xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineCSE.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/MC/MCInstrDesc.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/RecyclingAllocator.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "machine-cse"
51 
52 STATISTIC(NumCoalesces, "Number of copies coalesced");
53 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
54 STATISTIC(NumPREs,      "Number of partial redundant expression"
55                         " transformed to fully redundant");
56 STATISTIC(NumPhysCSEs,
57           "Number of physreg referencing common subexpr eliminated");
58 STATISTIC(NumCrossBBCSEs,
59           "Number of cross-MBB physreg referencing CS eliminated");
60 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
61 
62 namespace {
63 
64   class MachineCSE : public MachineFunctionPass {
65     const TargetInstrInfo *TII;
66     const TargetRegisterInfo *TRI;
67     AliasAnalysis *AA;
68     MachineDominatorTree *DT;
69     MachineRegisterInfo *MRI;
70     MachineBlockFrequencyInfo *MBFI;
71 
72   public:
73     static char ID; // Pass identification
74 
75     MachineCSE() : MachineFunctionPass(ID) {
76       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80 
81     void getAnalysisUsage(AnalysisUsage &AU) const override {
82       AU.setPreservesCFG();
83       MachineFunctionPass::getAnalysisUsage(AU);
84       AU.addRequired<AAResultsWrapperPass>();
85       AU.addPreservedID(MachineLoopInfoID);
86       AU.addRequired<MachineDominatorTree>();
87       AU.addPreserved<MachineDominatorTree>();
88       AU.addRequired<MachineBlockFrequencyInfo>();
89       AU.addPreserved<MachineBlockFrequencyInfo>();
90     }
91 
92     void releaseMemory() override {
93       ScopeMap.clear();
94       PREMap.clear();
95       Exps.clear();
96     }
97 
98   private:
99     using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
100                             ScopedHashTableVal<MachineInstr *, unsigned>>;
101     using ScopedHTType =
102         ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
103                         AllocatorTy>;
104     using ScopeType = ScopedHTType::ScopeTy;
105     using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
106 
107     unsigned LookAheadLimit = 0;
108     DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
109     DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
110         PREMap;
111     ScopedHTType VNT;
112     SmallVector<MachineInstr *, 64> Exps;
113     unsigned CurrVN = 0;
114 
115     bool PerformTrivialCopyPropagation(MachineInstr *MI,
116                                        MachineBasicBlock *MBB);
117     bool isPhysDefTriviallyDead(unsigned Reg,
118                                 MachineBasicBlock::const_iterator I,
119                                 MachineBasicBlock::const_iterator E) const;
120     bool hasLivePhysRegDefUses(const MachineInstr *MI,
121                                const MachineBasicBlock *MBB,
122                                SmallSet<unsigned, 8> &PhysRefs,
123                                PhysDefVector &PhysDefs, bool &PhysUseDef) const;
124     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
125                           SmallSet<unsigned, 8> &PhysRefs,
126                           PhysDefVector &PhysDefs, bool &NonLocal) const;
127     bool isCSECandidate(MachineInstr *MI);
128     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
129                            MachineBasicBlock *CSBB, MachineInstr *MI);
130     void EnterScope(MachineBasicBlock *MBB);
131     void ExitScope(MachineBasicBlock *MBB);
132     bool ProcessBlockCSE(MachineBasicBlock *MBB);
133     void ExitScopeIfDone(MachineDomTreeNode *Node,
134                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
135     bool PerformCSE(MachineDomTreeNode *Node);
136 
137     bool isPRECandidate(MachineInstr *MI);
138     bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
139     bool PerformSimplePRE(MachineDominatorTree *DT);
140     /// Heuristics to see if it's profitable to move common computations of MBB
141     /// and MBB1 to CandidateBB.
142     bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
143                                  MachineBasicBlock *MBB,
144                                  MachineBasicBlock *MBB1);
145   };
146 
147 } // end anonymous namespace
148 
149 char MachineCSE::ID = 0;
150 
151 char &llvm::MachineCSEID = MachineCSE::ID;
152 
153 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
154                       "Machine Common Subexpression Elimination", false, false)
155 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
157 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
158                     "Machine Common Subexpression Elimination", false, false)
159 
160 /// The source register of a COPY machine instruction can be propagated to all
161 /// its users, and this propagation could increase the probability of finding
162 /// common subexpressions. If the COPY has only one user, the COPY itself can
163 /// be removed.
