1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global common subexpression elimination on machine 10 // instructions using a scoped hash table based value numbering scheme. It 11 // must be run while the machine function is still in SSA form. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/ScopedHashTable.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/MC/MCRegister.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/RecyclingAllocator.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <iterator> 46 #include <utility> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "machine-cse" 51 52 STATISTIC(NumCoalesces, "Number of copies coalesced"); 53 STATISTIC(NumCSEs, "Number of common subexpression eliminated"); 54 STATISTIC(NumPREs, "Number of partial redundant expression" 55 " transformed to fully redundant"); 56 STATISTIC(NumPhysCSEs, 57 "Number of physreg referencing common subexpr eliminated"); 58 STATISTIC(NumCrossBBCSEs, 59 "Number of cross-MBB physreg referencing CS eliminated"); 60 STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); 61 62 // Threshold to avoid excessive cost to compute isProfitableToCSE. 63 static cl::opt<int> 64 CSUsesThreshold("csuses-threshold", cl::Hidden, cl::init(1024), 65 cl::desc("Threshold for the size of CSUses")); 66 67 static cl::opt<bool> AggressiveMachineCSE( 68 "aggressive-machine-cse", cl::Hidden, cl::init(false), 69 cl::desc("Override the profitability heuristics for Machine CSE")); 70 71 namespace { 72 73 class MachineCSE : public MachineFunctionPass { 74 const TargetInstrInfo *TII = nullptr; 75 const TargetRegisterInfo *TRI = nullptr; 76 AliasAnalysis *AA = nullptr; 77 MachineDominatorTree *DT = nullptr; 78 MachineRegisterInfo *MRI = nullptr; 79 MachineBlockFrequencyInfo *MBFI = nullptr; 80 81 public: 82 static char ID; // Pass identification 83 84 MachineCSE() : MachineFunctionPass(ID) { 85 initializeMachineCSEPass(*PassRegistry::getPassRegistry()); 86 } 87 88 bool runOnMachineFunction(MachineFunction &MF) override; 89 90 void getAnalysisUsage(AnalysisUsage &AU) const override { 91 AU.setPreservesCFG(); 92 MachineFunctionPass::getAnalysisUsage(AU); 93 AU.addRequired<AAResultsWrapperPass>(); 94 AU.addPreservedID(MachineLoopInfoID); 95 AU.addRequired<MachineDominatorTree>(); 96 AU.addPreserved<MachineDominatorTree>(); 97 AU.addRequired<MachineBlockFrequencyInfo>(); 98 AU.addPreserved<MachineBlockFrequencyInfo>(); 99 } 100 101 MachineFunctionProperties getRequiredProperties() const override { 102 return MachineFunctionProperties() 103 .set(MachineFunctionProperties::Property::IsSSA); 104 } 105 106 void releaseMemory() override { 107 ScopeMap.clear(); 108 PREMap.clear(); 109 Exps.clear(); 110 } 111 112 private: 113 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator, 114 ScopedHashTableVal<MachineInstr *, unsigned>>; 115 using ScopedHTType = 116 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait, 117 AllocatorTy>; 118 using ScopeType = ScopedHTType::ScopeTy; 119 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>; 120 121 unsigned LookAheadLimit = 0; 122 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap; 123 DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait> 124 PREMap; 125 ScopedHTType VNT; 126 SmallVector<MachineInstr *, 64> Exps; 127 unsigned CurrVN = 0; 128 129 bool PerformTrivialCopyPropagation(MachineInstr *MI, 130 MachineBasicBlock *MBB); 131 bool isPhysDefTriviallyDead(MCRegister Reg, 132 MachineBasicBlock::const_iterator I, 133 MachineBasicBlock::const_iterator E) const; 134 bool hasLivePhysRegDefUses(const MachineInstr *MI, 135 const MachineBasicBlock *MBB, 136 SmallSet<MCRegister, 8> &PhysRefs, 137 PhysDefVector &PhysDefs, bool &PhysUseDef) const; 138 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 139 SmallSet<MCRegister, 8> &PhysRefs, 140 PhysDefVector &PhysDefs, bool &NonLocal) const; 141 bool isCSECandidate(MachineInstr *MI); 142 bool isProfitableToCSE(Register CSReg, Register Reg, 143 MachineBasicBlock *CSBB, MachineInstr *MI); 144 void EnterScope(MachineBasicBlock *MBB); 145 void ExitScope(MachineBasicBlock *MBB); 146 bool ProcessBlockCSE(MachineBasicBlock *MBB); 147 void ExitScopeIfDone(MachineDomTreeNode *Node, 148 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren); 149 bool PerformCSE(MachineDomTreeNode *Node); 150 151 bool isPRECandidate(MachineInstr *MI, SmallSet<MCRegister, 8> &PhysRefs); 152 bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB); 153 bool PerformSimplePRE(MachineDominatorTree *DT); 154 /// Heuristics to see if it's profitable to move common computations of MBB 155 /// and MBB1 to CandidateBB. 