1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global common subexpression elimination on machine 10 // instructions using a scoped hash table based value numbering scheme. It 11 // must be run while the machine function is still in SSA form. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/ScopedHashTable.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/MC/MCInstrDesc.h" 38 #include "llvm/MC/MCRegister.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/RecyclingAllocator.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <cassert> 46 #include <iterator> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "machine-cse" 53 54 STATISTIC(NumCoalesces, "Number of copies coalesced"); 55 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 56 STATISTIC(NumPREs, "Number of partial redundant expression" 57 " transformed to fully redundant"); 58 STATISTIC(NumPhysCSEs, 59 "Number of physreg referencing common subexpr eliminated"); 60 STATISTIC(NumCrossBBCSEs, 61 "Number of cross-MBB physreg referencing CS eliminated"); 62 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 63 64 namespace { 65 66 class MachineCSE : public MachineFunctionPass { 67 const TargetInstrInfo *TII; 68 const TargetRegisterInfo *TRI; 69 AliasAnalysis *AA; 70 MachineDominatorTree *DT; 71 MachineRegisterInfo *MRI; 72 MachineBlockFrequencyInfo *MBFI; 73 74 public: 75 static char ID; // Pass identification 76 77 MachineCSE() : MachineFunctionPass(ID) { 78 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 79 } 80 81 bool runOnMachineFunction(MachineFunction &MF) override; 82 83 void getAnalysisUsage(AnalysisUsage &AU) const override { 84 AU.setPreservesCFG(); 85 MachineFunctionPass::getAnalysisUsage(AU); 86 AU.addRequired<AAResultsWrapperPass>(); 87 AU.addPreservedID(MachineLoopInfoID); 88 AU.addRequired<MachineDominatorTree>(); 89 AU.addPreserved<MachineDominatorTree>(); 90 AU.addRequired<MachineBlockFrequencyInfo>(); 91 AU.addPreserved<MachineBlockFrequencyInfo>(); 92 } 93 94 void releaseMemory() override { 95 ScopeMap.clear(); 96 PREMap.clear(); 97 Exps.clear(); 98 } 99 100 private: 101 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, 102 ScopedHashTableVal<MachineInstr *, unsigned>>; 103 using ScopedHTType = 104 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, 105 AllocatorTy>; 106 using ScopeType = ScopedHTType::ScopeTy; 107 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>; 108 109 unsigned LookAheadLimit = 0; 110 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; 111 DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait> 112 PREMap; 113 ScopedHTType VNT; 114 SmallVector<MachineInstr *, 64> Exps; 115 unsigned CurrVN = 0; 116 117 bool PerformTrivialCopyPropagation(MachineInstr *MI, 118 MachineBasicBlock *MBB); 119 bool isPhysDefTriviallyDead(MCRegister Reg, 120 MachineBasicBlock::const_iterator I, 121 MachineBasicBlock::const_iterator E) const; 122 bool hasLivePhysRegDefUses(const MachineInstr *MI, 123 const MachineBasicBlock *MBB, 124 SmallSet<MCRegister, 8> &PhysRefs, 125 PhysDefVector &PhysDefs, bool &PhysUseDef) const; 126 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 127 SmallSet<MCRegister, 8> &PhysRefs, 128 PhysDefVector &PhysDefs, bool &NonLocal) const; 129 bool isCSECandidate(MachineInstr *MI); 130 bool isProfitableToCSE(Register CSReg, Register Reg, 131 MachineBasicBlock *CSBB, MachineInstr *MI); 132 void EnterScope(MachineBasicBlock *MBB); 133 void ExitScope(MachineBasicBlock *MBB); 134 bool ProcessBlockCSE(MachineBasicBlock *MBB); 135 void ExitScopeIfDone(MachineDomTreeNode *Node, 136 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 137 bool PerformCSE(MachineDomTreeNode *Node); 138 139 bool isPRECandidate(MachineInstr *MI); 140 bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB); 141 bool PerformSimplePRE(MachineDominatorTree *DT); 142 /// Heuristics to see if it's profitable to move common computations of MBB 143 /// and MBB1 to CandidateBB. 144 bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB, 145 MachineBasicBlock *MBB, 146 MachineBasicBlock *MBB1); 147 }; 148 149 } // end anonymous namespace 150 151 char MachineCSE::ID = 0; 152 153 char &llvm::MachineCSEID = MachineCSE::ID; 154 155 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 156 "Machine Common Subexpression Elimination", false, false) 157 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 158 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 159 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 160 "Machine Common Subexpression Elimination", false, false) 161 162 /// The source register of a COPY machine instruction can be propagated to all 163 /// its users, and this propagation could increase the probability of finding 164 /// common subexpressions. If the COPY has only one user, the COPY itself can 165 /// be removed. 