xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineCSE.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/MC/MCInstrDesc.h"
38 #include "llvm/MC/MCRegister.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/RecyclingAllocator.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <cassert>
46 #include <iterator>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "machine-cse"
53 
54 STATISTIC(NumCoalesces, "Number of copies coalesced");
55 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
56 STATISTIC(NumPREs,      "Number of partial redundant expression"
57                         " transformed to fully redundant");
58 STATISTIC(NumPhysCSEs,
59           "Number of physreg referencing common subexpr eliminated");
60 STATISTIC(NumCrossBBCSEs,
61           "Number of cross-MBB physreg referencing CS eliminated");
62 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
63 
64 namespace {
65 
66   class MachineCSE : public MachineFunctionPass {
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     AliasAnalysis *AA;
70     MachineDominatorTree *DT;
71     MachineRegisterInfo *MRI;
72     MachineBlockFrequencyInfo *MBFI;
73 
74   public:
75     static char ID; // Pass identification
76 
77     MachineCSE() : MachineFunctionPass(ID) {
78       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
79     }
80 
81     bool runOnMachineFunction(MachineFunction &MF) override;
82 
83     void getAnalysisUsage(AnalysisUsage &AU) const override {
84       AU.setPreservesCFG();
85       MachineFunctionPass::getAnalysisUsage(AU);
86       AU.addRequired<AAResultsWrapperPass>();
87       AU.addPreservedID(MachineLoopInfoID);
88       AU.addRequired<MachineDominatorTree>();
89       AU.addPreserved<MachineDominatorTree>();
90       AU.addRequired<MachineBlockFrequencyInfo>();
91       AU.addPreserved<MachineBlockFrequencyInfo>();
92     }
93 
94     void releaseMemory() override {
95       ScopeMap.clear();
96       PREMap.clear();
97       Exps.clear();
98     }
99 
100   private:
101     using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
102                             ScopedHashTableVal<MachineInstr *, unsigned>>;
103     using ScopedHTType =
104         ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
105                         AllocatorTy>;
106     using ScopeType = ScopedHTType::ScopeTy;
107     using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
108 
109     unsigned LookAheadLimit = 0;
110     DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
111     DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
112         PREMap;
113     ScopedHTType VNT;
114     SmallVector<MachineInstr *, 64> Exps;
115     unsigned CurrVN = 0;
116 
117     bool PerformTrivialCopyPropagation(MachineInstr *MI,
118                                        MachineBasicBlock *MBB);
119     bool isPhysDefTriviallyDead(MCRegister Reg,
120                                 MachineBasicBlock::const_iterator I,
121                                 MachineBasicBlock::const_iterator E) const;
122     bool hasLivePhysRegDefUses(const MachineInstr *MI,
123                                const MachineBasicBlock *MBB,
124                                SmallSet<MCRegister, 8> &PhysRefs,
125                                PhysDefVector &PhysDefs, bool &PhysUseDef) const;
126     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
127                           SmallSet<MCRegister, 8> &PhysRefs,
128                           PhysDefVector &PhysDefs, bool &NonLocal) const;
129     bool isCSECandidate(MachineInstr *MI);
130     bool isProfitableToCSE(Register CSReg, Register Reg,
131                            MachineBasicBlock *CSBB, MachineInstr *MI);
132     void EnterScope(MachineBasicBlock *MBB);
133     void ExitScope(MachineBasicBlock *MBB);
134     bool ProcessBlockCSE(MachineBasicBlock *MBB);
135     void ExitScopeIfDone(MachineDomTreeNode *Node,
136                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
137     bool PerformCSE(MachineDomTreeNode *Node);
138 
139     bool isPRECandidate(MachineInstr *MI);
140     bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
141     bool PerformSimplePRE(MachineDominatorTree *DT);
142     /// Heuristics to see if it's profitable to move common computations of MBB
143     /// and MBB1 to CandidateBB.
144     bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
145                                  MachineBasicBlock *MBB,
146                                  MachineBasicBlock *MBB1);
147   };
148 
149 } // end anonymous namespace
150 
151 char MachineCSE::ID = 0;
152 
153 char &llvm::MachineCSEID = MachineCSE::ID;
154 
155 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
156                       "Machine Common Subexpression Elimination", false, false)
157 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
158 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
159 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
160                     "Machine Common Subexpression Elimination", false, false)
161 
162 /// The source register of a COPY machine instruction can be propagated to all
163 /// its users, and this propagation could increase the probability of finding
164 /// common subexpressions. If the COPY has only one user, the COPY itself can
165 /// be removed.
