xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineCSE.cpp (revision 162ae9c834f6d9f9cb443bd62cceb23e0b5fef48)
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/MC/MCInstrDesc.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/RecyclingAllocator.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "machine-cse"
51 
52 STATISTIC(NumCoalesces, "Number of copies coalesced");
53 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
54 STATISTIC(NumPREs,      "Number of partial redundant expression"
55                         " transformed to fully redundant");
56 STATISTIC(NumPhysCSEs,
57           "Number of physreg referencing common subexpr eliminated");
58 STATISTIC(NumCrossBBCSEs,
59           "Number of cross-MBB physreg referencing CS eliminated");
60 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
61 
62 namespace {
63 
64   class MachineCSE : public MachineFunctionPass {
65     const TargetInstrInfo *TII;
66     const TargetRegisterInfo *TRI;
67     AliasAnalysis *AA;
68     MachineDominatorTree *DT;
69     MachineRegisterInfo *MRI;
70     MachineBlockFrequencyInfo *MBFI;
71 
72   public:
73     static char ID; // Pass identification
74 
75     MachineCSE() : MachineFunctionPass(ID) {
76       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80 
81     void getAnalysisUsage(AnalysisUsage &AU) const override {
82       AU.setPreservesCFG();
83       MachineFunctionPass::getAnalysisUsage(AU);
84       AU.addRequired<AAResultsWrapperPass>();
85       AU.addPreservedID(MachineLoopInfoID);
86       AU.addRequired<MachineDominatorTree>();
87       AU.addPreserved<MachineDominatorTree>();
88       AU.addRequired<MachineBlockFrequencyInfo>();
89       AU.addPreserved<MachineBlockFrequencyInfo>();
90     }
91 
92     void releaseMemory() override {
93       ScopeMap.clear();
94       PREMap.clear();
95       Exps.clear();
96     }
97 
98   private:
99     using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
100                             ScopedHashTableVal<MachineInstr *, unsigned>>;
101     using ScopedHTType =
102         ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
103                         AllocatorTy>;
104     using ScopeType = ScopedHTType::ScopeTy;
105     using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
106 
107     unsigned LookAheadLimit = 0;
108     DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
109     DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
110         PREMap;
111     ScopedHTType VNT;
112     SmallVector<MachineInstr *, 64> Exps;
113     unsigned CurrVN = 0;
114 
115     bool PerformTrivialCopyPropagation(MachineInstr *MI,
116                                        MachineBasicBlock *MBB);
117     bool isPhysDefTriviallyDead(unsigned Reg,
118                                 MachineBasicBlock::const_iterator I,
119                                 MachineBasicBlock::const_iterator E) const;
120     bool hasLivePhysRegDefUses(const MachineInstr *MI,
121                                const MachineBasicBlock *MBB,
122                                SmallSet<unsigned, 8> &PhysRefs,
123                                PhysDefVector &PhysDefs, bool &PhysUseDef) const;
124     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
125                           SmallSet<unsigned, 8> &PhysRefs,
126                           PhysDefVector &PhysDefs, bool &NonLocal) const;
127     bool isCSECandidate(MachineInstr *MI);
128     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
129                            MachineBasicBlock *CSBB, MachineInstr *MI);
130     void EnterScope(MachineBasicBlock *MBB);
131     void ExitScope(MachineBasicBlock *MBB);
132     bool ProcessBlockCSE(MachineBasicBlock *MBB);
133     void ExitScopeIfDone(MachineDomTreeNode *Node,
134                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
135     bool PerformCSE(MachineDomTreeNode *Node);
136 
137     bool isPRECandidate(MachineInstr *MI);
138     bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
139     bool PerformSimplePRE(MachineDominatorTree *DT);
140     /// Heuristics to see if it's beneficial to move common computations of MBB
141     /// and MBB1 to CandidateBB.