156 bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB, 157 MachineBasicBlock *MBB, 158 MachineBasicBlock *MBB1); 159 }; 160 161 } // end anonymous namespace 162 163 char MachineCSE::ID = 0; 164 165 char &llvm::MachineCSEID = MachineCSE::ID; 166 167 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE, 168 "Machine Common Subexpression Elimination", false, false) 169 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 170 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 171 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE, 172 "Machine Common Subexpression Elimination", false, false) 173 174 /// The source register of a COPY machine instruction can be propagated to all 175 /// its users, and this propagation could increase the probability of finding 176 /// common subexpressions. If the COPY has only one user, the COPY itself can 177 /// be removed. 178 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI, 179 MachineBasicBlock *MBB) { 180 bool Changed = false; 181 for (MachineOperand &MO : MI->all_uses()) { 182 Register Reg = MO.getReg(); 183 if (!Reg.isVirtual()) 184 continue; 185 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg); 186 MachineInstr *DefMI = MRI->getVRegDef(Reg); 187 if (!DefMI->isCopy()) 188 continue; 189 Register SrcReg = DefMI->getOperand(1).getReg(); 190 if (!SrcReg.isVirtual()) 191 continue; 192 if (DefMI->getOperand(0).getSubReg()) 193 continue; 194 // FIXME: We should trivially coalesce subregister copies to expose CSE 195 // opportunities on instructions with truncated operands (see 196 // cse-add-with-overflow.ll). This can be done here as follows: 197 // if (SrcSubReg) 198 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC, 199 // SrcSubReg); 200 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI); 201 // 202 // The 2-addr pass has been updated to handle coalesced subregs. However, 203 // some machine-specific code still can't handle it. 204 // To handle it properly we also need a way find a constrained subregister 205 // class given a super-reg class and subreg index. 206 if (DefMI->getOperand(1).getSubReg()) 207 continue; 208 if (!MRI->constrainRegAttrs(SrcReg, Reg)) 209 continue; 210 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 211 LLVM_DEBUG(dbgs() << "*** to: " << *MI); 212 213 // Propagate SrcReg of copies to MI. 214 MO.setReg(SrcReg); 215 MRI->clearKillFlags(SrcReg); 216 // Coalesce single use copies. 217 if (OnlyOneUse) { 218 // If (and only if) we've eliminated all uses of the copy, also 219 // copy-propagate to any debug-users of MI, or they'll be left using 220 // an undefined value. 221 DefMI->changeDebugValuesDefReg(SrcReg); 222 223 DefMI->eraseFromParent(); 224 ++NumCoalesces; 225 } 226 Changed = true; 227 } 228 229 return Changed; 230 } 231 232 bool MachineCSE::isPhysDefTriviallyDead( 233 MCRegister Reg, MachineBasicBlock::const_iterator I, 234 MachineBasicBlock::const_iterator E) const { 235 unsigned LookAheadLeft = LookAheadLimit; 236 while (LookAheadLeft) { 237 // Skip over dbg_value's. 238 I = skipDebugInstructionsForward(I, E); 239 240 if (I == E) 241 // Reached end of block, we don't know if register is dead or not. 242 return false; 243 244 bool SeenDef = false; 245 for (const MachineOperand &MO : I->operands()) { 246 if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) 247 SeenDef = true; 248 if (!MO.isReg() || !MO.getReg()) 249 continue; 250 if (!TRI->regsOverlap(MO.getReg(), Reg)) 