1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global common subexpression elimination on machine 10 // instructions using a scoped hash table based value numbering scheme. It 11 // must be run while the machine function is still in SSA form. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/ScopedHashTable.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/MC/MCRegister.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/RecyclingAllocator.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <iterator> 46 #include <utility> 47 #include <vector> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "machine-cse" 52 53 STATISTIC(NumCoalesces, "Number of copies coalesced"); 54 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 55 STATISTIC(NumPREs, "Number of partial redundant expression" 56 " transformed to fully redundant"); 57 STATISTIC(NumPhysCSEs, 58 "Number of physreg referencing common subexpr eliminated"); 59 STATISTIC(NumCrossBBCSEs, 60 "Number of cross-MBB physreg referencing CS eliminated"); 61 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 62 63 namespace { 64 65 class MachineCSE : public MachineFunctionPass { 66 const TargetInstrInfo *TII; 67 const TargetRegisterInfo *TRI; 68 AliasAnalysis *AA; 69 MachineDominatorTree *DT; 70 MachineRegisterInfo *MRI; 71 MachineBlockFrequencyInfo *MBFI; 72 73 public: 74 static char ID; // Pass identification 75 76 MachineCSE() : MachineFunctionPass(ID) { 77 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 78 } 79 80 bool runOnMachineFunction(MachineFunction &MF) override; 81 82 void getAnalysisUsage(AnalysisUsage &AU) const override { 83 AU.setPreservesCFG(); 84 MachineFunctionPass::getAnalysisUsage(AU); 85 AU.addRequired<AAResultsWrapperPass>(); 86 AU.addPreservedID(MachineLoopInfoID); 87 AU.addRequired<MachineDominatorTree>(); 88 AU.addPreserved<MachineDominatorTree>(); 89 AU.addRequired<MachineBlockFrequencyInfo>(); 90 AU.addPreserved<MachineBlockFrequencyInfo>(); 91 } 92 93 MachineFunctionProperties getRequiredProperties() const override { 94 return MachineFunctionProperties() 95 .set(MachineFunctionProperties::Property::IsSSA); 96 } 97 98 void releaseMemory() override { 99 ScopeMap.clear(); 100 PREMap.clear(); 101 Exps.clear(); 102 } 103 104 private: 105 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, 106 ScopedHashTableVal<MachineInstr *, unsigned>>; 107 using ScopedHTType = 108 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, 109 AllocatorTy>; 110 using ScopeType = ScopedHTType::ScopeTy; 111 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>; 112 113 unsigned LookAheadLimit = 0; 114 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; 115 DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait> 116 PREMap; 117 ScopedHTType VNT; 118 SmallVector<MachineInstr *, 64> Exps; 119 unsigned CurrVN = 0; 120 121 bool PerformTrivialCopyPropagation(MachineInstr *MI, 122 MachineBasicBlock *MBB); 123 bool isPhysDefTriviallyDead(MCRegister Reg, 124 MachineBasicBlock::const_iterator I, 125 MachineBasicBlock::const_iterator E) const; 126 bool hasLivePhysRegDefUses(const MachineInstr *MI, 127 const MachineBasicBlock *MBB, 128 SmallSet<MCRegister, 8> &PhysRefs, 129 PhysDefVector &PhysDefs, bool &PhysUseDef) const; 130 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 131 SmallSet<MCRegister, 8> &PhysRefs, 132 PhysDefVector &PhysDefs, bool &NonLocal) const; 133 bool isCSECandidate(MachineInstr *MI); 134 bool isProfitableToCSE(Register CSReg, Register Reg, 135 MachineBasicBlock *CSBB, MachineInstr *MI); 136 void EnterScope(MachineBasicBlock *MBB); 137 void ExitScope(MachineBasicBlock *MBB); 138 bool ProcessBlockCSE(MachineBasicBlock *MBB); 139 void ExitScopeIfDone(MachineDomTreeNode *Node, 140 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 141 bool PerformCSE(MachineDomTreeNode *Node); 142 143 bool isPRECandidate(MachineInstr *MI); 144 bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB); 145 bool PerformSimplePRE(MachineDominatorTree *DT); 146 /// Heuristics to see if it's profitable to move common computations of MBB 147 /// and MBB1 to CandidateBB. 