1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The machine combiner pass uses machine trace metrics to ensure the combined 10 // instructions do not lengthen the critical path or the resource depth. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/ProfileSummaryInfo.h" 16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineFunctionPass.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/MachineSizeOpts.h" 23 #include "llvm/CodeGen/MachineTraceMetrics.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetRegisterInfo.h" 27 #include "llvm/CodeGen/TargetSchedule.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "machine-combiner" 37 38 STATISTIC(NumInstCombined, "Number of machineinst combined"); 39 40 static cl::opt<unsigned> 41 inc_threshold("machine-combiner-inc-threshold", cl::Hidden, 42 cl::desc("Incremental depth computation will be used for basic " 43 "blocks with more instructions."), cl::init(500)); 44 45 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden, 46 cl::desc("Dump all substituted intrs"), 47 cl::init(false)); 48 49 #ifdef EXPENSIVE_CHECKS 50 static cl::opt<bool> VerifyPatternOrder( 51 "machine-combiner-verify-pattern-order", cl::Hidden, 52 cl::desc( 53 "Verify that the generated patterns are ordered by increasing latency"), 54 cl::init(true)); 55 #else 56 static cl::opt<bool> VerifyPatternOrder( 57 "machine-combiner-verify-pattern-order", cl::Hidden, 58 cl::desc( 59 "Verify that the generated patterns are ordered by increasing latency"), 60 cl::init(false)); 61 #endif 62 63 namespace { 64 class MachineCombiner : public MachineFunctionPass { 65 const TargetSubtargetInfo *STI; 66 const TargetInstrInfo *TII; 67 const TargetRegisterInfo *TRI; 68 MCSchedModel SchedModel; 69 MachineRegisterInfo *MRI; 70 MachineLoopInfo *MLI; // Current MachineLoopInfo 71 MachineTraceMetrics *Traces; 72 MachineTraceMetrics::Ensemble *MinInstr; 73 MachineBlockFrequencyInfo *MBFI; 74 ProfileSummaryInfo *PSI; 75 76 TargetSchedModel TSchedModel; 77 78 /// True if optimizing for code size. 79 bool OptSize; 80 81 public: 82 static char ID; 83 MachineCombiner() : MachineFunctionPass(ID) { 84 initializeMachineCombinerPass(*PassRegistry::getPassRegistry()); 85 } 86 void getAnalysisUsage(AnalysisUsage &AU) const override; 87 bool runOnMachineFunction(MachineFunction &MF) override; 88 StringRef getPassName() const override { return "Machine InstCombiner"; } 89 90 private: 91 bool doSubstitute(unsigned NewSize, unsigned OldSize, bool OptForSize); 92 bool combineInstructions(MachineBasicBlock *); 93 MachineInstr *getOperandDef(const MachineOperand &MO); 94 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 95 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 96 MachineTraceMetrics::Trace BlockTrace); 97 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot, 98 MachineTraceMetrics::Trace BlockTrace); 99 bool 100 improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root, 101 MachineTraceMetrics::Trace BlockTrace, 102 SmallVectorImpl<MachineInstr *> &InsInstrs, 103 SmallVectorImpl<MachineInstr *> &DelInstrs, 104 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 105 MachineCombinerPattern Pattern, bool SlackIsAccurate); 106 bool preservesResourceLen(MachineBasicBlock *MBB, 107 MachineTraceMetrics::Trace BlockTrace, 108 SmallVectorImpl<MachineInstr *> &InsInstrs, 109 SmallVectorImpl<MachineInstr *> &DelInstrs); 110 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs, 111 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC); 112 std::pair<unsigned, unsigned> 113 getLatenciesForInstrSequences(MachineInstr &MI, 114 SmallVectorImpl<MachineInstr *> &InsInstrs, 115 SmallVectorImpl<MachineInstr *> &DelInstrs, 116 MachineTraceMetrics::Trace BlockTrace); 117 118 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root, 119 SmallVector<MachineCombinerPattern, 16> &Patterns); 120 }; 121 } 122 123 char MachineCombiner::ID = 0; 124 char &llvm::MachineCombinerID = MachineCombiner::ID; 125 126 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE, 127 "Machine InstCombiner", false, false) 128 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 129 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) 130 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner", 131 false, false) 132 133 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 134 AU.setPreservesCFG(); 135 AU.addPreserved<MachineDominatorTree>(); 136 AU.addRequired<MachineLoopInfo>(); 137 AU.addPreserved<MachineLoopInfo>(); 138 AU.addRequired<MachineTraceMetrics>(); 139 AU.addPreserved<MachineTraceMetrics>(); 140 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 141 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 142 MachineFunctionPass::getAnalysisUsage(AU); 143 } 144 145 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) { 146 MachineInstr *DefInstr = nullptr; 147 // We need a virtual register definition. 