164 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
165                                                MachineBasicBlock *MBB) {
166   bool Changed = false;
167   for (MachineOperand &MO : MI->operands()) {
168     if (!MO.isReg() || !MO.isUse())
169       continue;
170     Register Reg = MO.getReg();
171     if (!Register::isVirtualRegister(Reg))
172       continue;
173     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
174     MachineInstr *DefMI = MRI->getVRegDef(Reg);
175     if (!DefMI->isCopy())
176       continue;
177     Register SrcReg = DefMI->getOperand(1).getReg();
178     if (!Register::isVirtualRegister(SrcReg))
179       continue;
180     if (DefMI->getOperand(0).getSubReg())
181       continue;
182     // FIXME: We should trivially coalesce subregister copies to expose CSE
183     // opportunities on instructions with truncated operands (see
184     // cse-add-with-overflow.ll). This can be done here as follows:
185     // if (SrcSubReg)
186     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
187     //                                     SrcSubReg);
188     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
189     //
190     // The 2-addr pass has been updated to handle coalesced subregs. However,
191     // some machine-specific code still can't handle it.
192     // To handle it properly we also need a way find a constrained subregister
193     // class given a super-reg class and subreg index.
194     if (DefMI->getOperand(1).getSubReg())
195       continue;
196     if (!MRI->constrainRegAttrs(SrcReg, Reg))
197       continue;
198     LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
199     LLVM_DEBUG(dbgs() << "***     to: " << *MI);
200 
201     // Propagate SrcReg of copies to MI.
202     MO.setReg(SrcReg);
203     MRI->clearKillFlags(SrcReg);
204     // Coalesce single use copies.
205     if (OnlyOneUse) {
206       // If (and only if) we've eliminated all uses of the copy, also
207       // copy-propagate to any debug-users of MI, or they'll be left using
208       // an undefined value.
209       DefMI->changeDebugValuesDefReg(SrcReg);
210 
211       DefMI->eraseFromParent();
212       ++NumCoalesces;
213     }
214     Changed = true;
215   }
216 
217   return Changed;
218 }
219 
220 bool
221 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
222                                    MachineBasicBlock::const_iterator I,
223                                    MachineBasicBlock::const_iterator E) const {
224   unsigned LookAheadLeft = LookAheadLimit;
225   while (LookAheadLeft) {
226     // Skip over dbg_value's.
227     I = skipDebugInstructionsForward(I, E);
228 
229     if (I == E)
230       // Reached end of block, we don't know if register is dead or not.
231       return false;
232 
233     bool SeenDef = false;
234     for (const MachineOperand &MO : I->operands()) {
235       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
236         SeenDef = true;
237       if (!MO.isReg() || !MO.getReg())
238         continue;
239       if (!TRI->regsOverlap(MO.getReg(), Reg))
240         continue;
241       if (MO.isUse())
242         // Found a use!
243         return false;
244       SeenDef = true;
245     }
246     if (SeenDef)
247       // See a def of Reg (or an alias) before encountering any use, it's
248       // trivially dead.
249       return true;
250 
251     --LookAheadLeft;
252     ++I;
253   }
254   return false;
255 }
256 
257 static bool isCallerPreservedOrConstPhysReg(unsigned Reg,
258                                             const MachineFunction &MF,
259                                             const TargetRegisterInfo &TRI) {
260   // MachineRegisterInfo::isConstantPhysReg directly called by
261   // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
262   // reserved registers to be frozen. That doesn't cause a problem  post-ISel as
263   // most (if not all) targets freeze reserved registers right after ISel.
264   //
265   // It does cause issues mid-GlobalISel, however, hence the additional
266   // reservedRegsFrozen check.