148 bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB, 149 MachineBasicBlock *MBB, 150 MachineBasicBlock *MBB1); 151 }; 152 153 } // end anonymous namespace 154 155 char MachineCSE::ID = 0; 156 157 char &llvm::MachineCSEID = MachineCSE::ID; 158 159 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 160 "Machine Common Subexpression Elimination", false, false) 161 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 162 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 163 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 164 "Machine Common Subexpression Elimination", false, false) 165 166 /// The source register of a COPY machine instruction can be propagated to all 167 /// its users, and this propagation could increase the probability of finding 168 /// common subexpressions. If the COPY has only one user, the COPY itself can 169 /// be removed. 170 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 171 MachineBasicBlock *MBB) { 172 bool Changed = false; 173 for (MachineOperand &MO : MI->operands()) { 174 if (!MO.isReg() || !MO.isUse()) 175 continue; 176 Register Reg = MO.getReg(); 177 if (!Register::isVirtualRegister(Reg)) 178 continue; 179 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 180 MachineInstr *DefMI = MRI->getVRegDef(Reg); 181 if (!DefMI->isCopy()) 182 continue; 183 Register SrcReg = DefMI->getOperand(1).getReg(); 184 if (!Register::isVirtualRegister(SrcReg)) 185 continue; 186 if (DefMI->getOperand(0).getSubReg()) 187 continue; 188 // FIXME: We should trivially coalesce subregister copies to expose CSE 189 // opportunities on instructions with truncated operands (see 190 // cse-add-with-overflow.ll). This can be done here as follows: 191 // if (SrcSubReg) 192 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 193 // SrcSubReg); 194 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 195 // 196 // The 2-addr pass has been updated to handle coalesced subregs. However, 197 // some machine-specific code still can't handle it. 198 // To handle it properly we also need a way find a constrained subregister 199 // class given a super-reg class and subreg index. 200 if (DefMI->getOperand(1).getSubReg()) 201 continue; 202 if (!MRI->constrainRegAttrs(SrcReg, Reg)) 203 continue; 204 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 205 LLVM_DEBUG(dbgs() << "*** to: " << *MI); 206 207 // Propagate SrcReg of copies to MI. 208 MO.setReg(SrcReg); 209 MRI->clearKillFlags(SrcReg); 210 // Coalesce single use copies. 211 if (OnlyOneUse) { 212 // If (and only if) we've eliminated all uses of the copy, also 213 // copy-propagate to any debug-users of MI, or they'll be left using 214 // an undefined value. 215 DefMI->changeDebugValuesDefReg(SrcReg); 216 217 DefMI->eraseFromParent(); 218 ++NumCoalesces; 219 } 220 Changed = true; 221 } 222 223 return Changed; 224 } 225 226 bool MachineCSE::isPhysDefTriviallyDead( 227 MCRegister Reg, MachineBasicBlock::const_iterator I, 228 MachineBasicBlock::const_iterator E) const { 229 unsigned LookAheadLeft = LookAheadLimit; 230 while (LookAheadLeft) { 231 // Skip over dbg_value's. 232 I = skipDebugInstructionsForward(I, E); 233 234 if (I == E) 235 // Reached end of block, we don't know if register is dead or not. 236 return false; 237 238 bool SeenDef = false; 239 for (const MachineOperand &MO : I->operands()) { 240 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 241 SeenDef = true; 242 if (!MO.isReg() || !MO.getReg()) 243 continue; 244 if (!TRI->regsOverlap(MO.getReg(), Reg)) 245 continue; 246 if (MO.isUse()) 247 // Found a use! 248 return false; 249 SeenDef = true; 250 } 251 if (SeenDef) 252 // See a def of Reg (or an alias) before encountering any use, it's 253 // trivially dead. 254 return true; 255 256 --LookAheadLeft; 257 ++I; 258 } 259 return false; 260 } 261 262 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg, 263 const MachineFunction &MF, 264 const TargetRegisterInfo &TRI) { 265 // MachineRegisterInfo::isConstantPhysReg directly called by 266 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the 267 // reserved registers to be frozen. That doesn't cause a problem post-ISel as 268 // most (if not all) targets freeze reserved registers right after ISel. 269 // 270 // It does cause issues mid-GlobalISel, however, hence the additional 271 // reservedRegsFrozen check. 272 const MachineRegisterInfo &MRI = MF.getRegInfo(); 273 return TRI.isCallerPreservedPhysReg(Reg, MF) || 274 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); 275 } 276 277 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 278 /// physical registers (except for dead defs of physical registers). It also 279 /// returns the physical register def by reference if it's the only one and the 280 /// instruction does not uses a physical register. 