigned Pattern, bool SlackIsAccurate);
108   bool reduceRegisterPressure(MachineInstr &Root, MachineBasicBlock *MBB,
109                               SmallVectorImpl<MachineInstr *> &InsInstrs,
110                               SmallVectorImpl<MachineInstr *> &DelInstrs,
111                               unsigned Pattern);
112   bool preservesResourceLen(MachineBasicBlock *MBB,
113                             MachineTraceMetrics::Trace BlockTrace,
114                             SmallVectorImpl<MachineInstr *> &InsInstrs,
115                             SmallVectorImpl<MachineInstr *> &DelInstrs);
116   void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
117                      SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
118   std::pair<unsigned, unsigned>
119   getLatenciesForInstrSequences(MachineInstr &MI,
120                                 SmallVectorImpl<MachineInstr *> &InsInstrs,
121                                 SmallVectorImpl<MachineInstr *> &DelInstrs,
122                                 MachineTraceMetrics::Trace BlockTrace);
123 
124   void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
125                           SmallVector<unsigned, 16> &Patterns);
126   CombinerObjective getCombinerObjective(unsigned Pattern);
127 };
128 }
129 
130 char MachineCombiner::ID = 0;
131 char &llvm::MachineCombinerID = MachineCombiner::ID;
132 
133 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
134                       "Machine InstCombiner", false, false)
135 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
136 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
137 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
138                     false, false)
139 
140 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
141   AU.setPreservesCFG();
142   AU.addPreserved<MachineDominatorTreeWrapperPass>();
143   AU.addRequired<MachineLoopInfoWrapperPass>();
144   AU.addPreserved<MachineLoopInfoWrapperPass>();
145   AU.addRequired<MachineTraceMetrics>();
146   AU.addPreserved<MachineTraceMetrics>();
147   AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
148   AU.addRequired<ProfileSummaryInfoWrapperPass>();
149   MachineFunctionPass::getAnalysisUsage(AU);
150 }
151 
152 MachineInstr *
153 MachineCombiner::getOperandDef(const MachineOperand &MO) {
154   MachineInstr *DefInstr = nullptr;
155   // We need a virtual register definition.
156   if (MO.isReg() && MO.getReg().isVirtual())
157     DefInstr = MRI->getUniqueVRegDef(MO.getReg());
158   return DefInstr;
159 }
160 
161 /// Return true if MI is unlikely to generate an actual target instruction.
162 bool MachineCombiner::isTransientMI(const MachineInstr *MI) {
163   if (!MI->isCopy())
164     return MI->isTransient();
165 
166   // If MI is a COPY, check if its src and dst registers can be coalesced.
167   Register Dst = MI->getOperand(0).getReg();
168   Register Src = MI->getOperand(1).getReg();
169 
170   if (!MI->isFullCopy()) {
171     // If src RC contains super registers of dst RC, it can also be coalesced.
172     if (MI->getOperand(0).getSubReg() || Src.isPhysical() || Dst.isPhysical())
173       return false;
174 
175     auto SrcSub = MI->getOperand(1).getSubReg();
176     auto SrcRC = MRI->getRegClass(Src);
177     auto DstRC = MRI->getRegClass(Dst);
178     return TRI->getMatchingSuperRegClass(SrcRC, DstRC, SrcSub) != nullptr;
179   }
180 
181   if (Src.isPhysical() && Dst.isPhysical())
182     return Src == Dst;
183 
184   if (Src.isVirtual() && Dst.isVirtual()) {
185     auto SrcRC = MRI->getRegClass(Src);
186     auto DstRC = MRI->getRegClass(Dst);
187     return SrcRC->hasSuperClassEq(DstRC) || SrcRC->hasSubClassEq(DstRC);
188   }
189 
190   if (Src.isVirtual())
191     std::swap(Src, Dst);
192 
193   // Now Src is physical register, Dst is virtual register.
194   auto DstRC = MRI->getRegClass(Dst);
195   return DstRC->contains(Src);
196 }
197 
198 /// Computes depth of instructions in vector \InsInstr.
199 ///
200 /// \param InsInstrs is a vector of machine instructions
201 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
202 /// of defining machine instruction in \p InsInstrs
203 /// \param BlockTrace is a trace of machine instructions
204 ///
205 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
206 unsigned
207 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
208                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
209                           MachineTraceMetrics::Trace BlockTrace,
210                           const MachineBasicBlock &MBB) {
211   SmallVector<unsigned, 16> InstrDepth;
212   // For each instruction in the new sequence compute the depth based on the
213   // operands. Use the trace information when possible. For new operands which
214   // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
215   for (auto *InstrPtr : InsInstrs) { // for each Use
216     unsigned IDepth = 0;
217     for (const MachineOperand &MO : InstrPtr->all_uses()) {
218       // Check for virtual register operand.