267   const MachineRegisterInfo &MRI = MF.getRegInfo();
268   return TRI.isCallerPreservedPhysReg(Reg, MF) ||
269          (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
270 }
271 
272 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
273 /// physical registers (except for dead defs of physical registers). It also
274 /// returns the physical register def by reference if it's the only one and the
275 /// instruction does not uses a physical register.
276 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
277                                        const MachineBasicBlock *MBB,
278                                        SmallSet<unsigned, 8> &PhysRefs,
279                                        PhysDefVector &PhysDefs,
280                                        bool &PhysUseDef) const {
281   // First, add all uses to PhysRefs.
282   for (const MachineOperand &MO : MI->operands()) {
283     if (!MO.isReg() || MO.isDef())
284       continue;
285     Register Reg = MO.getReg();
286     if (!Reg)
287       continue;
288     if (Register::isVirtualRegister(Reg))
289       continue;
290     // Reading either caller preserved or constant physregs is ok.
291     if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI))
292       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
293         PhysRefs.insert(*AI);
294   }
295 
296   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
297   // (which currently contains only uses), set the PhysUseDef flag.
298   PhysUseDef = false;
299   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
300   for (const auto &MOP : llvm::enumerate(MI->operands())) {
301     const MachineOperand &MO = MOP.value();
302     if (!MO.isReg() || !MO.isDef())
303       continue;
304     Register Reg = MO.getReg();
305     if (!Reg)
306       continue;
307     if (Register::isVirtualRegister(Reg))
308       continue;
309     // Check against PhysRefs even if the def is "dead".
310     if (PhysRefs.count(Reg))
311       PhysUseDef = true;
312     // If the def is dead, it's ok. But the def may not marked "dead". That's
313     // common since this pass is run before livevariables. We can scan
314     // forward a few instructions and check if it is obviously dead.
315     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
316       PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
317   }
318 
319   // Finally, add all defs to PhysRefs as well.
320   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
321     for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
322          ++AI)
323       PhysRefs.insert(*AI);
324 
325   return !PhysRefs.empty();
326 }
327 
328 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
329                                   SmallSet<unsigned, 8> &PhysRefs,
330                                   PhysDefVector &PhysDefs,
331                                   bool &NonLocal) const {
332   // For now conservatively returns false if the common subexpression is
333   // not in the same basic block as the given instruction. The only exception
334   // is if the common subexpression is in the sole predecessor block.
335   const MachineBasicBlock *MBB = MI->getParent();
336   const MachineBasicBlock *CSMBB = CSMI->getParent();
337 
338   bool CrossMBB = false;
339   if (CSMBB != MBB) {
340     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
341       return false;
342 
343     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
344       if (MRI->isAllocatable(PhysDefs[i].second) ||
345           MRI->isReserved(PhysDefs[i].second))
346         // Avoid extending live range of physical registers if they are
347         //allocatable or reserved.
348         return false;
349     }
350     CrossMBB = true;
351   }
352   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
353   MachineBasicBlock::const_iterator E = MI;
354   MachineBasicBlock::const_iterator EE = CSMBB->end();
355   unsigned LookAheadLeft = LookAheadLimit;
356   while (LookAheadLeft) {
357     // Skip over dbg_value's.
358     while (I != E && I != EE && I->isDebugInstr())
359       ++I;
360 
361     if (I == EE) {
362       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
363       (void)CrossMBB;
364       CrossMBB = false;
365       NonLocal = true;
366       I = MBB->begin();
367       EE = MBB->end();
368       continue;
369     }
370 
371     if (I == E)
372       return true;
373 
374     for (const MachineOperand &MO : I->operands()) {
375       // RegMasks go on instructions like calls that clobber lots of physregs.
376       // Don't attempt to CSE across such an instruction.
377       if (MO.isRegMask())
378         return false;
379       if (!MO.isReg() || !MO.isDef())
380         continue;
381       Register MOReg = MO.getReg();
382       if (Register::isVirtualRegister(MOReg))
383         continue;
384       if (PhysRefs.count(MOReg))
385         return false;
386     }
387 
388     --LookAheadLeft;
389     ++I;
390   }
391 
392   return false;
393 }
394 
395 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
396   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
397       MI->isInlineAsm() || MI->isDebugInstr())
398     return false;
399 
400   // Ignore copies.
