xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The machine combiner pass uses machine trace metrics to ensure the combined
10 // instructions do not lengthen the critical path or the resource depth.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ProfileSummaryInfo.h"
16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/MachineSizeOpts.h"
23 #include "llvm/CodeGen/MachineTraceMetrics.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterClassInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSchedule.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "machine-combiner"
38 
39 STATISTIC(NumInstCombined, "Number of machineinst combined");
40 
41 static cl::opt<unsigned>
42 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
43               cl::desc("Incremental depth computation will be used for basic "
44                        "blocks with more instructions."), cl::init(500));
45 
46 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
47                                 cl::desc("Dump all substituted intrs"),
48                                 cl::init(false));
49 
50 #ifdef EXPENSIVE_CHECKS
51 static cl::opt<bool> VerifyPatternOrder(
52     "machine-combiner-verify-pattern-order", cl::Hidden,
53     cl::desc(
54         "Verify that the generated patterns are ordered by increasing latency"),
55     cl::init(true));
56 #else
57 static cl::opt<bool> VerifyPatternOrder(
58     "machine-combiner-verify-pattern-order", cl::Hidden,
59     cl::desc(
60         "Verify that the generated patterns are ordered by increasing latency"),
61     cl::init(false));
62 #endif
63 
64 namespace {
65 class MachineCombiner : public MachineFunctionPass {
66   const TargetSubtargetInfo *STI;
67   const TargetInstrInfo *TII;
68   const TargetRegisterInfo *TRI;
69   MCSchedModel SchedModel;
70   MachineRegisterInfo *MRI;
71   MachineLoopInfo *MLI; // Current MachineLoopInfo
72   MachineTraceMetrics *Traces;
73   MachineTraceMetrics::Ensemble *MinInstr;
74   MachineBlockFrequencyInfo *MBFI;
75   ProfileSummaryInfo *PSI;
76   RegisterClassInfo RegClassInfo;
77 
78   TargetSchedModel TSchedModel;
79 
80   /// True if optimizing for code size.
81   bool OptSize;
82 
83 public:
84   static char ID;
85   MachineCombiner() : MachineFunctionPass(ID) {
86     initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
87   }
88   void getAnalysisUsage(AnalysisUsage &AU) const override;
89   bool runOnMachineFunction(MachineFunction &MF) override;
90   StringRef getPassName() const override { return "Machine InstCombiner"; }
91 
92 private:
93   bool doSubstitute(unsigned NewSize, unsigned OldSize, bool OptForSize);
94   bool combineInstructions(MachineBasicBlock *);
95   MachineInstr *getOperandDef(const MachineOperand &MO);
96   unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
97                     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
98                     MachineTraceMetrics::Trace BlockTrace);
99   unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
100                       MachineTraceMetrics::Trace BlockTrace);
101   bool
102   improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
103                           MachineTraceMetrics::Trace BlockTrace,
104                           SmallVectorImpl<MachineInstr *> &InsInstrs,
105                           SmallVectorImpl<MachineInstr *> &DelInstrs,
106                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
107                           MachineCombinerPattern Pattern, bool SlackIsAccurate);
108   bool reduceRegisterPressure(MachineInstr &Root, MachineBasicBlock *MBB,
109                               SmallVectorImpl<MachineInstr *> &InsInstrs,
110                               SmallVectorImpl<MachineInstr *> &DelInstrs,
111                               MachineCombinerPattern Pattern);
112   bool preservesResourceLen(MachineBasicBlock *MBB,
113                             MachineTraceMetrics::Trace BlockTrace,
114                             SmallVectorImpl<MachineInstr *> &InsInstrs,
115                             SmallVectorImpl<MachineInstr *> &DelInstrs);
116   void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
117                      SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
118   std::pair<unsigned, unsigned>
119   getLatenciesForInstrSequences(MachineInstr &MI,
120                                 SmallVectorImpl<MachineInstr *> &InsInstrs,
121                                 SmallVectorImpl<MachineInstr *> &DelInstrs,
122                                 MachineTraceMetrics::Trace BlockTrace);
123 
124   void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
125                           SmallVector<MachineCombinerPattern, 16> &Patterns);
126 };
127 }
128 
129 char MachineCombiner::ID = 0;
130 char &llvm::MachineCombinerID = MachineCombiner::ID;
131 
132 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
133                       "Machine InstCombiner", false, false)
134 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
135 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
136 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
137                     false, false)
138 
139 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
140   AU.setPreservesCFG();
141   AU.addPreserved<MachineDominatorTree>();
142   AU.addRequired<MachineLoopInfo>();
143   AU.addPreserved<MachineLoopInfo>();
144   AU.addRequired<MachineTraceMetrics>();
145   AU.addPreserved<MachineTraceMetrics>();
146   AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
147   AU.addRequired<ProfileSummaryInfoWrapperPass>();
148   MachineFunctionPass::getAnalysisUsage(AU);
149 }
150 
151 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
152   MachineInstr *DefInstr = nullptr;
153   // We need a virtual register definition.