166 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 167 MachineBasicBlock *MBB) { 168 bool Changed = false; 169 for (MachineOperand &MO : MI->operands()) { 170 if (!MO.isReg() || !MO.isUse()) 171 continue; 172 Register Reg = MO.getReg(); 173 if (!Register::isVirtualRegister(Reg)) 174 continue; 175 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 176 MachineInstr *DefMI = MRI->getVRegDef(Reg); 177 if (!DefMI->isCopy()) 178 continue; 179 Register SrcReg = DefMI->getOperand(1).getReg(); 180 if (!Register::isVirtualRegister(SrcReg)) 181 continue; 182 if (DefMI->getOperand(0).getSubReg()) 183 continue; 184 // FIXME: We should trivially coalesce subregister copies to expose CSE 185 // opportunities on instructions with truncated operands (see 186 // cse-add-with-overflow.ll). This can be done here as follows: 187 // if (SrcSubReg) 188 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 189 // SrcSubReg); 190 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 191 // 192 // The 2-addr pass has been updated to handle coalesced subregs. However, 193 // some machine-specific code still can't handle it. 194 // To handle it properly we also need a way find a constrained subregister 195 // class given a super-reg class and subreg index. 196 if (DefMI->getOperand(1).getSubReg()) 197 continue; 198 if (!MRI->constrainRegAttrs(SrcReg, Reg)) 199 continue; 200 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 201 LLVM_DEBUG(dbgs() << "*** to: " << *MI); 202 203 // Propagate SrcReg of copies to MI. 204 MO.setReg(SrcReg); 205 MRI->clearKillFlags(SrcReg); 206 // Coalesce single use copies. 207 if (OnlyOneUse) { 208 // If (and only if) we've eliminated all uses of the copy, also 209 // copy-propagate to any debug-users of MI, or they'll be left using 210 // an undefined value. 211 DefMI->changeDebugValuesDefReg(SrcReg); 212 213 DefMI->eraseFromParent(); 214 ++NumCoalesces; 215 } 216 Changed = true; 217 } 218 219 return Changed; 220 } 221 222 bool MachineCSE::isPhysDefTriviallyDead( 223 MCRegister Reg, MachineBasicBlock::const_iterator I, 224 MachineBasicBlock::const_iterator E) const { 225 unsigned LookAheadLeft = LookAheadLimit; 226 while (LookAheadLeft) { 227 // Skip over dbg_value's. 228 I = skipDebugInstructionsForward(I, E); 229 230 if (I == E) 231 // Reached end of block, we don't know if register is dead or not. 232 return false; 233 234 bool SeenDef = false; 235 for (const MachineOperand &MO : I->operands()) { 236 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 237 SeenDef = true; 238 if (!MO.isReg() || !MO.getReg()) 239 continue; 240 if (!TRI->regsOverlap(MO.getReg(), Reg)) 241 continue; 242 if (MO.isUse()) 243 // Found a use! 244 return false; 245 SeenDef = true; 246 } 247 if (SeenDef) 248 // See a def of Reg (or an alias) before encountering any use, it's 249 // trivially dead. 250 return true; 251 252 --LookAheadLeft; 253 ++I; 254 } 255 return false; 256 } 257 258 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg, 259 const MachineFunction &MF, 260 const TargetRegisterInfo &TRI) { 261 // MachineRegisterInfo::isConstantPhysReg directly called by 262 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the 263 // reserved registers to be frozen. That doesn't cause a problem post-ISel as 264 // most (if not all) targets freeze reserved registers right after ISel. 265 // 266 // It does cause issues mid-GlobalISel, however, hence the additional 267 // reservedRegsFrozen check. 268 const MachineRegisterInfo &MRI = MF.getRegInfo(); 269 return TRI.isCallerPreservedPhysReg(Reg, MF) || 270 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); 271 } 272 273 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 274 /// physical registers (except for dead defs of physical registers). It also 275 /// returns the physical register def by reference if it's the only one and the 276 /// instruction does not uses a physical register. 