1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The machine combiner pass uses machine trace metrics to ensure the combined 10 // instructions do not lengthen the critical path or the resource depth. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/ProfileSummaryInfo.h" 16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 17 #include "llvm/CodeGen/MachineCombinerPattern.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineFunctionPass.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/MachineSizeOpts.h" 24 #include "llvm/CodeGen/MachineTraceMetrics.h" 25 #include "llvm/CodeGen/RegisterClassInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSchedule.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "machine-combiner" 38 39 STATISTIC(NumInstCombined, "Number of machineinst combined"); 40 41 static cl::opt<unsigned> 42 inc_threshold("machine-combiner-inc-threshold", cl::Hidden, 43 cl::desc("Incremental depth computation will be used for basic " 44 "blocks with more instructions."), cl::init(500)); 45 46 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden, 47 cl::desc("Dump all substituted intrs"), 48 cl::init(false)); 49 50 #ifdef EXPENSIVE_CHECKS 51 static cl::opt<bool> VerifyPatternOrder( 52 "machine-combiner-verify-pattern-order", cl::Hidden, 53 cl::desc( 54 "Verify that the generated patterns are ordered by increasing latency"), 55 cl::init(true)); 56 #else 57 static cl::opt<bool> VerifyPatternOrder( 58 "machine-combiner-verify-pattern-order", cl::Hidden, 59 cl::desc( 60 "Verify that the generated patterns are ordered by increasing latency"), 61 cl::init(false)); 62 #endif 63 64 namespace { 65 class MachineCombiner : public MachineFunctionPass { 66 const TargetSubtargetInfo *STI = nullptr; 67 const TargetInstrInfo *TII = nullptr; 68 const TargetRegisterInfo *TRI = nullptr; 69 MCSchedModel SchedModel; 70 MachineRegisterInfo *MRI = nullptr; 71 MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo 72 MachineTraceMetrics *Traces = nullptr; 73 MachineTraceMetrics::Ensemble *TraceEnsemble = nullptr; 74 MachineBlockFrequencyInfo *MBFI = nullptr; 75 ProfileSummaryInfo *PSI = nullptr; 76 RegisterClassInfo RegClassInfo; 77 78 TargetSchedModel TSchedModel; 79 80 /// True if optimizing for code size. 81 bool OptSize = false; 82 83 public: 84 static char ID; 85 MachineCombiner() : MachineFunctionPass(ID) { 86 initializeMachineCombinerPass(*PassRegistry::getPassRegistry()); 87 } 88 void getAnalysisUsage(AnalysisUsage &AU) const override; 89 bool runOnMachineFunction(MachineFunction &MF) override; 90 StringRef getPassName() const override { return "Machine InstCombiner"; } 91 92 private: 93 bool combineInstructions(MachineBasicBlock *); 94 MachineInstr *getOperandDef(const MachineOperand &MO); 95 bool isTransientMI(const MachineInstr *MI); 96 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 97 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 98 MachineTraceMetrics::Trace BlockTrace, 99 const MachineBasicBlock &MBB); 100 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot, 101 MachineTraceMetrics::Trace BlockTrace); 102 bool improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root, 103 MachineTraceMetrics::Trace BlockTrace, 104 SmallVectorImpl<MachineInstr *> &InsInstrs, 105 SmallVectorImpl<MachineInstr *> &DelInstrs, 106 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 107 unsigned Pattern, bool SlackIsAccurate); 108 bool reduceRegisterPressure(MachineInstr &Root, MachineBasicBlock *MBB, 109 SmallVectorImpl<MachineInstr *> &InsInstrs, 110 SmallVectorImpl<MachineInstr *> &DelInstrs, 111 unsigned Pattern); 112 bool preservesResourceLen(MachineBasicBlock *MBB, 113 MachineTraceMetrics::Trace BlockTrace, 114 SmallVectorImpl<MachineInstr *> &InsInstrs, 115 SmallVectorImpl<MachineInstr *> &DelInstrs); 116 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs, 117 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC); 118 std::pair<unsigned, unsigned> 119 getLatenciesForInstrSequences(MachineInstr &MI, 120 SmallVectorImpl<MachineInstr *> &InsInstrs, 121 SmallVectorImpl<MachineInstr *> &DelInstrs, 122 MachineTraceMetrics::Trace BlockTrace); 123 124 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root, 125 SmallVector<unsigned, 