1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global common subexpression elimination on machine 10 // instructions using a scoped hash table based value numbering scheme. It 11 // must be run while the machine function is still in SSA form. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/ScopedHashTable.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/MC/MCInstrDesc.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/RecyclingAllocator.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <iterator> 46 #include <utility> 47 #include <vector> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "machine-cse" 52 53 STATISTIC(NumCoalesces, "Number of copies coalesced"); 54 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 55 STATISTIC(NumPREs, "Number of partial redundant expression" 56 " transformed to fully redundant"); 57 STATISTIC(NumPhysCSEs, 58 "Number of physreg referencing common subexpr eliminated"); 59 STATISTIC(NumCrossBBCSEs, 60 "Number of cross-MBB physreg referencing CS eliminated"); 61 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 62 63 namespace { 64 65 class MachineCSE : public MachineFunctionPass { 66 const TargetInstrInfo *TII; 67 const TargetRegisterInfo *TRI; 68 AliasAnalysis *AA; 69 MachineDominatorTree *DT; 70 MachineRegisterInfo *MRI; 71 MachineBlockFrequencyInfo *MBFI; 72 73 public: 74 static char ID; // Pass identification 75 76 MachineCSE() : MachineFunctionPass(ID) { 77 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 78 } 79 80 bool runOnMachineFunction(MachineFunction &MF) override; 81 82 void getAnalysisUsage(AnalysisUsage &AU) const override { 83 AU.setPreservesCFG(); 84 MachineFunctionPass::getAnalysisUsage(AU); 85 AU.addRequired<AAResultsWrapperPass>(); 86 AU.addPreservedID(MachineLoopInfoID); 87 AU.addRequired<MachineDominatorTree>(); 88 AU.addPreserved<MachineDominatorTree>(); 89 AU.addRequired<MachineBlockFrequencyInfo>(); 90 AU.addPreserved<MachineBlockFrequencyInfo>(); 91 } 92 93 void releaseMemory() override { 94 ScopeMap.clear(); 95 PREMap.clear(); 96 Exps.clear(); 97 } 98 99 private: 100 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, 101 ScopedHashTableVal<MachineInstr *, unsigned>>; 102 using ScopedHTType = 103 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, 104 AllocatorTy>; 105 using ScopeType = ScopedHTType::ScopeTy; 106 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>; 107 108 unsigned LookAheadLimit = 0; 109 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; 110 DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait> 111 PREMap; 112 ScopedHTType VNT; 113 SmallVector<MachineInstr *, 64> Exps; 114 unsigned CurrVN = 0; 115 116 bool PerformTrivialCopyPropagation(MachineInstr *MI, 117 MachineBasicBlock *MBB); 118 bool isPhysDefTriviallyDead(unsigned Reg, 119 MachineBasicBlock::const_iterator I, 120 MachineBasicBlock::const_iterator E) const; 121 bool hasLivePhysRegDefUses(const MachineInstr *MI, 122 const MachineBasicBlock *MBB, 123 SmallSet<unsigned, 8> &PhysRefs, 124 PhysDefVector &PhysDefs, bool &PhysUseDef) const; 125 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 126 SmallSet<unsigned, 8> &PhysRefs, 127 PhysDefVector &PhysDefs, bool &NonLocal) const; 128 bool isCSECandidate(MachineInstr *MI); 129 bool isProfitableToCSE(unsigned CSReg, unsigned Reg, 130 MachineBasicBlock *CSBB, MachineInstr *MI); 131 void EnterScope(MachineBasicBlock *MBB); 132 void ExitScope(MachineBasicBlock *MBB); 133 bool ProcessBlockCSE(MachineBasicBlock *MBB); 134 void ExitScopeIfDone(MachineDomTreeNode *Node, 135 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 136 bool PerformCSE(MachineDomTreeNode *Node); 137 138 bool isPRECandidate(MachineInstr *MI); 139 bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB); 140 bool PerformSimplePRE(MachineDominatorTree *DT); 141 /// Heuristics to see if it's profitable to move common computations of MBB 142 /// and MBB1 to CandidateBB. 