154   if (MO.isReg() && Register::isVirtualRegister(MO.getReg()))
155     DefInstr = MRI->getUniqueVRegDef(MO.getReg());
156   // PHI's have no depth etc.
157   if (DefInstr && DefInstr->isPHI())
158     DefInstr = nullptr;
159   return DefInstr;
160 }
161 
162 /// Computes depth of instructions in vector \InsInstr.
163 ///
164 /// \param InsInstrs is a vector of machine instructions
165 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
166 /// of defining machine instruction in \p InsInstrs
167 /// \param BlockTrace is a trace of machine instructions
168 ///
169 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
170 unsigned
171 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
172                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
173                           MachineTraceMetrics::Trace BlockTrace) {
174   SmallVector<unsigned, 16> InstrDepth;
175   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
176          "Missing machine model\n");
177 
178   // For each instruction in the new sequence compute the depth based on the
179   // operands. Use the trace information when possible. For new operands which
180   // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
181   for (auto *InstrPtr : InsInstrs) { // for each Use
182     unsigned IDepth = 0;
183     for (const MachineOperand &MO : InstrPtr->operands()) {
184       // Check for virtual register operand.
185       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
186         continue;
187       if (!MO.isUse())
188         continue;
189       unsigned DepthOp = 0;
190       unsigned LatencyOp = 0;
191       DenseMap<unsigned, unsigned>::iterator II =
192           InstrIdxForVirtReg.find(MO.getReg());
193       if (II != InstrIdxForVirtReg.end()) {
194         // Operand is new virtual register not in trace
195         assert(II->second < InstrDepth.size() && "Bad Index");
196         MachineInstr *DefInstr = InsInstrs[II->second];
197         assert(DefInstr &&
198                "There must be a definition for a new virtual register");
199         DepthOp = InstrDepth[II->second];
200         int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
201         int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
202         LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
203                                                       InstrPtr, UseIdx);
204       } else {
205         MachineInstr *DefInstr = getOperandDef(MO);
206         if (DefInstr) {
207           DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
208           LatencyOp = TSchedModel.computeOperandLatency(
209               DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
210               InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
211         }
212       }
213       IDepth = std::max(IDepth, DepthOp + LatencyOp);
214     }
215     InstrDepth.push_back(IDepth);
216   }
217   unsigned NewRootIdx = InsInstrs.size() - 1;
218   return InstrDepth[NewRootIdx];
219 }
220 
221 /// Computes instruction latency as max of latency of defined operands.
222 ///
223 /// \param Root is a machine instruction that could be replaced by NewRoot.