281 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 282 const MachineBasicBlock *MBB, 283 SmallSet<MCRegister, 8> &PhysRefs, 284 PhysDefVector &PhysDefs, 285 bool &PhysUseDef) const { 286 // First, add all uses to PhysRefs. 287 for (const MachineOperand &MO : MI->operands()) { 288 if (!MO.isReg() || MO.isDef()) 289 continue; 290 Register Reg = MO.getReg(); 291 if (!Reg) 292 continue; 293 if (Register::isVirtualRegister(Reg)) 294 continue; 295 // Reading either caller preserved or constant physregs is ok. 296 if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), *MI->getMF(), *TRI)) 297 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 298 PhysRefs.insert(*AI); 299 } 300 301 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 302 // (which currently contains only uses), set the PhysUseDef flag. 303 PhysUseDef = false; 304 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 305 for (const auto &MOP : llvm::enumerate(MI->operands())) { 306 const MachineOperand &MO = MOP.value(); 307 if (!MO.isReg() || !MO.isDef()) 308 continue; 309 Register Reg = MO.getReg(); 310 if (!Reg) 311 continue; 312 if (Register::isVirtualRegister(Reg)) 313 continue; 314 // Check against PhysRefs even if the def is "dead". 315 if (PhysRefs.count(Reg.asMCReg())) 316 PhysUseDef = true; 317 // If the def is dead, it's ok. But the def may not marked "dead". That's 318 // common since this pass is run before livevariables. We can scan 319 // forward a few instructions and check if it is obviously dead. 320 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end())) 321 PhysDefs.push_back(std::make_pair(MOP.index(), Reg)); 322 } 323 324 // Finally, add all defs to PhysRefs as well. 325 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 326 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid(); 327 ++AI) 328 PhysRefs.insert(*AI); 329 330 return !PhysRefs.empty(); 331 } 332 333 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 334 SmallSet<MCRegister, 8> &PhysRefs, 335 PhysDefVector &PhysDefs, 336 bool &NonLocal) const { 337 // For now conservatively returns false if the common subexpression is 338 // not in the same basic block as the given instruction. The only exception 339 // is if the common subexpression is in the sole predecessor block. 340 const MachineBasicBlock *MBB = MI->getParent(); 341 const MachineBasicBlock *CSMBB = CSMI->getParent(); 342 343 bool CrossMBB = false; 344 if (CSMBB != MBB) { 345 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 346 return false; 347 348 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 349 if (MRI->isAllocatable(PhysDefs[i].second) || 350 MRI->isReserved(PhysDefs[i].second)) 351 // Avoid extending live range of physical registers if they are 352 //allocatable or reserved. 353 return false; 354 } 355 CrossMBB = true; 356 } 357 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 358 MachineBasicBlock::const_iterator E = MI; 359 MachineBasicBlock::const_iterator EE = CSMBB->end(); 360 unsigned LookAheadLeft = LookAheadLimit; 361 while (LookAheadLeft) { 362 // Skip over dbg_value's. 363 while (I != E && I != EE && I->isDebugInstr()) 364 ++I; 365 366 if (I == EE) { 367 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 368 (void)CrossMBB; 369 CrossMBB = false; 370 NonLocal = true; 371 I = MBB->begin(); 372 EE = MBB->end(); 373 continue; 374 } 375 376 if (I == E) 377 return true; 378 379 for (const MachineOperand &MO : I->operands()) { 380 // RegMasks go on instructions like calls that clobber lots of physregs. 381 // Don't attempt to CSE across such an instruction. 382 if (MO.isRegMask()) 383 return false; 384 if (!MO.isReg() || !MO.isDef()) 385 continue; 386 Register MOReg = MO.getReg(); 387 if (Register::isVirtualRegister(MOReg)) 388 continue; 389 if (PhysRefs.count(MOReg.asMCReg())) 390 return false; 391 } 392 393 --LookAheadLeft; 394 ++I; 395 } 396 397 return false; 398 } 399 400 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 401 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 402 MI->isInlineAsm() || MI->isDebugInstr()) 403 return false; 404 405 // Ignore copies. 