16> &Patterns); 126 CombinerObjective getCombinerObjective(unsigned Pattern); 127 }; 128 } 129 130 char MachineCombiner::ID = 0; 131 char &llvm::MachineCombinerID = MachineCombiner::ID; 132 133 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE, 134 "Machine InstCombiner", false, false) 135 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 136 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) 137 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner", 138 false, false) 139 140 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 141 AU.setPreservesCFG(); 142 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 143 AU.addRequired<MachineLoopInfoWrapperPass>(); 144 AU.addPreserved<MachineLoopInfoWrapperPass>(); 145 AU.addRequired<MachineTraceMetrics>(); 146 AU.addPreserved<MachineTraceMetrics>(); 147 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 148 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 149 MachineFunctionPass::getAnalysisUsage(AU); 150 } 151 152 MachineInstr * 153 MachineCombiner::getOperandDef(const MachineOperand &MO) { 154 MachineInstr *DefInstr = nullptr; 155 // We need a virtual register definition. 156 if (MO.isReg() && MO.getReg().isVirtual()) 157 DefInstr = MRI->getUniqueVRegDef(MO.getReg()); 158 return DefInstr; 159 } 160 161 /// Return true if MI is unlikely to generate an actual target instruction. 162 bool MachineCombiner::isTransientMI(const MachineInstr *MI) { 163 if (!MI->isCopy()) 164 return MI->isTransient(); 165 166 // If MI is a COPY, check if its src and dst registers can be coalesced. 167 Register Dst = MI->getOperand(0).getReg(); 168 Register Src = MI->getOperand(1).getReg(); 169 170 if (!MI->isFullCopy()) { 171 // If src RC contains super registers of dst RC, it can also be coalesced. 172 if (MI->getOperand(0).getSubReg() || Src.isPhysical() || Dst.isPhysical()) 173 return false; 174 175 auto SrcSub = MI->getOperand(1).getSubReg(); 176 auto SrcRC = MRI->getRegClass(Src); 177 auto DstRC = MRI->getRegClass(Dst); 178 return TRI->getMatchingSuperRegClass(SrcRC, DstRC, SrcSub) != nullptr; 179 } 180 181 if (Src.isPhysical() && Dst.isPhysical()) 182 return Src == Dst; 183 184 if (Src.isVirtual() && Dst.isVirtual()) { 185 auto SrcRC = MRI->getRegClass(Src); 186 auto DstRC = MRI->getRegClass(Dst); 187 return SrcRC->hasSuperClassEq(DstRC) || SrcRC->hasSubClassEq(DstRC); 188 } 189 190 if (Src.isVirtual()) 191 std::swap(Src, Dst); 192 193 // Now Src is physical register, Dst is virtual register. 194 auto DstRC = MRI->getRegClass(Dst); 195 return DstRC->contains(Src); 196 } 197 198 /// Computes depth of instructions in vector \InsInstr. 199 /// 200 /// \param InsInstrs is a vector of machine instructions 201 /// \param InstrIdxForVirtReg is a dense map of virtual register to index 202 /// of defining machine instruction in \p InsInstrs 203 /// \param BlockTrace is a trace of machine instructions 204 /// 205 /// \returns Depth of last instruction in \InsInstrs ("NewRoot") 206 unsigned 207 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 208 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 209 MachineTraceMetrics::Trace BlockTrace, 210 const MachineBasicBlock &MBB) { 211 SmallVector<unsigned, 16> InstrDepth; 212 // For each instruction in the new sequence compute the depth based on the 213 // operands. Use the trace information when possible. For new operands which 214 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth 215 for (auto *InstrPtr : InsInstrs) { // for each Use 216 unsigned IDepth = 0; 217 for (const MachineOperand &MO : InstrPtr->all_uses()) { 218 // Check for virtual register operand. 