1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The machine combiner pass uses machine trace metrics to ensure the combined 10 // instructions do not lengthen the critical path or the resource depth. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/ProfileSummaryInfo.h" 16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineFunctionPass.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/MachineSizeOpts.h" 23 #include "llvm/CodeGen/MachineTraceMetrics.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/RegisterClassInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSchedule.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "machine-combiner" 38 39 STATISTIC(NumInstCombined, "Number of machineinst combined"); 40 41 static cl::opt<unsigned> 42 inc_threshold("machine-combiner-inc-threshold", cl::Hidden, 43 cl::desc("Incremental depth computation will be used for basic " 44 "blocks with more instructions."), cl::init(500)); 45 46 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden, 47 cl::desc("Dump all substituted intrs"), 48 cl::init(false)); 49 50 #ifdef EXPENSIVE_CHECKS 51 static cl::opt<bool> VerifyPatternOrder( 52 "machine-combiner-verify-pattern-order", cl::Hidden, 53 cl::desc( 54 "Verify that the generated patterns are ordered by increasing latency"), 55 cl::init(true)); 56 #else 57 static cl::opt<bool> VerifyPatternOrder( 58 "machine-combiner-verify-pattern-order", cl::Hidden, 59 cl::desc( 60 "Verify that the generated patterns are ordered by increasing latency"), 61 cl::init(false)); 62 #endif 63 64 namespace { 65 class MachineCombiner : public MachineFunctionPass { 66 const TargetSubtargetInfo *STI; 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 MCSchedModel SchedModel; 70 MachineRegisterInfo *MRI; 71 MachineLoopInfo *MLI; // Current MachineLoopInfo 72 MachineTraceMetrics *Traces; 73 MachineTraceMetrics::Ensemble *MinInstr; 74 MachineBlockFrequencyInfo *MBFI; 75 ProfileSummaryInfo *PSI; 76 RegisterClassInfo RegClassInfo; 77 78 TargetSchedModel TSchedModel; 79 80 /// True if optimizing for code size. 81 bool OptSize; 82 83 public: 84 static char ID; 85 MachineCombiner() : MachineFunctionPass(ID) { 86 initializeMachineCombinerPass(*PassRegistry::getPassRegistry()); 87 } 88 void getAnalysisUsage(AnalysisUsage &AU) const override; 89 bool runOnMachineFunction(MachineFunction &MF) override; 90 StringRef getPassName() const override { return "Machine InstCombiner"; } 91 92 private: 93 bool doSubstitute(unsigned NewSize, unsigned OldSize, bool OptForSize); 94 bool combineInstructions(MachineBasicBlock *); 95 MachineInstr *getOperandDef(const MachineOperand &MO); 96 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 97 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 98 MachineTraceMetrics::Trace BlockTrace); 99 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot, 100 MachineTraceMetrics::Trace BlockTrace); 101 bool 102 improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root, 103 MachineTraceMetrics::Trace BlockTrace, 104 SmallVectorImpl<MachineInstr *> &InsInstrs, 105 SmallVectorImpl<MachineInstr *> &DelInstrs, 106 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 107 MachineCombinerPattern Pattern, bool SlackIsAccurate); 108 bool reduceRegisterPressure(MachineInstr &Root, MachineBasicBlock *MBB, 109 SmallVectorImpl<MachineInstr *> &InsInstrs, 110 SmallVectorImpl<MachineInstr *> &DelInstrs, 111 MachineCombinerPattern Pattern); 112 bool preservesResourceLen(MachineBasicBlock *MBB, 113 MachineTraceMetrics::Trace BlockTrace, 114 SmallVectorImpl<MachineInstr *> &InsInstrs, 115 SmallVectorImpl<MachineInstr *> &DelInstrs); 116 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs, 117 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC); 118 std::pair<unsigned, unsigned> 119 getLatenciesForInstrSequences(MachineInstr &MI, 120 SmallVectorImpl<MachineInstr *> &InsInstrs, 121 SmallVectorImpl<MachineInstr *> &DelInstrs, 122 MachineTraceMetrics::Trace BlockTrace); 123 124 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root, 125 SmallVector<MachineCombinerPattern, 16> &Patterns); 126 }; 127 } 128 129 char MachineCombiner::ID = 0; 130 char &llvm::MachineCombinerID = MachineCombiner::ID; 131 132 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE, 133 "Machine InstCombiner", false, false) 134 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 135 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) 136 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner", 137 false, false) 138 139 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 140 AU.setPreservesCFG(); 141 AU.addPreserved<MachineDominatorTree>(); 142 AU.addRequired<MachineLoopInfo>(); 143 AU.addPreserved<MachineLoopInfo>(); 144 AU.addRequired<MachineTraceMetrics>(); 145 AU.addPreserved<MachineTraceMetrics>(); 146 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 147 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 148 MachineFunctionPass::getAnalysisUsage(AU); 149 } 150 151 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) { 152 MachineInstr *DefInstr = nullptr; 153 // We need a virtual register definition. 154 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) 155 DefInstr = MRI->getUniqueVRegDef(MO.getReg()); 156 // PHI's have no depth etc. 157 if (DefInstr && DefInstr->isPHI()) 158 DefInstr = nullptr; 159 return DefInstr; 160 } 161 162 /// Computes depth of instructions in vector \InsInstr. 163 /// 164 /// \param InsInstrs is a vector of machine instructions 165 /// \param InstrIdxForVirtReg is a dense map of virtual register to index 166 /// of defining machine instruction in \p InsInstrs 167 /// \param BlockTrace is a trace of machine instructions 168 /// 169 /// \returns Depth of last instruction in \InsInstrs ("NewRoot") 170 unsigned 171 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs, 172 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 173 MachineTraceMetrics::Trace BlockTrace) { 174 SmallVector<unsigned, 16> InstrDepth; 175 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 176 "Missing machine model\n"); 177 178 // For each instruction in the new sequence compute the depth based on the 179 // operands. Use the trace information when possible. For new operands which 180 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth 181 for (auto *InstrPtr : InsInstrs) { // for each Use 182 unsigned IDepth = 0; 183 for (const MachineOperand &MO : InstrPtr->operands()) { 184 // Check for virtual register operand. 185 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 186 continue; 187 if (!MO.isUse()) 188 continue; 189 unsigned DepthOp = 0; 190 unsigned LatencyOp = 0; 191 DenseMap<unsigned, unsigned>::iterator II = 192 InstrIdxForVirtReg.find(MO.getReg()); 193 if (II != InstrIdxForVirtReg.end()) { 194 // Operand is new virtual register not in trace 195 assert(II->second < InstrDepth.size() && "Bad Index"); 196 MachineInstr *DefInstr = InsInstrs[II->second]; 197 assert(DefInstr && 198 "There must be a definition for a new virtual register"); 199 DepthOp = InstrDepth[II->second]; 200 int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg()); 201 int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg()); 202 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx, 203 InstrPtr, UseIdx); 204 } else { 205 MachineInstr *DefInstr = getOperandDef(MO); 206 if (DefInstr) { 207 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth; 208 LatencyOp = TSchedModel.computeOperandLatency( 209 DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()), 210 InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg())); 211 } 212 } 213 IDepth = std::max(IDepth, DepthOp + LatencyOp); 214 } 215 InstrDepth.push_back(IDepth); 216 } 217 unsigned NewRootIdx = InsInstrs.size() - 1; 218 return InstrDepth[NewRootIdx]; 219 } 220 221 /// Computes instruction latency as max of latency of defined operands. 222 /// 223 /// \param Root is a machine instruction that could be replaced by NewRoot. 