143 bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB, 144 MachineBasicBlock *MBB, 145 MachineBasicBlock *MBB1); 146 }; 147 148 } // end anonymous namespace 149 150 char MachineCSE::ID = 0; 151 152 char &llvm::MachineCSEID = MachineCSE::ID; 153 154 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 155 "Machine Common Subexpression Elimination", false, false) 156 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 157 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 158 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 159 "Machine Common Subexpression Elimination", false, false) 160 161 /// The source register of a COPY machine instruction can be propagated to all 162 /// its users, and this propagation could increase the probability of finding 163 /// common subexpressions. If the COPY has only one user, the COPY itself can 164 /// be removed. 165 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 166 MachineBasicBlock *MBB) { 167 bool Changed = false; 168 for (MachineOperand &MO : MI->operands()) { 169 if (!MO.isReg() || !MO.isUse()) 170 continue; 171 Register Reg = MO.getReg(); 172 if (!Register::isVirtualRegister(Reg)) 173 continue; 174 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 175 MachineInstr *DefMI = MRI->getVRegDef(Reg); 176 if (!DefMI->isCopy()) 177 continue; 178 Register SrcReg = DefMI->getOperand(1).getReg(); 179 if (!Register::isVirtualRegister(SrcReg)) 180 continue; 181 if (DefMI->getOperand(0).getSubReg()) 182 continue; 183 // FIXME: We should trivially coalesce subregister copies to expose CSE 184 // opportunities on instructions with truncated operands (see 185 // cse-add-with-overflow.ll). This can be done here as follows: 186 // if (SrcSubReg) 187 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 188 // SrcSubReg); 189 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 190 // 191 // The 2-addr pass has been updated to handle coalesced subregs. However, 192 // some machine-specific code still can't handle it. 193 // To handle it properly we also need a way find a constrained subregister 194 // class given a super-reg class and subreg index. 195 if (DefMI->getOperand(1).getSubReg()) 196 continue; 197 if (!MRI->constrainRegAttrs(SrcReg, Reg)) 198 continue; 199 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 200 LLVM_DEBUG(dbgs() << "*** to: " << *MI); 201 202 // Propagate SrcReg of copies to MI. 203 MO.setReg(SrcReg); 204 MRI->clearKillFlags(SrcReg); 205 // Coalesce single use copies. 206 if (OnlyOneUse) { 207 // If (and only if) we've eliminated all uses of the copy, also 208 // copy-propagate to any debug-users of MI, or they'll be left using 209 // an undefined value. 210 DefMI->changeDebugValuesDefReg(SrcReg); 211 212 DefMI->eraseFromParent(); 213 ++NumCoalesces; 214 } 215 Changed = true; 216 } 217 218 return Changed; 219 } 220 221 bool 222 MachineCSE::isPhysDefTriviallyDead(unsigned Reg, 223 MachineBasicBlock::const_iterator I, 224 MachineBasicBlock::const_iterator E) const { 225 unsigned LookAheadLeft = LookAheadLimit; 226 while (LookAheadLeft) { 227 // Skip over dbg_value's. 228 I = skipDebugInstructionsForward(I, E); 229 230 if (I == E) 231 // Reached end of block, we don't know if register is dead or not. 232 return false; 233 234 bool SeenDef = false; 235 for (const MachineOperand &MO : I->operands()) { 236 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 237 SeenDef = true; 238 if (!MO.isReg() || !MO.getReg()) 239 continue; 240 if (!TRI->regsOverlap(MO.getReg(), Reg)) 241 continue; 242 if (MO.isUse()) 243 // Found a use! 244 return false; 245 SeenDef = true; 246 } 247 if (SeenDef) 248 // See a def of Reg (or an alias) before encountering any use, it's 249 // trivially dead. 250 return true; 251 252 --LookAheadLeft; 253 ++I; 254 } 255 return false; 256 } 257 258 static bool isCallerPreservedOrConstPhysReg(unsigned Reg, 259 const MachineFunction &MF, 260 const TargetRegisterInfo &TRI) { 261 // MachineRegisterInfo::isConstantPhysReg directly called by 262 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the 263 // reserved registers to be frozen. That doesn't cause a problem post-ISel as 264 // most (if not all) targets freeze reserved registers right after ISel. 265 // 266 // It does cause issues mid-GlobalISel, however, hence the additional 267 // reservedRegsFrozen check. 