219 if (!MO.getReg().isVirtual()) 220 continue; 221 unsigned DepthOp = 0; 222 unsigned LatencyOp = 0; 223 DenseMap<unsigned, unsigned>::iterator II = 224 InstrIdxForVirtReg.find(MO.getReg()); 225 if (II != InstrIdxForVirtReg.end()) { 226 // Operand is new virtual register not in trace 227 assert(II->second < InstrDepth.size() && "Bad Index"); 228 MachineInstr *DefInstr = InsInstrs[II->second]; 229 assert(DefInstr && 230 "There must be a definition for a new virtual register"); 231 DepthOp = InstrDepth[II->second]; 232 int DefIdx = 233 DefInstr->findRegisterDefOperandIdx(MO.getReg(), /*TRI=*/nullptr); 234 int UseIdx = 235 InstrPtr->findRegisterUseOperandIdx(MO.getReg(), /*TRI=*/nullptr); 236 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx, 237 InstrPtr, UseIdx); 238 } else { 239 MachineInstr *DefInstr = getOperandDef(MO); 240 if (DefInstr && (TII->getMachineCombinerTraceStrategy() != 241 MachineTraceStrategy::TS_Local || 242 DefInstr->getParent() == &MBB)) { 243 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth; 244 if (!isTransientMI(DefInstr)) 245 LatencyOp = TSchedModel.computeOperandLatency( 246 DefInstr, 247 DefInstr->findRegisterDefOperandIdx(MO.getReg(), 248 /*TRI=*/nullptr), 249 InstrPtr, 250 InstrPtr->findRegisterUseOperandIdx(MO.getReg(), 251 /*TRI=*/nullptr)); 252 } 253 } 254 IDepth = std::max(IDepth, DepthOp + LatencyOp); 255 } 256 InstrDepth.push_back(IDepth); 257 } 258 unsigned NewRootIdx = InsInstrs.size() - 1; 259 return InstrDepth[NewRootIdx]; 260 } 261 262 /// Computes instruction latency as max of latency of defined operands. 263 /// 264 /// \param Root is a machine instruction that could be replaced by NewRoot. 265 /// It is used to compute a more accurate latency information for NewRoot in 266 /// case there is a dependent instruction in the same trace (\p BlockTrace) 267 /// \param NewRoot is the instruction for which the latency is computed 268 /// \param BlockTrace is a trace of machine instructions 269 /// 270 /// \returns Latency of \p NewRoot 271 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot, 272 MachineTraceMetrics::Trace BlockTrace) { 273 // Check each definition in NewRoot and compute the latency 274 unsigned NewRootLatency = 0; 275 276 for (const MachineOperand &MO : NewRoot->all_defs()) { 277 // Check for virtual register operand. 278 if (!MO.getReg().isVirtual()) 279 continue; 280 // Get the first instruction that uses MO 281 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg()); 282 RI++; 283 if (RI == MRI->reg_end()) 284 continue; 285 MachineInstr *UseMO = RI->getParent(); 286 unsigned LatencyOp = 0; 287 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) { 288 LatencyOp = TSchedModel.computeOperandLatency( 289 NewRoot, 290 NewRoot->findRegisterDefOperandIdx(MO.getReg(), /*TRI=*/nullptr), 291 UseMO, 292 UseMO->findRegisterUseOperandIdx(MO.getReg(), /*TRI=*/nullptr)); 293 } else { 294 LatencyOp = TSchedModel.computeInstrLatency(NewRoot); 295 } 296 NewRootLatency = std::max(NewRootLatency, LatencyOp); 297 } 298 return NewRootLatency; 299 } 300 301 CombinerObjective MachineCombiner::getCombinerObjective(unsigned Pattern) { 302 // TODO: If C++ ever gets a real enum class, make this part of the 303 // MachineCombinerPattern class. 304 switch (Pattern) { 305 case MachineCombinerPattern::REASSOC_AX_BY: 306 case MachineCombinerPattern::REASSOC_AX_YB: 307 case MachineCombinerPattern::REASSOC_XA_BY: 308 case MachineCombinerPattern::REASSOC_XA_YB: 309 return CombinerObjective::MustReduceDepth; 310 default: 311 return TII->getCombinerObjective(Pattern); 312 } 313 } 314 315 /// Estimate the latency of the new and original instruction sequence by summing 316 /// up the latencies of the inserted and deleted instructions. This assumes 317 /// that the inserted and deleted instructions are dependent instruction chains, 318 /// which might not hold in all cases. 319 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences( 320 MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs, 321 SmallVectorImpl<MachineInstr *> &DelInstrs, 322 MachineTraceMetrics::Trace BlockTrace) { 323 assert(!InsInstrs.empty() && "Only support sequences that insert instrs."); 324 unsigned NewRootLatency = 0; 325 // NewRoot is the last instruction in the \p InsInstrs vector. 326 MachineInstr *NewRoot = InsInstrs.back(); 327 for (unsigned i = 0; i < InsInstrs.size() - 1; i++) 328 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]); 329 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace); 330 331 unsigned RootLatency = 0; 332 for (auto *I : DelInstrs) 333 RootLatency += TSchedModel.computeInstrLatency(I); 334 335 return {NewRootLatency, RootLatency}; 336 } 337 338 bool MachineCombiner::reduceRegisterPressure( 339 MachineInstr &Root, MachineBasicBlock *MBB, 340 SmallVectorImpl<MachineInstr *> &InsInstrs, 341 SmallVectorImpl<MachineInstr *> &DelInstrs, unsigned Pattern) { 342 // FIXME: for now, we don't do any check for the register pressure patterns. 