224 /// It is used to compute a more accurate latency information for NewRoot in 225 /// case there is a dependent instruction in the same trace (\p BlockTrace) 226 /// \param NewRoot is the instruction for which the latency is computed 227 /// \param BlockTrace is a trace of machine instructions 228 /// 229 /// \returns Latency of \p NewRoot 230 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot, 231 MachineTraceMetrics::Trace BlockTrace) { 232 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 233 "Missing machine model\n"); 234 235 // Check each definition in NewRoot and compute the latency 236 unsigned NewRootLatency = 0; 237 238 for (const MachineOperand &MO : NewRoot->operands()) { 239 // Check for virtual register operand. 240 if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) 241 continue; 242 if (!MO.isDef()) 243 continue; 244 // Get the first instruction that uses MO 245 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg()); 246 RI++; 247 if (RI == MRI->reg_end()) 248 continue; 249 MachineInstr *UseMO = RI->getParent(); 250 unsigned LatencyOp = 0; 251 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) { 252 LatencyOp = TSchedModel.computeOperandLatency( 253 NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO, 254 UseMO->findRegisterUseOperandIdx(MO.getReg())); 255 } else { 256 LatencyOp = TSchedModel.computeInstrLatency(NewRoot); 257 } 258 NewRootLatency = std::max(NewRootLatency, LatencyOp); 259 } 260 return NewRootLatency; 261 } 262 263 /// The combiner's goal may differ based on which pattern it is attempting 264 /// to optimize. 265 enum class CombinerObjective { 266 MustReduceDepth, // The data dependency chain must be improved. 267 MustReduceRegisterPressure, // The register pressure must be reduced. 268 Default // The critical path must not be lengthened. 269 }; 270 271 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) { 272 // TODO: If C++ ever gets a real enum class, make this part of the 273 // MachineCombinerPattern class. 274 switch (P) { 275 case MachineCombinerPattern::REASSOC_AX_BY: 276 case MachineCombinerPattern::REASSOC_AX_YB: 277 case MachineCombinerPattern::REASSOC_XA_BY: 278 case MachineCombinerPattern::REASSOC_XA_YB: 279 case MachineCombinerPattern::REASSOC_XY_AMM_BMM: 280 case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: 281 return CombinerObjective::MustReduceDepth; 282 case MachineCombinerPattern::REASSOC_XY_BCA: 283 case MachineCombinerPattern::REASSOC_XY_BAC: 284 return CombinerObjective::MustReduceRegisterPressure; 285 default: 286 return CombinerObjective::Default; 287 } 288 } 289 290 /// Estimate the latency of the new and original instruction sequence by summing 291 /// up the latencies of the inserted and deleted instructions. This assumes 292 /// that the inserted and deleted instructions are dependent instruction chains, 293 /// which might not hold in all cases. 294 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences( 295 MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs, 296 SmallVectorImpl<MachineInstr *> &DelInstrs, 297 MachineTraceMetrics::Trace BlockTrace) { 298 assert(!InsInstrs.empty() && "Only support sequences that insert instrs."); 299 unsigned NewRootLatency = 0; 300 // NewRoot is the last instruction in the \p InsInstrs vector. 301 MachineInstr *NewRoot = InsInstrs.back(); 302 for (unsigned i = 0; i < InsInstrs.size() - 1; i++) 303 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]); 304 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace); 305 306 unsigned RootLatency = 0; 307 for (auto I : DelInstrs) 308 RootLatency += TSchedModel.computeInstrLatency(I); 309 310 return {NewRootLatency, RootLatency}; 311 } 312 313 bool MachineCombiner::reduceRegisterPressure( 314 MachineInstr &Root, MachineBasicBlock *MBB, 315 SmallVectorImpl<MachineInstr *> &InsInstrs, 316 SmallVectorImpl<MachineInstr *> &DelInstrs, 317 MachineCombinerPattern Pattern) { 318 // FIXME: for now, we don't do any check for the register pressure patterns. 319 // We treat them as always profitable. But we can do better if we make 320 // RegPressureTracker class be aware of TIE attribute. Then we can get an 321 // accurate compare of register pressure with DelInstrs or InsInstrs. 322 return true; 323 } 324 325 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root. 326 /// The new code sequence ends in MI NewRoot. A necessary condition for the new 327 /// sequence to replace the old sequence is that it cannot lengthen the critical 328 /// path. The definition of "improve" may be restricted by specifying that the 329 /// new path improves the data dependency chain (MustReduceDepth). 