406 if (MI->isCopyLike()) 407 return false; 408 409 // Ignore stuff that we obviously can't move. 410 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 411 MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects()) 412 return false; 413 414 if (MI->mayLoad()) { 415 // Okay, this instruction does a load. As a refinement, we allow the target 416 // to decide whether the loaded value is actually a constant. If so, we can 417 // actually use it as a load. 418 if (!MI->isDereferenceableInvariantLoad()) 419 // FIXME: we should be able to hoist loads with no other side effects if 420 // there are no other instructions which can change memory in this loop. 421 // This is a trivial form of alias analysis. 422 return false; 423 } 424 425 // Ignore stack guard loads, otherwise the register that holds CSEed value may 426 // be spilled and get loaded back with corrupted data. 427 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 428 return false; 429 430 return true; 431 } 432 433 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 434 /// common expression that defines Reg. CSBB is basic block where CSReg is 435 /// defined. 436 bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg, 437 MachineBasicBlock *CSBB, MachineInstr *MI) { 438 // FIXME: Heuristics that works around the lack the live range splitting. 439 440 // If CSReg is used at all uses of Reg, CSE should not increase register 441 // pressure of CSReg. 442 bool MayIncreasePressure = true; 443 if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) { 444 MayIncreasePressure = false; 445 SmallPtrSet<MachineInstr*, 8> CSUses; 446 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 447 CSUses.insert(&MI); 448 } 449 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 450 if (!CSUses.count(&MI)) { 451 MayIncreasePressure = true; 452 break; 453 } 454 } 455 } 456 if (!MayIncreasePressure) return true; 457 458 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 459 // an immediate predecessor. We don't want to increase register pressure and 460 // end up causing other computation to be spilled. 461 if (TII->isAsCheapAsAMove(*MI)) { 462 MachineBasicBlock *BB = MI->getParent(); 463 if (CSBB != BB && !CSBB->isSuccessor(BB)) 464 return false; 465 } 466 467 // Heuristics #2: If the expression doesn't not use a vr and the only use 468 // of the redundant computation are copies, do not cse. 469 bool HasVRegUse = false; 470 for (const MachineOperand &MO : MI->operands()) { 471 if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) { 472 HasVRegUse = true; 473 break; 474 } 475 } 476 if (!HasVRegUse) { 477 bool HasNonCopyUse = false; 478 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 479 // Ignore copies. 480 if (!MI.isCopyLike()) { 481 HasNonCopyUse = true; 482 break; 483 } 484 } 485 if (!HasNonCopyUse) 486 return false; 487 } 488 489 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 490 // it unless the defined value is already used in the BB of the new use. 491 bool HasPHI = false; 492 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { 493 HasPHI |= UseMI.isPHI(); 494 if (UseMI.getParent() == MI->getParent()) 495 return true; 496 } 497 498 return !HasPHI; 499 } 500 501 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 502 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 503 ScopeType *Scope = new ScopeType(VNT); 504 ScopeMap[MBB] = Scope; 505 } 506 507 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 508 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 509 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 510 assert(SI != ScopeMap.end()); 511 delete SI->second; 512 ScopeMap.erase(SI); 513 } 514 515 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) { 516 bool Changed = false; 517 518 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 519 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 520 SmallVector<unsigned, 2> ImplicitDefs; 521 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 522 if (!isCSECandidate(&MI)) 523 continue; 524 525 bool FoundCSE = VNT.count(&MI); 526 if (!FoundCSE) { 527 // Using trivial copy propagation to find more CSE opportunities. 528 if (PerformTrivialCopyPropagation(&MI, MBB)) { 529 Changed = true; 530 531 // After coalescing MI itself may become a copy. 532 if (MI.isCopyLike()) 533 continue; 534 535 // Try again to see if CSE is possible. 536 FoundCSE = VNT.count(&MI); 537 } 538 } 539 540 // Commute commutable instructions. 