343 // We treat them as always profitable. But we can do better if we make 344 // RegPressureTracker class be aware of TIE attribute. Then we can get an 345 // accurate compare of register pressure with DelInstrs or InsInstrs. 346 return true; 347 } 348 349 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root. 350 /// The new code sequence ends in MI NewRoot. A necessary condition for the new 351 /// sequence to replace the old sequence is that it cannot lengthen the critical 352 /// path. The definition of "improve" may be restricted by specifying that the 353 /// new path improves the data dependency chain (MustReduceDepth). 354 bool MachineCombiner::improvesCriticalPathLen( 355 MachineBasicBlock *MBB, MachineInstr *Root, 356 MachineTraceMetrics::Trace BlockTrace, 357 SmallVectorImpl<MachineInstr *> &InsInstrs, 358 SmallVectorImpl<MachineInstr *> &DelInstrs, 359 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned Pattern, 360 bool SlackIsAccurate) { 361 // Get depth and latency of NewRoot and Root. 362 unsigned NewRootDepth = 363 getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace, *MBB); 364 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth; 365 366 LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: " 367 << NewRootDepth << "\tRootDepth: " << RootDepth); 368 369 // For a transform such as reassociation, the cost equation is 370 // conservatively calculated so that we must improve the depth (data 371 // dependency cycles) in the critical path to proceed with the transform. 372 // Being conservative also protects against inaccuracies in the underlying 373 // machine trace metrics and CPU models. 374 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) { 375 LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth "); 376 LLVM_DEBUG(NewRootDepth < RootDepth 377 ? dbgs() << "\t and it does it\n" 378 : dbgs() << "\t but it does NOT do it\n"); 379 return NewRootDepth < RootDepth; 380 } 381 382 // A more flexible cost calculation for the critical path includes the slack 383 // of the original code sequence. This may allow the transform to proceed 384 // even if the instruction depths (data dependency cycles) become worse. 385 386 // Account for the latency of the inserted and deleted instructions by 387 unsigned NewRootLatency, RootLatency; 388 if (TII->accumulateInstrSeqToRootLatency(*Root)) { 389 std::tie(NewRootLatency, RootLatency) = 390 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace); 391 } else { 392 NewRootLatency = TSchedModel.computeInstrLatency(InsInstrs.back()); 393 RootLatency = TSchedModel.computeInstrLatency(Root); 394 } 395 396 unsigned RootSlack = BlockTrace.getInstrSlack(*Root); 397 unsigned NewCycleCount = NewRootDepth + NewRootLatency; 398 unsigned OldCycleCount = 399 RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0); 400 LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency 401 << "\tRootLatency: " << RootLatency << "\n\tRootSlack: " 402 << RootSlack << " SlackIsAccurate=" << SlackIsAccurate 403 << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount 404 << "\n\tRootDepth + RootLatency + RootSlack = " 405 << OldCycleCount;); 406 LLVM_DEBUG(NewCycleCount <= OldCycleCount 407 ? dbgs() << "\n\t It IMPROVES PathLen because" 408 : dbgs() << "\n\t It DOES NOT improve PathLen because"); 409 LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount 410 << ", OldCycleCount = " << OldCycleCount << "\n"); 411 412 return NewCycleCount <= OldCycleCount; 413 } 414 415 /// helper routine to convert instructions into SC 416 void MachineCombiner::instr2instrSC( 417 SmallVectorImpl<MachineInstr *> &Instrs, 418 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) { 419 for (auto *InstrPtr : Instrs) { 420 unsigned Opc = InstrPtr->getOpcode(); 421 unsigned Idx = TII->get(Opc).getSchedClass(); 422 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx); 423 InstrsSC.push_back(SC); 424 } 425 } 426 427 /// True when the new instructions do not increase resource length 428 bool MachineCombiner::preservesResourceLen( 429 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, 430 SmallVectorImpl<MachineInstr *> &InsInstrs, 431 SmallVectorImpl<MachineInstr *> &DelInstrs) { 432 if (!TSchedModel.hasInstrSchedModel()) 433 return true; 434 435 // Compute current resource length 436 437 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB); 438 SmallVector <const MachineBasicBlock *, 1> MBBarr; 439 MBBarr.push_back(MBB); 440 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr); 441 442 // Deal with SC rather than Instructions. 