166 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
167                                                MachineBasicBlock *MBB) {
168   bool Changed = false;
169   for (MachineOperand &MO : MI->operands()) {
170     if (!MO.isReg() || !MO.isUse())
171       continue;
172     Register Reg = MO.getReg();
173     if (!Register::isVirtualRegister(Reg))
174       continue;
175     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
176     MachineInstr *DefMI = MRI->getVRegDef(Reg);
177     if (!DefMI->isCopy())
178       continue;
179     Register SrcReg = DefMI->getOperand(1).getReg();
180     if (!Register::isVirtualRegister(SrcReg))
181       continue;
182     if (DefMI->getOperand(0).getSubReg())
183       continue;
184     // FIXME: We should trivially coalesce subregister copies to expose CSE
185     // opportunities on instructions with truncated operands (see
186     // cse-add-with-overflow.ll). This can be done here as follows:
187     // if (SrcSubReg)
188     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
189     //                                     SrcSubReg);
190     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
191     //
192     // The 2-addr pass has been updated to handle coalesced subregs. However,
193     // some machine-specific code still can't handle it.
194     // To handle it properly we also need a way find a constrained subregister
195     // class given a super-reg class and subreg index.
196     if (DefMI->getOperand(1).getSubReg())
197       continue;
198     if (!MRI->constrainRegAttrs(SrcReg, Reg))
199       continue;
200     LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
201     LLVM_DEBUG(dbgs() << "***     to: " << *MI);
202 
203     // Propagate SrcReg of copies to MI.
204     MO.setReg(SrcReg);
205     MRI->clearKillFlags(SrcReg);
206     // Coalesce single use copies.
207     if (OnlyOneUse) {
208       // If (and only if) we've eliminated all uses of the copy, also
209       // copy-propagate to any debug-users of MI, or they'll be left using
210       // an undefined value.
211       DefMI->changeDebugValuesDefReg(SrcReg);
212 
213       DefMI->eraseFromParent();
214       ++NumCoalesces;
215     }
216     Changed = true;
217   }
218 
219   return Changed;
220 }
221 
222 bool MachineCSE::isPhysDefTriviallyDead(
223     MCRegister Reg, MachineBasicBlock::const_iterator I,
224     MachineBasicBlock::const_iterator E) const {
225   unsigned LookAheadLeft = LookAheadLimit;
226   while (LookAheadLeft) {
227     // Skip over dbg_value's.
228     I = skipDebugInstructionsForward(I, E);
229 
230     if (I == E)
231       // Reached end of block, we don't know if register is dead or not.
232       return false;
233 
234     bool SeenDef = false;
235     for (const MachineOperand &MO : I->operands()) {
236       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
237         SeenDef = true;
238       if (!MO.isReg() || !MO.getReg())
239         continue;
240       if (!TRI->regsOverlap(MO.getReg(), Reg))
241         continue;
242       if (MO.isUse())
243         // Found a use!
244         return false;
245       SeenDef = true;
246     }
247     if (SeenDef)
248       // See a def of Reg (or an alias) before encountering any use, it's
249       // trivially dead.
250       return true;
251 
252     --LookAheadLeft;
253     ++I;
254   }
255   return false;
256 }
257 
258 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg,
259                                             const MachineFunction &MF,
260                                             const TargetRegisterInfo &TRI) {
261   // MachineRegisterInfo::isConstantPhysReg directly called by
262   // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
263   // reserved registers to be frozen. That doesn't cause a problem  post-ISel as
264   // most (if not all) targets freeze reserved registers right after ISel.
265   //
266   // It does cause issues mid-GlobalISel, however, hence the additional
267   // reservedRegsFrozen check.
268   const MachineRegisterInfo &MRI = MF.getRegInfo();
269   return TRI.isCallerPreservedPhysReg(Reg, MF) ||
270          (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
271 }
272 
273 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
274 /// physical registers (except for dead defs of physical registers). It also
275 /// returns the physical register def by reference if it's the only one and the
276 /// instruction does not uses a physical register.