268 const MachineRegisterInfo &MRI = MF.getRegInfo(); 269 return TRI.isCallerPreservedPhysReg(Reg, MF) || 270 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); 271 } 272 273 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 274 /// physical registers (except for dead defs of physical registers). It also 275 /// returns the physical register def by reference if it's the only one and the 276 /// instruction does not uses a physical register. 277 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 278 const MachineBasicBlock *MBB, 279 SmallSet<unsigned, 8> &PhysRefs, 280 PhysDefVector &PhysDefs, 281 bool &PhysUseDef) const { 282 // First, add all uses to PhysRefs. 283 for (const MachineOperand &MO : MI->operands()) { 284 if (!MO.isReg() || MO.isDef()) 285 continue; 286 Register Reg = MO.getReg(); 287 if (!Reg) 288 continue; 289 if (Register::isVirtualRegister(Reg)) 290 continue; 291 // Reading either caller preserved or constant physregs is ok. 292 if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI)) 293 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 294 PhysRefs.insert(*AI); 295 } 296 297 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 298 // (which currently contains only uses), set the PhysUseDef flag. 299 PhysUseDef = false; 300 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 301 for (const auto &MOP : llvm::enumerate(MI->operands())) { 302 const MachineOperand &MO = MOP.value(); 303 if (!MO.isReg() || !MO.isDef()) 304 continue; 305 Register Reg = MO.getReg(); 306 if (!Reg) 307 continue; 308 if (Register::isVirtualRegister(Reg)) 309 continue; 310 // Check against PhysRefs even if the def is "dead". 311 if (PhysRefs.count(Reg)) 312 PhysUseDef = true; 313 // If the def is dead, it's ok. But the def may not marked "dead". That's 314 // common since this pass is run before livevariables. We can scan 315 // forward a few instructions and check if it is obviously dead. 316 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end())) 317 PhysDefs.push_back(std::make_pair(MOP.index(), Reg)); 318 } 319 320 // Finally, add all defs to PhysRefs as well. 321 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 322 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid(); 323 ++AI) 324 PhysRefs.insert(*AI); 325 326 return !PhysRefs.empty(); 327 } 328 329 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 330 SmallSet<unsigned, 8> &PhysRefs, 331 PhysDefVector &PhysDefs, 332 bool &NonLocal) const { 333 // For now conservatively returns false if the common subexpression is 334 // not in the same basic block as the given instruction. The only exception 335 // is if the common subexpression is in the sole predecessor block. 336 const MachineBasicBlock *MBB = MI->getParent(); 337 const MachineBasicBlock *CSMBB = CSMI->getParent(); 338 339 bool CrossMBB = false; 340 if (CSMBB != MBB) { 341 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 342 return false; 343 344 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 345 if (MRI->isAllocatable(PhysDefs[i].second) || 346 MRI->isReserved(PhysDefs[i].second)) 347 // Avoid extending live range of physical registers if they are 348 //allocatable or reserved. 349 return false; 350 } 351 CrossMBB = true; 352 } 353 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 354 MachineBasicBlock::const_iterator E = MI; 355 MachineBasicBlock::const_iterator EE = CSMBB->end(); 356 unsigned LookAheadLeft = LookAheadLimit; 357 while (LookAheadLeft) { 358 // Skip over dbg_value's. 359 while (I != E && I != EE && I->isDebugInstr()) 360 ++I; 361 362 if (I == EE) { 363 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 364 (void)CrossMBB; 365 CrossMBB = false; 366 NonLocal = true; 367 I = MBB->begin(); 368 EE = MBB->end(); 369 continue; 370 } 371 372 if (I == E) 373 return true; 374 375 for (const MachineOperand &MO : I->operands()) { 376 // RegMasks go on instructions like calls that clobber lots of physregs. 377 // Don't attempt to CSE across such an instruction. 378 if (MO.isRegMask()) 379 return false; 380 if (!MO.isReg() || !MO.isDef()) 381 continue; 382 Register MOReg = MO.getReg(); 383 if (Register::isVirtualRegister(MOReg)) 384 continue; 385 if (PhysRefs.count(MOReg)) 386 return false; 387 } 388 389 --LookAheadLeft; 390 ++I; 391 } 392 393 return false; 394 } 395 396 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 397 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 398 MI->isInlineAsm() || MI->isDebugInstr()) 399 return false; 400 401 // Ignore copies. 