148 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) 149 DefInstr = MRI->getUniqueVRegDef(MO.getReg()); 150 // PHI's have no depth etc. 151 if (DefInstr && DefInstr->isPHI()) 152 DefInstr = nullptr; 153 return DefInstr; 154 } 155 156 /// Computes depth of instructions in vector \InsInstr. 157 /// 158 /// \param InsInstrs is a vector of machine instructions 159 /// \param InstrIdxForVirtReg is a dense map of virtual register to index 160 /// of defining machine instruction in \p InsInstrs 161 /// \param BlockTrace is a trace of machine instructions 162 /// 163 /// \returns Depth of last instruction in \InsInstrs ("NewRoot") 164 unsigned 165 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 166 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 167 MachineTraceMetrics::Trace BlockTrace) { 168 SmallVector<unsigned, 16> InstrDepth; 169 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 170 "Missing machine model\n"); 171 172 // For each instruction in the new sequence compute the depth based on the 173 // operands. Use the trace information when possible. For new operands which 174 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth 175 for (auto *InstrPtr : InsInstrs) { // for each Use 176 unsigned IDepth = 0; 177 for (const MachineOperand &MO : InstrPtr->operands()) { 178 // Check for virtual register operand. 179 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 180 continue; 181 if (!MO.isUse()) 182 continue; 183 unsigned DepthOp = 0; 184 unsigned LatencyOp = 0; 185 DenseMap<unsigned, unsigned>::iterator II = 186 InstrIdxForVirtReg.find(MO.getReg()); 187 if (II != InstrIdxForVirtReg.end()) { 188 // Operand is new virtual register not in trace 189 assert(II->second < InstrDepth.size() && "Bad Index"); 190 MachineInstr *DefInstr = InsInstrs[II->second]; 191 assert(DefInstr && 192 "There must be a definition for a new virtual register"); 193 DepthOp = InstrDepth[II->second]; 194 int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg()); 195 int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg()); 196 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx, 197 InstrPtr, UseIdx); 198 } else { 199 MachineInstr *DefInstr = getOperandDef(MO); 200 if (DefInstr) { 201 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth; 202 LatencyOp = TSchedModel.computeOperandLatency( 203 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()), 204 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg())); 205 } 206 } 207 IDepth = std::max(IDepth, DepthOp + LatencyOp); 208 } 209 InstrDepth.push_back(IDepth); 210 } 211 unsigned NewRootIdx = InsInstrs.size() - 1; 212 return InstrDepth[NewRootIdx]; 213 } 214 215 /// Computes instruction latency as max of latency of defined operands. 216 /// 217 /// \param Root is a machine instruction that could be replaced by NewRoot. 218 /// It is used to compute a more accurate latency information for NewRoot in 219 /// case there is a dependent instruction in the same trace (\p BlockTrace) 220 /// \param NewRoot is the instruction for which the latency is computed 221 /// \param BlockTrace is a trace of machine instructions 222 /// 223 /// \returns Latency of \p NewRoot 224 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot, 225 MachineTraceMetrics::Trace BlockTrace) { 226 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 227 "Missing machine model\n"); 228 229 // Check each definition in NewRoot and compute the latency 230 unsigned NewRootLatency = 0; 231 232 for (const MachineOperand &MO : NewRoot->operands()) { 233 // Check for virtual register operand. 