443 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC; 444 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC; 445 446 instr2instrSC(InsInstrs, InsInstrsSC); 447 instr2instrSC(DelInstrs, DelInstrsSC); 448 449 ArrayRef<const MCSchedClassDesc *> MSCInsArr{InsInstrsSC}; 450 ArrayRef<const MCSchedClassDesc *> MSCDelArr{DelInstrsSC}; 451 452 // Compute new resource length. 453 unsigned ResLenAfterCombine = 454 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr); 455 456 LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: " 457 << ResLenBeforeCombine 458 << " and after: " << ResLenAfterCombine << "\n";); 459 LLVM_DEBUG( 460 ResLenAfterCombine <= 461 ResLenBeforeCombine + TII->getExtendResourceLenLimit() 462 ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n" 463 : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource " 464 "Length\n"); 465 466 return ResLenAfterCombine <= 467 ResLenBeforeCombine + TII->getExtendResourceLenLimit(); 468 } 469 470 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction 471 /// depths if requested. 472 /// 473 /// \param MBB basic block to insert instructions in 474 /// \param MI current machine instruction 475 /// \param InsInstrs new instructions to insert in \p MBB 476 /// \param DelInstrs instruction to delete from \p MBB 477 /// \param TraceEnsemble is a pointer to the machine trace information 478 /// \param RegUnits set of live registers, needed to compute instruction depths 479 /// \param TII is target instruction info, used to call target hook 480 /// \param Pattern is used to call target hook finalizeInsInstrs 481 /// \param IncrementalUpdate if true, compute instruction depths incrementally, 482 /// otherwise invalidate the trace 483 static void 484 insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI, 485 SmallVectorImpl<MachineInstr *> &InsInstrs, 486 SmallVectorImpl<MachineInstr *> &DelInstrs, 487 MachineTraceMetrics::Ensemble *TraceEnsemble, 488 SparseSet<LiveRegUnit> &RegUnits, 489 const TargetInstrInfo *TII, unsigned Pattern, 490 bool IncrementalUpdate) { 491 // If we want to fix up some placeholder for some target, do it now. 492 // We need this because in genAlternativeCodeSequence, we have not decided the 493 // better pattern InsInstrs or DelInstrs, so we don't want generate some 494 // sideeffect to the function. For example we need to delay the constant pool 495 // entry creation here after InsInstrs is selected as better pattern. 496 // Otherwise the constant pool entry created for InsInstrs will not be deleted 497 // even if InsInstrs is not the better pattern. 498 TII->finalizeInsInstrs(MI, Pattern, InsInstrs); 499 500 for (auto *InstrPtr : InsInstrs) 501 MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr); 502 503 for (auto *InstrPtr : DelInstrs) { 504 InstrPtr->eraseFromParent(); 505 // Erase all LiveRegs defined by the removed instruction 506 for (auto *I = RegUnits.begin(); I != RegUnits.end();) { 507 if (I->MI == InstrPtr) 508 I = RegUnits.erase(I); 509 else 510 I++; 511 } 512 } 513 514 if (IncrementalUpdate) 515 for (auto *InstrPtr : InsInstrs) 516 TraceEnsemble->updateDepth(MBB, *InstrPtr, RegUnits); 517 else 518 TraceEnsemble->invalidate(MBB); 519 520 NumInstCombined++; 521 } 522 523 // Check that the difference between original and new latency is decreasing for 524 // later patterns. This helps to discover sub-optimal pattern orderings. 525 void MachineCombiner::verifyPatternOrder(MachineBasicBlock *MBB, 526 MachineInstr &Root, 527 SmallVector<unsigned, 16> &Patterns) { 528 long PrevLatencyDiff = std::numeric_limits<long>::max(); 529 (void)PrevLatencyDiff; // Variable is used in assert only. 530 for (auto P : Patterns) { 531 SmallVector<MachineInstr *, 16> InsInstrs; 532 SmallVector<MachineInstr *, 16> DelInstrs; 533 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 534 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs, 535 InstrIdxForVirtReg); 536 // Found pattern, but did not generate alternative sequence. 