251 continue; 252 if (MO.isUse()) 253 // Found a use! 254 return false; 255 SeenDef = true; 256 } 257 if (SeenDef) 258 // See a def of Reg (or an alias) before encountering any use, it's 259 // trivially dead. 260 return true; 261 262 --LookAheadLeft; 263 ++I; 264 } 265 return false; 266 } 267 268 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg, 269 const MachineOperand &MO, 270 const MachineFunction &MF, 271 const TargetRegisterInfo &TRI, 272 const TargetInstrInfo &TII) { 273 // MachineRegisterInfo::isConstantPhysReg directly called by 274 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the 275 // reserved registers to be frozen. That doesn't cause a problem post-ISel as 276 // most (if not all) targets freeze reserved registers right after ISel. 277 // 278 // It does cause issues mid-GlobalISel, however, hence the additional 279 // reservedRegsFrozen check. 280 const MachineRegisterInfo &MRI = MF.getRegInfo(); 281 return TRI.isCallerPreservedPhysReg(Reg, MF) || TII.isIgnorableUse(MO) || 282 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg)); 283 } 284 285 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write 286 /// physical registers (except for dead defs of physical registers). It also 287 /// returns the physical register def by reference if it's the only one and the 288 /// instruction does not uses a physical register. 289 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, 290 const MachineBasicBlock *MBB, 291 SmallSet<MCRegister, 8> &PhysRefs, 292 PhysDefVector &PhysDefs, 293 bool &PhysUseDef) const { 294 // First, add all uses to PhysRefs. 295 for (const MachineOperand &MO : MI->all_uses()) { 296 Register Reg = MO.getReg(); 297 if (!Reg) 298 continue; 299 if (Reg.isVirtual()) 300 continue; 301 // Reading either caller preserved or constant physregs is ok. 302 if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), MO, *MI->getMF(), *TRI, 303 *TII)) 304 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 305 PhysRefs.insert(*AI); 306 } 307 308 // Next, collect all defs into PhysDefs. If any is already in PhysRefs 309 // (which currently contains only uses), set the PhysUseDef flag. 310 PhysUseDef = false; 311 MachineBasicBlock::const_iterator I = MI; I = std::next(I); 312 for (const auto &MOP : llvm::enumerate(MI->operands())) { 313 const MachineOperand &MO = MOP.value(); 314 if (!MO.isReg() || !MO.isDef()) 315 continue; 316 Register Reg = MO.getReg(); 317 if (!Reg) 318 continue; 319 if (Reg.isVirtual()) 320 continue; 321 // Check against PhysRefs even if the def is "dead". 322 if (PhysRefs.count(Reg.asMCReg())) 323 PhysUseDef = true; 324 // If the def is dead, it's ok. But the def may not marked "dead". That's 325 // common since this pass is run before livevariables. We can scan 326 // forward a few instructions and check if it is obviously dead. 327 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end())) 328 PhysDefs.push_back(std::make_pair(MOP.index(), Reg)); 329 } 330 331 // Finally, add all defs to PhysRefs as well. 332 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) 333 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid(); 334 ++AI) 335 PhysRefs.insert(*AI); 336 337 return !PhysRefs.empty(); 338 } 339 340 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, 341 SmallSet<MCRegister, 8> &PhysRefs, 342 PhysDefVector &PhysDefs, 343 bool &NonLocal) const { 344 // For now conservatively returns false if the common subexpression is 345 // not in the same basic block as the given instruction. The only exception 346 // is if the common subexpression is in the sole predecessor block. 347 const MachineBasicBlock *MBB = MI->getParent(); 348 const MachineBasicBlock *CSMBB = CSMI->getParent(); 349 350 bool CrossMBB = false; 351 if (CSMBB != MBB) { 352 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB) 353 return false; 354 355 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) { 356 if (MRI->isAllocatable(PhysDefs[i].second) || 357 MRI->isReserved(PhysDefs[i].second)) 358 // Avoid extending live range of physical registers if they are 359 //allocatable or reserved. 