224 /// It is used to compute a more accurate latency information for NewRoot in
225 /// case there is a dependent instruction in the same trace (\p BlockTrace)
226 /// \param NewRoot is the instruction for which the latency is computed
227 /// \param BlockTrace is a trace of machine instructions
228 ///
229 /// \returns Latency of \p NewRoot
230 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
231                                      MachineTraceMetrics::Trace BlockTrace) {
232   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
233          "Missing machine model\n");
234 
235   // Check each definition in NewRoot and compute the latency
236   unsigned NewRootLatency = 0;
237 
238   for (const MachineOperand &MO : NewRoot->operands()) {
239     // Check for virtual register operand.
240     if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
241       continue;
242     if (!MO.isDef())
243       continue;
244     // Get the first instruction that uses MO
245     MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
246     RI++;
247     if (RI == MRI->reg_end())
248       continue;
249     MachineInstr *UseMO = RI->getParent();
250     unsigned LatencyOp = 0;
251     if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
252       LatencyOp = TSchedModel.computeOperandLatency(
253           NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
254           UseMO->findRegisterUseOperandIdx(MO.getReg()));
255     } else {
256       LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
257     }
258     NewRootLatency = std::max(NewRootLatency, LatencyOp);
259   }
260   return NewRootLatency;
261 }
262 
263 /// The combiner's goal may differ based on which pattern it is attempting
264 /// to optimize.
265 enum class CombinerObjective {
266   MustReduceDepth,            // The data dependency chain must be improved.
267   MustReduceRegisterPressure, // The register pressure must be reduced.
268   Default                     // The critical path must not be lengthened.
269 };
270 
271 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
272   // TODO: If C++ ever gets a real enum class, make this part of the
273   // MachineCombinerPattern class.
274   switch (P) {
275   case MachineCombinerPattern::REASSOC_AX_BY:
276   case MachineCombinerPattern::REASSOC_AX_YB:
277   case MachineCombinerPattern::REASSOC_XA_BY:
278   case MachineCombinerPattern::REASSOC_XA_YB:
279   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
280   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
281     return CombinerObjective::MustReduceDepth;
282   case MachineCombinerPattern::REASSOC_XY_BCA:
283   case MachineCombinerPattern::REASSOC_XY_BAC:
284     return CombinerObjective::MustReduceRegisterPressure;
285   default:
286     return CombinerObjective::Default;
287   }
288 }
289 
290 /// Estimate the latency of the new and original instruction sequence by summing
291 /// up the latencies of the inserted and deleted instructions. This assumes
292 /// that the inserted and deleted instructions are dependent instruction chains,
293 /// which might not hold in all cases.
294 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
295     MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
296     SmallVectorImpl<MachineInstr *> &DelInstrs,
297     MachineTraceMetrics::Trace BlockTrace) {
298   assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
299   unsigned NewRootLatency = 0;
300   // NewRoot is the last instruction in the \p InsInstrs vector.
301   MachineInstr *NewRoot = InsInstrs.back();
302   for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
303     NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
304   NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
305 
306   unsigned RootLatency = 0;
307   for (auto I : DelInstrs)
308     RootLatency += TSchedModel.computeInstrLatency(I);
309 
310   return {NewRootLatency, RootLatency};
311 }
312 
313 bool MachineCombiner::reduceRegisterPressure(
314     MachineInstr &Root, MachineBasicBlock *MBB,
315     SmallVectorImpl<MachineInstr *> &InsInstrs,
316     SmallVectorImpl<MachineInstr *> &DelInstrs,
317     MachineCombinerPattern Pattern) {
318   // FIXME: for now, we don't do any check for the register pressure patterns.
319   // We treat them as always profitable. But we can do better if we make
320   // RegPressureTracker class be aware of TIE attribute. Then we can get an
321   // accurate compare of register pressure with DelInstrs or InsInstrs.
322   return true;
323 }
324 
325 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
326 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
327 /// sequence to replace the old sequence is that it cannot lengthen the critical
328 /// path. The definition of "improve" may be restricted by specifying that the
329 /// new path improves the data dependency chain (MustReduceDepth).