541 bool Commuted = false; 542 if (!FoundCSE && MI.isCommutable()) { 543 if (MachineInstr *NewMI = TII->commuteInstruction(MI)) { 544 Commuted = true; 545 FoundCSE = VNT.count(NewMI); 546 if (NewMI != &MI) { 547 // New instruction. It doesn't need to be kept. 548 NewMI->eraseFromParent(); 549 Changed = true; 550 } else if (!FoundCSE) 551 // MI was changed but it didn't help, commute it back! 552 (void)TII->commuteInstruction(MI); 553 } 554 } 555 556 // If the instruction defines physical registers and the values *may* be 557 // used, then it's not safe to replace it with a common subexpression. 558 // It's also not safe if the instruction uses physical registers. 559 bool CrossMBBPhysDef = false; 560 SmallSet<MCRegister, 8> PhysRefs; 561 PhysDefVector PhysDefs; 562 bool PhysUseDef = false; 563 if (FoundCSE && 564 hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) { 565 FoundCSE = false; 566 567 // ... Unless the CS is local or is in the sole predecessor block 568 // and it also defines the physical register which is not clobbered 569 // in between and the physical register uses were not clobbered. 570 // This can never be the case if the instruction both uses and 571 // defines the same physical register, which was detected above. 572 if (!PhysUseDef) { 573 unsigned CSVN = VNT.lookup(&MI); 574 MachineInstr *CSMI = Exps[CSVN]; 575 if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 576 FoundCSE = true; 577 } 578 } 579 580 if (!FoundCSE) { 581 VNT.insert(&MI, CurrVN++); 582 Exps.push_back(&MI); 583 continue; 584 } 585 586 // Found a common subexpression, eliminate it. 587 unsigned CSVN = VNT.lookup(&MI); 588 MachineInstr *CSMI = Exps[CSVN]; 589 LLVM_DEBUG(dbgs() << "Examining: " << MI); 590 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 591 592 // Prevent CSE-ing non-local convergent instructions. 593 // LLVM's current definition of `isConvergent` does not necessarily prove 594 // that non-local CSE is illegal. The following check extends the definition 595 // of `isConvergent` to assume a convergent instruction is dependent not 596 // only on additional conditions, but also on fewer conditions. LLVM does 597 // not have a MachineInstr attribute which expresses this extended 598 // definition, so it's necessary to use `isConvergent` to prevent illegally 599 // CSE-ing the subset of `isConvergent` instructions which do fall into this 600 // extended definition. 601 if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) { 602 LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in " 603 "different BBs, avoid CSE!\n"); 604 VNT.insert(&MI, CurrVN++); 605 Exps.push_back(&MI); 606 continue; 607 } 608 609 // Check if it's profitable to perform this CSE. 610 bool DoCSE = true; 611 unsigned NumDefs = MI.getNumDefs(); 612 613 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 614 MachineOperand &MO = MI.getOperand(i); 615 if (!MO.isReg() || !MO.isDef()) 616 continue; 617 Register OldReg = MO.getReg(); 618 Register NewReg = CSMI->getOperand(i).getReg(); 619 620 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 621 // we should make sure it is not dead at CSMI. 622 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 623 ImplicitDefsToUpdate.push_back(i); 624 625 // Keep track of implicit defs of CSMI and MI, to clear possibly 626 // made-redundant kill flags. 627 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 628 ImplicitDefs.push_back(OldReg); 629 630 if (OldReg == NewReg) { 631 --NumDefs; 632 continue; 633 } 634 635 assert(Register::isVirtualRegister(OldReg) && 636 Register::isVirtualRegister(NewReg) && 637 "Do not CSE physical register defs!"); 638 639 if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) { 640 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 641 DoCSE = false; 642 break; 643 } 644 645 // Don't perform CSE if the result of the new instruction cannot exist 646 // within the constraints (register class, bank, or low-level type) of 647 // the old instruction. 648 if (!MRI->constrainRegAttrs(NewReg, OldReg)) { 649 LLVM_DEBUG( 650 dbgs() << "*** Not the same register constraints, avoid CSE!\n"); 651 DoCSE = false; 652 break; 653 } 654 655 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 656 --NumDefs; 657 } 658 659 // Actually perform the elimination. 