360 return false; 361 } 362 CrossMBB = true; 363 } 364 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I); 365 MachineBasicBlock::const_iterator E = MI; 366 MachineBasicBlock::const_iterator EE = CSMBB->end(); 367 unsigned LookAheadLeft = LookAheadLimit; 368 while (LookAheadLeft) { 369 // Skip over dbg_value's. 370 while (I != E && I != EE && I->isDebugInstr()) 371 ++I; 372 373 if (I == EE) { 374 assert(CrossMBB && "Reaching end-of-MBB without finding MI?"); 375 (void)CrossMBB; 376 CrossMBB = false; 377 NonLocal = true; 378 I = MBB->begin(); 379 EE = MBB->end(); 380 continue; 381 } 382 383 if (I == E) 384 return true; 385 386 for (const MachineOperand &MO : I->operands()) { 387 // RegMasks go on instructions like calls that clobber lots of physregs. 388 // Don't attempt to CSE across such an instruction. 389 if (MO.isRegMask()) 390 return false; 391 if (!MO.isReg() || !MO.isDef()) 392 continue; 393 Register MOReg = MO.getReg(); 394 if (MOReg.isVirtual()) 395 continue; 396 if (PhysRefs.count(MOReg.asMCReg())) 397 return false; 398 } 399 400 --LookAheadLeft; 401 ++I; 402 } 403 404 return false; 405 } 406 407 bool MachineCSE::isCSECandidate(MachineInstr *MI) { 408 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || 409 MI->isInlineAsm() || MI->isDebugInstr() || MI->isJumpTableDebugInfo()) 410 return false; 411 412 // Ignore copies. 413 if (MI->isCopyLike()) 414 return false; 415 416 // Ignore stuff that we obviously can't move. 417 if (MI->mayStore() || MI->isCall() || MI->isTerminator() || 418 MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects()) 419 return false; 420 421 if (MI->mayLoad()) { 422 // Okay, this instruction does a load. As a refinement, we allow the target 423 // to decide whether the loaded value is actually a constant. If so, we can 424 // actually use it as a load. 425 if (!MI->isDereferenceableInvariantLoad()) 426 // FIXME: we should be able to hoist loads with no other side effects if 427 // there are no other instructions which can change memory in this loop. 428 // This is a trivial form of alias analysis. 429 return false; 430 } 431 432 // Ignore stack guard loads, otherwise the register that holds CSEed value may 433 // be spilled and get loaded back with corrupted data. 434 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) 435 return false; 436 437 return true; 438 } 439 440 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a 441 /// common expression that defines Reg. CSBB is basic block where CSReg is 442 /// defined. 443 bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg, 444 MachineBasicBlock *CSBB, MachineInstr *MI) { 445 if (AggressiveMachineCSE) 446 return true; 447 448 // FIXME: Heuristics that works around the lack the live range splitting. 449 450 // If CSReg is used at all uses of Reg, CSE should not increase register 451 // pressure of CSReg. 452 bool MayIncreasePressure = true; 453 if (CSReg.isVirtual() && Reg.isVirtual()) { 454 MayIncreasePressure = false; 455 SmallPtrSet<MachineInstr*, 8> CSUses; 456 int NumOfUses = 0; 457 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) { 458 CSUses.insert(&MI); 459 // Too costly to compute if NumOfUses is very large. Conservatively assume 460 // MayIncreasePressure to avoid spending too much time here. 461 if (++NumOfUses > CSUsesThreshold) { 462 MayIncreasePressure = true; 463 break; 464 } 465 } 466 if (!MayIncreasePressure) 467 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 468 if (!CSUses.count(&MI)) { 469 MayIncreasePressure = true; 470 break; 471 } 472 } 473 } 474 if (!MayIncreasePressure) return true; 475 476 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in 477 // an immediate predecessor. We don't want to increase register pressure and 478 // end up causing other computation to be spilled. 