330 bool MachineCombiner::improvesCriticalPathLen(
331     MachineBasicBlock *MBB, MachineInstr *Root,
332     MachineTraceMetrics::Trace BlockTrace,
333     SmallVectorImpl<MachineInstr *> &InsInstrs,
334     SmallVectorImpl<MachineInstr *> &DelInstrs,
335     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
336     MachineCombinerPattern Pattern,
337     bool SlackIsAccurate) {
338   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
339          "Missing machine model\n");
340   // Get depth and latency of NewRoot and Root.
341   unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
342   unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
343 
344   LLVM_DEBUG(dbgs() << "  Dependence data for " << *Root << "\tNewRootDepth: "
345                     << NewRootDepth << "\tRootDepth: " << RootDepth);
346 
347   // For a transform such as reassociation, the cost equation is
348   // conservatively calculated so that we must improve the depth (data
349   // dependency cycles) in the critical path to proceed with the transform.
350   // Being conservative also protects against inaccuracies in the underlying
351   // machine trace metrics and CPU models.
352   if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
353     LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
354     LLVM_DEBUG(NewRootDepth < RootDepth
355                    ? dbgs() << "\t  and it does it\n"
356                    : dbgs() << "\t  but it does NOT do it\n");
357     return NewRootDepth < RootDepth;
358   }
359 
360   // A more flexible cost calculation for the critical path includes the slack
361   // of the original code sequence. This may allow the transform to proceed
362   // even if the instruction depths (data dependency cycles) become worse.
363 
364   // Account for the latency of the inserted and deleted instructions by
365   unsigned NewRootLatency, RootLatency;
366   std::tie(NewRootLatency, RootLatency) =
367       getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
368 
369   unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
370   unsigned NewCycleCount = NewRootDepth + NewRootLatency;
371   unsigned OldCycleCount =
372       RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
373   LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
374                     << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
375                     << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
376                     << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
377                     << "\n\tRootDepth + RootLatency + RootSlack = "
378                     << OldCycleCount;);
379   LLVM_DEBUG(NewCycleCount <= OldCycleCount
380                  ? dbgs() << "\n\t  It IMPROVES PathLen because"
381                  : dbgs() << "\n\t  It DOES NOT improve PathLen because");
382   LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
383                     << ", OldCycleCount = " << OldCycleCount << "\n");
384 
385   return NewCycleCount <= OldCycleCount;
386 }
387 
388 /// helper routine to convert instructions into SC
389 void MachineCombiner::instr2instrSC(
390     SmallVectorImpl<MachineInstr *> &Instrs,
391     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
392   for (auto *InstrPtr : Instrs) {
393     unsigned Opc = InstrPtr->getOpcode();
394     unsigned Idx = TII->get(Opc).getSchedClass();
395     const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
396     InstrsSC.push_back(SC);
397   }
398 }
399 
400 /// True when the new instructions do not increase resource length
401 bool MachineCombiner::preservesResourceLen(
402     MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
403     SmallVectorImpl<MachineInstr *> &InsInstrs,
404     SmallVectorImpl<MachineInstr *> &DelInstrs) {
405   if (!TSchedModel.hasInstrSchedModel())
406     return true;
407 
408   // Compute current resource length
409 
410   //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
411   SmallVector <const MachineBasicBlock *, 1> MBBarr;
412   MBBarr.push_back(MBB);
413   unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
414 
415   // Deal with SC rather than Instructions.
416   SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
417   SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
418 
419   instr2instrSC(InsInstrs, InsInstrsSC);
420   instr2instrSC(DelInstrs, DelInstrsSC);
421 
422   ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
423   ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
424 
425   // Compute new resource length.