277 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
278                                        const MachineBasicBlock *MBB,
279                                        SmallSet<MCRegister, 8> &PhysRefs,
280                                        PhysDefVector &PhysDefs,
281                                        bool &PhysUseDef) const {
282   // First, add all uses to PhysRefs.
283   for (const MachineOperand &MO : MI->operands()) {
284     if (!MO.isReg() || MO.isDef())
285       continue;
286     Register Reg = MO.getReg();
287     if (!Reg)
288       continue;
289     if (Register::isVirtualRegister(Reg))
290       continue;
291     // Reading either caller preserved or constant physregs is ok.
292     if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), *MI->getMF(), *TRI))
293       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
294         PhysRefs.insert(*AI);
295   }
296 
297   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
298   // (which currently contains only uses), set the PhysUseDef flag.
299   PhysUseDef = false;
300   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
301   for (const auto &MOP : llvm::enumerate(MI->operands())) {
302     const MachineOperand &MO = MOP.value();
303     if (!MO.isReg() || !MO.isDef())
304       continue;
305     Register Reg = MO.getReg();
306     if (!Reg)
307       continue;
308     if (Register::isVirtualRegister(Reg))
309       continue;
310     // Check against PhysRefs even if the def is "dead".
311     if (PhysRefs.count(Reg.asMCReg()))
312       PhysUseDef = true;
313     // If the def is dead, it's ok. But the def may not marked "dead". That's
314     // common since this pass is run before livevariables. We can scan
315     // forward a few instructions and check if it is obviously dead.
316     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end()))
317       PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
318   }
319 
320   // Finally, add all defs to PhysRefs as well.
321   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
322     for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
323          ++AI)
324       PhysRefs.insert(*AI);
325 
326   return !PhysRefs.empty();
327 }
328 
329 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
330                                   SmallSet<MCRegister, 8> &PhysRefs,
331                                   PhysDefVector &PhysDefs,
332                                   bool &NonLocal) const {
333   // For now conservatively returns false if the common subexpression is
334   // not in the same basic block as the given instruction. The only exception
335   // is if the common subexpression is in the sole predecessor block.
336   const MachineBasicBlock *MBB = MI->getParent();
337   const MachineBasicBlock *CSMBB = CSMI->getParent();
338 
339   bool CrossMBB = false;
340   if (CSMBB != MBB) {
341     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
342       return false;
343 
344     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
345       if (MRI->isAllocatable(PhysDefs[i].second) ||
346           MRI->isReserved(PhysDefs[i].second))
347         // Avoid extending live range of physical registers if they are
348         //allocatable or reserved.
349         return false;
350     }
351     CrossMBB = true;
352   }
353   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
354   MachineBasicBlock::const_iterator E = MI;
355   MachineBasicBlock::const_iterator EE = CSMBB->end();
356   unsigned LookAheadLeft = LookAheadLimit;
357   while (LookAheadLeft) {
358     // Skip over dbg_value's.
359     while (I != E && I != EE && I->isDebugInstr())
360       ++I;
361 
362     if (I == EE) {
363       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
364       (void)CrossMBB;
365       CrossMBB = false;
366       NonLocal = true;
367       I = MBB->begin();
368       EE = MBB->end();
369       continue;
370     }
371 
372     if (I == E)
373       return true;
374 
375     for (const MachineOperand &MO : I->operands()) {
376       // RegMasks go on instructions like calls that clobber lots of physregs.
377       // Don't attempt to CSE across such an instruction.
378       if (MO.isRegMask())
379         return false;
380       if (!MO.isReg() || !MO.isDef())
381         continue;
382       Register MOReg = MO.getReg();
383       if (Register::isVirtualRegister(MOReg))
384         continue;
385       if (PhysRefs.count(MOReg.asMCReg()))
386         return false;
387     }
388 
389     --LookAheadLeft;
390     ++I;
391   }
392 
393   return false;
394 }
395 
396 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
397   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
398       MI->isInlineAsm() || MI->isDebugInstr())
399     return false;
400 
401   // Ignore copies.
402   if (MI->isCopyLike())
403     return false;
404 
405   // Ignore stuff that we obviously can't move.
406   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
407       MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
408     return false;
409 
410   if (MI->mayLoad()) {
411     // Okay, this instruction does a load. As a refinement, we allow the target
412     // to decide whether the loaded value is actually a constant. If so, we can
413     // actually use it as a load.