537 // This can happen e.g. when an immediate could not be materialized 538 // in a single instruction. 539 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries()) 540 continue; 541 542 unsigned NewRootLatency, RootLatency; 543 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences( 544 Root, InsInstrs, DelInstrs, TraceEnsemble->getTrace(MBB)); 545 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency); 546 assert(CurrentLatencyDiff <= PrevLatencyDiff && 547 "Current pattern is better than previous pattern."); 548 PrevLatencyDiff = CurrentLatencyDiff; 549 } 550 } 551 552 /// Substitute a slow code sequence with a faster one by 553 /// evaluating instruction combining pattern. 554 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction 555 /// combining based on machine trace metrics. Only combine a sequence of 556 /// instructions when this neither lengthens the critical path nor increases 557 /// resource pressure. When optimizing for codesize always combine when the new 558 /// sequence is shorter. 559 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) { 560 bool Changed = false; 561 LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n"); 562 563 bool IncrementalUpdate = false; 564 auto BlockIter = MBB->begin(); 565 decltype(BlockIter) LastUpdate; 566 // Check if the block is in a loop. 567 const MachineLoop *ML = MLI->getLoopFor(MBB); 568 if (!TraceEnsemble) 569 TraceEnsemble = Traces->getEnsemble(TII->getMachineCombinerTraceStrategy()); 570 571 SparseSet<LiveRegUnit> RegUnits; 572 RegUnits.setUniverse(TRI->getNumRegUnits()); 573 574 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI); 575 576 bool DoRegPressureReduce = 577 TII->shouldReduceRegisterPressure(MBB, &RegClassInfo); 578 579 while (BlockIter != MBB->end()) { 580 auto &MI = *BlockIter++; 581 SmallVector<unsigned, 16> Patterns; 582 // The motivating example is: 583 // 584 // MUL Other MUL_op1 MUL_op2 Other 585 // \ / \ | / 586 // ADD/SUB => MADD/MSUB 587 // (=Root) (=NewRoot) 588 589 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is 590 // usually beneficial for code size it unfortunately can hurt performance 591 // when the ADD is on the critical path, but the MUL is not. With the 592 // substitution the MUL becomes part of the critical path (in form of the 593 // MADD) and can lengthen it on architectures where the MADD latency is 594 // longer than the ADD latency. 595 // 596 // For each instruction we check if it can be the root of a combiner 597 // pattern. Then for each pattern the new code sequence in form of MI is 598 // generated and evaluated. When the efficiency criteria (don't lengthen 599 // critical path, don't use more resources) is met the new sequence gets 600 // hooked up into the basic block before the old sequence is removed. 601 // 602 // The algorithm does not try to evaluate all patterns and pick the best. 603 // This is only an artificial restriction though. In practice there is 604 // mostly one pattern, and getMachineCombinerPatterns() can order patterns 605 // based on an internal cost heuristic. If 606 // machine-combiner-verify-pattern-order is enabled, all patterns are 607 // checked to ensure later patterns do not provide better latency savings. 608 609 if (!TII->getMachineCombinerPatterns(MI, Patterns, DoRegPressureReduce)) 610 continue; 611 612 if (VerifyPatternOrder) 613 verifyPatternOrder(MBB, MI, Patterns); 614 615 for (const auto P : Patterns) { 616 SmallVector<MachineInstr *, 16> InsInstrs; 617 SmallVector<MachineInstr *, 16> DelInstrs; 618 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 619 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs, 620 InstrIdxForVirtReg); 621 // Found pattern, but did not generate alternative sequence. 622 // This can happen e.g. when an immediate could not be materialized 623 // in a single instruction. 