426   unsigned ResLenAfterCombine =
427       BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
428 
429   LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
430                     << ResLenBeforeCombine
431                     << " and after: " << ResLenAfterCombine << "\n";);
432   LLVM_DEBUG(
433       ResLenAfterCombine <=
434       ResLenBeforeCombine + TII->getExtendResourceLenLimit()
435           ? dbgs() << "\t\t  As result it IMPROVES/PRESERVES Resource Length\n"
436           : dbgs() << "\t\t  As result it DOES NOT improve/preserve Resource "
437                       "Length\n");
438 
439   return ResLenAfterCombine <=
440          ResLenBeforeCombine + TII->getExtendResourceLenLimit();
441 }
442 
443 /// \returns true when new instruction sequence should be generated
444 /// independent if it lengthens critical path or not
445 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize,
446                                    bool OptForSize) {
447   if (OptForSize && (NewSize < OldSize))
448     return true;
449   if (!TSchedModel.hasInstrSchedModelOrItineraries())
450     return true;
451   return false;
452 }
453 
454 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
455 /// depths if requested.
456 ///
457 /// \param MBB basic block to insert instructions in
458 /// \param MI current machine instruction
459 /// \param InsInstrs new instructions to insert in \p MBB
460 /// \param DelInstrs instruction to delete from \p MBB
461 /// \param MinInstr is a pointer to the machine trace information
462 /// \param RegUnits set of live registers, needed to compute instruction depths
463 /// \param TII is target instruction info, used to call target hook
464 /// \param Pattern is used to call target hook finalizeInsInstrs
465 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
466 ///                          otherwise invalidate the trace
467 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
468                                      SmallVector<MachineInstr *, 16> InsInstrs,
469                                      SmallVector<MachineInstr *, 16> DelInstrs,
470                                      MachineTraceMetrics::Ensemble *MinInstr,
471                                      SparseSet<LiveRegUnit> &RegUnits,
472                                      const TargetInstrInfo *TII,
473                                      MachineCombinerPattern Pattern,
474                                      bool IncrementalUpdate) {
475   // If we want to fix up some placeholder for some target, do it now.
476   // We need this because in genAlternativeCodeSequence, we have not decided the
477   // better pattern InsInstrs or DelInstrs, so we don't want generate some
478   // sideeffect to the function. For example we need to delay the constant pool
479   // entry creation here after InsInstrs is selected as better pattern.
480   // Otherwise the constant pool entry created for InsInstrs will not be deleted
481   // even if InsInstrs is not the better pattern.
482   TII->finalizeInsInstrs(MI, Pattern, InsInstrs);
483 
484   for (auto *InstrPtr : InsInstrs)
485     MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
486 
487   for (auto *InstrPtr : DelInstrs) {
488     InstrPtr->eraseFromParent();
489     // Erase all LiveRegs defined by the removed instruction
490     for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
491       if (I->MI == InstrPtr)
492         I = RegUnits.erase(I);
493       else
494         I++;
495     }
496   }
497 
498   if (IncrementalUpdate)
499     for (auto *InstrPtr : InsInstrs)
500       MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
501   else
502     MinInstr->invalidate(MBB);
503 
504   NumInstCombined++;
505 }
506 
507 // Check that the difference between original and new latency is decreasing for
508 // later patterns. This helps to discover sub-optimal pattern orderings.
509 void MachineCombiner::verifyPatternOrder(
510     MachineBasicBlock *MBB, MachineInstr &Root,
511     SmallVector<MachineCombinerPattern, 16> &Patterns) {
512   long PrevLatencyDiff = std::numeric_limits<long>::max();
513   (void)PrevLatencyDiff; // Variable is used in assert only.
514   for (auto P : Patterns) {
515     SmallVector<MachineInstr *, 16> InsInstrs;
516     SmallVector<MachineInstr *, 16> DelInstrs;
517     DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
518     TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
519                                     InstrIdxForVirtReg);
520     // Found pattern, but did not generate alternative sequence.
521     // This can happen e.g. when an immediate could not be materialized
522     // in a single instruction.