414     if (!MI->isDereferenceableInvariantLoad(AA))
415       // FIXME: we should be able to hoist loads with no other side effects if
416       // there are no other instructions which can change memory in this loop.
417       // This is a trivial form of alias analysis.
418       return false;
419   }
420 
421   // Ignore stack guard loads, otherwise the register that holds CSEed value may
422   // be spilled and get loaded back with corrupted data.
423   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
424     return false;
425 
426   return true;
427 }
428 
429 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
430 /// common expression that defines Reg. CSBB is basic block where CSReg is
431 /// defined.
432 bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg,
433                                    MachineBasicBlock *CSBB, MachineInstr *MI) {
434   // FIXME: Heuristics that works around the lack the live range splitting.
435 
436   // If CSReg is used at all uses of Reg, CSE should not increase register
437   // pressure of CSReg.
438   bool MayIncreasePressure = true;
439   if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) {
440     MayIncreasePressure = false;
441     SmallPtrSet<MachineInstr*, 8> CSUses;
442     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
443       CSUses.insert(&MI);
444     }
445     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
446       if (!CSUses.count(&MI)) {
447         MayIncreasePressure = true;
448         break;
449       }
450     }
451   }
452   if (!MayIncreasePressure) return true;
453 
454   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
455   // an immediate predecessor. We don't want to increase register pressure and
456   // end up causing other computation to be spilled.
457   if (TII->isAsCheapAsAMove(*MI)) {
458     MachineBasicBlock *BB = MI->getParent();
459     if (CSBB != BB && !CSBB->isSuccessor(BB))
460       return false;
461   }
462 
463   // Heuristics #2: If the expression doesn't not use a vr and the only use
464   // of the redundant computation are copies, do not cse.
465   bool HasVRegUse = false;
466   for (const MachineOperand &MO : MI->operands()) {
467     if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) {
468       HasVRegUse = true;
469       break;
470     }
471   }
472   if (!HasVRegUse) {
473     bool HasNonCopyUse = false;
474     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
475       // Ignore copies.
476       if (!MI.isCopyLike()) {
477         HasNonCopyUse = true;
478         break;
479       }
480     }
481     if (!HasNonCopyUse)
482       return false;
483   }
484 
485   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
486   // it unless the defined value is already used in the BB of the new use.
487   bool HasPHI = false;
488   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
489     HasPHI |= UseMI.isPHI();
490     if (UseMI.getParent() == MI->getParent())
491       return true;
492   }
493 
494   return !HasPHI;
495 }
496 
497 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
498   LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
499   ScopeType *Scope = new ScopeType(VNT);
500   ScopeMap[MBB] = Scope;
501 }
502 
503 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
504   LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
505   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
506   assert(SI != ScopeMap.end());
507   delete SI->second;
508   ScopeMap.erase(SI);
509 }
510 
511 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
512   bool Changed = false;
513 
514   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
515   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
516   SmallVector<unsigned, 2> ImplicitDefs;
517   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
518     if (!isCSECandidate(&MI))
519       continue;
520 
521     bool FoundCSE = VNT.count(&MI);
522     if (!FoundCSE) {
523       // Using trivial copy propagation to find more CSE opportunities.
524       if (PerformTrivialCopyPropagation(&MI, MBB)) {
525         Changed = true;
526 
527         // After coalescing MI itself may become a copy.
528         if (MI.isCopyLike())
529           continue;
530 
531         // Try again to see if CSE is possible.
532         FoundCSE = VNT.count(&MI);
533       }
534     }
535 
536     // Commute commutable instructions.
537     bool Commuted = false;
538     if (!FoundCSE && MI.isCommutable()) {
539       if (MachineInstr *NewMI = TII->commuteInstruction(MI)) {
540         Commuted = true;
541         FoundCSE = VNT.count(NewMI);
542         if (NewMI != &MI) {
543           // New instruction. It doesn't need to be kept.
544           NewMI->eraseFromParent();
545           Changed = true;
546         } else if (!FoundCSE)
547           // MI was changed but it didn't help, commute it back!
548           (void)TII->commuteInstruction(MI);
549       }
550     }
551 
552     // If the instruction defines physical registers and the values *may* be
553     // used, then it's not safe to replace it with a common subexpression.