219       if (!MO.getReg().isVirtual())
220         continue;
221       unsigned DepthOp = 0;
222       unsigned LatencyOp = 0;
223       DenseMap<unsigned, unsigned>::iterator II =
224           InstrIdxForVirtReg.find(MO.getReg());
225       if (II != InstrIdxForVirtReg.end()) {
226         // Operand is new virtual register not in trace
227         assert(II->second < InstrDepth.size() && "Bad Index");
228         MachineInstr *DefInstr = InsInstrs[II->second];
229         assert(DefInstr &&
230                "There must be a definition for a new virtual register");
231         DepthOp = InstrDepth[II->second];
232         int DefIdx =
233             DefInstr->findRegisterDefOperandIdx(MO.getReg(), /*TRI=*/nullptr);
234         int UseIdx =
235             InstrPtr->findRegisterUseOperandIdx(MO.getReg(), /*TRI=*/nullptr);
236         LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
237                                                       InstrPtr, UseIdx);
238       } else {
239         MachineInstr *DefInstr = getOperandDef(MO);
240         if (DefInstr && (TII->getMachineCombinerTraceStrategy() !=
241                              MachineTraceStrategy::TS_Local ||
242                          DefInstr->getParent() == &MBB)) {
243           DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
244           if (!isTransientMI(DefInstr))
245             LatencyOp = TSchedModel.computeOperandLatency(
246                 DefInstr,
247                 DefInstr->findRegisterDefOperandIdx(MO.getReg(),
248                                                     /*TRI=*/nullptr),
249                 InstrPtr,
250                 InstrPtr->findRegisterUseOperandIdx(MO.getReg(),
251                                                     /*TRI=*/nullptr));
252         }
253       }
254       IDepth = std::max(IDepth, DepthOp + LatencyOp);
255     }
256     InstrDepth.push_back(IDepth);
257   }
258   unsigned NewRootIdx = InsInstrs.size() - 1;
259   return InstrDepth[NewRootIdx];
260 }
261 
262 /// Computes instruction latency as max of latency of defined operands.
263 ///
264 /// \param Root is a machine instruction that could be replaced by NewRoot.
265 /// It is used to compute a more accurate latency information for NewRoot in
266 /// case there is a dependent instruction in the same trace (\p BlockTrace)
267 /// \param NewRoot is the instruction for which the latency is computed
268 /// \param BlockTrace is a trace of machine instructions
269 ///
270 /// \returns Latency of \p NewRoot
271 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
272                                      MachineTraceMetrics::Trace BlockTrace) {
273   // Check each definition in NewRoot and compute the latency
274   unsigned NewRootLatency = 0;
275 
276   for (const MachineOperand &MO : NewRoot->all_defs()) {
277     // Check for virtual register operand.
278     if (!MO.getReg().isVirtual())
279       continue;
280     // Get the first instruction that uses MO
281     MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
282     RI++;
283     if (RI == MRI->reg_end())
284       continue;
285     MachineInstr *UseMO = RI->getParent();
286     unsigned LatencyOp = 0;
287     if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
288       LatencyOp = TSchedModel.computeOperandLatency(
289           NewRoot,
290           NewRoot->findRegisterDefOperandIdx(MO.getReg(), /*TRI=*/nullptr),
291           UseMO,
292           UseMO->findRegisterUseOperandIdx(MO.getReg(), /*TRI=*/nullptr));
293     } else {
294       LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
295     }
296     NewRootLatency = std::max(NewRootLatency, LatencyOp);
297   }
298   return NewRootLatency;
299 }
300 
301 CombinerObjective MachineCombiner::getCombinerObjective(unsigned Pattern) {
302   // TODO: If C++ ever gets a real enum class, make this part of the
303   // MachineCombinerPattern class.
304   switch (Pattern) {
305   case MachineCombinerPattern::REASSOC_AX_BY:
306   case MachineCombinerPattern::REASSOC_AX_YB:
307   case MachineCombinerPattern::REASSOC_XA_BY:
308   case MachineCombinerPattern::REASSOC_XA_YB:
309     return CombinerObjective::MustReduceDepth;
310   default:
311     return TII->getCombinerObjective(Pattern);
312   }
313 }
314 
315 /// Estimate the latency of the new and original instruction sequence by summing
316 /// up the latencies of the inserted and deleted instructions. This assumes
317 /// that the inserted and deleted instructions are dependent instruction chains,
318 /// which might not hold in all cases.