479 if (TII->isAsCheapAsAMove(*MI)) { 480 MachineBasicBlock *BB = MI->getParent(); 481 if (CSBB != BB && !CSBB->isSuccessor(BB)) 482 return false; 483 } 484 485 // Heuristics #2: If the expression doesn't not use a vr and the only use 486 // of the redundant computation are copies, do not cse. 487 bool HasVRegUse = false; 488 for (const MachineOperand &MO : MI->all_uses()) { 489 if (MO.getReg().isVirtual()) { 490 HasVRegUse = true; 491 break; 492 } 493 } 494 if (!HasVRegUse) { 495 bool HasNonCopyUse = false; 496 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { 497 // Ignore copies. 498 if (!MI.isCopyLike()) { 499 HasNonCopyUse = true; 500 break; 501 } 502 } 503 if (!HasNonCopyUse) 504 return false; 505 } 506 507 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse 508 // it unless the defined value is already used in the BB of the new use. 509 bool HasPHI = false; 510 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) { 511 HasPHI |= UseMI.isPHI(); 512 if (UseMI.getParent() == MI->getParent()) 513 return true; 514 } 515 516 return !HasPHI; 517 } 518 519 void MachineCSE::EnterScope(MachineBasicBlock *MBB) { 520 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 521 ScopeType *Scope = new ScopeType(VNT); 522 ScopeMap[MBB] = Scope; 523 } 524 525 void MachineCSE::ExitScope(MachineBasicBlock *MBB) { 526 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 527 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); 528 assert(SI != ScopeMap.end()); 529 delete SI->second; 530 ScopeMap.erase(SI); 531 } 532 533 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) { 534 bool Changed = false; 535 536 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; 537 SmallVector<unsigned, 2> ImplicitDefsToUpdate; 538 SmallVector<unsigned, 2> ImplicitDefs; 539 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 540 if (!isCSECandidate(&MI)) 541 continue; 542 543 bool FoundCSE = VNT.count(&MI); 544 if (!FoundCSE) { 545 // Using trivial copy propagation to find more CSE opportunities. 546 if (PerformTrivialCopyPropagation(&MI, MBB)) { 547 Changed = true; 548 549 // After coalescing MI itself may become a copy. 550 if (MI.isCopyLike()) 551 continue; 552 553 // Try again to see if CSE is possible. 554 FoundCSE = VNT.count(&MI); 555 } 556 } 557 558 // Commute commutable instructions. 559 bool Commuted = false; 560 if (!FoundCSE && MI.isCommutable()) { 561 if (MachineInstr *NewMI = TII->commuteInstruction(MI)) { 562 Commuted = true; 563 FoundCSE = VNT.count(NewMI); 564 if (NewMI != &MI) { 565 // New instruction. It doesn't need to be kept. 566 NewMI->eraseFromParent(); 567 Changed = true; 568 } else if (!FoundCSE) 569 // MI was changed but it didn't help, commute it back! 570 (void)TII->commuteInstruction(MI); 571 } 572 } 573 574 // If the instruction defines physical registers and the values *may* be 575 // used, then it's not safe to replace it with a common subexpression. 576 // It's also not safe if the instruction uses physical registers. 577 bool CrossMBBPhysDef = false; 578 SmallSet<MCRegister, 8> PhysRefs; 579 PhysDefVector PhysDefs; 580 bool PhysUseDef = false; 581 if (FoundCSE && 582 hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) { 583 FoundCSE = false; 584 585 // ... Unless the CS is local or is in the sole predecessor block 586 // and it also defines the physical register which is not clobbered 587 // in between and the physical register uses were not clobbered. 588 // This can never be the case if the instruction both uses and 589 // defines the same physical register, which was detected above. 590 if (!PhysUseDef) { 591 unsigned CSVN = VNT.lookup(&MI); 592 MachineInstr *CSMI = Exps[CSVN]; 593 if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef)) 594 FoundCSE = true; 595 } 596 } 597 598 if (!FoundCSE) { 599 VNT.insert(&MI, CurrVN++); 600 Exps.push_back(&MI); 601 continue; 602 } 603 604 // Found a common subexpression, eliminate it. 605 unsigned CSVN = VNT.lookup(&MI); 606 MachineInstr *CSMI = Exps[CSVN]; 607 LLVM_DEBUG(dbgs() << "Examining: " << MI); 608 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); 609 610 // Prevent CSE-ing non-local convergent instructions. 