401   if (MI->isCopyLike())
402     return false;
403 
404   // Ignore stuff that we obviously can't move.
405   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
406       MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
407     return false;
408 
409   if (MI->mayLoad()) {
410     // Okay, this instruction does a load. As a refinement, we allow the target
411     // to decide whether the loaded value is actually a constant. If so, we can
412     // actually use it as a load.
413     if (!MI->isDereferenceableInvariantLoad(AA))
414       // FIXME: we should be able to hoist loads with no other side effects if
415       // there are no other instructions which can change memory in this loop.
416       // This is a trivial form of alias analysis.
417       return false;
418   }
419 
420   // Ignore stack guard loads, otherwise the register that holds CSEed value may
421   // be spilled and get loaded back with corrupted data.
422   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
423     return false;
424 
425   return true;
426 }
427 
428 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
429 /// common expression that defines Reg. CSBB is basic block where CSReg is
430 /// defined.
431 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
432                                    MachineBasicBlock *CSBB, MachineInstr *MI) {
433   // FIXME: Heuristics that works around the lack the live range splitting.
434 
435   // If CSReg is used at all uses of Reg, CSE should not increase register
436   // pressure of CSReg.
437   bool MayIncreasePressure = true;
438   if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) {
439     MayIncreasePressure = false;
440     SmallPtrSet<MachineInstr*, 8> CSUses;
441     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
442       CSUses.insert(&MI);
443     }
444     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
445       if (!CSUses.count(&MI)) {
446         MayIncreasePressure = true;
447         break;
448       }
449     }
450   }
451   if (!MayIncreasePressure) return true;
452 
453   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
454   // an immediate predecessor. We don't want to increase register pressure and
455   // end up causing other computation to be spilled.
456   if (TII->isAsCheapAsAMove(*MI)) {
457     MachineBasicBlock *BB = MI->getParent();
458     if (CSBB != BB && !CSBB->isSuccessor(BB))
459       return false;
460   }
461 
462   // Heuristics #2: If the expression doesn't not use a vr and the only use
463   // of the redundant computation are copies, do not cse.
464   bool HasVRegUse = false;
465   for (const MachineOperand &MO : MI->operands()) {
466     if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) {
467       HasVRegUse = true;
468       break;
469     }
470   }
471   if (!HasVRegUse) {
472     bool HasNonCopyUse = false;
473     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
474       // Ignore copies.
475       if (!MI.isCopyLike()) {
476         HasNonCopyUse = true;
477         break;
478       }
479     }
480     if (!HasNonCopyUse)
481       return false;
482   }
483 
484   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
485   // it unless the defined value is already used in the BB of the new use.
486   bool HasPHI = false;
487   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
488     HasPHI |= UseMI.isPHI();
489     if (UseMI.getParent() == MI->getParent())
490       return true;
491   }
492 
493   return !HasPHI;
494 }
495 
496 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
497   LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
498   ScopeType *Scope = new ScopeType(VNT);
499   ScopeMap[MBB] = Scope;
500 }
501 
502 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
503   LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
504   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
505   assert(SI != ScopeMap.end());
506   delete SI->second;
507   ScopeMap.erase(SI);
508 }
509 
510 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
511   bool Changed = false;
512 
513   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
514   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
515   SmallVector<unsigned, 2> ImplicitDefs;
516   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
517     MachineInstr *MI = &*I;
518     ++I;
519 
520     if (!isCSECandidate(MI))
521       continue;
522 
523     bool FoundCSE = VNT.count(MI);
524     if (!FoundCSE) {
525       // Using trivial copy propagation to find more CSE opportunities.
526       if (PerformTrivialCopyPropagation(MI, MBB)) {
527         Changed = true;
528 
529         // After coalescing MI itself may become a copy.
530         if (MI->isCopyLike())
531           continue;
532 
533         // Try again to see if CSE is possible.
534         FoundCSE = VNT.count(MI);
535       }
536     }
537 
538     // Commute commutable instructions.