319 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
320     MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
321     SmallVectorImpl<MachineInstr *> &DelInstrs,
322     MachineTraceMetrics::Trace BlockTrace) {
323   assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
324   unsigned NewRootLatency = 0;
325   // NewRoot is the last instruction in the \p InsInstrs vector.
326   MachineInstr *NewRoot = InsInstrs.back();
327   for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
328     NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
329   NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
330 
331   unsigned RootLatency = 0;
332   for (auto *I : DelInstrs)
333     RootLatency += TSchedModel.computeInstrLatency(I);
334 
335   return {NewRootLatency, RootLatency};
336 }
337 
338 bool MachineCombiner::reduceRegisterPressure(
339     MachineInstr &Root, MachineBasicBlock *MBB,
340     SmallVectorImpl<MachineInstr *> &InsInstrs,
341     SmallVectorImpl<MachineInstr *> &DelInstrs, unsigned Pattern) {
342   // FIXME: for now, we don't do any check for the register pressure patterns.
343   // We treat them as always profitable. But we can do better if we make
344   // RegPressureTracker class be aware of TIE attribute. Then we can get an
345   // accurate compare of register pressure with DelInstrs or InsInstrs.
346   return true;
347 }
348 
349 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
350 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
351 /// sequence to replace the old sequence is that it cannot lengthen the critical
352 /// path. The definition of "improve" may be restricted by specifying that the
353 /// new path improves the data dependency chain (MustReduceDepth).
354 bool MachineCombiner::improvesCriticalPathLen(
355     MachineBasicBlock *MBB, MachineInstr *Root,
356     MachineTraceMetrics::Trace BlockTrace,
357     SmallVectorImpl<MachineInstr *> &InsInstrs,
358     SmallVectorImpl<MachineInstr *> &DelInstrs,
359     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned Pattern,
360     bool SlackIsAccurate) {
361   // Get depth and latency of NewRoot and Root.
362   unsigned NewRootDepth =
363       getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace, *MBB);
364   unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
365 
366   LLVM_DEBUG(dbgs() << "  Dependence data for " << *Root << "\tNewRootDepth: "
367                     << NewRootDepth << "\tRootDepth: " << RootDepth);
368 
369   // For a transform such as reassociation, the cost equation is
370   // conservatively calculated so that we must improve the depth (data
371   // dependency cycles) in the critical path to proceed with the transform.
372   // Being conservative also protects against inaccuracies in the underlying
373   // machine trace metrics and CPU models.
374   if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
375     LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
376     LLVM_DEBUG(NewRootDepth < RootDepth
377                    ? dbgs() << "\t  and it does it\n"
378                    : dbgs() << "\t  but it does NOT do it\n");
379     return NewRootDepth < RootDepth;
380   }
381 
382   // A more flexible cost calculation for the critical path includes the slack
383   // of the original code sequence. This may allow the transform to proceed
384   // even if the instruction depths (data dependency cycles) become worse.
385 
386   // Account for the latency of the inserted and deleted instructions by
387   unsigned NewRootLatency, RootLatency;
388   if (TII->accumulateInstrSeqToRootLatency(*Root)) {
389     std::tie(NewRootLatency, RootLatency) =
390         getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
391   } else {
392     NewRootLatency = TSchedModel.computeInstrLatency(InsInstrs.back());
393     RootLatency = TSchedModel.computeInstrLatency(Root);
394   }
395 
396   unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
397   unsigned NewCycleCount = NewRootDepth + NewRootLatency;
398   unsigned OldCycleCount =
399       RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
400   LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
401                     << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
402                     << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
403                     << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
404                     << "\n\tRootDepth + RootLatency + RootSlack = "
405                     << OldCycleCount;);
406   LLVM_DEBUG(NewCycleCount <= OldCycleCount
407                  ? dbgs() << "\n\t  It IMPROVES PathLen because"
408                  : dbgs() << "\n\t  It DOES NOT improve PathLen because");
409   LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
410                     << ", OldCycleCount = " << OldCycleCount << "\n");
411 
412   return NewCycleCount <= OldCycleCount;
413 }
414 
415 /// helper routine to convert instructions into SC
416 void MachineCombiner::instr2instrSC(
417     SmallVectorImpl<MachineInstr *> &Instrs,
418     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
419   for (auto *InstrPtr : Instrs) {
420     unsigned Opc = InstrPtr->getOpcode();
421     unsigned Idx = TII->get(Opc).getSchedClass();
422     const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
423     InstrsSC.push_back(SC);
424   }
425 }
426 
427 /// True when the new instructions do not increase resource length
428 bool MachineCombiner::preservesResourceLen(
429     MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
430     SmallVectorImpl<MachineInstr *> &InsInstrs,
431     SmallVectorImpl<MachineInstr *> &DelInstrs) {
432   if (!TSchedModel.hasInstrSchedModel())
433     return true;
434 
435   // Compute current resource length
436 
437   //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
438   SmallVector <const MachineBasicBlock *, 1> MBBarr;
439   MBBarr.push_back(MBB);
440   unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
441 
442   // Deal with SC rather than Instructions.