554     // It's also not safe if the instruction uses physical registers.
555     bool CrossMBBPhysDef = false;
556     SmallSet<MCRegister, 8> PhysRefs;
557     PhysDefVector PhysDefs;
558     bool PhysUseDef = false;
559     if (FoundCSE &&
560         hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) {
561       FoundCSE = false;
562 
563       // ... Unless the CS is local or is in the sole predecessor block
564       // and it also defines the physical register which is not clobbered
565       // in between and the physical register uses were not clobbered.
566       // This can never be the case if the instruction both uses and
567       // defines the same physical register, which was detected above.
568       if (!PhysUseDef) {
569         unsigned CSVN = VNT.lookup(&MI);
570         MachineInstr *CSMI = Exps[CSVN];
571         if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
572           FoundCSE = true;
573       }
574     }
575 
576     if (!FoundCSE) {
577       VNT.insert(&MI, CurrVN++);
578       Exps.push_back(&MI);
579       continue;
580     }
581 
582     // Found a common subexpression, eliminate it.
583     unsigned CSVN = VNT.lookup(&MI);
584     MachineInstr *CSMI = Exps[CSVN];
585     LLVM_DEBUG(dbgs() << "Examining: " << MI);
586     LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
587 
588     // Prevent CSE-ing non-local convergent instructions.
589     // LLVM's current definition of `isConvergent` does not necessarily prove
590     // that non-local CSE is illegal. The following check extends the definition
591     // of `isConvergent` to assume a convergent instruction is dependent not
592     // only on additional conditions, but also on fewer conditions. LLVM does
593     // not have a MachineInstr attribute which expresses this extended
594     // definition, so it's necessary to use `isConvergent` to prevent illegally
595     // CSE-ing the subset of `isConvergent` instructions which do fall into this
596     // extended definition.
597     if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) {
598       LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in "
599                            "different BBs, avoid CSE!\n");
600       VNT.insert(&MI, CurrVN++);
601       Exps.push_back(&MI);
602       continue;
603     }
604 
605     // Check if it's profitable to perform this CSE.
606     bool DoCSE = true;
607     unsigned NumDefs = MI.getNumDefs();
608 
609     for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
610       MachineOperand &MO = MI.getOperand(i);
611       if (!MO.isReg() || !MO.isDef())
612         continue;
613       Register OldReg = MO.getReg();
614       Register NewReg = CSMI->getOperand(i).getReg();
615 
616       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
617       // we should make sure it is not dead at CSMI.
618       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
619         ImplicitDefsToUpdate.push_back(i);
620 
621       // Keep track of implicit defs of CSMI and MI, to clear possibly
622       // made-redundant kill flags.
623       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
624         ImplicitDefs.push_back(OldReg);
625 
626       if (OldReg == NewReg) {
627         --NumDefs;
628         continue;
629       }
630 
631       assert(Register::isVirtualRegister(OldReg) &&
632              Register::isVirtualRegister(NewReg) &&
633              "Do not CSE physical register defs!");
634 
635       if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) {
636         LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
637         DoCSE = false;
638         break;
639       }
640 
641       // Don't perform CSE if the result of the new instruction cannot exist
642       // within the constraints (register class, bank, or low-level type) of
643       // the old instruction.
644       if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
645         LLVM_DEBUG(
646             dbgs() << "*** Not the same register constraints, avoid CSE!\n");
647         DoCSE = false;
648         break;
649       }
650 
651       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
652       --NumDefs;
653     }
654 
655     // Actually perform the elimination.
656     if (DoCSE) {
657       for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
658         unsigned OldReg = CSEPair.first;
659         unsigned NewReg = CSEPair.second;
660         // OldReg may have been unused but is used now, clear the Dead flag
661         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
662         assert(Def != nullptr && "CSEd register has no unique definition?");
663         Def->clearRegisterDeads(NewReg);
664         // Replace with NewReg and clear kill flags which may be wrong now.
665         MRI->replaceRegWith(OldReg, NewReg);
666         MRI->clearKillFlags(NewReg);
667       }
668 
669       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
670       // we should make sure it is not dead at CSMI.
671       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
672         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
673       for (const auto &PhysDef : PhysDefs)
674         if (!MI.getOperand(PhysDef.first).isDead())
675           CSMI->getOperand(PhysDef.first).setIsDead(false);
676 
677       // Go through implicit defs of CSMI and MI, and clear the kill flags on
678       // their uses in all the instructions between CSMI and MI.