330 bool MachineCombiner::improvesCriticalPathLen( 331 MachineBasicBlock *MBB, MachineInstr *Root, 332 MachineTraceMetrics::Trace BlockTrace, 333 SmallVectorImpl<MachineInstr *> &InsInstrs, 334 SmallVectorImpl<MachineInstr *> &DelInstrs, 335 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 336 MachineCombinerPattern Pattern, 337 bool SlackIsAccurate) { 338 assert(TSchedModel.hasInstrSchedModelOrItineraries() && 339 "Missing machine model\n"); 340 // Get depth and latency of NewRoot and Root. 341 unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace); 342 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth; 343 344 LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: " 345 << NewRootDepth << "\tRootDepth: " << RootDepth); 346 347 // For a transform such as reassociation, the cost equation is 348 // conservatively calculated so that we must improve the depth (data 349 // dependency cycles) in the critical path to proceed with the transform. 350 // Being conservative also protects against inaccuracies in the underlying 351 // machine trace metrics and CPU models. 352 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) { 353 LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth "); 354 LLVM_DEBUG(NewRootDepth < RootDepth 355 ? dbgs() << "\t and it does it\n" 356 : dbgs() << "\t but it does NOT do it\n"); 357 return NewRootDepth < RootDepth; 358 } 359 360 // A more flexible cost calculation for the critical path includes the slack 361 // of the original code sequence. This may allow the transform to proceed 362 // even if the instruction depths (data dependency cycles) become worse. 363 364 // Account for the latency of the inserted and deleted instructions by 365 unsigned NewRootLatency, RootLatency; 366 std::tie(NewRootLatency, RootLatency) = 367 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace); 368 369 unsigned RootSlack = BlockTrace.getInstrSlack(*Root); 370 unsigned NewCycleCount = NewRootDepth + NewRootLatency; 371 unsigned OldCycleCount = 372 RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0); 373 LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency 374 << "\tRootLatency: " << RootLatency << "\n\tRootSlack: " 375 << RootSlack << " SlackIsAccurate=" << SlackIsAccurate 376 << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount 377 << "\n\tRootDepth + RootLatency + RootSlack = " 378 << OldCycleCount;); 379 LLVM_DEBUG(NewCycleCount <= OldCycleCount 380 ? dbgs() << "\n\t It IMPROVES PathLen because" 381 : dbgs() << "\n\t It DOES NOT improve PathLen because"); 382 LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount 383 << ", OldCycleCount = " << OldCycleCount << "\n"); 384 385 return NewCycleCount <= OldCycleCount; 386 } 387 388 /// helper routine to convert instructions into SC 389 void MachineCombiner::instr2instrSC( 390 SmallVectorImpl<MachineInstr *> &Instrs, 391 SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) { 392 for (auto *InstrPtr : Instrs) { 393 unsigned Opc = InstrPtr->getOpcode(); 394 unsigned Idx = TII->get(Opc).getSchedClass(); 395 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx); 396 InstrsSC.push_back(SC); 397 } 398 } 399 400 /// True when the new instructions do not increase resource length 401 bool MachineCombiner::preservesResourceLen( 402 MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, 403 SmallVectorImpl<MachineInstr *> &InsInstrs, 404 SmallVectorImpl<MachineInstr *> &DelInstrs) { 405 if (!TSchedModel.hasInstrSchedModel()) 406 return true; 407 408 // Compute current resource length 409 410 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB); 411 SmallVector <const MachineBasicBlock *, 1> MBBarr; 412 MBBarr.push_back(MBB); 413 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr); 414 415 // Deal with SC rather than Instructions. 