523     if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
524       continue;
525 
526     unsigned NewRootLatency, RootLatency;
527     std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
528         Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
529     long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
530     assert(CurrentLatencyDiff <= PrevLatencyDiff &&
531            "Current pattern is better than previous pattern.");
532     PrevLatencyDiff = CurrentLatencyDiff;
533   }
534 }
535 
536 /// Substitute a slow code sequence with a faster one by
537 /// evaluating instruction combining pattern.
538 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
539 /// combining based on machine trace metrics. Only combine a sequence of
540 /// instructions  when this neither lengthens the critical path nor increases
541 /// resource pressure. When optimizing for codesize always combine when the new
542 /// sequence is shorter.
543 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
544   bool Changed = false;
545   LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
546 
547   bool IncrementalUpdate = false;
548   auto BlockIter = MBB->begin();
549   decltype(BlockIter) LastUpdate;
550   // Check if the block is in a loop.
551   const MachineLoop *ML = MLI->getLoopFor(MBB);
552   if (!MinInstr)
553     MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
554 
555   SparseSet<LiveRegUnit> RegUnits;
556   RegUnits.setUniverse(TRI->getNumRegUnits());
557 
558   bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI);
559 
560   bool DoRegPressureReduce =
561       TII->shouldReduceRegisterPressure(MBB, &RegClassInfo);
562 
563   while (BlockIter != MBB->end()) {
564     auto &MI = *BlockIter++;
565     SmallVector<MachineCombinerPattern, 16> Patterns;
566     // The motivating example is:
567     //
568     //     MUL  Other        MUL_op1 MUL_op2  Other
569     //      \    /               \      |    /
570     //      ADD/SUB      =>        MADD/MSUB
571     //      (=Root)                (=NewRoot)
572 
573     // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
574     // usually beneficial for code size it unfortunately can hurt performance
575     // when the ADD is on the critical path, but the MUL is not. With the
576     // substitution the MUL becomes part of the critical path (in form of the
577     // MADD) and can lengthen it on architectures where the MADD latency is
578     // longer than the ADD latency.
579     //
580     // For each instruction we check if it can be the root of a combiner
581     // pattern. Then for each pattern the new code sequence in form of MI is
582     // generated and evaluated. When the efficiency criteria (don't lengthen
583     // critical path, don't use more resources) is met the new sequence gets
584     // hooked up into the basic block before the old sequence is removed.
585     //
586     // The algorithm does not try to evaluate all patterns and pick the best.
587     // This is only an artificial restriction though. In practice there is
588     // mostly one pattern, and getMachineCombinerPatterns() can order patterns
589     // based on an internal cost heuristic. If
590     // machine-combiner-verify-pattern-order is enabled, all patterns are
591     // checked to ensure later patterns do not provide better latency savings.
592 
593     if (!TII->getMachineCombinerPatterns(MI, Patterns, DoRegPressureReduce))
594       continue;
595 
596     if (VerifyPatternOrder)
597       verifyPatternOrder(MBB, MI, Patterns);
598 
599     for (auto P : Patterns) {
600       SmallVector<MachineInstr *, 16> InsInstrs;
601       SmallVector<MachineInstr *, 16> DelInstrs;
602       DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
603       TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
604                                       InstrIdxForVirtReg);
605       unsigned NewInstCount = InsInstrs.size();
606       unsigned OldInstCount = DelInstrs.size();
607       // Found pattern, but did not generate alternative sequence.
608       // This can happen e.g. when an immediate could not be materialized
609       // in a single instruction.
610       if (!NewInstCount)
611         continue;
612 
613       LLVM_DEBUG(if (dump_intrs) {
614         dbgs() << "\tFor the Pattern (" << (int)P
615                << ") these instructions could be removed\n";
616         for (auto const *InstrPtr : DelInstrs)
617           InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
618                           /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
619         dbgs() << "\tThese instructions could replace the removed ones\n";
620         for (auto const *InstrPtr : InsInstrs)
621           InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
622                           /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
623       });
624 
625       bool SubstituteAlways = false;
626       if (ML && TII->isThroughputPattern(P))
627         SubstituteAlways = true;
628 
629       if (IncrementalUpdate && LastUpdate != BlockIter) {
630         // Update depths since the last incremental update.