679       // We might have made some of the kill flags redundant, consider:
680       //   subs  ... implicit-def %nzcv    <- CSMI
681       //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
682       //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
683       //   csinc ... implicit killed %nzcv
684       // Since we eliminated MI, and reused a register imp-def'd by CSMI
685       // (here %nzcv), that register, if it was killed before MI, should have
686       // that kill flag removed, because it's lifetime was extended.
687       if (CSMI->getParent() == MI.getParent()) {
688         for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II)
689           for (auto ImplicitDef : ImplicitDefs)
690             if (MachineOperand *MO = II->findRegisterUseOperand(
691                     ImplicitDef, /*isKill=*/true, TRI))
692               MO->setIsKill(false);
693       } else {
694         // If the instructions aren't in the same BB, bail out and clear the
695         // kill flag on all uses of the imp-def'd register.
696         for (auto ImplicitDef : ImplicitDefs)
697           MRI->clearKillFlags(ImplicitDef);
698       }
699 
700       if (CrossMBBPhysDef) {
701         // Add physical register defs now coming in from a predecessor to MBB
702         // livein list.
703         while (!PhysDefs.empty()) {
704           auto LiveIn = PhysDefs.pop_back_val();
705           if (!MBB->isLiveIn(LiveIn.second))
706             MBB->addLiveIn(LiveIn.second);
707         }
708         ++NumCrossBBCSEs;
709       }
710 
711       MI.eraseFromParent();
712       ++NumCSEs;
713       if (!PhysRefs.empty())
714         ++NumPhysCSEs;
715       if (Commuted)
716         ++NumCommutes;
717       Changed = true;
718     } else {
719       VNT.insert(&MI, CurrVN++);
720       Exps.push_back(&MI);
721     }
722     CSEPairs.clear();
723     ImplicitDefsToUpdate.clear();
724     ImplicitDefs.clear();
725   }
726 
727   return Changed;
728 }
729 
730 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
731 /// dominator tree node if its a leaf or all of its children are done. Walk
732 /// up the dominator tree to destroy ancestors which are now done.
733 void
734 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
735                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
736   if (OpenChildren[Node])
737     return;
738 
739   // Pop scope.
740   ExitScope(Node->getBlock());
741 
742   // Now traverse upwards to pop ancestors whose offsprings are all done.
743   while (MachineDomTreeNode *Parent = Node->getIDom()) {
744     unsigned Left = --OpenChildren[Parent];
745     if (Left != 0)
746       break;
747     ExitScope(Parent->getBlock());
748     Node = Parent;
749   }
750 }
751 
752 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
753   SmallVector<MachineDomTreeNode*, 32> Scopes;
754   SmallVector<MachineDomTreeNode*, 8> WorkList;
755   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
756 
757   CurrVN = 0;
758 
759   // Perform a DFS walk to determine the order of visit.
760   WorkList.push_back(Node);
761   do {
762     Node = WorkList.pop_back_val();
763     Scopes.push_back(Node);
764     OpenChildren[Node] = Node->getNumChildren();
765     append_range(WorkList, Node->children());
766   } while (!WorkList.empty());
767 
768   // Now perform CSE.
769   bool Changed = false;
770   for (MachineDomTreeNode *Node : Scopes) {
771     MachineBasicBlock *MBB = Node->getBlock();
772     EnterScope(MBB);
773     Changed |= ProcessBlockCSE(MBB);
774     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
775     ExitScopeIfDone(Node, OpenChildren);
776   }
777 
778   return Changed;
779 }
780 
781 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
782 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
783 // to exclude instrs created by PRE that won't be CSEed later.