234 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 235 continue; 236 if (!MO.isDef()) 237 continue; 238 // Get the first instruction that uses MO 239 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg()); 240 RI++; 241 if (RI == MRI->reg_end()) 242 continue; 243 MachineInstr *UseMO = RI->getParent(); 244 unsigned LatencyOp = 0; 245 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) { 246 LatencyOp = TSchedModel.computeOperandLatency( 247 NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO, 248 UseMO->findRegisterUseOperandIdx(MO.getReg())); 249 } else { 250 LatencyOp = TSchedModel.computeInstrLatency(NewRoot); 251 } 252 NewRootLatency = std::max(NewRootLatency, LatencyOp); 253 } 254 return NewRootLatency; 255 } 256 257 /// The combiner's goal may differ based on which pattern it is attempting 258 /// to optimize. 259 enum class CombinerObjective { 260 MustReduceDepth, // The data dependency chain must be improved. 261 Default // The critical path must not be lengthened. 262 }; 263 264 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) { 265 // TODO: If C++ ever gets a real enum class, make this part of the 266 // MachineCombinerPattern class. 267 switch (P) { 268 case MachineCombinerPattern::REASSOC_AX_BY: 269 case MachineCombinerPattern::REASSOC_AX_YB: 270 case MachineCombinerPattern::REASSOC_XA_BY: 271 case MachineCombinerPattern::REASSOC_XA_YB: 272 return CombinerObjective::MustReduceDepth; 273 default: 274 return CombinerObjective::Default; 275 } 276 } 277 278 /// Estimate the latency of the new and original instruction sequence by summing 279 /// up the latencies of the inserted and deleted instructions. This assumes 280 /// that the inserted and deleted instructions are dependent instruction chains, 281 /// which might not hold in all cases. 282 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences( 283 MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs, 284 SmallVectorImpl<MachineInstr *> &DelInstrs, 285 MachineTraceMetrics::Trace BlockTrace) { 286 assert(!InsInstrs.empty() && "Only support sequences that insert instrs."); 287 unsigned NewRootLatency = 0; 288 // NewRoot is the last instruction in the \p InsInstrs vector. 289 MachineInstr *NewRoot = InsInstrs.back(); 290 for (unsigned i = 0; i < InsInstrs.size() - 1; i++) 291 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]); 292 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace); 293 294 unsigned RootLatency = 0; 295 for (auto I : DelInstrs) 296 RootLatency += TSchedModel.computeInstrLatency(I); 297 298 return {NewRootLatency, RootLatency}; 299 } 300 301 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root. 302 /// The new code sequence ends in MI NewRoot. A necessary condition for the new 303 /// sequence to replace the old sequence is that it cannot lengthen the critical 304 /// path. The definition of "improve" may be restricted by specifying that the 305 /// new path improves the data dependency chain (MustReduceDepth). 306 bool MachineCombiner::improvesCriticalPathLen( 307 MachineBasicBlock *MBB, MachineInstr *Root, 308 MachineTraceMetrics::Trace BlockTrace, 309 SmallVectorImpl<MachineInstr *> &InsInstrs, 310 SmallVectorImpl<MachineInstr *> &DelInstrs, 311 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 312 MachineCombinerPattern Pattern, 313 bool SlackIsAccurate) { 314 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 315 "Missing machine model\n"); 316 // Get depth and latency of NewRoot and Root. 317 unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace); 318 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth; 319 320 LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: " 321 << NewRootDepth << "\tRootDepth: " << RootDepth); 322 323 // For a transform such as reassociation, the cost equation is 324 // conservatively calculated so that we must improve the depth (data 325 // dependency cycles) in the critical path to proceed with the transform. 326 // Being conservative also protects against inaccuracies in the underlying 327 // machine trace metrics and CPU models. 328 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) { 329 LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth "); 330 LLVM_DEBUG(NewRootDepth < RootDepth 331 ? dbgs() << "\t and it does it\n" 332 : dbgs() << "\t but it does NOT do it\n"); 333 return NewRootDepth < RootDepth; 334 } 335 336 // A more flexible cost calculation for the critical path includes the slack 337 // of the original code sequence. This may allow the transform to proceed 338 // even if the instruction depths (data dependency cycles) become worse. 