660 if (DoCSE) { 661 for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 662 unsigned OldReg = CSEPair.first; 663 unsigned NewReg = CSEPair.second; 664 // OldReg may have been unused but is used now, clear the Dead flag 665 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 666 assert(Def != nullptr && "CSEd register has no unique definition?"); 667 Def->clearRegisterDeads(NewReg); 668 // Replace with NewReg and clear kill flags which may be wrong now. 669 MRI->replaceRegWith(OldReg, NewReg); 670 MRI->clearKillFlags(NewReg); 671 } 672 673 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 674 // we should make sure it is not dead at CSMI. 675 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 676 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 677 for (const auto &PhysDef : PhysDefs) 678 if (!MI.getOperand(PhysDef.first).isDead()) 679 CSMI->getOperand(PhysDef.first).setIsDead(false); 680 681 // Go through implicit defs of CSMI and MI, and clear the kill flags on 682 // their uses in all the instructions between CSMI and MI. 683 // We might have made some of the kill flags redundant, consider: 684 // subs ... implicit-def %nzcv <- CSMI 685 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore 686 // subs ... implicit-def %nzcv <- MI, to be eliminated 687 // csinc ... implicit killed %nzcv 688 // Since we eliminated MI, and reused a register imp-def'd by CSMI 689 // (here %nzcv), that register, if it was killed before MI, should have 690 // that kill flag removed, because it's lifetime was extended. 691 if (CSMI->getParent() == MI.getParent()) { 692 for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II) 693 for (auto ImplicitDef : ImplicitDefs) 694 if (MachineOperand *MO = II->findRegisterUseOperand( 695 ImplicitDef, /*isKill=*/true, TRI)) 696 MO->setIsKill(false); 697 } else { 698 // If the instructions aren't in the same BB, bail out and clear the 699 // kill flag on all uses of the imp-def'd register. 700 for (auto ImplicitDef : ImplicitDefs) 701 MRI->clearKillFlags(ImplicitDef); 702 } 703 704 if (CrossMBBPhysDef) { 705 // Add physical register defs now coming in from a predecessor to MBB 706 // livein list. 707 while (!PhysDefs.empty()) { 708 auto LiveIn = PhysDefs.pop_back_val(); 709 if (!MBB->isLiveIn(LiveIn.second)) 710 MBB->addLiveIn(LiveIn.second); 711 } 712 ++NumCrossBBCSEs; 713 } 714 715 MI.eraseFromParent(); 716 ++NumCSEs; 717 if (!PhysRefs.empty()) 718 ++NumPhysCSEs; 719 if (Commuted) 720 ++NumCommutes; 721 Changed = true; 722 } else { 723 VNT.insert(&MI, CurrVN++); 724 Exps.push_back(&MI); 725 } 726 CSEPairs.clear(); 727 ImplicitDefsToUpdate.clear(); 728 ImplicitDefs.clear(); 729 } 730 731 return Changed; 732 } 733 734 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 735 /// dominator tree node if its a leaf or all of its children are done. Walk 736 /// up the dominator tree to destroy ancestors which are now done. 737 void 738 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 739 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 740 if (OpenChildren[Node]) 741 return; 742 743 // Pop scope. 744 ExitScope(Node->getBlock()); 745 746 // Now traverse upwards to pop ancestors whose offsprings are all done. 747 while (MachineDomTreeNode *Parent = Node->getIDom()) { 748 unsigned Left = --OpenChildren[Parent]; 749 if (Left != 0) 750 break; 751 ExitScope(Parent->getBlock()); 752 Node = Parent; 753 } 754 } 755 756 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 757 SmallVector<MachineDomTreeNode*, 32> Scopes; 758 SmallVector<MachineDomTreeNode*, 8> WorkList; 759 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 760 761 CurrVN = 0; 762 763 // Perform a DFS walk to determine the order of visit. 764 WorkList.push_back(Node); 765 do { 766 Node = WorkList.pop_back_val(); 767 Scopes.push_back(Node); 768 OpenChildren[Node] = Node->getNumChildren(); 769 append_range(WorkList, Node->children()); 770 } while (!WorkList.empty()); 771 772 // Now perform CSE. 773 bool Changed = false; 774 for (MachineDomTreeNode *Node : Scopes) { 775 MachineBasicBlock *MBB = Node->getBlock(); 776 EnterScope(MBB); 777 Changed |= ProcessBlockCSE(MBB); 778 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 779 ExitScopeIfDone(Node, OpenChildren); 780 } 781 782 return Changed; 783 } 784 785 // We use stronger checks for PRE candidate rather than for CSE ones to embrace 786 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps 787 // to exclude instrs created by PRE that won't be CSEed later. 