443   SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
444   SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
445 
446   instr2instrSC(InsInstrs, InsInstrsSC);
447   instr2instrSC(DelInstrs, DelInstrsSC);
448 
449   ArrayRef<const MCSchedClassDesc *> MSCInsArr{InsInstrsSC};
450   ArrayRef<const MCSchedClassDesc *> MSCDelArr{DelInstrsSC};
451 
452   // Compute new resource length.
453   unsigned ResLenAfterCombine =
454       BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
455 
456   LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
457                     << ResLenBeforeCombine
458                     << " and after: " << ResLenAfterCombine << "\n";);
459   LLVM_DEBUG(
460       ResLenAfterCombine <=
461       ResLenBeforeCombine + TII->getExtendResourceLenLimit()
462           ? dbgs() << "\t\t  As result it IMPROVES/PRESERVES Resource Length\n"
463           : dbgs() << "\t\t  As result it DOES NOT improve/preserve Resource "
464                       "Length\n");
465 
466   return ResLenAfterCombine <=
467          ResLenBeforeCombine + TII->getExtendResourceLenLimit();
468 }
469 
470 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
471 /// depths if requested.
472 ///
473 /// \param MBB basic block to insert instructions in
474 /// \param MI current machine instruction
475 /// \param InsInstrs new instructions to insert in \p MBB
476 /// \param DelInstrs instruction to delete from \p MBB
477 /// \param TraceEnsemble is a pointer to the machine trace information
478 /// \param RegUnits set of live registers, needed to compute instruction depths
479 /// \param TII is target instruction info, used to call target hook
480 /// \param Pattern is used to call target hook finalizeInsInstrs
481 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
482 ///                          otherwise invalidate the trace
483 static void
484 insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
485                          SmallVectorImpl<MachineInstr *> &InsInstrs,
486                          SmallVectorImpl<MachineInstr *> &DelInstrs,
487                          MachineTraceMetrics::Ensemble *TraceEnsemble,
488                          SparseSet<LiveRegUnit> &RegUnits,
489                          const TargetInstrInfo *TII, unsigned Pattern,
490                          bool IncrementalUpdate) {
491   // If we want to fix up some placeholder for some target, do it now.
492   // We need this because in genAlternativeCodeSequence, we have not decided the
493   // better pattern InsInstrs or DelInstrs, so we don't want generate some
494   // sideeffect to the function. For example we need to delay the constant pool
495   // entry creation here after InsInstrs is selected as better pattern.
496   // Otherwise the constant pool entry created for InsInstrs will not be deleted
497   // even if InsInstrs is not the better pattern.
498   TII->finalizeInsInstrs(MI, Pattern, InsInstrs);
499 
500   for (auto *InstrPtr : InsInstrs)
501     MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
502 
503   for (auto *InstrPtr : DelInstrs) {
504     InstrPtr->eraseFromParent();
505     // Erase all LiveRegs defined by the removed instruction
506     for (auto *I = RegUnits.begin(); I != RegUnits.end();) {
507       if (I->MI == InstrPtr)
508         I = RegUnits.erase(I);
509       else
510         I++;
511     }
512   }
513 
514   if (IncrementalUpdate)
515     for (auto *InstrPtr : InsInstrs)
516       TraceEnsemble->updateDepth(MBB, *InstrPtr, RegUnits);
517   else
518     TraceEnsemble->invalidate(MBB);
519 
520   NumInstCombined++;
521 }
522 
523 // Check that the difference between original and new latency is decreasing for
524 // later patterns. This helps to discover sub-optimal pattern orderings.