339 340 // Account for the latency of the inserted and deleted instructions by 341 unsigned NewRootLatency, RootLatency; 342 std::tie(NewRootLatency, RootLatency) = 343 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace); 344 345 unsigned RootSlack = BlockTrace.getInstrSlack(*Root); 346 unsigned NewCycleCount = NewRootDepth + NewRootLatency; 347 unsigned OldCycleCount = 348 RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0); 349 LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency 350 << "\tRootLatency: " << RootLatency << "\n\tRootSlack: " 351 << RootSlack << " SlackIsAccurate=" << SlackIsAccurate 352 << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount 353 << "\n\tRootDepth + RootLatency + RootSlack = " 354 << OldCycleCount;); 355 LLVM_DEBUG(NewCycleCount <= OldCycleCount 356 ? dbgs() << "\n\t It IMPROVES PathLen because" 357 : dbgs() << "\n\t It DOES NOT improve PathLen because"); 358 LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount 359 << ", OldCycleCount = " << OldCycleCount << "\n"); 360 361 return NewCycleCount <= OldCycleCount; 362 } 363 364 /// helper routine to convert instructions into SC 365 void MachineCombiner::instr2instrSC( 366 SmallVectorImpl<MachineInstr *> &Instrs, 367 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) { 368 for (auto *InstrPtr : Instrs) { 369 unsigned Opc = InstrPtr->getOpcode(); 370 unsigned Idx = TII->get(Opc).getSchedClass(); 371 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx); 372 InstrsSC.push_back(SC); 373 } 374 } 375 376 /// True when the new instructions do not increase resource length 377 bool MachineCombiner::preservesResourceLen( 378 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, 379 SmallVectorImpl<MachineInstr *> &InsInstrs, 380 SmallVectorImpl<MachineInstr *> &DelInstrs) { 381 if (!TSchedModel.hasInstrSchedModel()) 382 return true; 383 384 // Compute current resource length 385 386 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB); 387 SmallVector <const MachineBasicBlock *, 1> MBBarr; 388 MBBarr.push_back(MBB); 389 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr); 390 391 // Deal with SC rather than Instructions. 392 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC; 393 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC; 394 395 instr2instrSC(InsInstrs, InsInstrsSC); 396 instr2instrSC(DelInstrs, DelInstrsSC); 397 398 ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC); 399 ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC); 400 401 // Compute new resource length. 402 unsigned ResLenAfterCombine = 403 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr); 404 405 LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: " 406 << ResLenBeforeCombine 407 << " and after: " << ResLenAfterCombine << "\n";); 408 LLVM_DEBUG( 409 ResLenAfterCombine <= ResLenBeforeCombine 410 ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n" 411 : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource " 412 "Length\n"); 413 414 return ResLenAfterCombine <= ResLenBeforeCombine; 415 } 416 417 /// \returns true when new instruction sequence should be generated 418 /// independent if it lengthens critical path or not 419 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize, 420 bool OptForSize) { 421 if (OptForSize && (NewSize < OldSize)) 422 return true; 423 if (!TSchedModel.hasInstrSchedModelOrItineraries()) 424 return true; 425 return false; 426 } 427 428 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction 429 /// depths if requested. 430 /// 431 /// \param MBB basic block to insert instructions in 432 /// \param MI current machine instruction 433 /// \param InsInstrs new instructions to insert in \p MBB 434 /// \param DelInstrs instruction to delete from \p MBB 435 /// \param MinInstr is a pointer to the machine trace information 436 /// \param RegUnits set of live registers, needed to compute instruction depths 437 /// \param IncrementalUpdate if true, compute instruction depths incrementally, 438 /// otherwise invalidate the trace 439 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI, 440 SmallVector<MachineInstr *, 16> InsInstrs, 441 SmallVector<MachineInstr *, 16> DelInstrs, 442 MachineTraceMetrics::Ensemble *MinInstr, 443 SparseSet<LiveRegUnit> &RegUnits, 444 bool IncrementalUpdate) { 445 for (auto *InstrPtr : InsInstrs) 446 MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr); 