277 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 278 const MachineBasicBlock *MBB, 279 SmallSet<MCRegister, 8> &PhysRefs, 280 PhysDefVector &PhysDefs, 281 bool &PhysUseDef) const { 282 // First, add all uses to PhysRefs. 283 for (const MachineOperand &MO : MI->operands()) { 284 if (!MO.isReg() || MO.isDef()) 285 continue; 286 Register Reg = MO.getReg(); 287 if (!Reg) 288 continue; 289 if (Register::isVirtualRegister(Reg)) 290 continue; 291 // Reading either caller preserved or constant physregs is ok. 292 if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), *MI->getMF(), *TRI)) 293 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 294 PhysRefs.insert(*AI); 295 } 296 297 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 298 // (which currently contains only uses), set the PhysUseDef flag. 299 PhysUseDef = false; 300 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 301 for (const auto &MOP : llvm::enumerate(MI->operands())) { 302 const MachineOperand &MO = MOP.value(); 303 if (!MO.isReg() || !MO.isDef()) 304 continue; 305 Register Reg = MO.getReg(); 306 if (!Reg) 307 continue; 308 if (Register::isVirtualRegister(Reg)) 309 continue; 310 // Check against PhysRefs even if the def is "dead". 311 if (PhysRefs.count(Reg.asMCReg())) 312 PhysUseDef = true; 313 // If the def is dead, it's ok. But the def may not marked "dead". That's 314 // common since this pass is run before livevariables. We can scan 315 // forward a few instructions and check if it is obviously dead. 316 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end())) 317 PhysDefs.push_back(std::make_pair(MOP.index(), Reg)); 318 } 319 320 // Finally, add all defs to PhysRefs as well. 321 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 322 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid(); 323 ++AI) 324 PhysRefs.insert(*AI); 325 326 return !PhysRefs.empty(); 327 } 328 329 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 330 SmallSet<MCRegister, 8> &PhysRefs, 331 PhysDefVector &PhysDefs, 332 bool &NonLocal) const { 333 // For now conservatively returns false if the common subexpression is 334 // not in the same basic block as the given instruction. The only exception 335 // is if the common subexpression is in the sole predecessor block. 336 const MachineBasicBlock *MBB = MI->getParent(); 337 const MachineBasicBlock *CSMBB = CSMI->getParent(); 338 339 bool CrossMBB = false; 340 if (CSMBB != MBB) { 341 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 342 return false; 343 344 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 345 if (MRI->isAllocatable(PhysDefs[i].second) || 346 MRI->isReserved(PhysDefs[i].second)) 347 // Avoid extending live range of physical registers if they are 348 //allocatable or reserved. 349 return false; 350 } 351 CrossMBB = true; 352 } 353 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 354 MachineBasicBlock::const_iterator E = MI; 355 MachineBasicBlock::const_iterator EE = CSMBB->end(); 356 unsigned LookAheadLeft = LookAheadLimit; 357 while (LookAheadLeft) { 358 // Skip over dbg_value's. 359 while (I != E && I != EE && I->isDebugInstr()) 360 ++I; 361 362 if (I == EE) { 363 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 364 (void)CrossMBB; 365 CrossMBB = false; 366 NonLocal = true; 367 I = MBB->begin(); 368 EE = MBB->end(); 369 continue; 370 } 371 372 if (I == E) 373 return true; 374 375 for (const MachineOperand &MO : I->operands()) { 376 // RegMasks go on instructions like calls that clobber lots of physregs. 377 // Don't attempt to CSE across such an instruction. 378 if (MO.isRegMask()) 379 return false; 380 if (!MO.isReg() || !MO.isDef()) 381 continue; 382 Register MOReg = MO.getReg(); 383 if (Register::isVirtualRegister(MOReg)) 384 continue; 385 if (PhysRefs.count(MOReg.asMCReg())) 386 return false; 387 } 388 389 --LookAheadLeft; 390 ++I; 391 } 392 393 return false; 394 } 395 396 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 397 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 398 MI->isInlineAsm() || MI->isDebugInstr()) 399 return false; 400 401 // Ignore copies. 402 if (MI->isCopyLike()) 403 return false; 404 405 // Ignore stuff that we obviously can't move. 406 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 407 MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects()) 408 return false; 409 410 if (MI->mayLoad()) { 411 // Okay, this instruction does a load. As a refinement, we allow the target 412 // to decide whether the loaded value is actually a constant. If so, we can 413 // actually use it as a load. 414 if (!MI->isDereferenceableInvariantLoad(AA)) 415 // FIXME: we should be able to hoist loads with no other side effects if 416 // there are no other instructions which can change memory in this loop. 417 // This is a trivial form of alias analysis. 