402 if (MI->isCopyLike()) 403 return false; 404 405 // Ignore stuff that we obviously can't move. 406 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 407 MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects()) 408 return false; 409 410 if (MI->mayLoad()) { 411 // Okay, this instruction does a load. As a refinement, we allow the target 412 // to decide whether the loaded value is actually a constant. If so, we can 413 // actually use it as a load. 414 if (!MI->isDereferenceableInvariantLoad(AA)) 415 // FIXME: we should be able to hoist loads with no other side effects if 416 // there are no other instructions which can change memory in this loop. 417 // This is a trivial form of alias analysis. 418 return false; 419 } 420 421 // Ignore stack guard loads, otherwise the register that holds CSEed value may 422 // be spilled and get loaded back with corrupted data. 423 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 424 return false; 425 426 return true; 427 } 428 429 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 430 /// common expression that defines Reg. CSBB is basic block where CSReg is 431 /// defined. 432 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, 433 MachineBasicBlock *CSBB, MachineInstr *MI) { 434 // FIXME: Heuristics that works around the lack the live range splitting. 435 436 // If CSReg is used at all uses of Reg, CSE should not increase register 437 // pressure of CSReg. 438 bool MayIncreasePressure = true; 439 if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) { 440 MayIncreasePressure = false; 441 SmallPtrSet<MachineInstr*, 8> CSUses; 442 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 443 CSUses.insert(&MI); 444 } 445 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 446 if (!CSUses.count(&MI)) { 447 MayIncreasePressure = true; 448 break; 449 } 450 } 451 } 452 if (!MayIncreasePressure) return true; 453 454 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 455 // an immediate predecessor. We don't want to increase register pressure and 456 // end up causing other computation to be spilled. 457 if (TII->isAsCheapAsAMove(*MI)) { 458 MachineBasicBlock *BB = MI->getParent(); 459 if (CSBB != BB && !CSBB->isSuccessor(BB)) 460 return false; 461 } 462 463 // Heuristics #2: If the expression doesn't not use a vr and the only use 464 // of the redundant computation are copies, do not cse. 465 bool HasVRegUse = false; 466 for (const MachineOperand &MO : MI->operands()) { 467 if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) { 468 HasVRegUse = true; 469 break; 470 } 471 } 472 if (!HasVRegUse) { 473 bool HasNonCopyUse = false; 474 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 475 // Ignore copies. 476 if (!MI.isCopyLike()) { 477 HasNonCopyUse = true; 478 break; 479 } 480 } 481 if (!HasNonCopyUse) 482 return false; 483 } 484 485 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 486 // it unless the defined value is already used in the BB of the new use. 487 bool HasPHI = false; 488 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { 489 HasPHI |= UseMI.isPHI(); 490 if (UseMI.getParent() == MI->getParent()) 491 return true; 492 } 493 494 return !HasPHI; 495 } 496 497 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 498 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 499 ScopeType *Scope = new ScopeType(VNT); 500 ScopeMap[MBB] = Scope; 501 } 502 503 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 504 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 505 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 506 assert(SI != ScopeMap.end()); 507 delete SI->second; 508 ScopeMap.erase(SI); 509 } 510 511 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) { 512 bool Changed = false; 513 514 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 515 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 516 SmallVector<unsigned, 2> ImplicitDefs; 517 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { 518 MachineInstr *MI = &*I; 519 ++I; 520 521 if (!isCSECandidate(MI)) 522 continue; 523 524 bool FoundCSE = VNT.count(MI); 525 if (!FoundCSE) { 526 // Using trivial copy propagation to find more CSE opportunities. 