631         MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
632         LastUpdate = BlockIter;
633       }
634 
635       if (DoRegPressureReduce &&
636           getCombinerObjective(P) ==
637               CombinerObjective::MustReduceRegisterPressure) {
638         if (MBB->size() > inc_threshold) {
639           // Use incremental depth updates for basic blocks above threshold
640           IncrementalUpdate = true;
641           LastUpdate = BlockIter;
642         }
643         if (reduceRegisterPressure(MI, MBB, InsInstrs, DelInstrs, P)) {
644           // Replace DelInstrs with InsInstrs.
645           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
646                                    RegUnits, TII, P, IncrementalUpdate);
647           Changed |= true;
648 
649           // Go back to previous instruction as it may have ILP reassociation
650           // opportunity.
651           BlockIter--;
652           break;
653         }
654       }
655 
656       // Substitute when we optimize for codesize and the new sequence has
657       // fewer instructions OR
658       // the new sequence neither lengthens the critical path nor increases
659       // resource pressure.
660       if (SubstituteAlways ||
661           doSubstitute(NewInstCount, OldInstCount, OptForSize)) {
662         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
663                                  RegUnits, TII, P, IncrementalUpdate);
664         // Eagerly stop after the first pattern fires.
665         Changed = true;
666         break;
667       } else {
668         // For big basic blocks, we only compute the full trace the first time
669         // we hit this. We do not invalidate the trace, but instead update the
670         // instruction depths incrementally.
671         // NOTE: Only the instruction depths up to MI are accurate. All other
672         // trace information is not updated.
673         MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
674         Traces->verifyAnalysis();
675         if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
676                                     InstrIdxForVirtReg, P,
677                                     !IncrementalUpdate) &&
678             preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
679           if (MBB->size() > inc_threshold) {
680             // Use incremental depth updates for basic blocks above treshold
681             IncrementalUpdate = true;
682             LastUpdate = BlockIter;
683           }
684 
685           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
686                                    RegUnits, TII, P, IncrementalUpdate);
687 
688           // Eagerly stop after the first pattern fires.
689           Changed = true;
690           break;
691         }
692         // Cleanup instructions of the alternative code sequence. There is no
693         // use for them.
694         MachineFunction *MF = MBB->getParent();
695         for (auto *InstrPtr : InsInstrs)
696           MF->deleteMachineInstr(InstrPtr);
697       }
698       InstrIdxForVirtReg.clear();
699     }
700   }
701 
702   if (Changed && IncrementalUpdate)
703     Traces->invalidate(MBB);
704   return Changed;
705 }
706 
707 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
708   STI = &MF.getSubtarget();
709   TII = STI->getInstrInfo();
710   TRI = STI->getRegisterInfo();
711   SchedModel = STI->getSchedModel();
712   TSchedModel.init(STI);
713   MRI = &MF.getRegInfo();
714   MLI = &getAnalysis<MachineLoopInfo>();
715   Traces = &getAnalysis<MachineTraceMetrics>();
716   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
717   MBFI = (PSI && PSI->hasProfileSummary()) ?
718          &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
719          nullptr;
720   MinInstr = nullptr;
721   OptSize = MF.getFunction().hasOptSize();
722   RegClassInfo.runOnMachineFunction(MF);
723 
724   LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
725   if (!TII->useMachineCombiner()) {
726     LLVM_DEBUG(
727         dbgs()
728         << "  Skipping pass: Target does not support machine combiner\n");
729     return false;
730   }
731 
732   bool Changed = false;
733 
734   // Try to combine instructions.
735   for (auto &MBB : MF)
736     Changed |= combineInstructions(&MBB);
737 
738   return Changed;
739 }
740