142     bool isBeneficalToHoistInto(MachineBasicBlock *CandidateBB,
143                                 MachineBasicBlock *MBB,
144                                 MachineBasicBlock *MBB1);
145   };
146 
147 } // end anonymous namespace
148 
149 char MachineCSE::ID = 0;
150 
151 char &llvm::MachineCSEID = MachineCSE::ID;
152 
153 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
154                       "Machine Common Subexpression Elimination", false, false)
155 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
157 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
158                     "Machine Common Subexpression Elimination", false, false)
159 
160 /// The source register of a COPY machine instruction can be propagated to all
161 /// its users, and this propagation could increase the probability of finding
162 /// common subexpressions. If the COPY has only one user, the COPY itself can
163 /// be removed.
164 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
165                                                MachineBasicBlock *MBB) {
166   bool Changed = false;
167   for (MachineOperand &MO : MI->operands()) {
168     if (!MO.isReg() || !MO.isUse())
169       continue;
170     unsigned Reg = MO.getReg();
171     if (!TargetRegisterInfo::isVirtualRegister(Reg))
172       continue;
173     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
174     MachineInstr *DefMI = MRI->getVRegDef(Reg);
175     if (!DefMI->isCopy())
176       continue;
177     unsigned SrcReg = DefMI->getOperand(1).getReg();
178     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
179       continue;
180     if (DefMI->getOperand(0).getSubReg())
181       continue;
182     // FIXME: We should trivially coalesce subregister copies to expose CSE
183     // opportunities on instructions with truncated operands (see
184     // cse-add-with-overflow.ll). This can be done here as follows:
185     // if (SrcSubReg)
186     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
187     //                                     SrcSubReg);
188     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
189     //
190     // The 2-addr pass has been updated to handle coalesced subregs. However,
191     // some machine-specific code still can't handle it.
192     // To handle it properly we also need a way find a constrained subregister
193     // class given a super-reg class and subreg index.
194     if (DefMI->getOperand(1).getSubReg())
195       continue;
196     if (!MRI->constrainRegAttrs(SrcReg, Reg))
197       continue;
198     LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
199     LLVM_DEBUG(dbgs() << "***     to: " << *MI);
200 
201     // Update matching debug values.
202     DefMI->changeDebugValuesDefReg(SrcReg);
203 
204     // Propagate SrcReg of copies to MI.
205     MO.setReg(SrcReg);
206     MRI->clearKillFlags(SrcReg);
207     // Coalesce single use copies.
208     if (OnlyOneUse) {
209       DefMI->eraseFromParent();
210       ++NumCoalesces;
211     }
212     Changed = true;
213   }
214 
215   return Changed;
216 }
217 
218 bool
219 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
220                                    MachineBasicBlock::const_iterator I,
221                                    MachineBasicBlock::const_iterator E) const {
222   unsigned LookAheadLeft = LookAheadLimit;
223   while (LookAheadLeft) {
224     // Skip over dbg_value's.
225     I = skipDebugInstructionsForward(I, E);
226 
227     if (I == E)
228       // Reached end of block, we don't know if register is dead or not.
229       return false;
230 
231     bool SeenDef = false;
232     for (const MachineOperand &MO : I->operands()) {
233       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
234         SeenDef = true;
235       if (!MO.isReg() || !MO.getReg())
236         continue;
237       if (!TRI->regsOverlap(MO.getReg(), Reg))
238         continue;
239       if (MO.isUse())
240         // Found a use!
241         return false;
242       SeenDef = true;
243     }
244     if (SeenDef)
245       // See a def of Reg (or an alias) before encountering any use, it's
246       // trivially dead.
247       return true;
248 
249     --LookAheadLeft;
250     ++I;
251   }
252   return false;
253 }
254 
255 static bool isCallerPreservedOrConstPhysReg(unsigned Reg,
256                                             const MachineFunction &MF,
257                                             const TargetRegisterInfo &TRI) {
258   // MachineRegisterInfo::isConstantPhysReg directly called by
259   // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
260   // reserved registers to be frozen. That doesn't cause a problem  post-ISel as
261   // most (if not all) targets freeze reserved registers right after ISel.
262   //
263   // It does cause issues mid-GlobalISel, however, hence the additional
264   // reservedRegsFrozen check.
265   const MachineRegisterInfo &MRI = MF.getRegInfo();
266   return TRI.isCallerPreservedPhysReg(Reg, MF) ||
267          (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
268 }
269 
270 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
271 /// physical registers (except for dead defs of physical registers). It also
272 /// returns the physical register def by reference if it's the only one and the
273 /// instruction does not uses a physical register.