418 return false; 419 } 420 421 // Ignore stack guard loads, otherwise the register that holds CSEed value may 422 // be spilled and get loaded back with corrupted data. 423 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 424 return false; 425 426 return true; 427 } 428 429 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 430 /// common expression that defines Reg. CSBB is basic block where CSReg is 431 /// defined. 432 bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg, 433 MachineBasicBlock *CSBB, MachineInstr *MI) { 434 // FIXME: Heuristics that works around the lack the live range splitting. 435 436 // If CSReg is used at all uses of Reg, CSE should not increase register 437 // pressure of CSReg. 438 bool MayIncreasePressure = true; 439 if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) { 440 MayIncreasePressure = false; 441 SmallPtrSet<MachineInstr*, 8> CSUses; 442 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 443 CSUses.insert(&MI); 444 } 445 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 446 if (!CSUses.count(&MI)) { 447 MayIncreasePressure = true; 448 break; 449 } 450 } 451 } 452 if (!MayIncreasePressure) return true; 453 454 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 455 // an immediate predecessor. We don't want to increase register pressure and 456 // end up causing other computation to be spilled. 457 if (TII->isAsCheapAsAMove(*MI)) { 458 MachineBasicBlock *BB = MI->getParent(); 459 if (CSBB != BB && !CSBB->isSuccessor(BB)) 460 return false; 461 } 462 463 // Heuristics #2: If the expression doesn't not use a vr and the only use 464 // of the redundant computation are copies, do not cse. 465 bool HasVRegUse = false; 466 for (const MachineOperand &MO : MI->operands()) { 467 if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) { 468 HasVRegUse = true; 469 break; 470 } 471 } 472 if (!HasVRegUse) { 473 bool HasNonCopyUse = false; 474 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 475 // Ignore copies. 476 if (!MI.isCopyLike()) { 477 HasNonCopyUse = true; 478 break; 479 } 480 } 481 if (!HasNonCopyUse) 482 return false; 483 } 484 485 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 486 // it unless the defined value is already used in the BB of the new use. 487 bool HasPHI = false; 488 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { 489 HasPHI |= UseMI.isPHI(); 490 if (UseMI.getParent() == MI->getParent()) 491 return true; 492 } 493 494 return !HasPHI; 495 } 496 497 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 498 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 499 ScopeType *Scope = new ScopeType(VNT); 500 ScopeMap[MBB] = Scope; 501 } 502 503 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 504 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 505 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 506 assert(SI != ScopeMap.end()); 507 delete SI->second; 508 ScopeMap.erase(SI); 509 } 510 511 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) { 512 bool Changed = false; 513 514 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 515 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 516 SmallVector<unsigned, 2> ImplicitDefs; 517 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 518 MachineInstr *MI = &*I; 519 ++I; 520 521 if (!isCSECandidate(MI)) 522 continue; 523 524 bool FoundCSE = VNT.count(MI); 525 if (!FoundCSE) { 526 // Using trivial copy propagation to find more CSE opportunities. 527 if (PerformTrivialCopyPropagation(MI, MBB)) { 528 Changed = true; 529 530 // After coalescing MI itself may become a copy. 531 if (MI->isCopyLike()) 532 continue; 533 534 // Try again to see if CSE is possible. 535 FoundCSE = VNT.count(MI); 536 } 537 } 538 539 // Commute commutable instructions. 540 bool Commuted = false; 541 if (!FoundCSE && MI->isCommutable()) { 542 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) { 543 Commuted = true; 544 FoundCSE = VNT.count(NewMI); 545 if (NewMI != MI) { 546 // New instruction. It doesn't need to be kept. 547 NewMI->eraseFromParent(); 548 Changed = true; 549 } else if (!FoundCSE) 550 // MI was changed but it didn't help, commute it back! 551 (void)TII->commuteInstruction(*MI); 552 } 553 } 554 555 // If the instruction defines physical registers and the values *may* be 556 // used, then it's not safe to replace it with a common subexpression. 