416 SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC; 417 SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC; 418 419 instr2instrSC(InsInstrs, InsInstrsSC); 420 instr2instrSC(DelInstrs, DelInstrsSC); 421 422 ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC); 423 ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC); 424 425 // Compute new resource length. 426 unsigned ResLenAfterCombine = 427 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr); 428 429 LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: " 430 << ResLenBeforeCombine 431 << " and after: " << ResLenAfterCombine << "\n";); 432 LLVM_DEBUG( 433 ResLenAfterCombine <= 434 ResLenBeforeCombine + TII->getExtendResourceLenLimit() 435 ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n" 436 : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource " 437 "Length\n"); 438 439 return ResLenAfterCombine <= 440 ResLenBeforeCombine + TII->getExtendResourceLenLimit(); 441 } 442 443 /// \returns true when new instruction sequence should be generated 444 /// independent if it lengthens critical path or not 445 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize, 446 bool OptForSize) { 447 if (OptForSize && (NewSize < OldSize)) 448 return true; 449 if (!TSchedModel.hasInstrSchedModelOrItineraries()) 450 return true; 451 return false; 452 } 453 454 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction 455 /// depths if requested. 456 /// 457 /// \param MBB basic block to insert instructions in 458 /// \param MI current machine instruction 459 /// \param InsInstrs new instructions to insert in \p MBB 460 /// \param DelInstrs instruction to delete from \p MBB 461 /// \param MinInstr is a pointer to the machine trace information 462 /// \param RegUnits set of live registers, needed to compute instruction depths 463 /// \param TII is target instruction info, used to call target hook 464 /// \param Pattern is used to call target hook finalizeInsInstrs 465 /// \param IncrementalUpdate if true, compute instruction depths incrementally, 466 /// otherwise invalidate the trace 467 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI, 468 SmallVector<MachineInstr *, 16> InsInstrs, 469 SmallVector<MachineInstr *, 16> DelInstrs, 470 MachineTraceMetrics::Ensemble *MinInstr, 471 SparseSet<LiveRegUnit> &RegUnits, 472 const TargetInstrInfo *TII, 473 MachineCombinerPattern Pattern, 474 bool IncrementalUpdate) { 475 // If we want to fix up some placeholder for some target, do it now. 476 // We need this because in genAlternativeCodeSequence, we have not decided the 477 // better pattern InsInstrs or DelInstrs, so we don't want generate some 478 // sideeffect to the function. For example we need to delay the constant pool 479 // entry creation here after InsInstrs is selected as better pattern. 480 // Otherwise the constant pool entry created for InsInstrs will not be deleted 481 // even if InsInstrs is not the better pattern. 482 TII->finalizeInsInstrs(MI, Pattern, InsInstrs); 483 484 for (auto *InstrPtr : InsInstrs) 485 MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr); 486 487 for (auto *InstrPtr : DelInstrs) { 488 InstrPtr->eraseFromParent(); 489 // Erase all LiveRegs defined by the removed instruction 490 for (auto I = RegUnits.begin(); I != RegUnits.end(); ) { 491 if (I->MI == InstrPtr) 492 I = RegUnits.erase(I); 493 else 494 I++; 495 } 496 } 497 498 if (IncrementalUpdate) 499 for (auto *InstrPtr : InsInstrs) 500 MinInstr->updateDepth(MBB, *InstrPtr, RegUnits); 501 else 502 MinInstr->invalidate(MBB); 503 504 NumInstCombined++; 505 } 506 507 // Check that the difference between original and new latency is decreasing for 508 // later patterns. This helps to discover sub-optimal pattern orderings. 509 void MachineCombiner::verifyPatternOrder( 510 MachineBasicBlock *MBB, MachineInstr &Root, 511 SmallVector<MachineCombinerPattern, 16> &Patterns) { 512 long PrevLatencyDiff = std::numeric_limits<long>::max(); 513 (void)PrevLatencyDiff; // Variable is used in assert only. 514 for (auto P : Patterns) { 515 SmallVector<MachineInstr *, 16> InsInstrs; 516 SmallVector<MachineInstr *, 16> DelInstrs; 517 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 518 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs, 519 InstrIdxForVirtReg); 520 // Found pattern, but did not generate alternative sequence. 