274 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
275                                        const MachineBasicBlock *MBB,
276                                        SmallSet<unsigned, 8> &PhysRefs,
277                                        PhysDefVector &PhysDefs,
278                                        bool &PhysUseDef) const {
279   // First, add all uses to PhysRefs.
280   for (const MachineOperand &MO : MI->operands()) {
281     if (!MO.isReg() || MO.isDef())
282       continue;
283     unsigned Reg = MO.getReg();
284     if (!Reg)
285       continue;
286     if (TargetRegisterInfo::isVirtualRegister(Reg))
287       continue;
288     // Reading either caller preserved or constant physregs is ok.
289     if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI))
290       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
291         PhysRefs.insert(*AI);
292   }
293 
294   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
295   // (which currently contains only uses), set the PhysUseDef flag.
296   PhysUseDef = false;
297   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
298   for (const auto &MOP : llvm::enumerate(MI->operands())) {
299     const MachineOperand &MO = MOP.value();
300     if (!MO.isReg() || !MO.isDef())
301       continue;
302     unsigned Reg = MO.getReg();
303     if (!Reg)
304       continue;
305     if (TargetRegisterInfo::isVirtualRegister(Reg))
306       continue;
307     // Check against PhysRefs even if the def is "dead".
308     if (PhysRefs.count(Reg))
309       PhysUseDef = true;
310     // If the def is dead, it's ok. But the def may not marked "dead". That's
311     // common since this pass is run before livevariables. We can scan
312     // forward a few instructions and check if it is obviously dead.
313     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
314       PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
315   }
316 
317   // Finally, add all defs to PhysRefs as well.
318   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
319     for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
320          ++AI)
321       PhysRefs.insert(*AI);
322 
323   return !PhysRefs.empty();
324 }
325 
326 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
327                                   SmallSet<unsigned, 8> &PhysRefs,
328                                   PhysDefVector &PhysDefs,
329                                   bool &NonLocal) const {
330   // For now conservatively returns false if the common subexpression is
331   // not in the same basic block as the given instruction. The only exception
332   // is if the common subexpression is in the sole predecessor block.
333   const MachineBasicBlock *MBB = MI->getParent();
334   const MachineBasicBlock *CSMBB = CSMI->getParent();
335 
336   bool CrossMBB = false;
337   if (CSMBB != MBB) {
338     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
339       return false;
340 
341     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
342       if (MRI->isAllocatable(PhysDefs[i].second) ||
343           MRI->isReserved(PhysDefs[i].second))
344         // Avoid extending live range of physical registers if they are
345         //allocatable or reserved.
346         return false;
347     }
348     CrossMBB = true;
349   }
350   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
351   MachineBasicBlock::const_iterator E = MI;
352   MachineBasicBlock::const_iterator EE = CSMBB->end();
353   unsigned LookAheadLeft = LookAheadLimit;
354   while (LookAheadLeft) {
355     // Skip over dbg_value's.
356     while (I != E && I != EE && I->isDebugInstr())
357       ++I;
358 
359     if (I == EE) {
360       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
361       (void)CrossMBB;
362       CrossMBB = false;
363       NonLocal = true;
364       I = MBB->begin();
365       EE = MBB->end();
366       continue;
367     }
368 
369     if (I == E)
370       return true;
371 
372     for (const MachineOperand &MO : I->operands()) {
373       // RegMasks go on instructions like calls that clobber lots of physregs.
374       // Don't attempt to CSE across such an instruction.
375       if (MO.isRegMask())
376         return false;
377       if (!MO.isReg() || !MO.isDef())
378         continue;
379       unsigned MOReg = MO.getReg();
380       if (TargetRegisterInfo::isVirtualRegister(MOReg))
381         continue;
382       if (PhysRefs.count(MOReg))
383         return false;
384     }
385 
386     --LookAheadLeft;
387     ++I;
388   }
389 
390   return false;
391 }
392 
393 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
394   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
395       MI->isInlineAsm() || MI->isDebugInstr())
396     return false;
397 
398   // Ignore copies.