611 // LLVM's current definition of `isConvergent` does not necessarily prove 612 // that non-local CSE is illegal. The following check extends the definition 613 // of `isConvergent` to assume a convergent instruction is dependent not 614 // only on additional conditions, but also on fewer conditions. LLVM does 615 // not have a MachineInstr attribute which expresses this extended 616 // definition, so it's necessary to use `isConvergent` to prevent illegally 617 // CSE-ing the subset of `isConvergent` instructions which do fall into this 618 // extended definition. 619 if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) { 620 LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in " 621 "different BBs, avoid CSE!\n"); 622 VNT.insert(&MI, CurrVN++); 623 Exps.push_back(&MI); 624 continue; 625 } 626 627 // Check if it's profitable to perform this CSE. 628 bool DoCSE = true; 629 unsigned NumDefs = MI.getNumDefs(); 630 631 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 632 MachineOperand &MO = MI.getOperand(i); 633 if (!MO.isReg() || !MO.isDef()) 634 continue; 635 Register OldReg = MO.getReg(); 636 Register NewReg = CSMI->getOperand(i).getReg(); 637 638 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 639 // we should make sure it is not dead at CSMI. 640 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead()) 641 ImplicitDefsToUpdate.push_back(i); 642 643 // Keep track of implicit defs of CSMI and MI, to clear possibly 644 // made-redundant kill flags. 645 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg) 646 ImplicitDefs.push_back(OldReg); 647 648 if (OldReg == NewReg) { 649 --NumDefs; 650 continue; 651 } 652 653 assert(OldReg.isVirtual() && NewReg.isVirtual() && 654 "Do not CSE physical register defs!"); 655 656 if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) { 657 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); 658 DoCSE = false; 659 break; 660 } 661 662 // Don't perform CSE if the result of the new instruction cannot exist 663 // within the constraints (register class, bank, or low-level type) of 664 // the old instruction. 665 if (!MRI->constrainRegAttrs(NewReg, OldReg)) { 666 LLVM_DEBUG( 667 dbgs() << "*** Not the same register constraints, avoid CSE!\n"); 668 DoCSE = false; 669 break; 670 } 671 672 CSEPairs.push_back(std::make_pair(OldReg, NewReg)); 673 --NumDefs; 674 } 675 676 // Actually perform the elimination. 677 if (DoCSE) { 678 for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) { 679 unsigned OldReg = CSEPair.first; 680 unsigned NewReg = CSEPair.second; 681 // OldReg may have been unused but is used now, clear the Dead flag 682 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg); 683 assert(Def != nullptr && "CSEd register has no unique definition?"); 684 Def->clearRegisterDeads(NewReg); 685 // Replace with NewReg and clear kill flags which may be wrong now. 686 MRI->replaceRegWith(OldReg, NewReg); 687 MRI->clearKillFlags(NewReg); 688 } 689 690 // Go through implicit defs of CSMI and MI, if a def is not dead at MI, 691 // we should make sure it is not dead at CSMI. 692 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate) 693 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false); 694 for (const auto &PhysDef : PhysDefs) 695 if (!MI.getOperand(PhysDef.first).isDead()) 696 CSMI->getOperand(PhysDef.first).setIsDead(false); 697 698 // Go through implicit defs of CSMI and MI, and clear the kill flags on 699 // their uses in all the instructions between CSMI and MI. 700 // We might have made some of the kill flags redundant, consider: 701 // subs ... implicit-def %nzcv <- CSMI 702 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore 703 // subs ... implicit-def %nzcv <- MI, to be eliminated 704 // csinc ... implicit killed %nzcv 705 // Since we eliminated MI, and reused a register imp-def'd by CSMI 706 // (here %nzcv), that register, if it was killed before MI, should have 707 // that kill flag removed, because it's lifetime was extended. 