539     bool Commuted = false;
540     if (!FoundCSE && MI->isCommutable()) {
541       if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
542         Commuted = true;
543         FoundCSE = VNT.count(NewMI);
544         if (NewMI != MI) {
545           // New instruction. It doesn't need to be kept.
546           NewMI->eraseFromParent();
547           Changed = true;
548         } else if (!FoundCSE)
549           // MI was changed but it didn't help, commute it back!
550           (void)TII->commuteInstruction(*MI);
551       }
552     }
553 
554     // If the instruction defines physical registers and the values *may* be
555     // used, then it's not safe to replace it with a common subexpression.
556     // It's also not safe if the instruction uses physical registers.
557     bool CrossMBBPhysDef = false;
558     SmallSet<unsigned, 8> PhysRefs;
559     PhysDefVector PhysDefs;
560     bool PhysUseDef = false;
561     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
562                                           PhysDefs, PhysUseDef)) {
563       FoundCSE = false;
564 
565       // ... Unless the CS is local or is in the sole predecessor block
566       // and it also defines the physical register which is not clobbered
567       // in between and the physical register uses were not clobbered.
568       // This can never be the case if the instruction both uses and
569       // defines the same physical register, which was detected above.
570       if (!PhysUseDef) {
571         unsigned CSVN = VNT.lookup(MI);
572         MachineInstr *CSMI = Exps[CSVN];
573         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
574           FoundCSE = true;
575       }
576     }
577 
578     if (!FoundCSE) {
579       VNT.insert(MI, CurrVN++);
580       Exps.push_back(MI);
581       continue;
582     }
583 
584     // Found a common subexpression, eliminate it.
585     unsigned CSVN = VNT.lookup(MI);
586     MachineInstr *CSMI = Exps[CSVN];
587     LLVM_DEBUG(dbgs() << "Examining: " << *MI);
588     LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
589 
590     // Check if it's profitable to perform this CSE.
591     bool DoCSE = true;
592     unsigned NumDefs = MI->getNumDefs();
593 
594     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
595       MachineOperand &MO = MI->getOperand(i);
596       if (!MO.isReg() || !MO.isDef())
597         continue;
598       Register OldReg = MO.getReg();
599       Register NewReg = CSMI->getOperand(i).getReg();
600 
601       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
602       // we should make sure it is not dead at CSMI.
603       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
604         ImplicitDefsToUpdate.push_back(i);
605 
606       // Keep track of implicit defs of CSMI and MI, to clear possibly
607       // made-redundant kill flags.
608       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
609         ImplicitDefs.push_back(OldReg);
610 
611       if (OldReg == NewReg) {
612         --NumDefs;
613         continue;
614       }
615 
616       assert(Register::isVirtualRegister(OldReg) &&
617              Register::isVirtualRegister(NewReg) &&
618              "Do not CSE physical register defs!");
619 
620       if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) {
621         LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
622         DoCSE = false;
623         break;
624       }
625 
626       // Don't perform CSE if the result of the new instruction cannot exist
627       // within the constraints (register class, bank, or low-level type) of
628       // the old instruction.
629       if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
630         LLVM_DEBUG(
631             dbgs() << "*** Not the same register constraints, avoid CSE!\n");
632         DoCSE = false;
633         break;
634       }
635 
636       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
637       --NumDefs;
638     }
639 
640     // Actually perform the elimination.
641     if (DoCSE) {
642       for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
643         unsigned OldReg = CSEPair.first;
644         unsigned NewReg = CSEPair.second;
645         // OldReg may have been unused but is used now, clear the Dead flag
646         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
647         assert(Def != nullptr && "CSEd register has no unique definition?");
648         Def->clearRegisterDeads(NewReg);
649         // Replace with NewReg and clear kill flags which may be wrong now.
650         MRI->replaceRegWith(OldReg, NewReg);
651         MRI->clearKillFlags(NewReg);
652       }
653 
654       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
655       // we should make sure it is not dead at CSMI.