447 448 for (auto *InstrPtr : DelInstrs) { 449 InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval(); 450 // Erase all LiveRegs defined by the removed instruction 451 for (auto I = RegUnits.begin(); I != RegUnits.end(); ) { 452 if (I->MI == InstrPtr) 453 I = RegUnits.erase(I); 454 else 455 I++; 456 } 457 } 458 459 if (IncrementalUpdate) 460 for (auto *InstrPtr : InsInstrs) 461 MinInstr->updateDepth(MBB, *InstrPtr, RegUnits); 462 else 463 MinInstr->invalidate(MBB); 464 465 NumInstCombined++; 466 } 467 468 // Check that the difference between original and new latency is decreasing for 469 // later patterns. This helps to discover sub-optimal pattern orderings. 470 void MachineCombiner::verifyPatternOrder( 471 MachineBasicBlock *MBB, MachineInstr &Root, 472 SmallVector<MachineCombinerPattern, 16> &Patterns) { 473 long PrevLatencyDiff = std::numeric_limits<long>::max(); 474 (void)PrevLatencyDiff; // Variable is used in assert only. 475 for (auto P : Patterns) { 476 SmallVector<MachineInstr *, 16> InsInstrs; 477 SmallVector<MachineInstr *, 16> DelInstrs; 478 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 479 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs, 480 InstrIdxForVirtReg); 481 // Found pattern, but did not generate alternative sequence. 482 // This can happen e.g. when an immediate could not be materialized 483 // in a single instruction. 484 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries()) 485 continue; 486 487 unsigned NewRootLatency, RootLatency; 488 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences( 489 Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB)); 490 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency); 491 assert(CurrentLatencyDiff <= PrevLatencyDiff && 492 "Current pattern is better than previous pattern."); 493 PrevLatencyDiff = CurrentLatencyDiff; 494 } 495 } 496 497 /// Substitute a slow code sequence with a faster one by 498 /// evaluating instruction combining pattern. 499 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction 500 /// combining based on machine trace metrics. Only combine a sequence of 501 /// instructions when this neither lengthens the critical path nor increases 502 /// resource pressure. When optimizing for codesize always combine when the new 503 /// sequence is shorter. 504 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) { 505 bool Changed = false; 506 LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n"); 507 508 bool IncrementalUpdate = false; 509 auto BlockIter = MBB->begin(); 510 decltype(BlockIter) LastUpdate; 511 // Check if the block is in a loop. 512 const MachineLoop *ML = MLI->getLoopFor(MBB); 513 if (!MinInstr) 514 MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount); 515 516 SparseSet<LiveRegUnit> RegUnits; 517 RegUnits.setUniverse(TRI->getNumRegUnits()); 518 519 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI); 520 521 while (BlockIter != MBB->end()) { 522 auto &MI = *BlockIter++; 523 SmallVector<MachineCombinerPattern, 16> Patterns; 524 // The motivating example is: 525 // 526 // MUL Other MUL_op1 MUL_op2 Other 527 // \ / \ | / 528 // ADD/SUB => MADD/MSUB 529 // (=Root) (=NewRoot) 530 531 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is 532 // usually beneficial for code size it unfortunately can hurt performance 533 // when the ADD is on the critical path, but the MUL is not. With the 534 // substitution the MUL becomes part of the critical path (in form of the 535 // MADD) and can lengthen it on architectures where the MADD latency is 536 // longer than the ADD latency. 537 // 538 // For each instruction we check if it can be the root of a combiner 539 // pattern. Then for each pattern the new code sequence in form of MI is 540 // generated and evaluated. When the efficiency criteria (don't lengthen 541 // critical path, don't use more resources) is met the new sequence gets 542 // hooked up into the basic block before the old sequence is removed. 543 // 544 // The algorithm does not try to evaluate all patterns and pick the best. 545 // This is only an artificial restriction though. In practice there is 546 // mostly one pattern, and getMachineCombinerPatterns() can order patterns 547 // based on an internal cost heuristic. If 548 // machine-combiner-verify-pattern-order is enabled, all patterns are 549 // checked to ensure later patterns do not provide better latency savings. 