399   if (MI->isCopyLike())
400     return false;
401 
402   // Ignore stuff that we obviously can't move.
403   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
404       MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
405     return false;
406 
407   if (MI->mayLoad()) {
408     // Okay, this instruction does a load. As a refinement, we allow the target
409     // to decide whether the loaded value is actually a constant. If so, we can
410     // actually use it as a load.
411     if (!MI->isDereferenceableInvariantLoad(AA))
412       // FIXME: we should be able to hoist loads with no other side effects if
413       // there are no other instructions which can change memory in this loop.
414       // This is a trivial form of alias analysis.
415       return false;
416   }
417 
418   // Ignore stack guard loads, otherwise the register that holds CSEed value may
419   // be spilled and get loaded back with corrupted data.
420   if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
421     return false;
422 
423   return true;
424 }
425 
426 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
427 /// common expression that defines Reg. CSBB is basic block where CSReg is
428 /// defined.
429 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
430                                    MachineBasicBlock *CSBB, MachineInstr *MI) {
431   // FIXME: Heuristics that works around the lack the live range splitting.
432 
433   // If CSReg is used at all uses of Reg, CSE should not increase register
434   // pressure of CSReg.
435   bool MayIncreasePressure = true;
436   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
437       TargetRegisterInfo::isVirtualRegister(Reg)) {
438     MayIncreasePressure = false;
439     SmallPtrSet<MachineInstr*, 8> CSUses;
440     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
441       CSUses.insert(&MI);
442     }
443     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
444       if (!CSUses.count(&MI)) {
445         MayIncreasePressure = true;
446         break;
447       }
448     }
449   }
450   if (!MayIncreasePressure) return true;
451 
452   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
453   // an immediate predecessor. We don't want to increase register pressure and
454   // end up causing other computation to be spilled.
455   if (TII->isAsCheapAsAMove(*MI)) {
456     MachineBasicBlock *BB = MI->getParent();
457     if (CSBB != BB && !CSBB->isSuccessor(BB))
458       return false;
459   }
460 
461   // Heuristics #2: If the expression doesn't not use a vr and the only use
462   // of the redundant computation are copies, do not cse.
463   bool HasVRegUse = false;
464   for (const MachineOperand &MO : MI->operands()) {
465     if (MO.isReg() && MO.isUse() &&
466         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
467       HasVRegUse = true;
468       break;
469     }
470   }
471   if (!HasVRegUse) {
472     bool HasNonCopyUse = false;
473     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
474       // Ignore copies.
475       if (!MI.isCopyLike()) {
476         HasNonCopyUse = true;
477         break;
478       }
479     }
480     if (!HasNonCopyUse)
481       return false;
482   }
483 
484   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
485   // it unless the defined value is already used in the BB of the new use.
486   bool HasPHI = false;
487   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
488     HasPHI |= UseMI.isPHI();
489     if (UseMI.getParent() == MI->getParent())
490       return true;
491   }
492 
493   return !HasPHI;
494 }
495 
496 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
497   LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
498   ScopeType *Scope = new ScopeType(VNT);
499   ScopeMap[MBB] = Scope;
500 }
501 
502 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
503   LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
504   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
505   assert(SI != ScopeMap.end());
506   delete SI->second;
507   ScopeMap.erase(SI);
508 }
509 
510 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
511   bool Changed = false;
512 
513   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
514   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
515   SmallVector<unsigned, 2> ImplicitDefs;
516   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
517     MachineInstr *MI = &*I;
518     ++I;
519 
520     if (!isCSECandidate(MI))
521       continue;
522 
523     bool FoundCSE = VNT.count(MI);
524     if (!FoundCSE) {
525       // Using trivial copy propagation to find more CSE opportunities.
526       if (PerformTrivialCopyPropagation(MI, MBB)) {
527         Changed = true;
528 
529         // After coalescing MI itself may become a copy.
530         if (MI->isCopyLike())
531           continue;
532 
533         // Try again to see if CSE is possible.
534         FoundCSE = VNT.count(MI);
535       }
536     }
537 
538     // Commute commutable instructions.