527 if (PerformTrivialCopyPropagation(MI, MBB)) { 528 Changed = true; 529 530 // After coalescing MI itself may become a copy. 531 if (MI->isCopyLike()) 532 continue; 533 534 // Try again to see if CSE is possible. 535 FoundCSE = VNT.count(MI); 536 } 537 } 538 539 // Commute commutable instructions. 540 bool Commuted = false; 541 if (!FoundCSE && MI->isCommutable()) { 542 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) { 543 Commuted = true; 544 FoundCSE = VNT.count(NewMI); 545 if (NewMI != MI) { 546 // New instruction. It doesn't need to be kept. 547 NewMI->eraseFromParent(); 548 Changed = true; 549 } else if (!FoundCSE) 550 // MI was changed but it didn't help, commute it back! 551 (void)TII->commuteInstruction(*MI); 552 } 553 } 554 555 // If the instruction defines physical registers and the values *may* be 556 // used, then it's not safe to replace it with a common subexpression. 557 // It's also not safe if the instruction uses physical registers. 558 bool CrossMBBPhysDef = false; 559 SmallSet<unsigned, 8> PhysRefs; 560 PhysDefVector PhysDefs; 561 bool PhysUseDef = false; 562 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, 563 PhysDefs, PhysUseDef)) { 564 FoundCSE = false; 565 566 // ... Unless the CS is local or is in the sole predecessor block 567 // and it also defines the physical register which is not clobbered 568 // in between and the physical register uses were not clobbered. 569 // This can never be the case if the instruction both uses and 570 // defines the same physical register, which was detected above. 571 if (!PhysUseDef) { 572 unsigned CSVN = VNT.lookup(MI); 573 MachineInstr *CSMI = Exps[CSVN]; 574 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 575 FoundCSE = true; 576 } 577 } 578 579 if (!FoundCSE) { 580 VNT.insert(MI, CurrVN++); 581 Exps.push_back(MI); 582 continue; 583 } 584 585 // Found a common subexpression, eliminate it. 586 unsigned CSVN = VNT.lookup(MI); 587 MachineInstr *CSMI = Exps[CSVN]; 588 LLVM_DEBUG(dbgs() << "Examining: " << *MI); 589 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 590 591 // Check if it's profitable to perform this CSE. 592 bool DoCSE = true; 593 unsigned NumDefs = MI->getNumDefs(); 594 595 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { 596 MachineOperand &MO = MI->getOperand(i); 597 if (!MO.isReg() || !MO.isDef()) 598 continue; 599 Register OldReg = MO.getReg(); 600 Register NewReg = CSMI->getOperand(i).getReg(); 601 602 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 603 // we should make sure it is not dead at CSMI. 604 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 605 ImplicitDefsToUpdate.push_back(i); 606 607 // Keep track of implicit defs of CSMI and MI, to clear possibly 608 // made-redundant kill flags. 609 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 610 ImplicitDefs.push_back(OldReg); 611 612 if (OldReg == NewReg) { 613 --NumDefs; 614 continue; 615 } 616 617 assert(Register::isVirtualRegister(OldReg) && 618 Register::isVirtualRegister(NewReg) && 619 "Do not CSE physical register defs!"); 620 621 if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) { 622 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 623 DoCSE = false; 624 break; 625 } 626 627 // Don't perform CSE if the result of the new instruction cannot exist 628 // within the constraints (register class, bank, or low-level type) of 629 // the old instruction. 630 if (!MRI->constrainRegAttrs(NewReg, OldReg)) { 631 LLVM_DEBUG( 632 dbgs() << "*** Not the same register constraints, avoid CSE!\n"); 633 DoCSE = false; 634 break; 635 } 636 637 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 638 --NumDefs; 639 } 640 641 // Actually perform the elimination. 