708 if (CSMI->getParent() == MI.getParent()) { 709 for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II) 710 for (auto ImplicitDef : ImplicitDefs) 711 if (MachineOperand *MO = II->findRegisterUseOperand( 712 ImplicitDef, /*isKill=*/true, TRI)) 713 MO->setIsKill(false); 714 } else { 715 // If the instructions aren't in the same BB, bail out and clear the 716 // kill flag on all uses of the imp-def'd register. 717 for (auto ImplicitDef : ImplicitDefs) 718 MRI->clearKillFlags(ImplicitDef); 719 } 720 721 if (CrossMBBPhysDef) { 722 // Add physical register defs now coming in from a predecessor to MBB 723 // livein list. 724 while (!PhysDefs.empty()) { 725 auto LiveIn = PhysDefs.pop_back_val(); 726 if (!MBB->isLiveIn(LiveIn.second)) 727 MBB->addLiveIn(LiveIn.second); 728 } 729 ++NumCrossBBCSEs; 730 } 731 732 MI.eraseFromParent(); 733 ++NumCSEs; 734 if (!PhysRefs.empty()) 735 ++NumPhysCSEs; 736 if (Commuted) 737 ++NumCommutes; 738 Changed = true; 739 } else { 740 VNT.insert(&MI, CurrVN++); 741 Exps.push_back(&MI); 742 } 743 CSEPairs.clear(); 744 ImplicitDefsToUpdate.clear(); 745 ImplicitDefs.clear(); 746 } 747 748 return Changed; 749 } 750 751 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 752 /// dominator tree node if its a leaf or all of its children are done. Walk 753 /// up the dominator tree to destroy ancestors which are now done. 754 void 755 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, 756 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) { 757 if (OpenChildren[Node]) 758 return; 759 760 // Pop scope. 761 ExitScope(Node->getBlock()); 762 763 // Now traverse upwards to pop ancestors whose offsprings are all done. 764 while (MachineDomTreeNode *Parent = Node->getIDom()) { 765 unsigned Left = --OpenChildren[Parent]; 766 if (Left != 0) 767 break; 768 ExitScope(Parent->getBlock()); 769 Node = Parent; 770 } 771 } 772 773 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { 774 SmallVector<MachineDomTreeNode*, 32> Scopes; 775 SmallVector<MachineDomTreeNode*, 8> WorkList; 776 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 777 778 CurrVN = 0; 779 780 // Perform a DFS walk to determine the order of visit. 781 WorkList.push_back(Node); 782 do { 783 Node = WorkList.pop_back_val(); 784 Scopes.push_back(Node); 785 OpenChildren[Node] = Node->getNumChildren(); 786 append_range(WorkList, Node->children()); 787 } while (!WorkList.empty()); 788 789 // Now perform CSE. 790 bool Changed = false; 791 for (MachineDomTreeNode *Node : Scopes) { 792 MachineBasicBlock *MBB = Node->getBlock(); 793 EnterScope(MBB); 794 Changed |= ProcessBlockCSE(MBB); 795 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 796 ExitScopeIfDone(Node, OpenChildren); 797 } 798 799 return Changed; 800 } 801 802 // We use stronger checks for PRE candidate rather than for CSE ones to embrace 803 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps 804 // to exclude instrs created by PRE that won't be CSEed later. 805 bool MachineCSE::isPRECandidate(MachineInstr *MI, 806 SmallSet<MCRegister, 8> &PhysRefs) { 807 if (!isCSECandidate(MI) || 808 MI->isNotDuplicable() || 809 MI->mayLoad() || 810 TII->isAsCheapAsAMove(*MI) || 811 MI->getNumDefs() != 1 || 812 MI->getNumExplicitDefs() != 1) 813 return false; 814 815 for (const MachineOperand &MO : MI->operands()) { 816 if (MO.isReg() && !MO.getReg().isVirtual()) { 817 if (MO.isDef()) 818 return false; 819 else 820 PhysRefs.insert(MO.getReg()); 821 } 822 } 823 824 return true; 825 } 826 827 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT, 828 MachineBasicBlock *MBB) { 829 bool Changed = false; 830 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { 831 SmallSet<MCRegister, 8> PhysRefs; 832 if (!isPRECandidate(&MI, PhysRefs)) 833 continue; 834 835 if (!PREMap.count(&MI)) { 836 PREMap[&MI] = MBB; 837 continue; 838 } 839 840 auto MBB1 = PREMap[&MI]; 841 assert( 842 !DT->properlyDominates(MBB, MBB1) && 843 "MBB cannot properly dominate MBB1 while DFS through dominators tree!"); 844 auto CMBB = DT->findNearestCommonDominator(MBB, MBB1); 845 if (!CMBB->isLegalToHoistInto()) 846 continue; 847 848 if (!isProfitableToHoistInto(CMBB, MBB, MBB1)) 849 continue; 850 851 // Two instrs are partial redundant if their basic blocks are reachable 852 // from one to another but one doesn't dominate another. 