557 // It's also not safe if the instruction uses physical registers. 558 bool CrossMBBPhysDef = false; 559 SmallSet<MCRegister, 8> PhysRefs; 560 PhysDefVector PhysDefs; 561 bool PhysUseDef = false; 562 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 563 PhysDefs, PhysUseDef)) { 564 FoundCSE = false; 565 566 // ... Unless the CS is local or is in the sole predecessor block 567 // and it also defines the physical register which is not clobbered 568 // in between and the physical register uses were not clobbered. 569 // This can never be the case if the instruction both uses and 570 // defines the same physical register, which was detected above. 571 if (!PhysUseDef) { 572 unsigned CSVN = VNT.lookup(MI); 573 MachineInstr *CSMI = Exps[CSVN]; 574 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 575 FoundCSE = true; 576 } 577 } 578 579 if (!FoundCSE) { 580 VNT.insert(MI, CurrVN++); 581 Exps.push_back(MI); 582 continue; 583 } 584 585 // Found a common subexpression, eliminate it. 586 unsigned CSVN = VNT.lookup(MI); 587 MachineInstr *CSMI = Exps[CSVN]; 588 LLVM_DEBUG(dbgs() << "Examining: " << *MI); 589 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 590 591 // Prevent CSE-ing non-local convergent instructions. 592 // LLVM's current definition of `isConvergent` does not necessarily prove 593 // that non-local CSE is illegal. The following check extends the definition 594 // of `isConvergent` to assume a convergent instruction is dependent not 595 // only on additional conditions, but also on fewer conditions. LLVM does 596 // not have a MachineInstr attribute which expresses this extended 597 // definition, so it's necessary to use `isConvergent` to prevent illegally 598 // CSE-ing the subset of `isConvergent` instructions which do fall into this 599 // extended definition. 600 if (MI->isConvergent() && MI->getParent() != CSMI->getParent()) { 601 LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in " 602 "different BBs, avoid CSE!\n"); 603 VNT.insert(MI, CurrVN++); 604 Exps.push_back(MI); 605 continue; 606 } 607 608 // Check if it's profitable to perform this CSE. 609 bool DoCSE = true; 610 unsigned NumDefs = MI->getNumDefs(); 611 612 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 613 MachineOperand &MO = MI->getOperand(i); 614 if (!MO.isReg() || !MO.isDef()) 615 continue; 616 Register OldReg = MO.getReg(); 617 Register NewReg = CSMI->getOperand(i).getReg(); 618 619 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 620 // we should make sure it is not dead at CSMI. 621 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 622 ImplicitDefsToUpdate.push_back(i); 623 624 // Keep track of implicit defs of CSMI and MI, to clear possibly 625 // made-redundant kill flags. 626 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 627 ImplicitDefs.push_back(OldReg); 628 629 if (OldReg == NewReg) { 630 --NumDefs; 631 continue; 632 } 633 634 assert(Register::isVirtualRegister(OldReg) && 635 Register::isVirtualRegister(NewReg) && 636 "Do not CSE physical register defs!"); 637 638 if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) { 639 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 640 DoCSE = false; 641 break; 642 } 643 644 // Don't perform CSE if the result of the new instruction cannot exist 645 // within the constraints (register class, bank, or low-level type) of 646 // the old instruction. 647 if (!MRI->constrainRegAttrs(NewReg, OldReg)) { 648 LLVM_DEBUG( 649 dbgs() << "*** Not the same register constraints, avoid CSE!\n"); 650 DoCSE = false; 651 break; 652 } 653 654 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 655 --NumDefs; 656 } 657 658 // Actually perform the elimination. 