624 if (InsInstrs.empty()) 625 continue; 626 627 LLVM_DEBUG(if (dump_intrs) { 628 dbgs() << "\tFor the Pattern (" << (int)P 629 << ") these instructions could be removed\n"; 630 for (auto const *InstrPtr : DelInstrs) 631 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 632 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 633 dbgs() << "\tThese instructions could replace the removed ones\n"; 634 for (auto const *InstrPtr : InsInstrs) 635 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 636 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 637 }); 638 639 if (IncrementalUpdate && LastUpdate != BlockIter) { 640 // Update depths since the last incremental update. 641 TraceEnsemble->updateDepths(LastUpdate, BlockIter, RegUnits); 642 LastUpdate = BlockIter; 643 } 644 645 if (DoRegPressureReduce && 646 getCombinerObjective(P) == 647 CombinerObjective::MustReduceRegisterPressure) { 648 if (MBB->size() > inc_threshold) { 649 // Use incremental depth updates for basic blocks above threshold 650 IncrementalUpdate = true; 651 LastUpdate = BlockIter; 652 } 653 if (reduceRegisterPressure(MI, MBB, InsInstrs, DelInstrs, P)) { 654 // Replace DelInstrs with InsInstrs. 655 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 656 RegUnits, TII, P, IncrementalUpdate); 657 Changed |= true; 658 659 // Go back to previous instruction as it may have ILP reassociation 660 // opportunity. 661 BlockIter--; 662 break; 663 } 664 } 665 666 if (ML && TII->isThroughputPattern(P)) { 667 LLVM_DEBUG(dbgs() << "\t Replacing due to throughput pattern in loop\n"); 668 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 669 RegUnits, TII, P, IncrementalUpdate); 670 // Eagerly stop after the first pattern fires. 671 Changed = true; 672 break; 673 } else if (OptForSize && InsInstrs.size() < DelInstrs.size()) { 674 LLVM_DEBUG(dbgs() << "\t Replacing due to OptForSize (" 675 << InsInstrs.size() << " < " 676 << DelInstrs.size() << ")\n"); 677 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 678 RegUnits, TII, P, IncrementalUpdate); 679 // Eagerly stop after the first pattern fires. 680 Changed = true; 681 break; 682 } else { 683 // For big basic blocks, we only compute the full trace the first time 684 // we hit this. We do not invalidate the trace, but instead update the 685 // instruction depths incrementally. 686 // NOTE: Only the instruction depths up to MI are accurate. All other 687 // trace information is not updated. 688 MachineTraceMetrics::Trace BlockTrace = TraceEnsemble->getTrace(MBB); 689 Traces->verifyAnalysis(); 690 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs, 691 InstrIdxForVirtReg, P, 692 !IncrementalUpdate) && 693 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) { 694 if (MBB->size() > inc_threshold) { 695 // Use incremental depth updates for basic blocks above treshold 696 IncrementalUpdate = true; 697 LastUpdate = BlockIter; 698 } 699 700 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble, 701 RegUnits, TII, P, IncrementalUpdate); 702 703 // Eagerly stop after the first pattern fires. 704 Changed = true; 705 break; 706 } 707 // Cleanup instructions of the alternative code sequence. There is no 708 // use for them. 709 MachineFunction *MF = MBB->getParent(); 710 for (auto *InstrPtr : InsInstrs) 711 MF->deleteMachineInstr(InstrPtr); 712 } 713 InstrIdxForVirtReg.clear(); 714 } 715 } 716 717 if (Changed && IncrementalUpdate) 718 Traces->invalidate(MBB); 719 return Changed; 720 } 721 722 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) { 723 STI = &MF.getSubtarget(); 724 TII = STI->getInstrInfo(); 725 TRI = STI->getRegisterInfo(); 726 SchedModel = STI->getSchedModel(); 727 TSchedModel.init(STI); 728 MRI = &MF.getRegInfo(); 729 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 730 Traces = &getAnalysis<MachineTraceMetrics>(); 731 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 732 MBFI = (PSI && PSI->hasProfileSummary()) ? 733 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 734 nullptr; 735 TraceEnsemble = nullptr; 736 OptSize = MF.getFunction().hasOptSize(); 737 RegClassInfo.runOnMachineFunction(MF); 738 739 LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n'); 740 if (!TII->useMachineCombiner()) { 741 LLVM_DEBUG( 742 dbgs() 743 << " Skipping pass: Target does not support machine combiner\n"); 744 return false; 745 } 746 747 bool Changed = false; 748 749 // Try to combine instructions. 750 for (auto &MBB : MF) 751 Changed |= combineInstructions(&MBB); 752 753 return Changed; 754 } 755