539     bool Commuted = false;
540     if (!FoundCSE && MI->isCommutable()) {
541       if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
542         Commuted = true;
543         FoundCSE = VNT.count(NewMI);
544         if (NewMI != MI) {
545           // New instruction. It doesn't need to be kept.
546           NewMI->eraseFromParent();
547           Changed = true;
548         } else if (!FoundCSE)
549           // MI was changed but it didn't help, commute it back!
550           (void)TII->commuteInstruction(*MI);
551       }
552     }
553 
554     // If the instruction defines physical registers and the values *may* be
555     // used, then it's not safe to replace it with a common subexpression.
556     // It's also not safe if the instruction uses physical registers.
557     bool CrossMBBPhysDef = false;
558     SmallSet<unsigned, 8> PhysRefs;
559     PhysDefVector PhysDefs;
560     bool PhysUseDef = false;
561     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
562                                           PhysDefs, PhysUseDef)) {
563       FoundCSE = false;
564 
565       // ... Unless the CS is local or is in the sole predecessor block
566       // and it also defines the physical register which is not clobbered
567       // in between and the physical register uses were not clobbered.
568       // This can never be the case if the instruction both uses and
569       // defines the same physical register, which was detected above.
570       if (!PhysUseDef) {
571         unsigned CSVN = VNT.lookup(MI);
572         MachineInstr *CSMI = Exps[CSVN];
573         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
574           FoundCSE = true;
575       }
576     }
577 
578     if (!FoundCSE) {
579       VNT.insert(MI, CurrVN++);
580       Exps.push_back(MI);
581       continue;
582     }
583 
584     // Found a common subexpression, eliminate it.
585     unsigned CSVN = VNT.lookup(MI);
586     MachineInstr *CSMI = Exps[CSVN];
587     LLVM_DEBUG(dbgs() << "Examining: " << *MI);
588     LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
589 
590     // Check if it's profitable to perform this CSE.
591     bool DoCSE = true;
592     unsigned NumDefs = MI->getNumDefs();
593 
594     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
595       MachineOperand &MO = MI->getOperand(i);
596       if (!MO.isReg() || !MO.isDef())
597         continue;
598       unsigned OldReg = MO.getReg();
599       unsigned NewReg = CSMI->getOperand(i).getReg();
600 
601       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
602       // we should make sure it is not dead at CSMI.
603       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
604         ImplicitDefsToUpdate.push_back(i);
605 
606       // Keep track of implicit defs of CSMI and MI, to clear possibly
607       // made-redundant kill flags.
608       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
609         ImplicitDefs.push_back(OldReg);
610 
611       if (OldReg == NewReg) {
612         --NumDefs;
613         continue;
614       }
615 
616       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
617              TargetRegisterInfo::isVirtualRegister(NewReg) &&
618              "Do not CSE physical register defs!");
619 
620       if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) {
621         LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
622         DoCSE = false;
623         break;
624       }
625 
626       // Don't perform CSE if the result of the new instruction cannot exist
627       // within the constraints (register class, bank, or low-level type) of
628       // the old instruction.
629       if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
630         LLVM_DEBUG(
631             dbgs() << "*** Not the same register constraints, avoid CSE!\n");
632         DoCSE = false;
633         break;
634       }
635 
636       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
637       --NumDefs;
638     }
639 
640     // Actually perform the elimination.
641     if (DoCSE) {
642       for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
643         unsigned OldReg = CSEPair.first;
644         unsigned NewReg = CSEPair.second;
645         // OldReg may have been unused but is used now, clear the Dead flag
646         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
647         assert(Def != nullptr && "CSEd register has no unique definition?");
648         Def->clearRegisterDeads(NewReg);
649         // Replace with NewReg and clear kill flags which may be wrong now.
650         MRI->replaceRegWith(OldReg, NewReg);
651         MRI->clearKillFlags(NewReg);
652       }
653 
654       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
655       // we should make sure it is not dead at CSMI.
656       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
657         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
658       for (auto PhysDef : PhysDefs)
659         if (!MI->getOperand(PhysDef.first).isDead())
660           CSMI->getOperand(PhysDef.first).setIsDead(false);
661 
662       // Go through implicit defs of CSMI and MI, and clear the kill flags on
663       // their uses in all the instructions between CSMI and MI.