525 void MachineCombiner::verifyPatternOrder(MachineBasicBlock *MBB,
526                                          MachineInstr &Root,
527                                          SmallVector<unsigned, 16> &Patterns) {
528   long PrevLatencyDiff = std::numeric_limits<long>::max();
529   (void)PrevLatencyDiff; // Variable is used in assert only.
530   for (auto P : Patterns) {
531     SmallVector<MachineInstr *, 16> InsInstrs;
532     SmallVector<MachineInstr *, 16> DelInstrs;
533     DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
534     TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
535                                     InstrIdxForVirtReg);
536     // Found pattern, but did not generate alternative sequence.
537     // This can happen e.g. when an immediate could not be materialized
538     // in a single instruction.
539     if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
540       continue;
541 
542     unsigned NewRootLatency, RootLatency;
543     std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
544         Root, InsInstrs, DelInstrs, TraceEnsemble->getTrace(MBB));
545     long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
546     assert(CurrentLatencyDiff <= PrevLatencyDiff &&
547            "Current pattern is better than previous pattern.");
548     PrevLatencyDiff = CurrentLatencyDiff;
549   }
550 }
551 
552 /// Substitute a slow code sequence with a faster one by
553 /// evaluating instruction combining pattern.
554 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
555 /// combining based on machine trace metrics. Only combine a sequence of
556 /// instructions  when this neither lengthens the critical path nor increases
557 /// resource pressure. When optimizing for codesize always combine when the new
558 /// sequence is shorter.
559 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
560   bool Changed = false;
561   LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
562 
563   bool IncrementalUpdate = false;
564   auto BlockIter = MBB->begin();
565   decltype(BlockIter) LastUpdate;
566   // Check if the block is in a loop.
567   const MachineLoop *ML = MLI->getLoopFor(MBB);
568   if (!TraceEnsemble)
569     TraceEnsemble = Traces->getEnsemble(TII->getMachineCombinerTraceStrategy());
570 
571   SparseSet<LiveRegUnit> RegUnits;
572   RegUnits.setUniverse(TRI->getNumRegUnits());
573 
574   bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI);
575 
576   bool DoRegPressureReduce =
577       TII->shouldReduceRegisterPressure(MBB, &RegClassInfo);
578 
579   while (BlockIter != MBB->end()) {
580     auto &MI = *BlockIter++;
581     SmallVector<unsigned, 16> Patterns;
582     // The motivating example is:
583     //
584     //     MUL  Other        MUL_op1 MUL_op2  Other
585     //      \    /               \      |    /
586     //      ADD/SUB      =>        MADD/MSUB
587     //      (=Root)                (=NewRoot)
588 
589     // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
590     // usually beneficial for code size it unfortunately can hurt performance
591     // when the ADD is on the critical path, but the MUL is not. With the
592     // substitution the MUL becomes part of the critical path (in form of the
593     // MADD) and can lengthen it on architectures where the MADD latency is
594     // longer than the ADD latency.
595     //
596     // For each instruction we check if it can be the root of a combiner
597     // pattern. Then for each pattern the new code sequence in form of MI is
598     // generated and evaluated. When the efficiency criteria (don't lengthen
599     // critical path, don't use more resources) is met the new sequence gets
600     // hooked up into the basic block before the old sequence is removed.
601     //
602     // The algorithm does not try to evaluate all patterns and pick the best.
603     // This is only an artificial restriction though. In practice there is
604     // mostly one pattern, and getMachineCombinerPatterns() can order patterns
605     // based on an internal cost heuristic. If
606     // machine-combiner-verify-pattern-order is enabled, all patterns are
607     // checked to ensure later patterns do not provide better latency savings.
608 
609     if (!TII->getMachineCombinerPatterns(MI, Patterns, DoRegPressureReduce))
610       continue;
611 
612     if (VerifyPatternOrder)
613       verifyPatternOrder(MBB, MI, Patterns);
614 
615     for (const auto P : Patterns) {
616       SmallVector<MachineInstr *, 16> InsInstrs;
617       SmallVector<MachineInstr *, 16> DelInstrs;
618       DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
619       TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
620                                       InstrIdxForVirtReg);
621       // Found pattern, but did not generate alternative sequence.
622       // This can happen e.g. when an immediate could not be materialized
623       // in a single instruction.