521 // This can happen e.g. when an immediate could not be materialized 522 // in a single instruction. 523 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries()) 524 continue; 525 526 unsigned NewRootLatency, RootLatency; 527 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences( 528 Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB)); 529 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency); 530 assert(CurrentLatencyDiff <= PrevLatencyDiff && 531 "Current pattern is better than previous pattern."); 532 PrevLatencyDiff = CurrentLatencyDiff; 533 } 534 } 535 536 /// Substitute a slow code sequence with a faster one by 537 /// evaluating instruction combining pattern. 538 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction 539 /// combining based on machine trace metrics. Only combine a sequence of 540 /// instructions when this neither lengthens the critical path nor increases 541 /// resource pressure. When optimizing for codesize always combine when the new 542 /// sequence is shorter. 543 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) { 544 bool Changed = false; 545 LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n"); 546 547 bool IncrementalUpdate = false; 548 auto BlockIter = MBB->begin(); 549 decltype(BlockIter) LastUpdate; 550 // Check if the block is in a loop. 551 const MachineLoop *ML = MLI->getLoopFor(MBB); 552 if (!MinInstr) 553 MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount); 554 555 SparseSet<LiveRegUnit> RegUnits; 556 RegUnits.setUniverse(TRI->getNumRegUnits()); 557 558 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI); 559 560 bool DoRegPressureReduce = 561 TII->shouldReduceRegisterPressure(MBB, &RegClassInfo); 562 563 while (BlockIter != MBB->end()) { 564 auto &MI = *BlockIter++; 565 SmallVector<MachineCombinerPattern, 16> Patterns; 566 // The motivating example is: 567 // 568 // MUL Other MUL_op1 MUL_op2 Other 569 // \ / \ | / 570 // ADD/SUB => MADD/MSUB 571 // (=Root) (=NewRoot) 572 573 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is 574 // usually beneficial for code size it unfortunately can hurt performance 575 // when the ADD is on the critical path, but the MUL is not. With the 576 // substitution the MUL becomes part of the critical path (in form of the 577 // MADD) and can lengthen it on architectures where the MADD latency is 578 // longer than the ADD latency. 579 // 580 // For each instruction we check if it can be the root of a combiner 581 // pattern. Then for each pattern the new code sequence in form of MI is 582 // generated and evaluated. When the efficiency criteria (don't lengthen 583 // critical path, don't use more resources) is met the new sequence gets 584 // hooked up into the basic block before the old sequence is removed. 585 // 586 // The algorithm does not try to evaluate all patterns and pick the best. 587 // This is only an artificial restriction though. In practice there is 588 // mostly one pattern, and getMachineCombinerPatterns() can order patterns 589 // based on an internal cost heuristic. If 590 // machine-combiner-verify-pattern-order is enabled, all patterns are 591 // checked to ensure later patterns do not provide better latency savings. 592 593 if (!TII->getMachineCombinerPatterns(MI, Patterns, DoRegPressureReduce)) 594 continue; 595 596 if (VerifyPatternOrder) 597 verifyPatternOrder(MBB, MI, Patterns); 598 599 for (auto P : Patterns) { 600 SmallVector<MachineInstr *, 16> InsInstrs; 601 SmallVector<MachineInstr *, 16> DelInstrs; 602 DenseMap<unsigned, unsigned> InstrIdxForVirtReg; 603 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs, 604 InstrIdxForVirtReg); 605 unsigned NewInstCount = InsInstrs.size(); 606 unsigned OldInstCount = DelInstrs.size(); 607 // Found pattern, but did not generate alternative sequence. 608 // This can happen e.g. when an immediate could not be materialized 609 // in a single instruction. 