656       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
657         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
658       for (auto PhysDef : PhysDefs)
659         if (!MI->getOperand(PhysDef.first).isDead())
660           CSMI->getOperand(PhysDef.first).setIsDead(false);
661 
662       // Go through implicit defs of CSMI and MI, and clear the kill flags on
663       // their uses in all the instructions between CSMI and MI.
664       // We might have made some of the kill flags redundant, consider:
665       //   subs  ... implicit-def %nzcv    <- CSMI
666       //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
667       //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
668       //   csinc ... implicit killed %nzcv
669       // Since we eliminated MI, and reused a register imp-def'd by CSMI
670       // (here %nzcv), that register, if it was killed before MI, should have
671       // that kill flag removed, because it's lifetime was extended.
672       if (CSMI->getParent() == MI->getParent()) {
673         for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
674           for (auto ImplicitDef : ImplicitDefs)
675             if (MachineOperand *MO = II->findRegisterUseOperand(
676                     ImplicitDef, /*isKill=*/true, TRI))
677               MO->setIsKill(false);
678       } else {
679         // If the instructions aren't in the same BB, bail out and clear the
680         // kill flag on all uses of the imp-def'd register.
681         for (auto ImplicitDef : ImplicitDefs)
682           MRI->clearKillFlags(ImplicitDef);
683       }
684 
685       if (CrossMBBPhysDef) {
686         // Add physical register defs now coming in from a predecessor to MBB
687         // livein list.
688         while (!PhysDefs.empty()) {
689           auto LiveIn = PhysDefs.pop_back_val();
690           if (!MBB->isLiveIn(LiveIn.second))
691             MBB->addLiveIn(LiveIn.second);
692         }
693         ++NumCrossBBCSEs;
694       }
695 
696       MI->eraseFromParent();
697       ++NumCSEs;
698       if (!PhysRefs.empty())
699         ++NumPhysCSEs;
700       if (Commuted)
701         ++NumCommutes;
702       Changed = true;
703     } else {
704       VNT.insert(MI, CurrVN++);
705       Exps.push_back(MI);
706     }
707     CSEPairs.clear();
708     ImplicitDefsToUpdate.clear();
709     ImplicitDefs.clear();
710   }
711 
712   return Changed;
713 }
714 
715 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
716 /// dominator tree node if its a leaf or all of its children are done. Walk
717 /// up the dominator tree to destroy ancestors which are now done.
718 void
719 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
720                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
721   if (OpenChildren[Node])
722     return;
723 
724   // Pop scope.
725   ExitScope(Node->getBlock());
726 
727   // Now traverse upwards to pop ancestors whose offsprings are all done.
728   while (MachineDomTreeNode *Parent = Node->getIDom()) {
729     unsigned Left = --OpenChildren[Parent];
730     if (Left != 0)
731       break;
732     ExitScope(Parent->getBlock());
733     Node = Parent;
734   }
735 }
736 
737 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
738   SmallVector<MachineDomTreeNode*, 32> Scopes;
739   SmallVector<MachineDomTreeNode*, 8> WorkList;
740   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
741 
742   CurrVN = 0;
743 
744   // Perform a DFS walk to determine the order of visit.
745   WorkList.push_back(Node);
746   do {
747     Node = WorkList.pop_back_val();
748     Scopes.push_back(Node);
749     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
750     OpenChildren[Node] = Children.size();
751     for (MachineDomTreeNode *Child : Children)
752       WorkList.push_back(Child);
753   } while (!WorkList.empty());
754 
755   // Now perform CSE.
756   bool Changed = false;
757   for (MachineDomTreeNode *Node : Scopes) {
758     MachineBasicBlock *MBB = Node->getBlock();
759     EnterScope(MBB);
760     Changed |= ProcessBlockCSE(MBB);
761     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
762     ExitScopeIfDone(Node, OpenChildren);
763   }
764 
765   return Changed;
766 }
767 
768 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
769 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
770 // to exclude instrs created by PRE that won't be CSEed later.