784 bool MachineCSE::isPRECandidate(MachineInstr *MI) {
785   if (!isCSECandidate(MI) ||
786       MI->isNotDuplicable() ||
787       MI->mayLoad() ||
788       MI->isAsCheapAsAMove() ||
789       MI->getNumDefs() != 1 ||
790       MI->getNumExplicitDefs() != 1)
791     return false;
792 
793   for (const auto &def : MI->defs())
794     if (!Register::isVirtualRegister(def.getReg()))
795       return false;
796 
797   for (const auto &use : MI->uses())
798     if (use.isReg() && !Register::isVirtualRegister(use.getReg()))
799       return false;
800 
801   return true;
802 }
803 
804 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
805                                  MachineBasicBlock *MBB) {
806   bool Changed = false;
807   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
808     if (!isPRECandidate(&MI))
809       continue;
810 
811     if (!PREMap.count(&MI)) {
812       PREMap[&MI] = MBB;
813       continue;
814     }
815 
816     auto MBB1 = PREMap[&MI];
817     assert(
818         !DT->properlyDominates(MBB, MBB1) &&
819         "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
820     auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
821     if (!CMBB->isLegalToHoistInto())
822       continue;
823 
824     if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
825       continue;
826 
827     // Two instrs are partial redundant if their basic blocks are reachable
828     // from one to another but one doesn't dominate another.
829     if (CMBB != MBB1) {
830       auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
831       if (BB != nullptr && BB1 != nullptr &&
832           (isPotentiallyReachable(BB1, BB) ||
833            isPotentiallyReachable(BB, BB1))) {
834         // The following check extends the definition of `isConvergent` to
835         // assume a convergent instruction is dependent not only on additional
836         // conditions, but also on fewer conditions. LLVM does not have a
837         // MachineInstr attribute which expresses this extended definition, so
838         // it's necessary to use `isConvergent` to prevent illegally PRE-ing the
839         // subset of `isConvergent` instructions which do fall into this
840         // extended definition.
841         if (MI.isConvergent() && CMBB != MBB)
842           continue;
843 
844         assert(MI.getOperand(0).isDef() &&
845                "First operand of instr with one explicit def must be this def");
846         Register VReg = MI.getOperand(0).getReg();
847         Register NewReg = MRI->cloneVirtualRegister(VReg);
848         if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI))
849           continue;
850         MachineInstr &NewMI =
851             TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI);
852 
853         // When hoisting, make sure we don't carry the debug location of
854         // the original instruction, as that's not correct and can cause
855         // unexpected jumps when debugging optimized code.
856         auto EmptyDL = DebugLoc();
857         NewMI.setDebugLoc(EmptyDL);
858 
859         NewMI.getOperand(0).setReg(NewReg);
860 
861         PREMap[&MI] = CMBB;
862         ++NumPREs;
863         Changed = true;
864       }
865     }
866   }
867   return Changed;
868 }
869 
870 // This simple PRE (partial redundancy elimination) pass doesn't actually
871 // eliminate partial redundancy but transforms it to full redundancy,
872 // anticipating that the next CSE step will eliminate this created redundancy.
873 // If CSE doesn't eliminate this, than created instruction will remain dead
874 // and eliminated later by Remove Dead Machine Instructions pass.
875 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
876   SmallVector<MachineDomTreeNode *, 32> BBs;
877 
878   PREMap.clear();
879   bool Changed = false;
880   BBs.push_back(DT->getRootNode());
881   do {
882     auto Node = BBs.pop_back_val();
883     append_range(BBs, Node->children());
884 
885     MachineBasicBlock *MBB = Node->getBlock();
886     Changed |= ProcessBlockPRE(DT, MBB);
887 
888   } while (!BBs.empty());
889 
890   return Changed;
891 }
892 
893 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
894                                          MachineBasicBlock *MBB,
895                                          MachineBasicBlock *MBB1) {
896   if (CandidateBB->getParent()->getFunction().hasMinSize())
897     return true;
898   assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
899   assert(DT->dominates(CandidateBB, MBB1) &&
900          "CandidateBB should dominate MBB1");
901   return MBFI->getBlockFreq(CandidateBB) <=
902          MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
903 }
904 
905 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
906   if (skipFunction(MF.getFunction()))
907     return false;
908 
909   TII = MF.getSubtarget().getInstrInfo();
910   TRI = MF.getSubtarget().getRegisterInfo();
911   MRI = &MF.getRegInfo();
912   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
913   DT = &getAnalysis<MachineDominatorTree>();
914   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
915   LookAheadLimit = TII->getMachineCSELookAheadLimit();
916   bool ChangedPRE, ChangedCSE;
917   ChangedPRE = PerformSimplePRE(DT);
918   ChangedCSE = PerformCSE(DT->getRootNode());
919   return ChangedPRE || ChangedCSE;
920 }
921