664       // We might have made some of the kill flags redundant, consider:
665       //   subs  ... implicit-def %nzcv    <- CSMI
666       //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
667       //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
668       //   csinc ... implicit killed %nzcv
669       // Since we eliminated MI, and reused a register imp-def'd by CSMI
670       // (here %nzcv), that register, if it was killed before MI, should have
671       // that kill flag removed, because it's lifetime was extended.
672       if (CSMI->getParent() == MI->getParent()) {
673         for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
674           for (auto ImplicitDef : ImplicitDefs)
675             if (MachineOperand *MO = II->findRegisterUseOperand(
676                     ImplicitDef, /*isKill=*/true, TRI))
677               MO->setIsKill(false);
678       } else {
679         // If the instructions aren't in the same BB, bail out and clear the
680         // kill flag on all uses of the imp-def'd register.
681         for (auto ImplicitDef : ImplicitDefs)
682           MRI->clearKillFlags(ImplicitDef);
683       }
684 
685       if (CrossMBBPhysDef) {
686         // Add physical register defs now coming in from a predecessor to MBB
687         // livein list.
688         while (!PhysDefs.empty()) {
689           auto LiveIn = PhysDefs.pop_back_val();
690           if (!MBB->isLiveIn(LiveIn.second))
691             MBB->addLiveIn(LiveIn.second);
692         }
693         ++NumCrossBBCSEs;
694       }
695 
696       MI->eraseFromParent();
697       ++NumCSEs;
698       if (!PhysRefs.empty())
699         ++NumPhysCSEs;
700       if (Commuted)
701         ++NumCommutes;
702       Changed = true;
703     } else {
704       VNT.insert(MI, CurrVN++);
705       Exps.push_back(MI);
706     }
707     CSEPairs.clear();
708     ImplicitDefsToUpdate.clear();
709     ImplicitDefs.clear();
710   }
711 
712   return Changed;
713 }
714 
715 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
716 /// dominator tree node if its a leaf or all of its children are done. Walk
717 /// up the dominator tree to destroy ancestors which are now done.
718 void
719 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
720                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
721   if (OpenChildren[Node])
722     return;
723 
724   // Pop scope.
725   ExitScope(Node->getBlock());
726 
727   // Now traverse upwards to pop ancestors whose offsprings are all done.
728   while (MachineDomTreeNode *Parent = Node->getIDom()) {
729     unsigned Left = --OpenChildren[Parent];
730     if (Left != 0)
731       break;
732     ExitScope(Parent->getBlock());
733     Node = Parent;
734   }
735 }
736 
737 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
738   SmallVector<MachineDomTreeNode*, 32> Scopes;
739   SmallVector<MachineDomTreeNode*, 8> WorkList;
740   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
741 
742   CurrVN = 0;
743 
744   // Perform a DFS walk to determine the order of visit.
745   WorkList.push_back(Node);
746   do {
747     Node = WorkList.pop_back_val();
748     Scopes.push_back(Node);
749     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
750     OpenChildren[Node] = Children.size();
751     for (MachineDomTreeNode *Child : Children)
752       WorkList.push_back(Child);
753   } while (!WorkList.empty());
754 
755   // Now perform CSE.
756   bool Changed = false;
757   for (MachineDomTreeNode *Node : Scopes) {
758     MachineBasicBlock *MBB = Node->getBlock();
759     EnterScope(MBB);
760     Changed |= ProcessBlockCSE(MBB);
761     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
762     ExitScopeIfDone(Node, OpenChildren);
763   }
764 
765   return Changed;
766 }
767 
768 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
769 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
770 // to exclude instrs created by PRE that won't be CSEed later.