642 if (DoCSE) { 643 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 644 unsigned OldReg = CSEPair.first; 645 unsigned NewReg = CSEPair.second; 646 // OldReg may have been unused but is used now, clear the Dead flag 647 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 648 assert(Def != nullptr && "CSEd register has no unique definition?"); 649 Def->clearRegisterDeads(NewReg); 650 // Replace with NewReg and clear kill flags which may be wrong now. 651 MRI->replaceRegWith(OldReg, NewReg); 652 MRI->clearKillFlags(NewReg); 653 } 654 655 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 656 // we should make sure it is not dead at CSMI. 657 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 658 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 659 for (auto PhysDef : PhysDefs) 660 if (!MI->getOperand(PhysDef.first).isDead()) 661 CSMI->getOperand(PhysDef.first).setIsDead(false); 662 663 // Go through implicit defs of CSMI and MI, and clear the kill flags on 664 // their uses in all the instructions between CSMI and MI. 665 // We might have made some of the kill flags redundant, consider: 666 // subs ... implicit-def %nzcv <- CSMI 667 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore 668 // subs ... implicit-def %nzcv <- MI, to be eliminated 669 // csinc ... implicit killed %nzcv 670 // Since we eliminated MI, and reused a register imp-def'd by CSMI 671 // (here %nzcv), that register, if it was killed before MI, should have 672 // that kill flag removed, because it's lifetime was extended. 673 if (CSMI->getParent() == MI->getParent()) { 674 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II) 675 for (auto ImplicitDef : ImplicitDefs) 676 if (MachineOperand *MO = II->findRegisterUseOperand( 677 ImplicitDef, /*isKill=*/true, TRI)) 678 MO->setIsKill(false); 679 } else { 680 // If the instructions aren't in the same BB, bail out and clear the 681 // kill flag on all uses of the imp-def'd register. 682 for (auto ImplicitDef : ImplicitDefs) 683 MRI->clearKillFlags(ImplicitDef); 684 } 685 686 if (CrossMBBPhysDef) { 687 // Add physical register defs now coming in from a predecessor to MBB 688 // livein list. 689 while (!PhysDefs.empty()) { 690 auto LiveIn = PhysDefs.pop_back_val(); 691 if (!MBB->isLiveIn(LiveIn.second)) 692 MBB->addLiveIn(LiveIn.second); 693 } 694 ++NumCrossBBCSEs; 695 } 696 697 MI->eraseFromParent(); 698 ++NumCSEs; 699 if (!PhysRefs.empty()) 700 ++NumPhysCSEs; 701 if (Commuted) 702 ++NumCommutes; 703 Changed = true; 704 } else { 705 VNT.insert(MI, CurrVN++); 706 Exps.push_back(MI); 707 } 708 CSEPairs.clear(); 709 ImplicitDefsToUpdate.clear(); 710 ImplicitDefs.clear(); 711 } 712 713 return Changed; 714 } 715 716 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 717 /// dominator tree node if its a leaf or all of its children are done. Walk 718 /// up the dominator tree to destroy ancestors which are now done. 719 void 720 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 721 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 722 if (OpenChildren[Node]) 723 return; 724 725 // Pop scope. 726 ExitScope(Node->getBlock()); 727 728 // Now traverse upwards to pop ancestors whose offsprings are all done. 729 while (MachineDomTreeNode *Parent = Node->getIDom()) { 730 unsigned Left = --OpenChildren[Parent]; 731 if (Left != 0) 732 break; 733 ExitScope(Parent->getBlock()); 734 Node = Parent; 735 } 736 } 737 738 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 739 SmallVector<MachineDomTreeNode*, 32> Scopes; 740 SmallVector<MachineDomTreeNode*, 8> WorkList; 741 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 742 743 CurrVN = 0; 744 745 // Perform a DFS walk to determine the order of visit. 746 WorkList.push_back(Node); 747 do { 748 Node = WorkList.pop_back_val(); 749 Scopes.push_back(Node); 750 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 751 OpenChildren[Node] = Children.size(); 752 for (MachineDomTreeNode *Child : Children) 753 WorkList.push_back(Child); 754 } while (!WorkList.empty()); 755 756 // Now perform CSE. 757 bool Changed = false; 758 for (MachineDomTreeNode *Node : Scopes) { 759 MachineBasicBlock *MBB = Node->getBlock(); 760 EnterScope(MBB); 761 Changed |= ProcessBlockCSE(MBB); 762 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 763 ExitScopeIfDone(Node, OpenChildren); 764 } 765 766 return Changed; 767 } 768 769 // We use stronger checks for PRE candidate rather than for CSE ones to embrace 770 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps 771 // to exclude instrs created by PRE that won't be CSEed later. 