788 bool MachineCSE::isPRECandidate(MachineInstr *MI) { 789 if (!isCSECandidate(MI) || 790 MI->isNotDuplicable() || 791 MI->mayLoad() || 792 MI->isAsCheapAsAMove() || 793 MI->getNumDefs() != 1 || 794 MI->getNumExplicitDefs() != 1) 795 return false; 796 797 for (const auto &def : MI->defs()) 798 if (!Register::isVirtualRegister(def.getReg())) 799 return false; 800 801 for (const auto &use : MI->uses()) 802 if (use.isReg() && !Register::isVirtualRegister(use.getReg())) 803 return false; 804 805 return true; 806 } 807 808 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT, 809 MachineBasicBlock *MBB) { 810 bool Changed = false; 811 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 812 if (!isPRECandidate(&MI)) 813 continue; 814 815 if (!PREMap.count(&MI)) { 816 PREMap[&MI] = MBB; 817 continue; 818 } 819 820 auto MBB1 = PREMap[&MI]; 821 assert( 822 !DT->properlyDominates(MBB, MBB1) && 823 "MBB cannot properly dominate MBB1 while DFS through dominators tree!"); 824 auto CMBB = DT->findNearestCommonDominator(MBB, MBB1); 825 if (!CMBB->isLegalToHoistInto()) 826 continue; 827 828 if (!isProfitableToHoistInto(CMBB, MBB, MBB1)) 829 continue; 830 831 // Two instrs are partial redundant if their basic blocks are reachable 832 // from one to another but one doesn't dominate another. 833 if (CMBB != MBB1) { 834 auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock(); 835 if (BB != nullptr && BB1 != nullptr && 836 (isPotentiallyReachable(BB1, BB) || 837 isPotentiallyReachable(BB, BB1))) { 838 // The following check extends the definition of `isConvergent` to 839 // assume a convergent instruction is dependent not only on additional 840 // conditions, but also on fewer conditions. LLVM does not have a 841 // MachineInstr attribute which expresses this extended definition, so 842 // it's necessary to use `isConvergent` to prevent illegally PRE-ing the 843 // subset of `isConvergent` instructions which do fall into this 844 // extended definition. 845 if (MI.isConvergent() && CMBB != MBB) 846 continue; 847 848 assert(MI.getOperand(0).isDef() && 849 "First operand of instr with one explicit def must be this def"); 850 Register VReg = MI.getOperand(0).getReg(); 851 Register NewReg = MRI->cloneVirtualRegister(VReg); 852 if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI)) 853 continue; 854 MachineInstr &NewMI = 855 TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI); 856 857 // When hoisting, make sure we don't carry the debug location of 858 // the original instruction, as that's not correct and can cause 859 // unexpected jumps when debugging optimized code. 860 auto EmptyDL = DebugLoc(); 861 NewMI.setDebugLoc(EmptyDL); 862 863 NewMI.getOperand(0).setReg(NewReg); 864 865 PREMap[&MI] = CMBB; 866 ++NumPREs; 867 Changed = true; 868 } 869 } 870 } 871 return Changed; 872 } 873 874 // This simple PRE (partial redundancy elimination) pass doesn't actually 875 // eliminate partial redundancy but transforms it to full redundancy, 876 // anticipating that the next CSE step will eliminate this created redundancy. 877 // If CSE doesn't eliminate this, than created instruction will remain dead 878 // and eliminated later by Remove Dead Machine Instructions pass. 879 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) { 880 SmallVector<MachineDomTreeNode *, 32> BBs; 881 882 PREMap.clear(); 883 bool Changed = false; 884 BBs.push_back(DT->getRootNode()); 885 do { 886 auto Node = BBs.pop_back_val(); 887 append_range(BBs, Node->children()); 888 889 MachineBasicBlock *MBB = Node->getBlock(); 890 Changed |= ProcessBlockPRE(DT, MBB); 891 892 } while (!BBs.empty()); 893 894 return Changed; 895 } 896 897 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB, 898 MachineBasicBlock *MBB, 899 MachineBasicBlock *MBB1) { 900 if (CandidateBB->getParent()->getFunction().hasMinSize()) 901 return true; 902 assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB"); 903 assert(DT->dominates(CandidateBB, MBB1) && 904 "CandidateBB should dominate MBB1"); 905 return MBFI->getBlockFreq(CandidateBB) <= 906 MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1); 907 } 908 909 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 910 if (skipFunction(MF.getFunction())) 911 return false; 912 913 TII = MF.getSubtarget().getInstrInfo(); 914 TRI = MF.getSubtarget().getRegisterInfo(); 915 MRI = &MF.getRegInfo(); 916 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 917 DT = &getAnalysis<MachineDominatorTree>(); 918 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 919 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 920 bool ChangedPRE, ChangedCSE; 921 ChangedPRE = PerformSimplePRE(DT); 922 ChangedCSE = PerformCSE(DT->getRootNode()); 923 return ChangedPRE || ChangedCSE; 924 } 925