771 bool MachineCSE::isPRECandidate(MachineInstr *MI) {
772   if (!isCSECandidate(MI) ||
773       MI->isNotDuplicable() ||
774       MI->mayLoad() ||
775       MI->isAsCheapAsAMove() ||
776       MI->getNumDefs() != 1 ||
777       MI->getNumExplicitDefs() != 1)
778     return false;
779 
780   for (auto def : MI->defs())
781     if (!TRI->isVirtualRegister(def.getReg()))
782       return false;
783 
784   for (auto use : MI->uses())
785     if (use.isReg() && !TRI->isVirtualRegister(use.getReg()))
786       return false;
787 
788   return true;
789 }
790 
791 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
792                                  MachineBasicBlock *MBB) {
793   bool Changed = false;
794   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
795     MachineInstr *MI = &*I;
796     ++I;
797 
798     if (!isPRECandidate(MI))
799       continue;
800 
801     if (!PREMap.count(MI)) {
802       PREMap[MI] = MBB;
803       continue;
804     }
805 
806     auto MBB1 = PREMap[MI];
807     assert(
808         !DT->properlyDominates(MBB, MBB1) &&
809         "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
810     auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
811     if (!CMBB->isLegalToHoistInto())
812       continue;
813 
814     if (!isBeneficalToHoistInto(CMBB, MBB, MBB1))
815       continue;
816 
817     // Two instrs are partial redundant if their basic blocks are reachable
818     // from one to another but one doesn't dominate another.
819     if (CMBB != MBB1) {
820       auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
821       if (BB != nullptr && BB1 != nullptr &&
822           (isPotentiallyReachable(BB1, BB) ||
823            isPotentiallyReachable(BB, BB1))) {
824 
825         assert(MI->getOperand(0).isDef() &&
826                "First operand of instr with one explicit def must be this def");
827         unsigned VReg = MI->getOperand(0).getReg();
828         unsigned NewReg = MRI->cloneVirtualRegister(VReg);
829         if (!isProfitableToCSE(NewReg, VReg, CMBB, MI))
830           continue;
831         MachineInstr &NewMI =
832             TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI);
833         NewMI.getOperand(0).setReg(NewReg);
834 
835         PREMap[MI] = CMBB;
836         ++NumPREs;
837         Changed = true;
838       }
839     }
840   }
841   return Changed;
842 }
843 
844 // This simple PRE (partial redundancy elimination) pass doesn't actually
845 // eliminate partial redundancy but transforms it to full redundancy,
846 // anticipating that the next CSE step will eliminate this created redundancy.
847 // If CSE doesn't eliminate this, than created instruction will remain dead
848 // and eliminated later by Remove Dead Machine Instructions pass.
849 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
850   SmallVector<MachineDomTreeNode *, 32> BBs;
851 
852   PREMap.clear();
853   bool Changed = false;
854   BBs.push_back(DT->getRootNode());
855   do {
856     auto Node = BBs.pop_back_val();
857     const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
858     for (MachineDomTreeNode *Child : Children)
859       BBs.push_back(Child);
860 
861     MachineBasicBlock *MBB = Node->getBlock();
862     Changed |= ProcessBlockPRE(DT, MBB);
863 
864   } while (!BBs.empty());
865 
866   return Changed;
867 }
868 
869 bool MachineCSE::isBeneficalToHoistInto(MachineBasicBlock *CandidateBB,
870                                         MachineBasicBlock *MBB,
871                                         MachineBasicBlock *MBB1) {
872   if (CandidateBB->getParent()->getFunction().hasMinSize())
873     return true;
874   assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
875   assert(DT->dominates(CandidateBB, MBB1) &&
876          "CandidateBB should dominate MBB1");
877   return MBFI->getBlockFreq(CandidateBB) <=
878          MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
879 }
880 
881 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
882   if (skipFunction(MF.getFunction()))
883     return false;
884 
885   TII = MF.getSubtarget().getInstrInfo();
886   TRI = MF.getSubtarget().getRegisterInfo();
887   MRI = &MF.getRegInfo();
888   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
889   DT = &getAnalysis<MachineDominatorTree>();
890   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
891   LookAheadLimit = TII->getMachineCSELookAheadLimit();
892   bool ChangedPRE, ChangedCSE;
893   ChangedPRE = PerformSimplePRE(DT);
894   ChangedCSE = PerformCSE(DT->getRootNode());
895   return ChangedPRE || ChangedCSE;
896 }
897