659 if (DoCSE) { 660 for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 661 unsigned OldReg = CSEPair.first; 662 unsigned NewReg = CSEPair.second; 663 // OldReg may have been unused but is used now, clear the Dead flag 664 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 665 assert(Def != nullptr && "CSEd register has no unique definition?"); 666 Def->clearRegisterDeads(NewReg); 667 // Replace with NewReg and clear kill flags which may be wrong now. 668 MRI->replaceRegWith(OldReg, NewReg); 669 MRI->clearKillFlags(NewReg); 670 } 671 672 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 673 // we should make sure it is not dead at CSMI. 674 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 675 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 676 for (const auto &PhysDef : PhysDefs) 677 if (!MI->getOperand(PhysDef.first).isDead()) 678 CSMI->getOperand(PhysDef.first).setIsDead(false); 679 680 // Go through implicit defs of CSMI and MI, and clear the kill flags on 681 // their uses in all the instructions between CSMI and MI. 682 // We might have made some of the kill flags redundant, consider: 683 // subs ... implicit-def %nzcv <- CSMI 684 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore 685 // subs ... implicit-def %nzcv <- MI, to be eliminated 686 // csinc ... implicit killed %nzcv 687 // Since we eliminated MI, and reused a register imp-def'd by CSMI 688 // (here %nzcv), that register, if it was killed before MI, should have 689 // that kill flag removed, because it's lifetime was extended. 690 if (CSMI->getParent() == MI->getParent()) { 691 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) 692 for (auto ImplicitDef : ImplicitDefs) 693 if (MachineOperand *MO = II->findRegisterUseOperand( 694 ImplicitDef, /*isKill=*/true, TRI)) 695 MO->setIsKill(false); 696 } else { 697 // If the instructions aren't in the same BB, bail out and clear the 698 // kill flag on all uses of the imp-def'd register. 699 for (auto ImplicitDef : ImplicitDefs) 700 MRI->clearKillFlags(ImplicitDef); 701 } 702 703 if (CrossMBBPhysDef) { 704 // Add physical register defs now coming in from a predecessor to MBB 705 // livein list. 706 while (!PhysDefs.empty()) { 707 auto LiveIn = PhysDefs.pop_back_val(); 708 if (!MBB->isLiveIn(LiveIn.second)) 709 MBB->addLiveIn(LiveIn.second); 710 } 711 ++NumCrossBBCSEs; 712 } 713 714 MI->eraseFromParent(); 715 ++NumCSEs; 716 if (!PhysRefs.empty()) 717 ++NumPhysCSEs; 718 if (Commuted) 719 ++NumCommutes; 720 Changed = true; 721 } else { 722 VNT.insert(MI, CurrVN++); 723 Exps.push_back(MI); 724 } 725 CSEPairs.clear(); 726 ImplicitDefsToUpdate.clear(); 727 ImplicitDefs.clear(); 728 } 729 730 return Changed; 731 } 732 733 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 734 /// dominator tree node if its a leaf or all of its children are done. Walk 735 /// up the dominator tree to destroy ancestors which are now done. 736 void 737 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 738 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 739 if (OpenChildren[Node]) 740 return; 741 742 // Pop scope. 743 ExitScope(Node->getBlock()); 744 745 // Now traverse upwards to pop ancestors whose offsprings are all done. 746 while (MachineDomTreeNode *Parent = Node->getIDom()) { 747 unsigned Left = --OpenChildren[Parent]; 748 if (Left != 0) 749 break; 750 ExitScope(Parent->getBlock()); 751 Node = Parent; 752 } 753 } 754 755 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 756 SmallVector<MachineDomTreeNode*, 32> Scopes; 757 SmallVector<MachineDomTreeNode*, 8> WorkList; 758 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 759 760 CurrVN = 0; 761 762 // Perform a DFS walk to determine the order of visit. 763 WorkList.push_back(Node); 764 do { 765 Node = WorkList.pop_back_val(); 766 Scopes.push_back(Node); 767 OpenChildren[Node] = Node->getNumChildren(); 768 append_range(WorkList, Node->children()); 769 } while (!WorkList.empty()); 770 771 // Now perform CSE. 772 bool Changed = false; 773 for (MachineDomTreeNode *Node : Scopes) { 774 MachineBasicBlock *MBB = Node->getBlock(); 775 EnterScope(MBB); 776 Changed |= ProcessBlockCSE(MBB); 777 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 778 ExitScopeIfDone(Node, OpenChildren); 779 } 780 781 return Changed; 782 } 783 784 // We use stronger checks for PRE candidate rather than for CSE ones to embrace 785 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps 786 // to exclude instrs created by PRE that won't be CSEed later. 