772 bool MachineCSE::isPRECandidate(MachineInstr *MI) { 773 if (!isCSECandidate(MI) || 774 MI->isNotDuplicable() || 775 MI->mayLoad() || 776 MI->isAsCheapAsAMove() || 777 MI->getNumDefs() != 1 || 778 MI->getNumExplicitDefs() != 1) 779 return false; 780 781 for (auto def : MI->defs()) 782 if (!Register::isVirtualRegister(def.getReg())) 783 return false; 784 785 for (auto use : MI->uses()) 786 if (use.isReg() && !Register::isVirtualRegister(use.getReg())) 787 return false; 788 789 return true; 790 } 791 792 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT, 793 MachineBasicBlock *MBB) { 794 bool Changed = false; 795 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { 796 MachineInstr *MI = &*I; 797 ++I; 798 799 if (!isPRECandidate(MI)) 800 continue; 801 802 if (!PREMap.count(MI)) { 803 PREMap[MI] = MBB; 804 continue; 805 } 806 807 auto MBB1 = PREMap[MI]; 808 assert( 809 !DT->properlyDominates(MBB, MBB1) && 810 "MBB cannot properly dominate MBB1 while DFS through dominators tree!"); 811 auto CMBB = DT->findNearestCommonDominator(MBB, MBB1); 812 if (!CMBB->isLegalToHoistInto()) 813 continue; 814 815 if (!isProfitableToHoistInto(CMBB, MBB, MBB1)) 816 continue; 817 818 // Two instrs are partial redundant if their basic blocks are reachable 819 // from one to another but one doesn't dominate another. 820 if (CMBB != MBB1) { 821 auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock(); 822 if (BB != nullptr && BB1 != nullptr && 823 (isPotentiallyReachable(BB1, BB) || 824 isPotentiallyReachable(BB, BB1))) { 825 826 assert(MI->getOperand(0).isDef() && 827 "First operand of instr with one explicit def must be this def"); 828 Register VReg = MI->getOperand(0).getReg(); 829 Register NewReg = MRI->cloneVirtualRegister(VReg); 830 if (!isProfitableToCSE(NewReg, VReg, CMBB, MI)) 831 continue; 832 MachineInstr &NewMI = 833 TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI); 834 NewMI.getOperand(0).setReg(NewReg); 835 836 PREMap[MI] = CMBB; 837 ++NumPREs; 838 Changed = true; 839 } 840 } 841 } 842 return Changed; 843 } 844 845 // This simple PRE (partial redundancy elimination) pass doesn't actually 846 // eliminate partial redundancy but transforms it to full redundancy, 847 // anticipating that the next CSE step will eliminate this created redundancy. 848 // If CSE doesn't eliminate this, than created instruction will remain dead 849 // and eliminated later by Remove Dead Machine Instructions pass. 850 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) { 851 SmallVector<MachineDomTreeNode *, 32> BBs; 852 853 PREMap.clear(); 854 bool Changed = false; 855 BBs.push_back(DT->getRootNode()); 856 do { 857 auto Node = BBs.pop_back_val(); 858 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 859 for (MachineDomTreeNode *Child : Children) 860 BBs.push_back(Child); 861 862 MachineBasicBlock *MBB = Node->getBlock(); 863 Changed |= ProcessBlockPRE(DT, MBB); 864 865 } while (!BBs.empty()); 866 867 return Changed; 868 } 869 870 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB, 871 MachineBasicBlock *MBB, 872 MachineBasicBlock *MBB1) { 873 if (CandidateBB->getParent()->getFunction().hasMinSize()) 874 return true; 875 assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB"); 876 assert(DT->dominates(CandidateBB, MBB1) && 877 "CandidateBB should dominate MBB1"); 878 return MBFI->getBlockFreq(CandidateBB) <= 879 MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1); 880 } 881 882 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 883 if (skipFunction(MF.getFunction())) 884 return false; 885 886 TII = MF.getSubtarget().getInstrInfo(); 887 TRI = MF.getSubtarget().getRegisterInfo(); 888 MRI = &MF.getRegInfo(); 889 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 890 DT = &getAnalysis<MachineDominatorTree>(); 891 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 892 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 893 bool ChangedPRE, ChangedCSE; 894 ChangedPRE = PerformSimplePRE(DT); 895 ChangedCSE = PerformCSE(DT->getRootNode()); 896 return ChangedPRE || ChangedCSE; 897 } 898