853 if (CMBB != MBB1) { 854 auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock(); 855 if (BB != nullptr && BB1 != nullptr && 856 (isPotentiallyReachable(BB1, BB) || 857 isPotentiallyReachable(BB, BB1))) { 858 // The following check extends the definition of `isConvergent` to 859 // assume a convergent instruction is dependent not only on additional 860 // conditions, but also on fewer conditions. LLVM does not have a 861 // MachineInstr attribute which expresses this extended definition, so 862 // it's necessary to use `isConvergent` to prevent illegally PRE-ing the 863 // subset of `isConvergent` instructions which do fall into this 864 // extended definition. 865 if (MI.isConvergent() && CMBB != MBB) 866 continue; 867 868 // If this instruction uses physical registers then we can only do PRE 869 // if it's using the value that is live at the place we're hoisting to. 870 bool NonLocal; 871 PhysDefVector PhysDefs; 872 if (!PhysRefs.empty() && 873 !PhysRegDefsReach(&*(CMBB->getFirstTerminator()), &MI, PhysRefs, 874 PhysDefs, NonLocal)) 875 continue; 876 877 assert(MI.getOperand(0).isDef() && 878 "First operand of instr with one explicit def must be this def"); 879 Register VReg = MI.getOperand(0).getReg(); 880 Register NewReg = MRI->cloneVirtualRegister(VReg); 881 if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI)) 882 continue; 883 MachineInstr &NewMI = 884 TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI); 885 886 // When hoisting, make sure we don't carry the debug location of 887 // the original instruction, as that's not correct and can cause 888 // unexpected jumps when debugging optimized code. 889 auto EmptyDL = DebugLoc(); 890 NewMI.setDebugLoc(EmptyDL); 891 892 NewMI.getOperand(0).setReg(NewReg); 893 894 PREMap[&MI] = CMBB; 895 ++NumPREs; 896 Changed = true; 897 } 898 } 899 } 900 return Changed; 901 } 902 903 // This simple PRE (partial redundancy elimination) pass doesn't actually 904 // eliminate partial redundancy but transforms it to full redundancy, 905 // anticipating that the next CSE step will eliminate this created redundancy. 906 // If CSE doesn't eliminate this, than created instruction will remain dead 907 // and eliminated later by Remove Dead Machine Instructions pass. 908 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) { 909 SmallVector<MachineDomTreeNode *, 32> BBs; 910 911 PREMap.clear(); 912 bool Changed = false; 913 BBs.push_back(DT->getRootNode()); 914 do { 915 auto Node = BBs.pop_back_val(); 916 append_range(BBs, Node->children()); 917 918 MachineBasicBlock *MBB = Node->getBlock(); 919 Changed |= ProcessBlockPRE(DT, MBB); 920 921 } while (!BBs.empty()); 922 923 return Changed; 924 } 925 926 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB, 927 MachineBasicBlock *MBB, 928 MachineBasicBlock *MBB1) { 929 if (CandidateBB->getParent()->getFunction().hasMinSize()) 930 return true; 931 assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB"); 932 assert(DT->dominates(CandidateBB, MBB1) && 933 "CandidateBB should dominate MBB1"); 934 return MBFI->getBlockFreq(CandidateBB) <= 935 MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1); 936 } 937 938 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { 939 if (skipFunction(MF.getFunction())) 940 return false; 941 942 TII = MF.getSubtarget().getInstrInfo(); 943 TRI = MF.getSubtarget().getRegisterInfo(); 944 MRI = &MF.getRegInfo(); 945 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 946 DT = &getAnalysis<MachineDominatorTree>(); 947 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 948 LookAheadLimit = TII->getMachineCSELookAheadLimit(); 949 bool ChangedPRE, ChangedCSE; 950 ChangedPRE = PerformSimplePRE(DT); 951 ChangedCSE = PerformCSE(DT->getRootNode()); 952 return ChangedPRE || ChangedCSE; 953 } 954