787 bool MachineCSE::isPRECandidate(MachineInstr *MI) { 788 if (!isCSECandidate(MI) || 789 MI->isNotDuplicable() || 790 MI->mayLoad() || 791 MI->isAsCheapAsAMove() || 792 MI->getNumDefs() != 1 || 793 MI->getNumExplicitDefs() != 1) 794 return false; 795 796 for (const auto &def : MI->defs()) 797 if (!Register::isVirtualRegister(def.getReg())) 798 return false; 799 800 for (const auto &use : MI->uses()) 801 if (use.isReg() && !Register::isVirtualRegister(use.getReg())) 802 return false; 803 804 return true; 805 } 806 807 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT, 808 MachineBasicBlock *MBB) { 809 bool Changed = false; 810 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { 811 MachineInstr *MI = &*I; 812 ++I; 813 814 if (!isPRECandidate(MI)) 815 continue; 816 817 if (!PREMap.count(MI)) { 818 PREMap[MI] = MBB; 819 continue; 820 } 821 822 auto MBB1 = PREMap[MI]; 823 assert( 824 !DT->properlyDominates(MBB, MBB1) && 825 "MBB cannot properly dominate MBB1 while DFS through dominators tree!"); 826 auto CMBB = DT->findNearestCommonDominator(MBB, MBB1); 827 if (!CMBB->isLegalToHoistInto()) 828 continue; 829 830 if (!isProfitableToHoistInto(CMBB, MBB, MBB1)) 831 continue; 832 833 // Two instrs are partial redundant if their basic blocks are reachable 834 // from one to another but one doesn't dominate another. 835 if (CMBB != MBB1) { 836 auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock(); 837 if (BB != nullptr && BB1 != nullptr && 838 (isPotentiallyReachable(BB1, BB) || 839 isPotentiallyReachable(BB, BB1))) { 840 // The following check extends the definition of `isConvergent` to 841 // assume a convergent instruction is dependent not only on additional 842 // conditions, but also on fewer conditions. LLVM does not have a 843 // MachineInstr attribute which expresses this extended definition, so 844 // it's necessary to use `isConvergent` to prevent illegally PRE-ing the 845 // subset of `isConvergent` instructions which do fall into this 846 // extended definition. 847 if (MI->isConvergent() && CMBB != MBB) 848 continue; 849 850 assert(MI->getOperand(0).isDef() && 851 "First operand of instr with one explicit def must be this def"); 852 Register VReg = MI->getOperand(0).getReg(); 853 Register NewReg = MRI->cloneVirtualRegister(VReg); 854 if (!isProfitableToCSE(NewReg, VReg, CMBB, MI)) 855 continue; 856 MachineInstr &NewMI = 857 TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI); 858 859 // When hoisting, make sure we don't carry the debug location of 860 // the original instruction, as that's not correct and can cause 861 // unexpected jumps when debugging optimized code. 862 auto EmptyDL = DebugLoc(); 863 NewMI.setDebugLoc(EmptyDL); 864 865 NewMI.getOperand(0).setReg(NewReg); 866 867 PREMap[MI] = CMBB; 868 ++NumPREs; 869 Changed = true; 870 } 871 } 872 } 873 return Changed; 874 } 875 876 // This simple PRE (partial redundancy elimination) pass doesn't actually 877 // eliminate partial redundancy but transforms it to full redundancy, 878 // anticipating that the next CSE step will eliminate this created redundancy. 879 // If CSE doesn't eliminate this, than created instruction will remain dead 880 // and eliminated later by Remove Dead Machine Instructions pass. 881 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) { 882 SmallVector<MachineDomTreeNode *, 32> BBs; 883 884 PREMap.clear(); 885 bool Changed = false; 886 BBs.push_back(DT->getRootNode()); 887 do { 888 auto Node = BBs.pop_back_val(); 889 append_range(BBs, Node->children()); 890 891 MachineBasicBlock *MBB = Node->getBlock(); 892 Changed |= ProcessBlockPRE(DT, MBB); 893 894 } while (!BBs.empty()); 895 896 return Changed; 897 } 898 899 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB, 900 MachineBasicBlock *MBB, 901 MachineBasicBlock *MBB1) { 902 if (CandidateBB->getParent()->getFunction().hasMinSize()) 903 return true; 904 assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB"); 905 assert(DT->dominates(CandidateBB, MBB1) && 906 "CandidateBB should dominate MBB1"); 907 return MBFI->getBlockFreq(CandidateBB) <= 908 MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1); 909 } 910 911 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 912 if (skipFunction(MF.getFunction())) 913 return false; 914 915 TII = MF.getSubtarget().getInstrInfo(); 916 TRI = MF.getSubtarget().getRegisterInfo(); 917 MRI = &MF.getRegInfo(); 918 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 919 DT = &getAnalysis<MachineDominatorTree>(); 920 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 921 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 922 bool ChangedPRE, ChangedCSE; 923 ChangedPRE = PerformSimplePRE(DT); 924 ChangedCSE = PerformCSE(DT->getRootNode()); 925 return ChangedPRE || ChangedCSE; 926 } 927