550 551 if (!TII->getMachineCombinerPatterns(MI, Patterns)) 552 continue; 553 554 if (VerifyPatternOrder) 555 verifyPatternOrder(MBB, MI, Patterns); 556 557 for (auto P : Patterns) { 558 SmallVector<MachineInstr *, 16> InsInstrs; 559 SmallVector<MachineInstr *, 16> DelInstrs; 560 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 561 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs, 562 InstrIdxForVirtReg); 563 unsigned NewInstCount = InsInstrs.size(); 564 unsigned OldInstCount = DelInstrs.size(); 565 // Found pattern, but did not generate alternative sequence. 566 // This can happen e.g. when an immediate could not be materialized 567 // in a single instruction. 568 if (!NewInstCount) 569 continue; 570 571 LLVM_DEBUG(if (dump_intrs) { 572 dbgs() << "\tFor the Pattern (" << (int)P 573 << ") these instructions could be removed\n"; 574 for (auto const *InstrPtr : DelInstrs) 575 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 576 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 577 dbgs() << "\tThese instructions could replace the removed ones\n"; 578 for (auto const *InstrPtr : InsInstrs) 579 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 580 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 581 }); 582 583 bool SubstituteAlways = false; 584 if (ML && TII->isThroughputPattern(P)) 585 SubstituteAlways = true; 586 587 if (IncrementalUpdate) { 588 // Update depths since the last incremental update. 589 MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits); 590 LastUpdate = BlockIter; 591 } 592 593 // Substitute when we optimize for codesize and the new sequence has 594 // fewer instructions OR 595 // the new sequence neither lengthens the critical path nor increases 596 // resource pressure. 597 if (SubstituteAlways || 598 doSubstitute(NewInstCount, OldInstCount, OptForSize)) { 599 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, 600 RegUnits, IncrementalUpdate); 601 // Eagerly stop after the first pattern fires. 602 Changed = true; 603 break; 604 } else { 605 // For big basic blocks, we only compute the full trace the first time 606 // we hit this. We do not invalidate the trace, but instead update the 607 // instruction depths incrementally. 608 // NOTE: Only the instruction depths up to MI are accurate. All other 609 // trace information is not updated. 610 MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB); 611 Traces->verifyAnalysis(); 612 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs, 613 InstrIdxForVirtReg, P, 614 !IncrementalUpdate) && 615 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) { 616 if (MBB->size() > inc_threshold) { 617 // Use incremental depth updates for basic blocks above treshold 618 IncrementalUpdate = true; 619 LastUpdate = BlockIter; 620 } 621 622 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, 623 RegUnits, IncrementalUpdate); 624 625 // Eagerly stop after the first pattern fires. 626 Changed = true; 627 break; 628 } 629 // Cleanup instructions of the alternative code sequence. There is no 630 // use for them. 631 MachineFunction *MF = MBB->getParent(); 632 for (auto *InstrPtr : InsInstrs) 633 MF->DeleteMachineInstr(InstrPtr); 634 } 635 InstrIdxForVirtReg.clear(); 636 } 637 } 638 639 if (Changed && IncrementalUpdate) 640 Traces->invalidate(MBB); 641 return Changed; 642 } 643 644 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) { 645 STI = &MF.getSubtarget(); 646 TII = STI->getInstrInfo(); 647 TRI = STI->getRegisterInfo(); 648 SchedModel = STI->getSchedModel(); 649 TSchedModel.init(STI); 650 MRI = &MF.getRegInfo(); 651 MLI = &getAnalysis<MachineLoopInfo>(); 652 Traces = &getAnalysis<MachineTraceMetrics>(); 653 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 654 MBFI = (PSI && PSI->hasProfileSummary()) ? 655 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 656 nullptr; 657 MinInstr = nullptr; 658 OptSize = MF.getFunction().hasOptSize(); 659 660 LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n'); 661 if (!TII->useMachineCombiner()) { 662 LLVM_DEBUG( 663 dbgs() 664 << " Skipping pass: Target does not support machine combiner\n"); 665 return false; 666 } 667 668 bool Changed = false; 669 670 // Try to combine instructions. 671 for (auto &MBB : MF) 672 Changed |= combineInstructions(&MBB); 673 674 return Changed; 675 } 676