610 if (!NewInstCount) 611 continue; 612 613 LLVM_DEBUG(if (dump_intrs) { 614 dbgs() << "\tFor the Pattern (" << (int)P 615 << ") these instructions could be removed\n"; 616 for (auto const *InstrPtr : DelInstrs) 617 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 618 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 619 dbgs() << "\tThese instructions could replace the removed ones\n"; 620 for (auto const *InstrPtr : InsInstrs) 621 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, 622 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); 623 }); 624 625 bool SubstituteAlways = false; 626 if (ML && TII->isThroughputPattern(P)) 627 SubstituteAlways = true; 628 629 if (IncrementalUpdate && LastUpdate != BlockIter) { 630 // Update depths since the last incremental update. 631 MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits); 632 LastUpdate = BlockIter; 633 } 634 635 if (DoRegPressureReduce && 636 getCombinerObjective(P) == 637 CombinerObjective::MustReduceRegisterPressure) { 638 if (MBB->size() > inc_threshold) { 639 // Use incremental depth updates for basic blocks above threshold 640 IncrementalUpdate = true; 641 LastUpdate = BlockIter; 642 } 643 if (reduceRegisterPressure(MI, MBB, InsInstrs, DelInstrs, P)) { 644 // Replace DelInstrs with InsInstrs. 645 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, 646 RegUnits, TII, P, IncrementalUpdate); 647 Changed |= true; 648 649 // Go back to previous instruction as it may have ILP reassociation 650 // opportunity. 651 BlockIter--; 652 break; 653 } 654 } 655 656 // Substitute when we optimize for codesize and the new sequence has 657 // fewer instructions OR 658 // the new sequence neither lengthens the critical path nor increases 659 // resource pressure. 660 if (SubstituteAlways || 661 doSubstitute(NewInstCount, OldInstCount, OptForSize)) { 662 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, 663 RegUnits, TII, P, IncrementalUpdate); 664 // Eagerly stop after the first pattern fires. 665 Changed = true; 666 break; 667 } else { 668 // For big basic blocks, we only compute the full trace the first time 669 // we hit this. We do not invalidate the trace, but instead update the 670 // instruction depths incrementally. 671 // NOTE: Only the instruction depths up to MI are accurate. All other 672 // trace information is not updated. 673 MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB); 674 Traces->verifyAnalysis(); 675 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs, 676 InstrIdxForVirtReg, P, 677 !IncrementalUpdate) && 678 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) { 679 if (MBB->size() > inc_threshold) { 680 // Use incremental depth updates for basic blocks above treshold 681 IncrementalUpdate = true; 682 LastUpdate = BlockIter; 683 } 684 685 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, 686 RegUnits, TII, P, IncrementalUpdate); 687 688 // Eagerly stop after the first pattern fires. 689 Changed = true; 690 break; 691 } 692 // Cleanup instructions of the alternative code sequence. There is no 693 // use for them. 694 MachineFunction *MF = MBB->getParent(); 695 for (auto *InstrPtr : InsInstrs) 696 MF->deleteMachineInstr(InstrPtr); 697 } 698 InstrIdxForVirtReg.clear(); 699 } 700 } 701 702 if (Changed && IncrementalUpdate) 703 Traces->invalidate(MBB); 704 return Changed; 705 } 706 707 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) { 708 STI = &MF.getSubtarget(); 709 TII = STI->getInstrInfo(); 710 TRI = STI->getRegisterInfo(); 711 SchedModel = STI->getSchedModel(); 712 TSchedModel.init(STI); 713 MRI = &MF.getRegInfo(); 714 MLI = &getAnalysis<MachineLoopInfo>(); 715 Traces = &getAnalysis<MachineTraceMetrics>(); 716 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 717 MBFI = (PSI && PSI->hasProfileSummary()) ? 718 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 719 nullptr; 720 MinInstr = nullptr; 721 OptSize = MF.getFunction().hasOptSize(); 722 RegClassInfo.runOnMachineFunction(MF); 723 724 LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n'); 725 if (!TII->useMachineCombiner()) { 726 LLVM_DEBUG( 727 dbgs() 728 << " Skipping pass: Target does not support machine combiner\n"); 729 return false; 730 } 731 732 bool Changed = false; 733 734 // Try to combine instructions. 735 for (auto &MBB : MF) 736 Changed |= combineInstructions(&MBB); 737 738 return Changed; 739 } 740