624       if (InsInstrs.empty())
625         continue;
626 
627       LLVM_DEBUG(if (dump_intrs) {
628         dbgs() << "\tFor the Pattern (" << (int)P
629                << ") these instructions could be removed\n";
630         for (auto const *InstrPtr : DelInstrs)
631           InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
632                           /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
633         dbgs() << "\tThese instructions could replace the removed ones\n";
634         for (auto const *InstrPtr : InsInstrs)
635           InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
636                           /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
637       });
638 
639       if (IncrementalUpdate && LastUpdate != BlockIter) {
640         // Update depths since the last incremental update.
641         TraceEnsemble->updateDepths(LastUpdate, BlockIter, RegUnits);
642         LastUpdate = BlockIter;
643       }
644 
645       if (DoRegPressureReduce &&
646           getCombinerObjective(P) ==
647               CombinerObjective::MustReduceRegisterPressure) {
648         if (MBB->size() > inc_threshold) {
649           // Use incremental depth updates for basic blocks above threshold
650           IncrementalUpdate = true;
651           LastUpdate = BlockIter;
652         }
653         if (reduceRegisterPressure(MI, MBB, InsInstrs, DelInstrs, P)) {
654           // Replace DelInstrs with InsInstrs.
655           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
656                                    RegUnits, TII, P, IncrementalUpdate);
657           Changed |= true;
658 
659           // Go back to previous instruction as it may have ILP reassociation
660           // opportunity.
661           BlockIter--;
662           break;
663         }
664       }
665 
666       if (ML && TII->isThroughputPattern(P)) {
667         LLVM_DEBUG(dbgs() << "\t Replacing due to throughput pattern in loop\n");
668         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
669                                  RegUnits, TII, P, IncrementalUpdate);
670         // Eagerly stop after the first pattern fires.
671         Changed = true;
672         break;
673       } else if (OptForSize && InsInstrs.size() < DelInstrs.size()) {
674         LLVM_DEBUG(dbgs() << "\t Replacing due to OptForSize ("
675                           << InsInstrs.size() << " < "
676                           << DelInstrs.size() << ")\n");
677         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
678                                  RegUnits, TII, P, IncrementalUpdate);
679         // Eagerly stop after the first pattern fires.
680         Changed = true;
681         break;
682       } else {
683         // For big basic blocks, we only compute the full trace the first time
684         // we hit this. We do not invalidate the trace, but instead update the
685         // instruction depths incrementally.
686         // NOTE: Only the instruction depths up to MI are accurate. All other
687         // trace information is not updated.
688         MachineTraceMetrics::Trace BlockTrace = TraceEnsemble->getTrace(MBB);
689         Traces->verifyAnalysis();
690         if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
691                                     InstrIdxForVirtReg, P,
692                                     !IncrementalUpdate) &&
693             preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
694           if (MBB->size() > inc_threshold) {
695             // Use incremental depth updates for basic blocks above treshold
696             IncrementalUpdate = true;
697             LastUpdate = BlockIter;
698           }
699 
700           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
701                                    RegUnits, TII, P, IncrementalUpdate);
702 
703           // Eagerly stop after the first pattern fires.
704           Changed = true;
705           break;
706         }
707         // Cleanup instructions of the alternative code sequence. There is no
708         // use for them.
709         MachineFunction *MF = MBB->getParent();
710         for (auto *InstrPtr : InsInstrs)
711           MF->deleteMachineInstr(InstrPtr);
712       }
713       InstrIdxForVirtReg.clear();
714     }
715   }
716 
717   if (Changed && IncrementalUpdate)
718     Traces->invalidate(MBB);
719   return Changed;
720 }
721 
722 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
723   STI = &MF.getSubtarget();
724   TII = STI->getInstrInfo();
725   TRI = STI->getRegisterInfo();
726   SchedModel = STI->getSchedModel();
727   TSchedModel.init(STI);
728   MRI = &MF.getRegInfo();
729   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
730   Traces = &getAnalysis<MachineTraceMetrics>();
731   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
732   MBFI = (PSI && PSI->hasProfileSummary()) ?
733          &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
734          nullptr;
735   TraceEnsemble = nullptr;
736   OptSize = MF.getFunction().hasOptSize();
737   RegClassInfo.runOnMachineFunction(MF);
738 
739   LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
740   if (!TII->useMachineCombiner()) {
741     LLVM_DEBUG(
742         dbgs()
743         << "  Skipping pass: Target does not support machine combiner\n");
744     return false;
745   }
746 
747   bool Changed = false;
748 
749   // Try to combine instructions.
750   for (auto &MBB : MF)
751     Changed |= combineInstructions(&MBB);
752 
753   return Changed;
754 }
755