771 bool MachineCSE::isPRECandidate(MachineInstr *MI) {
772   if (!isCSECandidate(MI) ||
773       MI->isNotDuplicable() ||
774       MI->mayLoad() ||
775       MI->isAsCheapAsAMove() ||
776       MI->getNumDefs() != 1 ||
777       MI->getNumExplicitDefs() != 1)
778     return false;
779 
780   for (auto def : MI->defs())
781     if (!Register::isVirtualRegister(def.getReg()))
782       return false;
783 
784   for (auto use : MI->uses())
785     if (use.isReg() && !Register::isVirtualRegister(use.getReg()))
786       return false;
787 
788   return true;
789 }
790 
791 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
792                                  MachineBasicBlock *MBB) {
793   bool Changed = false;
794   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
795     MachineInstr *MI = &*I;
796     ++I;
797 
798     if (!isPRECandidate(MI))
799       continue;
800 
801     if (!PREMap.count(MI)) {
802       PREMap[MI] = MBB;
803       continue;
804     }
805 
806     auto MBB1 = PREMap[MI];
807     assert(
808         !DT->properlyDominates(MBB, MBB1) &&
809         "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
810     auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
811     if (!CMBB->isLegalToHoistInto())
812       continue;
813 
814     if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
815       continue;
816 
817     // Two instrs are partial redundant if their basic blocks are reachable
818     // from one to another but one doesn't dominate another.
819     if (CMBB != MBB1) {
820       auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
821       if (BB != nullptr && BB1 != nullptr &&
822           (isPotentiallyReachable(BB1, BB) ||
823            isPotentiallyReachable(BB, BB1))) {
824 
825         assert(MI->getOperand(0).isDef() &&
826                "First operand of instr with one explicit def must be this def");
827         Register VReg = MI->getOperand(0).getReg();
828         Register NewReg = MRI->cloneVirtualRegister(VReg);
829         if (!isProfitableToCSE(NewReg, VReg, CMBB, MI))
830           continue;
831         MachineInstr &NewMI =
832             TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI);
833         NewMI.getOperand(0).setReg(NewReg);
834 
835         PREMap[MI] = CMBB;
836         ++NumPREs;
837         Changed = true;
838       }
839     }
840   }
841   return Changed;
842 }
843 
844 // This simple PRE (partial redundancy elimination) pass doesn't actually
845 // eliminate partial redundancy but transforms it to full redundancy,
846 // anticipating that the next CSE step will eliminate this created redundancy.
847 // If CSE doesn't eliminate this, than created instruction will remain dead
848 // and eliminated later by Remove Dead Machine Instructions pass.
849 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
850   SmallVector<MachineDomTreeNode *, 32> BBs;
851 
852   PREMap.clear();
853   bool Changed = false;
854   BBs.push_back(DT->getRootNode());
855   do {
856     auto Node = BBs.pop_back_val();
857     const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
858     for (MachineDomTreeNode *Child : Children)
859       BBs.push_back(Child);
860 
861     MachineBasicBlock *MBB = Node->getBlock();
862     Changed |= ProcessBlockPRE(DT, MBB);
863 
864   } while (!BBs.empty());
865 
866   return Changed;
867 }
868 
869 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
870                                          MachineBasicBlock *MBB,
871                                          MachineBasicBlock *MBB1) {
872   if (CandidateBB->getParent()->getFunction().hasMinSize())
873     return true;
874   assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
875   assert(DT->dominates(CandidateBB, MBB1) &&
876          "CandidateBB should dominate MBB1");
877   return MBFI->getBlockFreq(CandidateBB) <=
878          MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
879 }
880 
881 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
882   if (skipFunction(MF.getFunction()))
883     return false;
884 
885   TII = MF.getSubtarget().getInstrInfo();
886   TRI = MF.getSubtarget().getRegisterInfo();
887   MRI = &MF.getRegInfo();
888   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
889   DT = &getAnalysis<MachineDominatorTree>();
890   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
891   LookAheadLimit = TII->getMachineCSELookAheadLimit();
892   bool ChangedPRE, ChangedCSE;
893   ChangedPRE = PerformSimplePRE(DT);
894   ChangedCSE = PerformCSE(DT->getRootNode());
895   return ChangedPRE || ChangedCSE;
896 }
897